
102 CHAPTER 5

Automating JUnit

5.3 Running tests from Maven

Once you have used Ant on several projects, you’ll notice that most projects
almost always need the same Ant scripts (or at least a good percentage). These
scripts are easy enough to reuse through cut and paste, but each new project
requires a bit of fussing to get the Ant buildfiles working just right. In addition,
each project usually ends up having several subprojects, each of which requires
you to create and maintain an Ant buildfile.

 Maven (http://maven.apache.org/) picks up where Ant leaves off, making it a
natural fit for many teams. Like Ant, Maven is a tool for running other tools, but
Maven is designed to take tool reuse to the next level. If Ant is a source-building
framework, Maven is a source-building environment.

5.3.1 Maven the goal-seeker

Behind each target in every Ant buildfile lies a goal. The goal might be to gener-
ate the unit tests, to assemble the Javadocs, or to compile the distribution. The
driving force behind Maven is that under the hood, each software project almost
always does things the same way, following several years of best practices. Most dif-
ferences are arbitrary, such as whether you call the target output directory target
or output.

 Instead of asking developers to write their own targets with tasks, Maven provides
ready-to-use plugins to achieve the goals. At the time of this writing, Maven boasts
more than 70 plugins. Once Maven is installed (see the sidebar on the next page),
you can type maven -g to get the full list of the available plugins and goals. Reference
documentation for the plugins is available at http://maven.apache.org/reference/
plugins. The following list describes a few common Maven plugins:

Are automated unit tests a panacea?
Absolutely not! Automated tests can find a significant number of bugs, but
manual testing is still required to find as many bugs as possible. In general,
automated regression tests catch 15–30% of all bugs found; manual testing
finds the other 70–85% (http://www.testingcraft.com/regression-test-
bugs.html).

Are you sure about that?
Some test-first design / unit testing enthusiasts are now reporting remarkably
low numbers of bug counts, on the order of one or two per month or fewer.
But these results need to be substantiated by formal studies and replicated by
other teams. Your mileage will definitely vary.

Running tests from Maven 103

■ jar—Generates a project jar and deploys it to a local or remote jar repository

■ junit—Executes JUnit tests

■ site—Generates a project documentation web site that contains lots of use-
ful reports and project information, in addition to containing any docs you
wish to include

■ changelog—Generates a change log report (CVS changelog, Starteam
changelog, and so forth)

■ checkstyle—Runs Checkstyle on the source code and generates a report

■ clover—Runs Clover on the source code and generates a Clover report

■ eclipse—Automatically generates Eclipse project files from the Maven
project description

■ ear—Packages the application as an ear file

■ cactus—Automatically packages your code, deploys it in a container of your
choice, starts the container, and runs Cactus tests (see chapter 8)

■ jboss—Supports creation of JBoss Server configurations and deployments
of war, ear, and EJB-jar in JBoss using a simple copy or JMX

Having well-defined plugins not only provides unprecedented ease of use, it also stan-
dardizes project builds, making it easy for developers to go from project to project.

Installing Maven
Installing Maven is a three-step process:

1 Download the latest distribution from http://maven.apache.org/
builds/release/ and unzip/untar it in the directory of your choice (for
example, c:\maven on Windows or /opt/maven on UNIX).

2 Define a MAVEN_HOME environment variable pointing to where you
have installed Maven.

3 Add MAVEN_HOME\bin (MAVEN_HOME/bin on UNIX) to your PATH envi-
ronment variable so that you can type maven from any directory.

You are now ready to use Maven. The first time you execute a plugin, make
sure your Internet connection is on, because Maven will automatically down-
load from the Web all the third-party jars the plugin requires.

104 CHAPTER 5

Automating JUnit

5.3.2 Configuring Maven for a project

Using Ant alone, you describe your build at the level of the tasks. With Maven, you
describe your project structure and the plugins use this directory structure, so you
don’t have to be an Ant wizard to set up your project. Maven handles the wizardry.

 Let’s look at a Maven description for a simple project based on the sampling
project you wrote in chapter 3 and that you ran with Ant earlier in the chapter.
The goal is to run your unit tests with Maven.

 Configuring Maven for a project requires writing only one file: project.xml
(also called the POM, short for project object model). It contains the full project
description. Listing 5.6 shows the first part of this file, which contains background
information about the project.

