ModulePlanning:EmbeddedLinuxWorkshop,Hagenberg,SS 2013

Objective: Familiar with difference of embedded/PC Linux system, Development tool chain for embedded ARM systems, Kernel modules, Principles of device drivers, Communication of device drivers with user processes, Interrupt handling techniques, Kernel threads and kernel synchronization techniques

Prerequisite: Basic knowledge of Linux, Some practical experience with a Linux system (Debian, Ubuntu, etc); Good knowledge of software (cross) development in C (gcc, make) and testing

Grading Scheme: "erfolgreich besucht": presence in at least 4 sessions

Note 1 oder 2: individual results in Lab on interrupt latency (session 6) based on a short report

Session	Titel	Contents	Lab
1:	Introduction, Cross Development	Difference: Desktop Linux / Embedded Linux	Experimental setup of the embedded system development infrastructure
Di 4.		GNU tool chain (gcc, gdb)	Build your cross development tools: tool chain, root file system, kernel
Juni		Editors, Makefile, Tools, Bootloader Services: TFTP, DHCP, NFS used for setup	Cross-develop a simple application program, write a makefile for it
2:	Kernel, Kernel Loadable Modules	Kernel Architecture, Process-Management	Simple module (Hello World)
Do 6.		System Calls, File System Review: pseudo FS	Dependent modules with parameters
Juni		(/proc, /sys), Kernel Modules	Module communication with user space via /proc
3:	Kernel Concurrency Management	Atomic variables and bit operations,	Kernel thread APIs, creation/cancellation of kthreads
Di 11.	Kernel Threads	Semaphores, Mutexes, Wait queues,	Performance analysis of kernel synchronization methods
Juni		Completions, Spin locks	
		Introduction to kernel threads	
4:	Device Drivers	Device Interfaces, User API (system calls)	Driver to control LED's and switches
Do 13. Juni		Sample Drivers for LEDs, Switches, GPIOs	Driver to control GPIOs
5:	Interrupt Processing	Concepts of interrupt processing	Preliminary Exercises: GPIO Interrupts
Di 18.		Interrupt handler,	 Simple interrupt handlers
Juni		Deferred interrupt handling by tasklets and	 Sharing interrupts and interrupt handlers
		kernel threads	 Deferred interrupt processing using tasklets and kernel threads
6:	Mini-project	Applied drivers	Interrupt latency estimation using GPIO triggered interrupts. Maintain a kernel
Do 20.			event buffer. Evaluate its events by a user space program to estimate different
Juni			types of latencies like interrupt fast/slow handling latency, kernel/user latency.