
Submitted by
DI Josef Eisl, BSc.

Submitted at
Institute for System
Software

Supervisor and
First Examiner
o.Univ.-Prof. DI
Dr.Dr.h.c. Hanspeter
Mössenböck

Second Examiner
Ao.Univ.-Prof. DI
Dr. Andreas Krall

October 2018

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Trace Register Allocation

Doctoral Thesis
to obtain the academic degree of

Doktor der technischen Wissenschaften

in the Doctoral Program

Technische Wissenschaften

Oracle, Java, HotSpot, and all Java-based trademarks are trademarks or registered trademarks
of Oracle in the United States and other countries. All other product names mentioned herein

are trademarks or registered trademarks of their respective owners.

In memory of my brother.
(Wolfgang Eisl, 1973–2016)

v

Abstract

Register allocation, i.e., mapping the variables of a programming language to the physical reg-
isters of a processor, is a mandatory task for almost every compiler and consumes a significant
portion of the compile time. In a just-in-time compiler, compile time is a particular issue because
compilation happens during program execution and contributes to the overall application run
time. Compilers often use global register allocation approaches, such as graph coloring or linear
scan, which only have limited potential for improving compile time since they process a whole
method at once. With growing methods sizes, these approaches are reaching their scalability
boundary due to their limited flexibility.

We developed a novel trace register allocation framework, which competeswith global approaches
in both, compile time and code quality. Instead of processing a whole method at once, our al-
locator processes linear code segments (traces) independently and is therefore able to (1) select
different allocation strategies based on the characteristics of a trace in order to control the trade-
off between compile time and peak performance, and (2) to allocate traces in parallel in order to
reduce compilation latency, i.e., the time until the result of a compilation is available.

We implemented our approach in GraalVM, a production-quality Java Virtual Machine devel-
oped by Oracle. Our experiments verify that, although our allocator works on a non-global
scope, it performs equally well (or even better) than a state-of-the-art global allocator. This re-
sult is already remarkable, since it refutes the common believe that global register allocation is a
necessity for good allocation quality. Furthermore, to demonstrate the flexibility of trace register
allocation, we seamlessly reduce register allocation time in a range from 0 to 40%, depending on
how much peak performance penalty we are willing to sacrifice (from 0–12% on average). As
an extra benefit, we present parallel trace register allocation, a mode where traces are allocated
concurrently by multiple threads. In our experiments, this reduces the register allocation latency
by up to 30% when using 4 threads compared to a single allocation thread.

Our work adds a new class of register allocators to the list of state-of-the-art approaches. Its
flexibility opens manifold opportunities for future research and optimization, and enriches the
landscape of compiler construction.

vii

Kurzfassung

Eine der wesentlichen Aufgaben eines Compilers ist es die potentiell unbegrenzte Anzahl von
Variablen eines Programms auf die physisch vorhandenen Maschinenregister eines Prozessors
abzubilden. Dieser Vorgang – die sogenannte Registerallokation – trägt erheblich zur Überset-
zungszeit eines Programms bei. Die Optimierung solcher Registerallokatoren spielt besonders
für dynamische Übersetzer (Just-In-Time Compiler), in denen die Übersetzung erst zur Laufzeit
stattfindet, eine wichtige Rolle, da die Allokationszeit hier maßgeblich zur Gesamtlaufzeit des
Programms beiträgt. Viele Übersetzer verwenden globale Registerallokatoren, zum Beispiel nach
dem Graph Coloring oder Linear Scan Verfahren, in denen das Optimierungspotential aufgrund
desmethoden-basierten Ansatzes eingeschränkt ist. Mit zunehmenderMethodengröße erreichen
diese bestehenden Ansätze die Grenzen ihrer Skalierbarkeit.

Um dieses Problem zu lösen, haben wir im Zuge dieser Arbeit einen neuartigen Trace-basierten

Registerallokator entwickelt, der eineMethode nicht als Ganzes verarbeitet, sondern sie in lineare
Codesegmente (Traces) zerlegt, die dann unabhängig voneinander bearbeitet werden. Zum einen
können so abhängig von den Eigenschaften der Codesegmente unterschiedliche Strategien an-
gewendet werden, die uns beispielsweise erlauben, für kritische Teile mehr Zeit aufzuwenden
als für weniger kritische Teile. Zum anderen können die einzelnen Segmente parallel verarbeitet
werden, was die Latenzzeit einer Übersetzung verringert.

Die Implementierung unseres Registerallokators erfolgte in GraalVM, einer von Oracle entwi-
ckelten hochoptimierenden virtuellen Maschine für Java. Unsere Experimente haben gezeigt,
dass unser lokaler Ansatz mindestens gleich gut – und in einigen Fällen sogar besser – als glo-
bale State-of-the-Art-Allokatoren arbeitet. Diese Erkenntnis widerlegt somit die weit verbreitete
Annahme, dass für gute Ergebnisse globale Allokationsverfahren benötigt werden. Aufgrund
der Flexibilität unseres Ansatzes konnte, abhängig von den tolerierten Performance-Einbußen
(durchschnittlich zwischen 0–12%), die Registerallokationszeit um bis zu 40% reduziert werden.
Zusätzlich erlaubt unser Allokator eine parallele Abarbeitung, die beispielsweise bei der Verwen-
dung von vier Threads anstelle von einem, die Allokationslatenz um bis zu 30% verringert.

viii

Unser hier vorgestellter Registerallokator fügt sich nahtlos in die Liste der State-of-the-Art-
Ansätze ein. Die zusätzliche Flexibilität eröffnet eine Vielzahl an zukünftigen Forschungsmög-
lichkeiten und bereichert die bestehende Übersetzerbau-Landschaft.

ix

Acknowledgement

First, I thank my advisor Hanspeter Mössenböck for his continuous support and for encouraging
me to pursue my ideas. Thanks for numerous discussions and thorough feedback on all of my
work, even if the schedule was sometimes tight due to my commitment to the just-in-time prin-
ciple. Although we might never agree on the usage of the terms variable, value and temporary,
I learned a lot, especially about the importance of presenting complex topics in a simple and
approachable way.

I am very grateful to Oracle Labs for funding my position and providing me with a productive
environment for exploring my vision. Special thanks to Thomas Würthinger without whom
this work would not exist. I thank Doug Simon for being an amazing manager and for making
working within the Graal compiler team a delightful experience. Also, for finding every single
of my JavaDoc typos. Thanks to the other members of the team, especially to Roland Schatz,
Gilles Duboscq, Tom Rodriguez, Lukas Stadler, and Stefan Anzinger, who received me with open
arms when I joined the ride. Your reviews and suggestions made my code do something useful.
Thanks also to Christian Wimmer for enlightening discussions about register allocation and for
the C1Visualizer.

I want to thank two former colleagues from the Institute for System Software, Matthias Grimmer
and Stefan Marr, who taught me a lot about paper writing and academia in general. Ask Stefan
about the 3× 3 rule for a successful conference poster if you happen to run into him. Definitely
worked for me.

Special shout-out to my office buddies (and fellow ACM Student Research Award Winners!)
David Leopoldseder and Manuel Rigger. Although the atmosphere in the office was occasion-
ally a bit heated—partially due to an undersized air condition, partially because of me trying to
finish my thesis on time—the overall experience was very joyful and fun. All the best for your
upcoming endeavors. Ach ja?

I am grateful to my friends for their continuous friendship, even when the intervals between our
get-togethers are often longer than I want them to be. Special thanks to Bernhard Urban, who
convinced me to come to Linz to join the Graal team. See you all soon.

x

I thankmy family for their everlasting support and for always believing in me. Especially, I thank
my parents for supporting all of my wild ideas. It seems like some of them really worked out.

Most importantly, I want to thank my wonderful wife Marianne, who not only moved with me to
Linz for my studies, but also supported me in every possible way over the last years. Thank you
for encouraging me to continue when I was in doubt and for giving me critical feedback when I
needed it. And thank you for every once in a while reminding me that there is more to life than
compilers and virtual machines. It was utterly important for keeping my mental health. I love
you!

Pursuing a Ph.D. is not a one-person show. In fact, it involves a lot of people, institutions and
lucky coincidences. In honor of those who were making this work possible, I include them in
every “we” inhere.

Contents xi

Contents

1 Introduction 1
1.1 Background on Register Allocation . 2
1.2 Graph Coloring . 6

1.2.1 Chaitin’s Allocator . 6
1.2.2 Other Graph Coloring Approaches . 8

1.3 Linear Scan . 10
1.3.1 Lifetime Holes and Interval Splitting . 11

1.4 Problems of Existing Register Allocation Approaches 14
1.5 Our Approach . 17
1.6 Contributions . 19
1.7 Outline . 21

2 Terminology 23
2.1 Instructions, Values, Locations . 23
2.2 Control-flow Graphs . 24

2.2.1 Dominance . 26
2.2.2 Loops . 27

2.3 Liveness and Lifetime Intervals . 28
2.4 Static Single Assignment Form . 30

2.4.1 ϕ-notation . 32
2.4.2 SSA destruction . 33

3 The Graal Virtual Machine 35
3.1 The Java Virtual Machine . 36
3.2 The HotSpot VM . 36

3.2.1 Graal on the HotSpot VM . 38
3.3 The Graal Compiler . 39

4 Trace Register Allocation 43
4.1 Trace Building . 44

4.1.1 Unidirectional Trace Building . 45
4.1.2 Bidirectional Trace Building . 48

xii Contents

4.2 Trace Properties . 50
4.2.1 Greedy Trace Properties . 50
4.2.2 Dominance Properties of Traces . 51

4.3 Global Liveness Analysis . 53
4.3.1 Liveness Analysis . 54
4.3.2 Representation of Global Liveness . 55

4.4 Allocating Registers . 56
4.5 Global Data-flow Resolution . 57

5 Register Allocation Strategies 61
5.1 Linear Scan Allocator . 61

5.1.1 Interval Building . 62
5.1.2 Register Allocation on Intervals . 63
5.1.3 Local Data-flow Resolution . 65
5.1.4 Register Assignment on LIR . 66

