
D Lightfoot 1 of 5 2023-05-16

Spez. Kapitel aus Softwareentwicklung
Formal Specification and Development of Software
Johannes Kepler Universität, Linz, Austria, 2023

Project

Weighting
50%

Due in
2023-06-09 23:59UTC+01 (Friday evening)
by email to dlightfoot@brookes.ac.uk.

First word of title must be ‘Linz’.
Attach a Microsoft Word (or pdf) document (or zipped equivalent).
You may send a scanned, handwritten document but I shall not be able to give marks
if I cannot read it.

What you have to do
Put the title, your name and your student number on the first page of your
document.
Give brief explanations of any assumptions you make. If you have any questions
about what is required please send email to David Lightfoot at the address above.

Make use of the Zed font. On Windows, copy the file ZED____.TTF into the folder
Windows/Fonts. In Microsoft Word use Insert Symbol to put the characters into your
document and save your file with the option ‘Embed Truetype fonts’.

Answer both questions. This must be individual work, not group work.

mailto:dlightfoot@brookes.ac.uk

D Lightfoot 2 of 5 2023-05-16

Question 1 – formal specification of the game of Snakes and Ladders

http://www.tendirham.com/298-
large_default/snakes-and-ladders-board-game.jpg

Each player starts with a token on the
starting square (usually the "1" grid
square in the bottom left corner, or
simply, off the board next to the "1" grid
square). Players take turns rolling a
single die to move their token by the
number of squares indicated by the die
roll. Tokens follow a fixed route marked
on the game-board which usually follows
a boustrophedon (ox-plough) track from
the bottom to the top of the playing
area, passing once through every square.
If, on completion of a move, a player's
token lands on the lower-numbered end
of a "ladder", the player moves the token
up to the ladder's higher-numbered
square. If the player lands on the higher-

numbered square of a "snake" (or chute), the token must be moved down to the snake's lower-
numbered square.
The player who is first to bring their token to the last square is the winner.
https://en.wikipedia.org/wiki/Snakes_and_Ladders

a) Explain what aspects of the game as described above are aspects of the view (how it looks)
rather than the underlying abstract model (how it is).
(For example, does the game have to be played on a 10 by 10 square grid, as in the picture?
Does it matter how many players there are?)
Include any further constraints you perceive on the board and positions of snakes and ladders
that are not mentioned in the above description and include them in your formal specification.

In the remainder of this work consider only the abstract model.
Include brief, narrative, English explanations of each of your schemas.

5 marks

b) Write names and descriptions for the basic types that needed for a Z specification of the game.

2 marks

c) Devise a Z schema to describe the current state for each player and of the snakes and the
ladders. Include all invariant properties (constraints).

5 marks

d) Write a schema for an initial starting state and show informally that this state satisfies the
invariant properties.

5 marks

e) Write an operation schema to make a move for a given player and a given number on the die.
Explain informally how your schema maintains the invariant properties of the state.

5 marks

f) Write an enquiry schema that returns the player who has won, if there is one yet.

3 marks
Total 25 marks

http://www.tendirham.com/298-large_default/snakes-and-ladders-board-game.jpg
http://www.tendirham.com/298-large_default/snakes-and-ladders-board-game.jpg
https://en.wikipedia.org/wiki/Snakes_and_Ladders

D Lightfoot 3 of 5 2023-05-16

Question 2 – formal program derivation of Zune code

Read about the” Zune Bricking code” on Guardian web page:

http://www.theguardian.com/technology/blog/2009/jan/01/zune-firmware-mistake

and elsewhere. See references list at end of this document.

Note that the English expression “The Zune's real-time clock stores the time in terms of days and
seconds since January 1st, 1980”, in the Guardian report is ambiguous, where the days are concerned.
For example: How many days since January 1st, 1980, is January 1st 1980?

This ambiguity can be resolved by the fact that the software was noticed to go wrong just after
midnight at the start of December 31, 2008.

The original code takes the number of days from the start of the origin year and works out the
corresponding year and day number in that year.

