
Praktikum SW 2 Leopoldseder, Prähofer 2018S

Assignment 6: Code Performance (40 Punkte)

Deadline: 25.06.2018

In Assignment 6 you should use the Java Microbenchmark Harness (JMH) to evaluate the performance of

different sorting algorithm implementations and do your own implementations which are (hopefully) faster

than the provided default implementation.

You are provided an eclipse maven project called PRSW2_UE6_Performance that is based on the JMH maven archetype

for benchmarking.

The project contains one Java file called SortingBenchmark.java that implements a minimal harness for

benchmarking the performance of sorting integer arrays. The harness builds a state object containing a two

dimensional integer array where the second dimension is of a fixed size. The arrays that should be sorted are

in the first dimension. So for a given size e.g. int[10][5] the algorithm needs to sort 10 integer arrays each of size

5. An initial implementation of the Bubblesort is outlined.For your implementation two skeleton methods

(marked with TODO) are given.

Your tasks:

 You should implement a different sorting algorithm with the Java native interface (JNI). The skeleton

that should call your JNI function is given in SortingBenchmark.java . You must not use library

functions but do a simple sorting function on your own (e.g. QuickSort or MergeSort). Follow the

process outlined in the slides to the JNI topic:

 Generate the JNI header file for the class JNISorter.java

 Implement it in C/C++

 Compile your implementation to a shared lib

 Load the lib in the static initializer of JNISorter.java

 Call the method from the benchmark harness skeleton

 Then you should evaluate your implementation against the provided default implementation.

Hopefully, it is faster! Generate a PDF report of your experiments covering the results of the JMH run.

Please check in that PDF report in the eclipse project as well under a folder called report.

 As a second task you should try to beat the reference implementation of Java, being Arrays.sort . You

must implement a second sorting algorithm, however, this time you are allowed to use any JVM feature

you are interested in. But, you are not allowed to use library functions yourself. However, you may use

 Multiple threads to separate the workload into chunks that can be processed in parallel

 Do further JNI investigation trying to optimize your sorting with C/C++ tricks

 Combine threading with JNI

 Do an optimized Java implementation (e.g. Radix Sort ?)

Hints:

 JNI: You can try to access the Java underlying integer array with Get<>Critical, however be aware of the

implications that the returned array might not be the original Java array.

 JMH uses annotation processing to generate its benchmark harness classes, you need to run the maven

archetype after updating your Java code (maven clean & maven install).

 If you modify Java constants you need to clean the maven archetype and install it again.

 If you fail to set your library path correctly for loading JNI shared library (e.g. on windows) you can

use absolute paths.

Workflow (tested with Windows and Linux) :

1. Download sample project PR_SW2_UE8_Performance.zip

2. Uncompress

3. Import in IDE (e.g. eclipse)

4. Run maven clean

5. Run maven install

6. Run benchmarks with java -jar target/benchmarks.jar from within Eclipse project root folder (cmd line)