5.2 Trivial Trace Allocator . 66
5.3 Bottom-Up Allocator . 68

5.3.1 Tracking Liveness Information . 68
5.3.2 Register Allocation . 69
5.3.3 Phi-resolution . 73
5.3.4 Loop Back-Edge . 74
5.3.5 Example . 74
5.3.6 Ideas that did not Work Out . 75

6 Inter-trace Optimizations 77
6.1 Inter-trace Hints . 78
6.2 Spill Information Sharing . 79
6.3 Known Issue: Spilling in Loop Side-Traces . 79
6.4 Stack Intervals . 81

7 Evaluation 83
7.1 Benchmarks . 84

7.1.1 SPECjvm2008 . 84
7.1.2 SPECjbb2015 . 84
7.1.3 DaCapo . 85
7.1.4 Scala-DaCapo . 85

7.2 Configurations . 86
7.3 Peak Performance/Allocation Quality . 86

7.3.1 DaCapo and Scala-DaCapo . 86
7.3.2 SPECjvm2008 . 89
7.3.3 SPECjbb2015 . 89

Contents xiii

7.3.4 Answering RQ1 . 89
7.4 Compile Time . 90

7.4.1 Compile Time per Method . 93
7.4.2 Overall Compile Time . 94
7.4.3 Answering RQ2 . 94

7.5 Inter-trace Optimizations . 95
7.6 Trace Builder Evaluation . 97

8 Trace Register Allocation Policies 99
8.1 Properties . 99

8.1.1 Block Properties . 100
8.1.2 Trace Properties . 100
8.1.3 Compilation Unit Properties . 101
8.1.4 Aggregation of Properties . 101

8.2 Policies . 101
8.3 Evaluation . 104

8.3.1 Discussion . 107
8.3.2 Answering RQ3 . 107

9 Parallel Trace Register Allocation 109
9.1 Concurrency Potential . 109

9.1.1 Example . 110
9.2 Evaluation . 112

9.2.1 Answering RQ4 . 114
9.3 Future Directions . 114

10 Related Work 115
10.1 Register Allocation . 115

10.1.1 Local Register Allocation . 116
10.1.2 Non-Global Register Allocation . 117
10.1.3 Decoupled Register Allocation . 119
10.1.4 Mathematical Programming Register Allocation Approaches 121
10.1.5 Register Allocation in Virtual Machines 123

10.2 Non-global Code Units . 124
10.3 Trace Compilation . 125
10.4 Liveness and Intermediate Representations . 127
10.5 Compile-time Trade-offs and Concurrent Compilation 129

11 Conclusion and Future Work 131

A Additional Sources 135

xiv Contents

B Graal Backends 137
B.1 AMD64 on HotSpot . 137
B.2 SPARC on HotSpot . 138

C Hardware Environment 139
C.1 Sun Server X3-2 . 139
C.2 Sun Server X5-2 . 139
C.3 SPARC T7-2 Server . 141

Index 145

Publications 147

Bibliography 149

1

Chapter 1

Introduction

Teaser

Most optimizing compilers use global register allocation approaches, such as graph coloring or
linear scan, which process a whole method at once. Compiler optimizations such as inlining or
code duplication cause methods to become large. This poses two problems. First, register alloca-
tion time increases with method complexity, often in a non-linear fashion [Poletto and Sarkar,
1999]. Second, different regions contribute differently to the overall performance of the compiled
code [Bala et al., 2000]. Global allocators do not adjust the allocation strategy based on the ex-
pected execution frequency of the code region. Important and unimportant parts of a method are
allocated with the same algorithm, i.e., they contribute equally to the overall allocation time.

Let us have a look at the allocateArray() example in Figure 1.1. A global allocator spends
about the same amount of time for the uncommon cases (b2–b5) as for the common case (b0, b1
and b6). However, we want to spend our time budget more wisely, e.g., by spending 80% on the
most likely case, and only 20% for the rest.

In addition to compile time, i.e., the time required to compile a method, compilation latency, i.e.,
the duration until the result of a compilation is ready, is an important metric, especially for just-
in-time compilers. In contrast to the former, latency can be tackled with parallelization, in case
multiple threads are available to the compiler. Because global register allocators process a whole
method at once, they offer only few opportunities to do work concurrently.

We propose a novel non-global register allocation approach, called trace register allocation, that
tackles both issues of traditionally global allocators, namely to control the compile time on a
fine-granular level, and to reduce compilation latency using parallelization.

2 Introduction

long *allocateArray(int length, boolean fillContents) {
long *result;

/*B0*/ if (TLAB.top + length + 1 <= TLAB.end) {
/*B1*/ result = TLAB.top;

TLAB.top += length + 1;
} else {

/*B2*/ result = heapAlloc(length + 1);
if (fillContents) {

/*B3*/ long *ptr = result + length;
/*B4*/ while (result < ptr) {
/*B5*/ *ptr = 0;

ptr--;
}

}
}

/*B6*/ result[0] = length;
return result;

}
(a) C-like Pseudo Source Code

common case

b0

b1

b6

b2

b3

b4

b5

(0.3)

(0.1)

(8.1)

(8.0)

(1.0)

(0.7)

(1.0)

(b) Control-flow Graph

The method allocateArray()models an array allocation snippet. It returns a pointer to mem-
ory of size lenght + 1 where the first cell is the array length. The fillContents parameter
specifies whether a zero-initialized array is required. There are two allocation scenarios. The
array is either allocated in a thread-local allocation buffer (TLAB, block b1) or on the heap (b2–b5)
if the TLAB is too small. In addition, we assume that TLAB space is zero-initialized whereas the
heap contains garbage. While TLAB allocation is just a pointer increment, heapAlloc might
require some time to free up space. The profiled execution frequencies (parentheses) suggest
that TLAB allocation usually succeeds. If it does not and we require clean memory, we spend
a lot of time in the initialize loop (b4 and b5). The snippet is inspired by the one used in Graal

(Chapter 3), although details were changed for presentation purposes.

Figure 1.1: The allocateArray() example code snippet

1.1 Background on Register Allocation

In most programming languages, we can use an unlimited number of variables. They allow us to
refer to a value via a symbolic name without knowing its exact storage location on the underlying
execution platform. Variables allow us to name information and therefore to express our intent.
Using variables and naming them in a meaningful way, increases the readability of programs and
makes them easier to maintain. When a program is executed on a physical machine—either on
an interpreter, a compiler, or a combination of both—we need to find a mapping from variables
to physical storage locations.

Nowadays, there are a variety of machines with different storage models. We focus on archi-
tectures that are most common today. The memory hierarchy of a typical computer is depicted
in Figure 1.2. These architectures basically provide two classes of storage which are directly
accessible to a programmer: registers and memory.

1.1 Background on Register Allocation 3

Register

Cache

Main memory

Hard disk

Available storage

D
ec
re
as
in
g
ac
ce
ss

ti
m
e

In
cr
ea
si
ng

st
or
ag
e
si
ze

250 ps

1 ns

100 ns

10 ms

500 bytes

64 KiB

1 GiB

1 TiB

The pyramid representation is inspired by Pereira [2008, Figure 2.1]. The numbers are taken
from Hennessy and Patterson [2003, Figure 5.1].

Figure 1.2: Typical memory hierarchy of a computer

Registers are located in the processor and are the fastest type of storage. Depending on the pro-
cessor, their size is usually in the range of 16 to 512-bits. Their number is limited to support
efficient encoding. For example, the AMD64 architecture features only 16 general purpose reg-
isters1 in 64-bit mode. A SPARC processor provides a register set of 32 registers2 for general
usage.

With memory we refer to non-persistent, random-access storage. The number of storage loca-
tions available in memory is significantly higher than the number of registers. For the course of
this work, it is safe to assume that it is unlimited. Regarding access time, memory is orders of
magnitudes slower than registers [Hennessy and Patterson, 2003]. To speed up memory access,
most computers use one or multiple levels of caches. A cache basically mirrors parts of recently
used data from the main memory for faster consecutive access. Caches are transparent to the
programmer.3 A downside of memory is that processors only have limited support for accessing
it directly. Many machine instructions require their operands to reside in registers.

In this work, we will focus mainly onmethod-based compilers. Method-based compilers translate
a method (function) from a source language to a target language, in our case to machine code. We
use a control-flow graph (CFG) to represent methods. The nodes of this graph are basic blocks,
i.e., a sequence on branch-free instructions. Figure 1.1 shows a method in C-like pseudo code and
its corresponding control-flow graph.

Given the options above, the simplest solution is to map every variable to exactly one memory
location. Since memory is virtually unlimited, finding this mapping is trivial. Whenever a value
needs to reside in a register we can load it from memory into a register and store the result back

1Intel® 64 and IA-32 Architectures Software Developer’s Manual — Volume 1 Basic Architecture by Intel [2013a] Section
3.4.1.1

2Oracle SPARC Architecture 2011 by Oracle Corporation [2012] Section 5.2
3However, many processors provide instructions to manipulate the cache, for example for loading specific memory
locations into the cache or flushing it.

4 Introduction

int length; bool fillContents;

long *result;

if (TLAB.top + length + 1 <= TLAB.end)

result = TLAB.top;

TLAB.top += length + 1;

result = heapAlloc(length + 1);

if (fillContents)

long *ptr = result + length;

while (result < ptr)

*ptr = 0;

ptr--;

result[0] = length;

return result;

b0
(1.0)

b1
(0.7)

b2
(0.3)

b3
(0.1)

b4
(8.1)

b5
(8.0)

b6
(1.0)

fa
ls
e

fa
ls
e

le
ng

th

fi
ll

C.
re

su
lt

pt
r

(a) Lifetime intervals

length

fillC. ptr

result

(b) Interference graph

The numbers in parentheses on the left are execution frequencies. The lifetime intervals for the
allocateArray() method are shown on the left. The bullet symbol () marks the definition
(write) of the value, a square () depicts a usage (read). The interference graph is shown on
the right. Vertices represent variables, edges interference between them. See also Figure 1.1 for

more context.