<?xml version="1.0" encoding="ISO-8859-1"?>

<project>
 <pomVersion>3</pomVersion> b
 <id>junitbook-sampling</id> c
 <name>JUnit in Action - Sampling JUnit</name> d
 <currentVersion>1.0</currentVersion> e
 <organization>
 <name>Manning Publications Co.</name>
 <url>http://www.manning.com/</url>
 <logo>http://www.manning.com/front/dance.gif</logo>
 </organization>
 <inceptionYear>2002</inceptionYear>
 <package>junitbook.sampling</package>
 <logo>/images/jia.jpg</logo>

 <description>
 Chapter 3 presents a sophisticated test case to show how JUnit
 works with larger components. The subject of our case study is
 a component found in many applications: a controller. We
 introduce the case-study code, identify what code to test, and
 then show how to test it. Once we know that the code works as
 expected, we create tests for exceptional conditions, to be
 sure our code behaves well even when things go wrong.
 </description>
 <shortDescription>
 Chapter 3 of JUnit in Action: Sampling JUnit
 </shortDescription>

 <url>http://sourceforge.net/projects/junitbook/</url>

 <developers>
 <developer>
 <name>Vincent Massol</name>

Listing 5.6 First part of project.xml showing background project information

f

g

Running tests from Maven 105

 <id>vmassol</id>
 <email>vmassol@users.sourceforge.net</email>
 <organization>Pivolis</organization>
 <roles>
 <role>Java Developer</role>
 </roles>
 </developer>
 <developer>
 <name>Ted Husted</name>
 <id>thusted</id>
 <email>thusted@users.sourceforge.net</email>
 <organization>Husted dot Com</organization>
 <roles>
 <role>Java Developer</role>
 </roles>
 </developer>
 </developers>
 [...]
</project>

Tell Maven the version of the POM you are using to describe the project. As of this
writing, the version to use is 3. Maven uses it to perform automatic migration of
old POM versions to the new one if need be.

Define the project ID. Several plugins use this ID to name files that are generated.
For example, if you run the jar plugin on the project, it generates a jar named
junitbook-sampling-1.0.jar (<id>.<currentVersion>.jar).

Give a human-readable name for your project. It is used, for example, by the site
plugin, which generates the documentation web site.

This is the current version of your project. For example, the version suffixed to
the jar name comes from the definition here.

Describe background information about your project that is used by the site
plugin for the web site.

Describe the developers working on this project and their roles. This information
is used in a report generated by the site plugin.

Executing Maven web-site generation
Let’s use the Maven site plugin to generate the web site and see how the informa-
tion you have provided is used. Open a command-line prompt in the sampling/
project directory (see chapter 3, section 3.4 for details of setting up the project
directory structure) and enter maven site, as shown in figure 5.3.

g

b

c

d

e

f

g

106 CHAPTER 5

Automating JUnit

Figure 5.3 shows only the very beginning of the site plugin’s execution. The web-
site generation is quite rich. Maven generates several reports by default, as shown
by figure 5.3. For example, you can see that it will generate metrics (maven-
jepend-plugin), a Checkstyle report (maven-checkstyle-plugin), a change log
report (maven-changelog-report), a JUnit report (maven-junit-report-plugin), a
check for broken URL links in the documentation (maven-linkcheck-plugin),
and so forth.

 Figure 5.4 shows the welcome page of the generated web site. The generated
web site makes good use of the information you entered in project.xml. For
example, the images at the top are the ones you defined in listing 5.6 with the two
logo elements. Each is linked to the URLs defined by the two corresponding url
elements. The description comes from the description element, and the header
is the project name (name element).

 On the left are several menus, some of which contain submenus. For example,
clicking Project Reports yields the screen in figure 5.5, showing all the generated
default reports.

Figure 5.3 Beginning of the site-generation plugin execution showing the
names of the different reports that will be generated

Running tests from Maven 107

Figure 5.4 Welcome page of the generated site showing how the
information entered in project.xml is used

Figure 5.5 List of Maven-generated default reports for the sampling project

108 CHAPTER 5

Automating JUnit

 It is possible to control exactly what reports you want for your web site by
explicitly listing the desired reports in project.xml. For example, if you want only
the unit test report and the checkstyle report, you can write the following at the
end of project.xml:

 <reports>
 <report>maven-junit-report-plugin</report>
 <report>maven-checkstyle-plugin</report>
 </reports>

Describing build-related information
Let’s complete the project object model (POM) by entering build-related informa-
tion into project.xml (listing 5.7).

 <!--dependencies>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.8</version>
 </dependencies-->

 <build>
 <sourceDirectory>src/java</sourceDirectory> c
 <unitTestSourceDirectory>src/test</unitTestSourceDirectory> d
 <unitTest>
 <includes>
 <include>**/Test*.java</include>
 </includes>
 <excludes>
 <exclude>**/Test*All.java</exclude>
 <exclude>**/TestDefaultController?.java</exclude>
 </excludes>
 </unitTest>
 </build>

</project>

Describe the project’s external dependencies. A dependency typically specifies a
jar, but a dependency can be of any type. All jar dependencies are added to the
classpath and used by the different plugins, such as the junit plugin. In this case,
you have no external dependencies, which is why the log4j dependency is com-
mented out in listing 5.7. In section 5.3.4, we describe in detail how Maven han-
dles dependencies with the notion of local and remote repositories.

Describe the location of the runtime sources.

This is the location of the test sources.

Listing 5.7 Second part of project.xml containing build-related information

b

e

b

c

d

Running tests from Maven 109

Define the test classes you expect to include/exclude in the tests. Notice that you
exclude the TestDefaultController?.java classes created in chapter 3 (the ?
stands for any character), because they are unfinished tutorial classes and are not
meant to be executed.