Here it is: (in C)

year = ORIGINYEAR; /* = 1980 */
while (days > 365) {
 if (IsLeapYear(year)) {
 if (days > 366) {
 days -= 366; year += 1;
 }
 } else {
 days -= 365; year += 1;
 }
}

a) Assuming the existence and availability of correct Spec# methods with specifications:
static bool IsLeapYear(int y)
requires y >= 1980;
ensures result == “year y is a leap year”;

and
static int DaysInMonth(int y, int m)
requires y >= 1980 && 1 <= m && m <= 12;
ensures result == “number of days in month m of year y”;

using DaysInMonth, write the implementation for the method with this specification in Spec#:
static bool IsValidDate(int y, int m, int d)
requires y >= 1980;
result == “y, m, d is a valid date”;
{implementation
}

3 marks

b) Complete the Spec# specification (not implementation) of a method with heading:
static int DaysSince1Jan1980(int year, int month, int day)
requires …;
ensures …;

that need only work where y, m, d constitute a date no earlier than the start of 1980. You may
create your own auxiliary functions if you wish (for example DaysInYear).

3 marks

c) Following the methods taught in the formal-derivation part of the module, derive an
implementation of the method DaysSince1Jan1980 and annotate it with suitable loop
invariants to show its partial correctness.

http://www.theguardian.com/technology/blog/2009/jan/01/zune-firmware-mistake

D Lightfoot 4 of 5 2023-05-16

Hint: You will find it easiest to implement this in two parts: firstly summing the days in the
whole years since 1980 and then the days since the start of year y.

Big hint: do not try to do this by writing the program first and then trying to prove it correct;
that is much more difficult than deriving the implementation hand-in-hand with showing its
correctness.

You may use material from the module’s formal-derivation lectures without acknowledgement.

Requirement: you must not use break, continue, return, goto or any other “crypto-goto”
statements in any of your implementations in this work! They are not necessary and they defy
the ideas of structured programming and make formal proof of your implementation very
difficult.

4 marks

d) Identify a suitable bound function for each loop in your method and explain your choice.
Augment the annotation of your implementation to show its total correctness.

4 marks

e) Derive a Spec# implementation to be the inverse operation to DaysSince1Jan1980:
void DaysBackToDate(int days; out int y, out int m, out int d)
requires days > 0;
ensures IsValidDate(y, m, d) && days == DaysSince1Jan1980(y, m, d);

including invariants that show it to be partially correct.

Note: an out parameter in C# is like a var parameter in Pascal. It requires the actual parameter
to be a variable and it carries a value out of the method through the parameter.

5 marks

f) Identify suitable bound functions and augment the annotation of your implementation to show
its total correctness.

2 marks

g) Study the some of the many posts about the Zune ‘bricking code’. Criticise them where you
think they are wrong or poorly expressed or where the ‘corrections’ offered are either wrong
or messy. Devise your own explanation of what is wrong with the Zune code, making reference
to the ideas of formal derivation.

4 marks
Total 25 marks

Dijkstra guarded-command notation
You might find it useful to develop your implementation of the part that finds the day in year from
days by using Dijkstra’s guarded-command notation; it offers a very simple, elegant solution for this
task.

Steps

• specify in form of pre- and post-condition;

• find suitable loop invariant;

• determine suitable guard;

• determine initialisation that establishes the invariant;

• determine body that maintains invariant;

• show that invariant conjoined with negation of guard implies post-condition;

• find bound (variant);

• use bound to prove termination.

Template for a loop
pre
initialisation
invariant

D Lightfoot 5 of 5 2023-05-16

while guard do

 invariant  guard  bound = B  B > 0
 body

 invariant  bound < B
end

invariant   guard  post

References

http://www.theguardian.com/technology/blog/2009/jan/01/zune-firmware-mistake

http://bit-player.org/2009/the-zune-bug

http://en.wikipedia.org/wiki/Zune_30

http://bits.blogs.nytimes.com/2008/12/31/the-day-microsoft-zunes-stood-still/?hp&_r=0

http://latimesblogs.latimes.com/technology/2008/12/zune-30-shutdow.html

http://www.theguardian.com/technology/blog/2009/jan/01/zune-firmware-mistake
http://bit-player.org/2009/the-zune-bug
http://en.wikipedia.org/wiki/Zune_30
http://bits.blogs.nytimes.com/2008/12/31/the-day-microsoft-zunes-stood-still/?hp&_r=0
http://latimesblogs.latimes.com/technology/2008/12/zune-30-shutdow.html