Figure 1.3: Lifetime intervals and interference graph for allocateArray()

to memory. However, repeatedly moving values back and forth between registers and memory is
not efficient. Therefore, optimizing compilers try to keep values in registers whenever possible.
This optimization is known as register allocation. For programs where there are more variables
than registers the decision whether to keep a value in a register is non-trivial. In this case,
multiple variables need to share a register. To do so, we need to find variables that are not live
at same time, i.e., they do not interfere.

Example Let us have a look at our recurring example in Figure 1.1. In total, there are 4 vari-
ables, length, fillContents, result, and ptr. Figure 1.3a depicts the lifetime intervals of these
variables. The interference relation can be visualized as a graph, the so-called interference graph

(see Section 2.3). The vertices of the graph represent the variables. An edge between two vertices
means that the variables are live at the same time. Figure 1.3b shows the interference graph for
our example. While length and result interfere with all other variables, the lifetime intervals for
fillContents and ptr do not overlap. Therefore, they can use the same register.

1.1 Background on Register Allocation 5

This leads to the basic definition of the register allocation problem:

The Register Allocation Problem

Allocate a finite number of machine registers to an unbounded number of variables such
that variables with interfering live ranges are assigned to different registers.

It is not always possible to find a solution for this problem. For example, in cases where the
number of registers is smaller than the number of live values at any instruction. In that case we
need to store one or more variables in memory, usually on the stack of the method. There are
two concepts that are closely related to register allocation. Live Range Splitting: Given the live
ranges of a variable, split them in such a way that the variable can reside in different locations
(register or stack) at different points of the method. Spilling: Move a variable to the stack, so that
a register becomes free and can be used for some other variable. This brings us to the problem
that is by far more interesting—and also more complicated—than the basic register allocation
problem:

The Splitting and Spilling Problem

In case the register pressure (the number of live variables) is higher than the number
of available registers, decide which variables to split and/or spill to reduce the register
pressure.

Splitting and spilling is often formulated as an optimization problem, i.e., to make decisions to
minimize a cost function. The cost function might be based on a static property such as the
number of added spill moves, a dynamic property such as the number of executed spill moves, or
something more abstract such as system performance. It is often the structure of the cost function
that causes the problem to get difficult.

There are different approaches to register allocation. Most register allocators in a method-based
compiler can be categorized into local and global approaches, based on the scope they work on.
Local register allocators work on the scope of a single basic block. Due to their limited scope
they are fast and simple to implement but have limited optimization potential. On the other
hand, global allocators process the whole method at once. While this offers opportunities for
optimization it also makes the problem more difficult to solve. Most optimizing compiler use an
allocator that follows the global principle. Two kinds of global register allocation are commonly
used today. The first one is register allocation based on graph coloring, which was proposed
by Chaitin et al. [1981]. The other approach is linear scan register allocation, first described by
Poletto and Sarkar [1999].

6 Introduction

1.2 Graph Coloring

Graph coloring is used in many compilers today, for example in WebKit,4 the HotSpot server
compiler,5 or in GCC.6 The idea is to solve the register allocation problem via coloring [Aho et
al., 1974, Chapter 10.4] of the interference graph. Each color represents a machine register. Since
graph coloring with more than two colors is NP-complete [Karp, 1972], it is intractable to find
the optimal solution in polynomial time. Therefore, Chaitin et al. [1981] and others [Briggs et al.,
1994; Chow and Hennessy, 1990] proposed heuristics to approximate solutions in polynomial
time.

1.2.1 Chaitin’s Allocator

Chaitin et al. [1981] first showed a practical application of graph coloring for register alloca-
tion. Figure 1.4 shows an overview of the original Chaitin allocator. It operates in seven phases.
Renumber calculates lifetime intervals for each variable definition. Build constructs the interfer-
ence graph. Coalesce combines live ranges which are connected via a move instruction and do
not interfere. Spill costs computes the estimated cost of spilling a variable based on its definition
and use positions and the expected execution frequency of its live ranges. Simplify removes all
nodes from the graph where the number of neighbors (degree) is smaller than the number of
available registers (k) until the graph is empty; the removed nodes are put onto a stack. Then,
the removed nodes are added back to the graph in reverse order. Every re-added node is guaran-
teed to have less than k neighbors, so it can be colored. If during node removal we get to a point
where there are only nodes with k or more neighbors, one is selected for spilling based on its
spill costs. In the worst case all neighbors have a different color. However, there is still at least
one color left for the current node. From the nodes with higher degree, one is selected for spilling
based on its spill costs. Spill code inserts spill and reload code for spilled nodes. Select assigns
colors to the nodes in the reverse order they were removed from the graph by simplify. Each
node gets a color different to all its neighbors. Note the feedback loop from simplify to renumber

via spill code. Whenever simplify decides to spill a node the algorithm is restarted. This is one of
the main sources of time complexity of this approach.

4Graph Coloring Register Allocator in WebKit by WebKit [2017a]
5Chaitin Allocator in C2 by OpenJDK [2017a]
6Integrated Register Allocator in GCC by GCC [2017]

1.2 Graph Coloring 7

renumber build coalesce spill cost simplify select

spill code

Figure adapted from [Briggs et al., 1994, Figure 1].

Figure 1.4: Chaitin’s allocator

length

fillC. ptr

result

2 2

3

3 (empty)
stack

length

fillC. ptr

result

2

2

2 fill

stack

length

fillC. ptr

result

1

1
ptr

fill

stack

length

fillC. ptr

result 0

length

ptr

fill

stack

result

length

ptr

fill

stack

The simplify phase removes nodes with a degree (right of the nodes) less than 3 and pushes
them onto the stack. This decreases the degree of the neighbors. The procedure is continued

until there are no more nodes, or all nodes have a degree greater than 2.

(a) Simplify phase

length

fillC. ptr

result

length

ptr

fill

stack

length

fillC. ptr

result
ptr

fill

stack

length

fillC. ptr

result fill

stack

length

fillC. ptr

result (empty)
stack

The selection phase assigns colors (registers) to the nodes. The nodes are processed in the reverse
order they where removed from the graph in the simplify phase. In the example there are three

registers available, reg1 , reg2 , and reg3 .

(b) Select phase

Figure 1.5: Graph coloring of allocArray using three registers

Example without Spilling

To demonstrate the approach, let us refer to our example in Figure 1.1. Let us assume that we have
three registers available, reg1 , reg2 , and reg3 . First, the algorithm builds an interference
graph (Figure 1.5a). Next, we simplify the graph by removing nodes with a degree of less than
k = 3. The removed nodes are pushed onto the stack. Once all nodes have been removed from
the graph, we can continue with the select phase. We pop a node from the stack and assign it a
color that is different from the colors of its neighbors. Due to the construction of the stack in the
simplify phase this is always possible (see Figure 1.5b).

8 Introduction

length

fillC. ptr

result

2 2

3

3

(a) Interference
graph

Name def/use frequencies cost (
∑

) degree cost/degree

length 1.0+1.0+0.7+0.3+0.1+
1.0

4.1 3 1.4

fillC. 1.0 + 0.3 1.3 2 0.6
result 0.7+0.3+0.1+8.1+1.0+

1.0
11.2 3 3.7

ptr 0.1 + 8.1 + 8.0 + 8.0 24.2 2 12.1

(b) Spill costs for allocateArray()

The spill costs are the sum of definitions and usages weighted by their estimated execution
count [Chaitin, 1982]. The nodewith the lowest cost divided by its degree is selected for spilling,
in this case fillContents. Execution frequencies for the blocks of allocArray are given in

Figure 1.7a.

Figure 1.6: Graph coloring of allocArray using two registers (interference before spilling)

Example with Spilling

Let us redo the example with only two registers, reg1 and reg2 . As can be seen in Figure 1.6a,
there is no nodewith a degree lower than 2. Therefore, we need to select a node for spilling. To do
so, we calculate the spill costs. The result is shown in Figure 1.6b. We first select fillContents for
spilling because it has the lowest spill cost. We therefore split the interval and reload it at every
usage of the variable. However, this does not change the degrees in the interference graph. We
continuewith the next best candidate, length. This time the register pressure reduces as shown in
Figure 1.7. We can simplify the graph and push the variables onto the stack (Figure 1.8). Finally,
the select phase colors the nodes by popping them from the stack and assigning colors, as shown
in Figure 1.9.

1.2.2 Other Graph Coloring Approaches

Following the work of Chaitin et al., many refinements have been proposed to improve the result
of the original approach. While the underlying idea was retained, the details of the spilling
heuristics or the interaction of the various phases changed.

Chaitin’s allocator is rather pessimistic regarding spilling. It spills whenever it cannot prove that
there is a valid coloring, i.e., that every node has a degree lower than the number of registers.
However, in many cases it is possible to color the graph also in such situations. See Figure 1.10
for an example. Although all nodes have a degree of 2, the graph is 2-colorable. To overcome
this issue, Briggs et al. [1994] proposed the optimistic graph coloring allocator. As shown in
Figure 1.11, the main difference to the original algorithm is that instead of eagerly spilling nodes,
Briggs et al. try to select a color also for potentially spilled nodes. Only when this fails, a node

1.2 Graph Coloring 9

int length; bool fillContents;

long *result;

if (TLAB.top + length + 1 <= TLAB.end)

result = TLAB.top;

TLAB.top += length + 1;

result = heapAlloc(length + 1);

if (fillContents)

long *ptr = result + length;

while (result < ptr)

*ptr = 0;

ptr--;

result[0] = length;

return result;

b0
(1.0)

b1
(0.7)

b2
(0.3)

b3
(0.1)

b4
(8.1)

b5
(8.0)

b6
(1.0)

fa
ls
e

fa
ls
e

le
ng
th

fi
ll
C.

re
su
lt

pt
r

(a) Lifetime Intervals

length0

fillC. ptr

result

length1

length2

length3

5

1 1

0

1

1

1

(b) Interference Graph

Spilled interval in orange ().