These code segments are used by the junit plugin.

Given just the description in listing 5.7, you can now run any of Maven’s plugins
to compile, package, and test your project, and more.

5.3.3 Executing JUnit tests with Maven

Executing JUnit tests in Maven is as simple as invoking the junit plugin with
maven test from a command shell (see figure 5.6). This is close to the result of
running the Ant script, back in figure 5.1—but without writing a single line of script!
Generating a JUnit report is just as easy: Enter maven site, and the web site is gen-
erated, along with your JUnit report (among others). Figure 5.7 shows the JUnit
report summary page for the sampling project.

5.3.4 Handling dependent jars with Maven

Maven solves another difficult issue: jar proliferation. You have probably noticed
that more and more high-quality libraries are available in the Java community.
Instead of reinventing the wheel, increasing numbers of projects import third-party
libraries. The dark side is that building a project from its sources can be a night-
mare, because you have to gather all the external jars, all in their correct versions.

 Maven handles project dependencies (also called artifacts) through the use of two
repositories: a remote repository and a local one. Figure 5.8 explains the workflow.

 The first step for a project is to declare its dependencies in its project.xml.
Although the sampling project does not depend on any external jars, let’s imagine
it needs to use Log4j. You would add the following to project.xml:

 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.8</version>
 </dependency>

When you execute a Maven goal on a project, here’s what happens (following the
numbers from figure 5.8):

Check dependencies. Maven parses the dependencies located in project.xml.

Check the dependency’s existence in the local repository. For each dependency,
Maven checks if it can be found in the local repository. This local repository is

e

d e

b

c

110 CHAPTER 5

Automating JUnit

Figure 5.6 Results of executing maven test on the sampling project

Figure 5.7 JUnit report generated by Maven

Running tests from Maven 111

automatically created when you execute Maven the first time (it is located in your
home user directory under .maven/repository/).

Download the dependency. If the dependency is not found in the local repository,
Maven downloads it from a Maven remote repository. The default Maven remote
repository is http://www.ibiblio.org/maven/. You can easily override this default by
setting the maven.repo.remote property in a project.properties or build.proper-
ties file in the same location as your project.xml file. This is especially useful if you
wish to set up a project-wide or company-wide Maven remote repository.

Store the dependency. Once the dependency has been downloaded, Maven stores
it in your local repository to prevent having to fetch it again next time.

The structure of the local and remote repositories is the same. Figure 5.9 shows a
very simple repository.

 In figure 5.9 you can see that jars are put in a jars/ directory. The names are
suffixed with the version to let you put several versions in the same directory and
for easy identification. (For example, the log4j jar is available in versions 1.1.3,

project.xml

Maven runtime

Web Server

Maven
remote

repositoryLocal
repo.

b

c e

d

Figure 5.8
How Maven resolves
external dependencies

d

e

Figure 5.9 Very simple portion of a Maven repository (local or remote)

112 CHAPTER 5

Automating JUnit

1.2.7, and 1.2.8.) In addition, you can collect several jars into a common group.
Figure 5.9 also shows the MockObjects jars organized into a mockobjects group.
Although the figure only shows jars, it is possible to put any type of dependency in
a Maven repository.

5.4 Running tests from Eclipse

Ant gives you the ability to both build and test your projects in one fell swoop.
Maven goes beyond Ant to provide a comprehensive code-building environment.
But how do you go about creating the code to build?

 Many excellent Java applications have been written using pure editors, like
Emacs, JEdit, and TextPad, to name a few. Many applications are still being writ-
ten with tools like these. But more and more developers are adopting one of the
many IDEs now available for Java. The IDEs have come a long way over the last few
years, and many developers now consider an IDE an indispensable tool.

 Most of the Java IDEs work hand in hand with build tools like Ant and Maven.
On a daily basis, many developers create and test code using an IDE and then use
Ant or Maven to distribute or deploy the latest version. Sometimes, the developers
on a team all use the same IDE; other times they don’t. But as a rule, they all use
the same build system (Ant or Maven).

 The Java IDEs have also been quick to adopt JUnit as part of their toolset. Most
IDEs let you launch JUnit from within the environment. Developers can now
debug, edit, compile, and test a class, all from within a seamless environment.

 Reviewing each Java IDE is out of the scope of this book. But to give you a feel
for what these IDEs can do (or what your IDE should be doing), we will walk
through setting up a project and running tests using Eclipse.

 Eclipse (http://www.eclipse.org/) is a very popular open source project, avail-
able for download at no charge. That Eclipse has excellent support for JUnit
should be no surprise. Erich Gamma, one of the original authors of JUnit, is a key
member of the Eclipse team.

 If you are not using Eclipse for development, don’t worry—we won’t use any
features specific to Eclipse. In other words, you will be able to follow along using
your favorite IDE.

5.4.1 Creating an Eclipse project

Eclipse comes with a full-featured installation program that makes setup a breeze.
Detailed instructions for installing and configuring Eclipse for this book can be
found in appendix B. This appendix demonstrates how to import this book’s