Figure 1.7: Graph coloring of allocArray using two registers (interference after spilling)

is actually spilled. Another difference to Chaitin et al. is their conservative coalescing approach.
Instead of combining all nodes which are connected with a move instruction, only those are
considered that will provably not introduce spilling.

Building on the results of Chaitin et al. and Briggs et al., George and Appel [1996] proposed
iterative register coalescing. As the name suggests, they iteratively perform coalescing in a loop
with the simplification phase. This way, they are able to coalesce more nodes but still guarantee
that they do not introduce spilling. Investigations by Pereira and Palsberg [2005] suggest that
George and Appel’s approach is among the best performing polynomial-time register allocators
with respect to register allocation quality.

Time Complexity Giving a definite asymptotic time complexity measure for graph coloring
allocators is difficult as it strongly depends on the concrete implementation, e.g., optimistic vs.
pessimistic coloring or conservative vs. iterative coalescing. Building the interference graph
repeatedly whenever spill code is inserted is considered the most expensive part of the ap-
proach [Cooper and Torczon, 2011, Chapter 13]. Also, the size of the graph can gets quadratic in
the number of live ranges [Poletto and Sarkar, 1999]. Experiments conducted by Briggs [1992]
suggest that in practice the allocator behaves quadratic in terms of its “input size.”

10 Introduction

length0

fillC. ptr

result

length1

length2

length3

5

1 1

1

1

1

length0

stack

(a) Removed length0

length0

fillC. ptr

result

length1

length2

length3

5

1 1

length3

length2

length1

length0

stack

(b) Removed
length1–length3

result

ptr

fillContents

length3

length2

length1

length0

stack

(c) Empty Graph

Figure 1.8: Graph coloring of allocArray using two colors (simplify)

Compile time is an important metric for all compilers. For static compilation, i.e., where the
program is compiled once ahead-of-time (AOT), long compilation times are often set off as an
unfavorable but necessary condition.7,8,9 The picture changes when talking about dynamic or
just-in-time (JIT) compilation systems. Since compilation happens at application run time, it is
an integral part of the performance of a system. No matter how good the quality of the compiled
code is, if the code is not ready quickly enough, the user will be unsatisfied. Therefore, JIT
compilation always has to consider a compile-time/code-quality trade-off.

1.3 Linear Scan

Poletto and Sarkar [1999] proposed the linear scan approach as a fast register allocator that pro-
duces reasonable results for the code generation system tcc [Poletto et al., 1997]. Instead of
coloring an interference graph, linear scan performs a linear pass over the lifetime intervals of
the method. First, the basic blocks of the control-flow graph are organized in a linear manner
and instructions are numbered in ascending order.10 Lifetime intervals are defined by a start and
end position which represent the first and last occurrence of the respective variable in the linear
stream of instructions. To allocate registers, the intervals are visited in the order of increasing
start positions. The visited interval is moved into an active list, which is sorted by increasing
end positions. Whenever a new interval is activated, intervals with an end position less than
the new interval’s start position are removed from the active list. In case the active list is longer
than the number of registers, intervals need to be spilled. In Poletto and Sarkar’s implementa-

7Exhibit A: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=27140
8Exhibit B: https://www.rust-lang.org/en-US/faq.html#why-is-rustc-slow
9Exhibit C: https://lists.llvm.org/pipermail/llvm-dev/2016-March/096488.html

10For the algorithm, the block order does not matter. However, it has a big impact on code quality [Wimmer and
Mössenböck, 2005].

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=27140
https://www.rust-lang.org/en-US/faq.html#why-is-rustc-slow
https://lists.llvm.org/pipermail/llvm-dev/2016-March/096488.html

1.3 Linear Scan 11

length0

fillC. ptr

result

length1

length2

length3

result

ptr

fillContents

length3

length2

length1

length0

stack

length0

fillC. ptr

result

length1

length2

length3

result

ptr

fillContents

length3

length2

length1

length0

stack

length0

fillC. ptr

result

length1

length2

length3

result

ptr

fillContents

length3

length2

length1

length0

stack

Figure 1.9: Graph coloring of allocArray using two colors (select)

tion, they choose the interval with the highest end position. When an interval is spilled, it is
completely kept on the stack throughout its lifetime, also if it was previously selected to reside
in a register.

Figure 1.12 illustrates how the linear scan algorithm would allocate our running example. We
restricted the set of available registers to two. However, since some instructions require a register
operand and cannot deal with stack slots directly, we need an additional scratch register.

1.3.1 Lifetime Holes and Interval Splitting

Two shortcomings of Poletto and Sarkar’s linear scan approach are eye-catching. First, it always
spills the whole interval, whereas it would be sufficient to split the interval at the position where
the register pressure is too high. Also, there might be a register available later, so spilling it
indefinitely is overly conservative. The second issue is about liveness. When linearizing the
blocks of a control-flow graph, the liveness of a variable is not a continuous range, but a list of
ranges. This means that intervals have lifetime holes (see Section 2.3) where the variable is not
needed.

12 Introduction

x

w z

y

Figure adapted from [Briggs et al., 1994, Figure 2].

Figure 1.10: Diamond-shaped interference graph diamond which is 2-colorable

renumber build coalesce spill cost simplify select

spill code

Figure adapted from [Briggs et al., 1994, Figure 4].

Figure 1.11: Briggs’ optimistic allocator

Traub et al. [1998] introduced both improvements shortly after the first disclosure of linear scan
by Poletto et al. [1997]. They proposed modeling liveness of a variable in linear scan as a list of
live ranges. The emerging lifetime holes reduce the register pressure and therefore the need for
spilling. If there is still need for spilling, the interval that is selected for spilling is split just before
the register pressure exceeds the number of available registers. The first part of the interval stays
in a register. The remaining part of the interval is allocated to a stack slot. In addition to that,
the interval is split again just before the next usage of the variable and is inserted into the list of
unhandled intervals. In other words, the interval gets a second chance of getting into a register.
Thus the name of the approach, second-chance binpacking. Due to the splitting technique, Traub
et al.’s allocator selects the spill candidate based on the next use position of the interval. Interval
splitting also leads to data-flowmismatches because a variable might reside in different locations
(i.e., in different registers or in a register and in a stack slot) at both ends of a control-flow
edge. Therefore, a resolution phase iterates the edges and fixes mismatches by inserting move
instructions.

Wimmer and Mössenböck [2005] extended the second-chance binpacking approach to further im-
prove the allocation quality. The optimal split position optimization moves the split position (i.e.,
the position where a value is moved from a register to a stack slot) out of loops. If this succeeds,
the spill move is executed less often, which has a positive impact on the performance of the gen-
erated code. Wimmer and Mössenböck also proposed register hints as a light-weight alternative
to coalescing. If two intervals are linked via a move instruction, the destination interval tries to
reuse the register of the source interval, if it is available, i.e., if the interval ends at the move. Fur-
thermore, they distinguish between usages of a variable that require a register and those which

1.3 Linear Scan 13

int length; bool fillContents;

long *result;

if (TLAB.top + length + 1 <= TLAB.end)

result = TLAB.top;

TLAB.top += length + 1;

result = heapAlloc(length + 1);

if (fillContents)

long *ptr = result + length;

while (result < ptr)

*ptr = 0;

ptr--;

result[0] = length;

return result;

b0
(1.0)

b1
(0.7)

b2
(0.3)

b3
(0.1)

b4
(8.1)

b5
(8.0)

b6
(1.0)

fa
ls
e

fa
ls
e

le
ng
th

fi
ll
C.

re
su
lt

pt
r

Assign length to reg1 ()
Assign fillC. to reg3 ()

le
ng
th

fi
ll
C.

re
su
lt

pt
r

Spill length (latest end)
Assign result to reg1 ()

End fillC., free register reg3 ()

End ptr, free register reg3 ()

(a) Control-flow graph (b) Before b1 (c) Allocation finished

Allocation example with two registers, reg1 () and reg3 (). Note, that without interval split-
ting we need a scratch register reg2 () to temporarily reload spilled values.

Figure 1.12: Poletto and Sarkar-style linear scan allocation example with two registers

could directly address a variable on the stack. The latter type is common on CISC machines (see
Section 7.3.1) like the AMD64. The optimization reduces the number of reloads of an interval,
which would potentially cause more spilling.

Figure 1.13 shows an example of the interval-splitting linear scan allocation. In contrast to the
original approach, linear scan with interval splitting does not require a scratch register and can
allocate allocArraywith two registers. The interval for fillContents illustrates how an already
assigned interval is split and moved onto the stack (b1) and later reloaded to a different register
(b2).

Discussion The interval splitting approaches are significantlymore difficult to implement than
the original approach. First, the interval representation has to support multiple ranges to accom-
modate lifetime holes and usage positions for guiding splitting decisions. Second, the data-flow
mismatches call for a resolution phase. Finally, due to the extensions the time complexity of the
algorithm is no longer linear [Wimmer and Franz, 2010].

Despite these issues, the interval splitting variant is commonly used in compilers today, for exam-
ple Google’s Java Script engine V8,11 in the HotSpot client compiler,12 or Apple’s WebKit.13 One
reason is that in practice interval splitting still exhibits linear compile time behavior [Wimmer
11Linear Scan Register Allocator in V8 by V8 [2017]
12Linear Scan Register Allcoator in WebKit by WebKit [2017b]
13Linear Scan Register Allocator in C1 by OpenJDK [2017b]

14 Introduction

int length; bool fillContents;

long *result;

if (TLAB.top + length + 1 <= TLAB.end)

result = TLAB.top;

TLAB.top += length + 1;

result = heapAlloc(length + 1);

if (fillContents)

long *ptr = result + length;

while (result < ptr)

*ptr = 0;

ptr--;

result[0] = length;

return result;

b0
(1.0)

b1
(0.7)

b2
(0.3)

b3
(0.1)

b4
(8.1)

b5
(8.0)

b6
(1.0)

fa
ls
e

fa
ls
e

le
ng
th

fi
ll
C.

re
su
lt

pt
r

Assign length to reg1 ()
Assign fillC. to reg2 ()

Split fillC. before next usage
Assign result to reg2 ()

le
ng
th

fi
ll
C.

re
su
lt

pt
r

Split length before next usage
Assign fillC. to reg1 ()

Assign length to reg1 ()
Split length before next usage
Assign ptr to reg1 ()

Assign length to reg1 ()

(a) Control-flow Graph (b) After Activating result in b1 (c) Allocation Finished

Allocating allocArray with an interval splitting linear scan allocator as described by Traub
et al. [1998] or Wimmer and Mössenböck [2005] with two registers, reg1 () and reg2 ().

Interval activations (dashed line) occur from top to bottom.

Figure 1.13: Interval-splitting linear scan allocation of allocateArray with two registers

and Mössenböck, 2005]. The other, more compelling reason is that spilling the whole interval
leads to worse allocation results, especially with increasing numbers of variables and lengths
of intervals. For the rest of this work, unless otherwise noted, we refer to the Wimmer and
Mössenböck approach when talking about linear scan.

1.4 Problems of Existing Register Allocation Approaches

Figure 1.14 visualizes the graph coloring and the linear scan allocation examples with two regis-
ters side-by-side. Both approaches introduce spilling in the common case (b0, b1 and b6). Graph
coloring spills fillContents and length in b0 and reloads length in b6. Linear scan performs bet-
ter in this example and only reloads length before its usage in b6. Of course, we have carefully
selected this example tomake our case. Our graph coloring example uses a rather simple splitting
heuristic (reload at every usage). An advanced approach, for example as described by Bergner
et al. [1997], would improve the result. Also linear scan would perform better if the block or-
der were different, for example if the important blocks come first. However, these workarounds
just underline our criticism of the approaches. They use “tricks” to such as block orderings to
push the algorithm into the right direction or heuristics to reduce obvious deficiencies. But the
underlying problem—distinguishing between common and uncommon cases—is not modeled ap-

1.4 Problems of Existing Register Allocation Approaches 15

int length; bool fillContents;

long *result;

if (TLAB.top + length + 1 <= TLAB.end)

result = TLAB.top;

TLAB.top += length + 1;

result = heapAlloc(length + 1);

if (fillContents)

long *ptr = result + length;

while (result < ptr)

*ptr = 0;

ptr--;

result[0] = length;

return result;

b0
(1.0)

b1
(0.7)

b2
(0.3)

b3
(0.1)

b4
(8.1)

b5
(8.0)

b6
(1.0)

fa
ls
e

fa
ls
e

le
ng
th

fi
ll
C.

re
su
lt

pt
r

le
ng
th

fi
ll
C.

re
su
lt

pt
r

(a) Control-flow graph (b) Graph coloring (c) Interval-splitting linear scan

Comparison of graph coloring and linear scan allocation with two registers, reg1 () and
reg2 (). See Figure 1.9 and Figure 1.13 for the full allocation example.

Figure 1.14: Graph coloring vs. linear scan of allocateArray with two registers

propriately. For small compilation units, like our example, most well-tuned approaches would
probably come up with equally good results. When the method size increases, however, the
shortcomings become more evident.

The issues are especially problematic in JIT compilers. First, there are compile time constraints
due to compilation at run time. In addition, many JIT compilers perform speculative optimiza-

tions [Duboscq et al., 2013], based on profiling information (e.g., inlining a specific call target
of a virtual call, although there might be multiple candidates). This allows the compiler to per-
form optimizations aggressively, which is not possible in a static compiler. The compiled code
contains checks to verify that the assumptions on which the optimizations were based still hold.
If not, deoptimization takes place, i.e., execution is continued in an unoptimized version or in
an interpreter [Hölzle et al., 1992; Wimmer et al., 2017]. In order to do so, the system needs to
reconstruct the unoptimized (interpreter) state. Therefore, all local variables in the current stack
frame need to be kept alive, although they are not needed by the optimized code [Duboscq et al.,
2014]. Multiple levels of inlining means that multiple frames need to be reconstructed. Due to
this, compilation units in JIT compilers often consists of tens of thousands of instructions (see
Figure 7.7) and variables [Chen et al., 2018]. This poses a challenge for register allocation.

16 Introduction

Issues

Let us summarize the issues we have uncovered so far with graph coloring, linear scan and the
global approach in general.

Graph Coloring The inference graph used by graph coloring models register requirements
on the level of variables, nicely. However, due to the quadratic worst-case graph size, the ap-
plicability of this approach to huge compilation units is limited [Sarkar and Barik, 2007]. Also,
the graph coloring model loses a lot of its appeal when it comes to spilling and splitting, since
the information that is necessary for doing it is not an inherent part of the graph. However, for
the performance of the generated code, making good spilling and splitting decisions is highly
important [Braun and Hack, 2009; Lozano et al., 2014]. Finally, the non-linear time complexity
rules out graph coloring for most JIT compilers.

Linear Scan In linear scan, interference is only implicit in the entries of the active list, which
represents a local snapshot of live variables currently stored in registers. Due to this local view,
the scope for decisions is also limited. For example, spilling an interval might render a previous
spilling decision unnecessary. On the other hand, splitting the lifetime of a variable is more
natural in linear scan than in a graph coloring allocator. There is a closer connection between
the instructions and the liveness representation. However, the linearization of the control flow is
another issue of linear scan. Consecutive blocks might not have a control-flow dependency, even
though they are processed as if they were executed sequentially. Lifetime holes are an incarnation
of this dilemma.

Global Scope With increasing problem sizes, dealing with the whole compilation unit in a
(global) register allocator becomes a problem. The allocation time depends on the size of the
input, often in a non-linear way. Optimizations target the complete compilation unit. However,
as already stated, not all parts are equally important. A bad global decision (i.e., spilling due to
high register pressure in an infrequently executed part of the method) may cause degradation
for the common case, as we have seen in our example in Figure 1.14. When compile time is
scarce, we want to be more clever about where to spend it. We would like to invest more time
on important parts of the compilation unit and less time on others. The global view makes this
difficult.

1.5 Our Approach 17

1.5 Our Approach

The deficiencies outlined in the previous section motivated our investigations for finding a new
register allocation approach that solves these problems. More specifically we envisioned the
following goals.

Register Allocation for JIT Compilers. Striving for optimal register allocation is easier if compile
time is not an issue. We explicitly target just-in-time compilerswhere the compile-time/peak-
performance trade-off is a challenge.

Non-global approach. Instead of dealing with the whole compilation unit at once, we want to
divide the input into sub-problems and solve them independently. This would allow us to
deal with bigger problem sizes, provide more flexibility and enables concurrent allocation.

“Focus on the Common Case” is an often heard suggestion [Hennessy and Patterson, 2003, p. 38].
We want to concentrate on those parts which will contribute most to the overall perfor-
mance of the generated code and find a good solution for those. The quality of infrequently
executed parts of a method is of low interest. Since we target virtual machines that provide
profiling information, we want to exploit this knowledge.

Natural liveness model. Liveness is the key information for a register allocator. Wewant a simple
liveness model which is easy to reason about. In particular, wewant to avoid lifetime holes.
Therefore, the control flow of our sub-problems should to be linear.

Same or better allocation quality. Although we push for a simpler model, we still want to be able
to achieve the same allocation quality as global approaches.

Same or better compile-time behavior for the same allocation quality. Compile time is our major
concern. The minimum goal is to compete with linear scan with respect to allocation time
for comparable allocation quality.

Better scaling for large compilation units. A main challenge is to cope with increasing sizes of
compilation units. We want an allocator that scales well as the problem grows. It is espe-
cially important to work towards a linear or almost linear compile time with respect to the
input size.

18 Introduction

T0 T1 T2

int length;

↪→ boolean fillContents;

long *result;

if (TLAB.top + length + 1)

↪→ <= TLAB.end)

result = TLAB.top;

TLAB.top += length + 1;

result[0] = length;

return result;

result = heapAlloc(length + 1);

if (fillContents)

long *ptr = result + length;

while (result < ptr)

*ptr = 0;

ptr--;

b0

b1

b2

b3

b4

b5

b6

true

false

false

le
ng
th

le
ng
th

le
ng
th

fi
ll
C.

re
su
lt

fi
ll
C.

re
su
lt

re
su
lt

pt
r

Allocating allocArraywith trace register allocation using two registers, reg1 () and reg2 ().
Each trace (dashed rectangles) is allocated independently. Note that the locations of the vari-
ables at the trace boundaries do not always match. A resolution phase inserts moves to fix the

data-flow.

Figure 1.15: Trace register allocation of allocArray() with 2 registers

More flexibility to control the trade-off between compile time and allocation quality. We want
means to trade-off allocation quality for compile time on a fine-grained level. In particular,
we want to be able to decide which parts of a method are particularly important for peak
performance and where we thus want to spend more compile time.

Idea The requirements outlined above led a novel register allocation framework which we
entitled trace register allocation. In contrast to global register allocation, which processes a whole
method at once, trace register allocation divides the problem into smaller sub-problems, so-called
traces, for which register allocation can be done independently. A trace is a list of basic blocks,
which might be executed sequentially. Traces are non-empty and non-overlapping, and every
basic block is contained in exactly one trace. We use profiling information provided by the virtual
machine to construct long and important traces first.

For each trace, the algorithm selects an allocation strategy. Due to the explicit global liveness
information, allocating a trace is completely decoupled from the allocation of other traces. The
linear structure of traces makes the implementation of strategies significantly simpler than in
a global algorithm. Most importantly, there are no lifetime holes. Since some traces are more
important than others, we use different allocation algorithms (strategies), depending on the trace.
For infrequently executed traces we use a strategy that is fast but produces sub-optimal code. For
important traces, on the other hand, we want the best allocation quality and are willing to invest
more compile time.

1.6 Contributions 19

Example Figure 1.15 shows the control-flow graph of allocArray divided into traces. Each
trace has been allocated independently with two available registers. In contrast to the graph col-
oring and linear scan example, there are no spill moves or reloads in the common case (b0, b1, b6).
At some inter-trace edges variables are stored in different locations. For example, length resides
on the stack at the end of block b2 but in register reg1 at the beginning of b6. The resolution
phase inserts moves to correct the data-flow.

1.6 Contributions

In the course of this thesis, we contributed the following scientific results:

1. The Trace Register Allocation Framework. It is implemented in GraalVM, a production-
quality Java virtual machine developed by Oracle. The code is open source and is publicly
available for everyone.14 As of version 9, the Graal compiler is an experimental part of the
JDK. Therefore, our trace register allocation approach is now part of the most widely used
Java environment (although it is not enabled by default).15, 16 The implementation includes
three register allocation strategies for processing individual traces.

Linear Scan The trace-based linear scan strategy is an adaption of the global approach
by Wimmer and Mössenböck [2005] and Wimmer and Franz [2010] to the properties
of a trace. The main difference of our approach is that there is no need to maintain a
list of live ranges for each lifetime interval, since there are no lifetime holes in trace
intervals [Eisl et al., 2016].

Bottom-Up To decrease compilation time, we implemented the bottom-up allocator [Eisl
et al., 2017]. Its goal is to allocate a trace as fast as possible, potentially sacrificing
code quality. Our experiments show that it is about 40% faster than the linear scan
strategy.

Trivial Trace The trivial trace allocator is a special-purpose allocator for traces which have
a specific structure. They consist of a single basic block which contains only a sin-
gle jump instruction. Such blocks are introduced by splitting critical edges (see Sec-
tion 2.2), and are quite common. For the DaCapo benchmark suite about 40% of all
traces are trivial [Eisl et al., 2016]. A trivial trace can be allocated by mapping the
variable locations at the beginning of the trace to the locations at the end of the trace.

14https://github.com/oracle/graal
15On Java 10 and later:

java -XX:+UnlockExperimentalVMOptions -XX:+UseJVMCICompiler -Dgraal.TraceRA=true ...
16On Java 9 an additional -XX:+EnableJVMCI is required.

https://github.com/oracle/graal

20 Introduction

2. We showed that our trace register allocation approach achieves similar allocation quality
as a state-of-the-art global linear scan allocator for common Java benchmarks on both
AMD64 and SPARC processors [Eisl et al., 2016]. This suggests that high-quality register
allocation can be achieved without a global approach.

3. We showed that we are on par with global linear scan with respect to allocation speed for
the same allocation quality [Eisl et al., 2017].

4. Furthermore, we demonstrated the flexibility of using different strategies for allocating
individual traces, which allows us to control the trade-off between allocation quality and
compile time [Eisl et al., 2017]. We can, for example, save over 10% of register allocation
time with a (geometric) mean performance degradation of only 1.5%. On the other end of
the spectrum, we get over 40% faster allocation time at a mean slowdown of 11%. Depend-
ing on the requirements, all trade-offs between those two boundaries can be achieved via
simple parameter settings. This flexibility is not possible with other approaches.

5. We prototyped an extension that enables parallel allocation of traces by multiple threads
without a negative impact on allocation quality [Eisl et al., 2018]. This can reduce the
register allocation latency, i.e., the duration until the register allocation result is ready. In
our experiments, we decreased latency by up to 30% when using four threads instead of
one. This is yet another showcase for the flexibility of the trace register allocation approach.
To the best of our knowledge, it is the first time that parallelism was exploited for register
allocation.

The trace register allocation results were published in the proceedings of multiple peer-reviewed
venues. We presented a vision paper at the Doctoral Symposium of SPLASH 2015, where we
motivated the trace register allocation idea [Eisl, 2015]. In 2016, we presented a full paper on
allocation quality of a trace-based register allocator at the International Conference on Principles

and Practices of Programming on the Java Platform (PPPJ) [Eisl et al., 2016]. At ManLang 2017,
the International Conference on Managed Languages & Runtimes, we demonstrated the flexibil-
ity of our approach with a full paper on Trace Policies. We successfully submitted an extended
abstract on trace register allocation to the ACM Student Research Competition at CGO 2018 (Sym-

posium on Code Generation and Optimization), where our poster and presentation won the first
price in the graduate category [Eisl, 2018a]. The award made us eligible to compete in the 2018
Student Research Competition Grand Finals, where we submitted a summary paper [Eisl, 2018b].
In 2018, a work-in-progress paper on parallel trace register allocation was accepted for the Inter-
national Conference on Managed Languages & Runtimes (ManLang 2018) where we reported our
experience with allocating traces by multiple threads [Eisl et al., 2018].

1.7 Outline 21

1.7 Outline

The rest of this thesis is organized as follows. In Chapter 2 “Terminology” we introduce notations
used throughout this work. All terms are commonly used in related literature, so feel free to skip
it. Chapter 3 “The Graal Virtual Machine” discusses GraalVM, the Java Virtual Machine in which
we implemented our trace register allocation approach. Chapter 4 “Trace Register Allocation”
introduces the core of our allocator in detail. It also describes notations, definitions and prop-
erties of traces which might not be commonly known. Chapter 5 “Register Allocation Strategies”
outlines three allocation strategies, a linear-scan-based, a bottom-up and a trivial trace strategy.
In Chapter 6 “Inter-trace Optimizations” we discuss three inter-trace optimizations needed for
reaching peak performance. Chapter 7 “Evaluation” evaluates our implementation in GraalVM
and argues why it solves the problems discussed in this introduction. In Chapter 8 “Trace Reg-
ister Allocation Policies” we use various policies to control the trade-off between compile time
and peak performance. It showcases the flexibility and uniqueness of our trace register alloca-
tion approach. Chapter 9 “Parallel Trace Register Allocation” describes how parallelization can
reduce the compilation latency by allocating traces concurrently. In Chapter 11 “Conclusion and

Future Work” we finally reiterate the main contributions, discuss future work, and conclude the
thesis.

23

Chapter 2

Terminology

Before we get into the details of this thesis we need to agree on the terminology and notation used
in this work. All terms are commonly used in the compiler construction community, so feel free
to skip this chapter if you are familiar with them. However, some terms are used ambiguously
in literature. Therefore, we give here a proper definition.

2.1 Instructions, Values, Locations

First we describe the atomic building blocks of our intermediate representation and how they
interact to produce new results.

Definition 1 (Register). For our work, we assume that registers are unique and do not alias [Lee
et al., 2007], i.e., that modifying one register will leave the contents of all other registers un-
touched.1

Definition 2 (Stack Slot). In our model we have an infinite number of stack slots for spilling.
Assumptions are similar to registers. Stack slots do not overlap and there are no aliasing effects.2

Definition 3 (Constants). Constants are fixed numeric values that never change.3 We can use
them for rematerialization, i.e., for reloading the constant instead of spilling and reloading it from
a stack slot.

1Register aliasing is a truly interesting and hard problem [Lee et al., 2007]. However, since there is no—or only very
limited—support for describing aliases in our implementation platform Graal, respectively HotSpot, we did no
research into this direction.

2In practice this is not entirely true. It is possible to get the address of a stack slot. However, these cases are handled
very carefully by the compiler and they do not affect register allocation.

3Again, this is not always true. There are Java Object constants, i.e., the address of an object in memory. However,
garbage collection might move the object and therefore change the address. Therefore, the compiler notifies the
virtual machine about usages of object constants. If the object is moved, the machine code is patched accordingly.

24 Terminology

Definition 4 (Variable). Others distinguish between temporaries (i.e., the intermediate results
of expressions) and variables in the source code of the program. On the level of our intermedi-
ate representation, we do no longer (directly) see source variables. We call every non-physical,
non-constant operand in the intermediate representation of the compiler a variable. In our ter-
minology, variables are all operands that are subject to register allocation.

Definition 5 (Value). With value we refer to the content of a variable, register, stack slot, or
constant. For example, we say that “a value is moved from one register to another.”

Definition 6 (Location). The location of a variable is its physical storage, i.e., the register or stack
slot after register allocation at a certain point in the program. A variable might get assigned to
different locations at different program points.

Definition 7 (Instruction). An instruction represents an operation in the intermediate repre-
sentation. Instructions can have one or multiple input and output operands. In most cases, the
register allocator does not know the semantics of an instruction. However, there are exceptions.
The allocator knows that moves copy the value of its source to its destination operand. Constant
load instructions are a special kind of move where the source is a constant. In addition, we know
about labels, which mark the beginning of a basic block, as well as jumps, which model uncon-
ditional control-flow transitions.

2.2 Control-flow Graphs

The control-flow graph is the compiler-internal representation of a compilation unit. A compi-
lation unit is the input to the compiler. Usually, it represents a (Java) method, potentially with
inlined methods calls. For our work, however, the origin of the input does not matter.4 Therefore,
we prefer the more generic term compilation unit over method. However, both terms are used
interchangeably in this work. We will also talk about program points, which are certain positions
(i.e., instructions) in the compilation unit.

Definition 8 (Basic Block). A basic block b ∈ Blocks is a maximum-length sequence of branch-
free instructions without side entries. In our case, all basic blocks start with a label instruction
and end with a conditional or unconditional jump.

Definition 9 (Edge). An edge (bsource, bdest) ∈ Edges is a tuple of two basic blocks bsource, bdest ∈
Blocks.

4A compilation unit can for example also stem from a partially-evaluated Truffle AST (see Chapter 3).

2.2 Control-flow Graphs 25

b1

b2

b3 cr
iti
ca

le
dg

e

(a) Critical edge (b1, b3)

b1

b2 bc

b3

(b) After splitting: new block bc

Figure 2.1: Critical edge splitting

Definition 10 (Predecessors). pred(b) is a list of predecessor blocks of b, i.e., pred(b) = [bp ∈
Blocks | (bp, b) ∈ Edges].

Definition 11 (Successors). succ(b) is a list of successor blocks of b, i .e., succ(b) = [bs ∈
Blocks | (b, bs) ∈ Edges].

Definition 12 (Path). A path ⟨b0, . . . , bn⟩ is a sequence of blocks where bi+1 is a successor of bi
for i = 0, . . . , n− 1. A path may consist of a single block, i.e., ⟨b⟩ for b ∈ Blocks.

Definition 13 (Reachability). A block by ∈ Blocks is reachable from a block bx ∈ Blocks if and
only if there is a path ⟨bx, . . . , by⟩. We write bx ⇝ by .

Definition 14 (Control-Flow Graph). A control-flow graph is a tuple CFG = (Blocks,Edges)

consisting of a set of basic blocks and a set of edges. By definition, there is only one block in
Blocks without a predecessor which we call the entry block bentry . In addition, every block b is
reachable from the entry block, i.e., there is a path ⟨bentry, . . . , b⟩ for all b ∈ Blocks.

An example of the source code of allocateArray and the corresponding control-flow graph is
shown in Figure 2.2.

Definition 15 (Critical Edge). An edge e = (bsource, bdest) is critical if and only if |succ(bsource)| >
1 and |pred(bdest)| > 1. In other words, the source block of e has multiple successors and the
destination block of e has multiple predecessors.

See Figure 2.1a for an example of a critical edge. Critical edges can be removed by introducing
new (empty) blocks (Figure 2.1b). For data-flow resolution, critical edge splitting is of vast im-
portance. The newly introduced blocks provide a place for compensation code, i.e., moves from
one location to another.

Our introductory example in Figure 1.1 contains two critical edges, from b2 to b6 and from b4 to
b6. Figure 2.2 shows the example after critical edge splitting. Assume that there is a data-flow
mismatch between b2 and b6. If the compensation code were placed at the end of b2 it would also
affect b3. If it were placed at the beginning of b6 it would also be executed for paths from b1 and
b4. Therefore, the new block b8 is required.

26 Terminology

long *allocateArray(int length, boolean fillContents) {
long *result;

/*B0*/ if (TLAB.top + length + 1 <= TLAB.end) {
/*B1*/ result = TLAB.top;

TLAB.top += length + 1;
} else {

/*B2*/ result = heapAlloc(length + 1);
if (fillContents) {

/*B3*/ long *ptr = result + length;
/*B4*/ while (result < ptr) {
/*B5*/ *ptr = 0;

ptr--;
}

/*B7*/ // critical edge
} else {

/*B8*/ // critical edge
}

}
/*B6*/ result[0] = length;

return result;
}

(a) C-like pseudo source code

common case

b0

b1

b6

b2

b3

b4

b5

b8

b7

(0.3)

(0.1)

(8.1)

(8.0)(0.1)

(0.2)

(1.0)

(0.7)

(1.0)

(b) Corresponding control-flow graph

The method allocateArray() after critical edge splitting which introduced b7 between b4 and
b6, and b8 between b2 and b6. See Figure 1.1 for more information about the code snippet.

Figure 2.2: The allocateArray() sample code snippet (without critical edges)

For the rest of this thesis, we assume that all critical edges in the CFG have been split, so that
there are no more critical edges.

2.2.1 Dominance

Definition 16 (Dominator). A block bd ∈ Blocks is a dominator of a block b ∈ Blocks if every
path ⟨bentry, . . . , b⟩ includes bd. We say that bd dominates b and define dom(b) as the set of all
blocks that dominate b. Per definition, a block b dominates itself. It is easy to see that dominance

is a transitive relation.

Definition 17 (Strict Dominator). The strict dominators of a block b are the dominators of b
without b itself, i.e., sdom(b) = dom(b) \ b.

Definition 18 (Immediate Dominator). The immediate dominator of b, denoted as idom(b), is
the strict dominator of b that is dominated by all other strict dominators of b. In other words, it
is the strict dominator that is closest to b. Every node except the entry node bentry has exactly
one immediate dominator.

2.2 Control-flow Graphs 27

b0

b1

b6

b2

b3

b4

b5

b8

b7

(0.3)

(0.1)

(8.1)

(8.0)(0.1)

(0.2)

(1.0)

(0.7)

(1.0)

(a) Control-flow Graph

b0

b1 b6b2

b3

b4

b5

b8

b7

(b) Dominator Tree

On the left the control-flow graph of allocateArray(), on the right the dominator tree of that
method. The dominator tree is a visualization of the immediate dominator relation. Source code

in Figure 2.2a.

Figure 2.3: Dominator tree for allocateArray()

Figure 2.3b shows the dominator tree for the control-flow graph of allocateArray in Figure 2.3a.
The edges represent the immediate dominator relation.

Definition 19 (Dominance Order). In dominance order, a block is visited only after all its dom-
inators have been visited.

2.2.2 Loops

Definition 20 (General Loops). A loop is a set of basic blocks L ⊂ Blocks so that there is a
path of at least length 2 from every block bx ∈ L to every other block by ∈ L, i.e., ∀bx, by ∈ L |
|⟨bx, . . . , by⟩| ≥ 2.

Definition 21 (Reducible Loops). A reducible loopL is a loopwhere there is a loop header bh ∈ L

which dominates all blocks bi ∈ L. As a result, bh is the only block in L that can be targeted by
an edge from a block outside of the loop. Edges from a block be in the loop to the loop header
are called back edges. Any such block be is called a loop end. An edge from a block in the loop L

to a block not in L is called a loop exit.

In this work we only deal with reducible graphs, i.e., with CFGs that only contain reducible

loops.

Theorem 1. Every path ⟨bx, . . . , bd⟩ from a block bx to a strict dominator bd ∈ sdom(bx) con-
tains a loop header and therefore a back edge.

28 Terminology

Proof. Since bx ⇝ bd and bd ⇝ bx, there is a loop L which contains bx and bd. Therefore there
must be a loop header bh which dominates both and is on every path from bx to bd.

Theorem 2. Every loop has at least one back edge.

Proof. By definition, there is a path from every block b in a loop to every other block in this loop;
in particular, there must be a path ⟨b, . . . , be, bh⟩ from b to the loop header bh. By definition, the
edge (be, bh) is a back edge.

Theorem 3. Every loop header has at least one predecessor from outside the loop, which is
called the loop entry.

Proof. By Definition 14, bentry has no predecessor, so it cannot be a loop header. Since every
block is reachable from the entry block bentry , there must be a path ⟨bentry, . . . , b, bh⟩ of at least
length 2 where b /∈ L, otherwise bh would not be the header of L. Thus, there is an edge (b, bh)
that is not a back edge.

Corollary 1. Let us assume that a CFG has no critical edges, every predecessor of a loop header
has a single successor, namely the loop header.

Proof. FromTheorem 2 (at least one back edge) andTheorem 3 (at least one loop entry) we know
that a loop header has at least two predecessors. Therefore, all predecessors must have a single
successor otherwise there would be a critical edge.

Definition 22 (Reverse Postorder). In reverse postorder, a block is visited before any of its suc-
cessor blocks are visited unless the successor is a loop header. Reverse postorder implies domi-
nance order.

2.3 Liveness and Lifetime Intervals

Liveness is the most important concept for register allocation. The liveness of the variables in
the compilation unit determines whether the problem is hard or simple to solve.

Definition 23 (Instruction Path). An instruction path is a list of instructions that occur between
a start instruction is in block bs and an end instruction ie in block be. If both instructions are
in the same block, the instruction path consists of all instructions between the two instructions
(inclusive). If there is no (basic block) path between bs and be, then the instruction path is empty.

2.3 Liveness and Lifetime Intervals 29

Otherwise, the instruction path contains all instructions from is to the end of bs, all instructions
from the blocks along the path ⟨bs, . . . , be⟩ excluding bs and be, and all instructions from the
beginning of be to ie.

Definition 24 (Liveness). A variable is live at every instruction that is part of an instruction
path between any definition of the variable and any usages of the variable, for all instruction
paths that do not contain another definition of that variable. Note that we exclude the defining
instruction itself from the instruction path, i.e., a variable is live right after its definition.

Figure 1.3a in the introduction already showed lifetime intervals, which are a representation of
liveness.

Definition 25 (Interference). Two variables interfere, it they are live at the same instruction.
Since we exclude the defining instruction from liveness, a usage of variable x in instruction i

does not interfere with the variables defined by i, unless x is live after i.

Definition 26 (Interference Graph). An interference graph is a graph where the nodes represent
variables and an edge between two nodes indicates that the variables of these nodes interfere.5

In Figure 1.3b in the introduction, we saw an example of an interference graph for the method
allocateArray.

Definition 27 (Lifetime Hole). A lifetime hole, a term proposed by Traub et al. [1998], is a con-
sequence of the linearization of the basic blocks of the control-flow graph. It occurs whenever
a variable is not live in a block bh, but live in a block bb before bh and live in a block ba after bh,
with respect to the linear block order [. . . , bb, bh, ba, . . .].

Figure 2.4 demonstrates an example for an inevitable lifetime hole. For every possible block order,
there is at least one lifetime hole.

Definition 28 (Live Range). In a linear list of instructions, a (live) range denotes a subset of the
instructions where a variable is continuously live, i.e., there is no lifetime hole. A range can be
described by a from and to position.

Definition 29 (Lifetime Interval). The term (lifetime) interval denotes a collection of one ormore
unconnected and non-overlapping live ranges.

We introduced the notions of liveness in terms of variables. However, the same definitions can
be applied to registers and stack slots.

5To be more precise we should add that they also need to belong to the same register class, i.e., they compete for the
same set of registers. For readability reasons, we assume that there is only a single register class.

30 Terminology

int max(int a, int b)

final int res;

if (a < b)

res = b;

res = a;

return res;

b0

b1

b2

b3

fa
ls
e

a b re
s

(a) false case after true case

int max(int a, int b)

final int res;

if (a < b)

res = a;

res = b;

return res;

b0

b1

b2

b3

tr
ue

a b re
s

(b) true case after false case

Example for an inevitable lifetime hole. For every block ordering the intervals for either a or b
will be non-continuous. final int res in b1 ensures a single assignment.

Figure 2.4: Example for an inevitable lifetime hole

2.4 Static Single Assignment Form

Static single assignment form (SSA form, Cytron et al., 1991) is a flavor of an intermediate rep-
resentation that is very common in modern compilers [Rastello, 2013]. There are different SSA
variants with different requirements, for example regarding minimalism. We will only describe
the most basic properties, which are common in all of them, since they are what we rely on
later.

Property 1 (Single Definition Property). The static single assignment property mandates that for
every variable there is exactly one definition in the program.

This property is sometimes called referential transparency [Rastello, 2013, Chapter 1.1], i.e., the
value of a variable does not depend on its position in the code. It is important to grasp that this is
a static property of a program. Dynamically, the value of a variable can change, for example if the
same definition is executed multiple times in a loop. Still, this property tremendously simplifies
reasoning about variables. For example, every variable can be unambiguously identified by its
definition.

Every program can be transformed into SSA form. Many algorithms have been proposed, for ex-
ample by Cytron et al. [1991], Brandis and Mössenböck [1994], or Braun et al. [2013]. Intuitively,
we introduce a new name for every assignment to a variable. Figure 2.5 shows an example. The
situation is getting more complicated when we have control flow. See Figure 2.6a for example.
The variable res is assigned in both branches, b1 and b2. In block b3, however, the value of res
depends on the dynamic predecessor. To solve this issue, SSA form introduces ϕ-functions. For

2.4 Static Single Assignment Form 31

x = 1;
y = x + 1;
x = 2;
z = x + 1;

(a) Before SSA

x1 = 1;
y = x1 + 1;
x2 = 2;
z = x2 + 1;

(b) After SSA

Without SSA form one might assume that both occurrence of x + 1 calculate the same value
and that therefore y equals z. After renaming, it is clear that this is not the case. Example taken

from Rastello [2013].

Figure 2.5: Variable renaming in Static Single Assignment form

int max(int a, int b)

final int res;

if (a < b)

res = b;

res = a;

return res;

b0

b1

b2

b3

fa
ls
e

(a) Before SSA

int max(int a, int b)

if (a < b)

int res1 = b;

int res2 = a;

int res3 = ϕ(res1, res2);

return res;

(b) With ϕ-functions

int max(int a, int b)

if (a < b)

int res1 = b;

ϕout = (res1)

int res2 = a;

ϕout = (res2)

(int res3) = ϕin

return res3;

(c) With ϕ-splitting

Figure 2.6: ϕ-function in Static Single Assignment form

every variable that has different values in different branches, a ϕ-function is introduced at the
merge block. It defines a new unique name for the variable. Its value depends on the actual
predecessor. In Figure 2.6b, res3 has the value res1 if b3 is reached via b1, or res2 if reached via
b2.

Property 2 (Dominance Property). The dominance property requires the (single) definition of
a variable to dominate all its usages. If the definition and the usages are in the same block,
the definition must occur before the usage in the instruction list of the block. If the blocks are
different, the definition block must dominate the block of the usage.

The dominance property simplifies liveness analysis significantly, since we know that a variable
can only be live in blocks after its definition, if visited in dominance order. This allows build-
ing lifetime intervals in a linear pass over the blocks, as demonstrated by Wimmer and Franz
[2010].

32 Terminology

void foo(int[] a)

int i = 1;

int j = 0;

while(i < a.length)

a[j] = a[i];

j = i;

i = i + 1;

return;

(a) Before SSA

void foo(int[] a)

int i1 = 1;

int j1 = 0;

int j2 = ϕ(i1, i2)

int i2 = ϕ(j1, i2 + 1)

while(i2 < a.length)

a[j2] = a[i2];

return;

(b) With ϕ-function

void foo(int[] a)

int i1 = 1;

int j1 = 0;

ϕout = (i1, j1)

(int i2, int j2) = ϕin

while(i2 < a.length)

a[j2] = a[i2];

ϕout = (i2 + 1, i2)

return;

(c) With ϕ-splitting

void foo(int[] a)

ϕout = (1, 0)

(int i, int j) = ϕin

while(i < a.length)

a[j] = a[i];

ϕout = (i + 1, i)

return;

(d) Copy propagation

Figure 2.7: Parallel ϕ-copies

2.4.1 ϕ-notation

There are multiple ways of notating ϕs. The most common way is the use of ϕ-functions, i.e., a
pseudo instruction at the beginning of a merge block that defines a new variable and has exactly
one input from every predecessor block. Figure 2.7b shows an example. This notation suffers
from two problems. First, it seems like the inputs to the ϕ are live in the merge block and
therefore interfere. Second, one might assume that the ϕ-variable definition order is fixed. Both
observations are not true. The inputs of a ϕ-function are live until the end of the predecessor
block and all ϕ-variables are defined in parallel.

To make this more explicit, we use a notation that was, for example, described by Hack [2007,
see Chapter 2.3.1]. As shown in Figure 2.7c, we split the ϕs into two parts. In the merge block we
have a ϕin instruction, that defines all ϕ-variables atomically. At the end of every predecessor
there is a ϕout instruction that has as many inputs as there are ϕ-variables. This notation solves
both problems. First, the definitions occur in parallel. Second, the pseudo usages in ϕout keep
the values live until the end of the block. In contrast to the conventional notation, the liveness
analysis does not need modifications compared to a non-SSA variant.

The ϕin/ϕout notation allows us to see ϕs from a different perspective, namely as parameters of
a basic block, a mental model that was also suggested by Appel [1998]. The variables defined by
ϕin of a block can be seen as the formal parameters6 of a block. The values in ϕout are the actual
parameters when “calling” a block. Since this model conceptionally decouples the outgoing and

6See Cooper and Torczon [2011] for more information about formal and actual parameter.

2.4 Static Single Assignment Form 33

incoming values, the renaming of variables is often not necessary. Therefore, we sometimes omit
the newly introduced variables and use values directly in ϕout, i.e., we perform a kind of copy
propagation [Aho et al., 2006]. Figure 2.7d depicts an example.

2.4.2 SSA destruction

Before emitting machine code, ϕ-instructions need to be deconstructed. This means, they are
replaced by move instructions in the respective predecessor block. SSA destruction can be done
explicitly, as for example described by Sreedhar et al. [1999]. However, register allocators that
work on SSA form often perform SSA destruction as part of the data-flow resolution (e.g., the
SSA-based linear scan allocator by Wimmer and Franz [2010]).

35

Chapter 3

The Graal Virtual Machine

We used GraalVM, a Java Virtual Machine, as a platform to experiment with our register allo-
cation approach. GraalVM is a project done at Oracle Labs, in cooperation with academic col-
laborators, with the goal of developing a polyglot runtime based on the JVM. We implemented
our register allocator in the Graal compiler (or simply Graal), the just-in-time compiler that is
the core of the virtual machine. In addition to the compiler, GraalVM includes Truffle, a lan-
guage implementation framework [Würthinger et al., 2017]. Truffle allows developers to create
an execution system for a certain programming language by implementing an abstract-syntax-

tree (AST) interpreter for that language. During interpretation, the AST specializes to the ob-
served input (e.g., to the observed variable types). When the execution frequency of a method
exceeds a certain threshold, the Graal compiler uses partial evaluation [Würthinger et al., 2012]
to compile the specialized AST into high-performancemachine code. In addition, Truffle features
high-performance cross-language interoperability. The GraalVM can be executed in two differ-
ent modes. The first mode is in the context of the HotSpot VM, the Java Virtual Machine (JVM)
maintained by Oracle. The second deployment mode is via Substrate VM [Wimmer et al., 2017],
which allows ahead-of-time (AOT) compilation of a restricted Java application—for example a
Truffle interpreter and the Graal compiler—into a native image. Figure 3.1 gives an overview of
the GraalVM ecosystem.

Since we evaluated our approach mainly with Java and Scala workloads on GraalVM on top of
HotSpot VM, we will not go into the details of Truffle and Substrate VM, although they are inter-
esting projects on there own. All the core components of GraalVM, including the implementation
of our approach, are open source.1 In addition, there is a pre-built enterprise edition bundle avail-
able from the GraalVM website.2 It includes optional compiler optimizations, for example code
duplication [Leopoldseder et al., 2018], that are not open source. We, however, evaluated our
approach with the open source parts.

1https://github.com/oracle/graal
2https://www.graalvm.org

https://github.com/oracle/graal
https://www.graalvm.org

36 The Graal Virtual Machine

Graal Compiler

JVMCI

HotSpot VM SubstrateVM

TruffleJavaScalaKotlin

FastRGraalJS TruffleRuby Sulong (LLVM)GraalPython

C FortranC++JavaScript Node.js R RubyPython

Java

(Java) API

C++

Truffle Implementations

Languages

Figure 3.1: The GraalVM ecosystem

3.1 The Java Virtual Machine

The Java Virtual Machine Specification [Lindholm et al., 2015] defines an abstract machine that
executes Java bytecodes [Lindholm et al., 2015, Chapter 6]. Bytecodes are deployed in so-called
class files, a format which is also specified in the JVM specification [Lindholm et al., 2015, Chapter
4]. Class files and bytecodes are machine-independent and can be executed on every host where
there exists an implementation of the JVM. The JVM does not only deal with the execution of
bytecodes but also offers support for threading, garbage collection and reflection.

Although the JVM is designed in close ties with the specification of the Java programming lan-

guage [Gosling et al., 2015], the JVM can execute all languages that are compiled to bytecodes.
Examples include Scala,3 Clojure4 and Kotlin,5 which are ahead-of-time compiled to Java class
files. Other languages, especially dynamically typed ones, generate bytecodes on-the-fly during
execution of the program, for example JRuby6 or Jython.7

3.2 The HotSpotVM

The HotSpot VM [Oracle Corporation, 2016] is an implementation of the JVM specification orig-
inally developed by Sun Microsystems and now maintained by Oracle. It executes bytecodes
using an interpreter, or it just-in-time compiles them to native machine code. The bytecodes are
first executed in the interpreter. The VM tracks the number of invocations and loop iterations

3http://www.scala-lang.org/
4https://clojure.org/
5https://kotlinlang.org/
6http://www.jruby.org/
7http://www.jython.org/

http://www.scala-lang.org/
https://clojure.org/
https://kotlinlang.org/
http://www.jruby.org/
http://www.jython.org/

3.2 The HotSpot VM 37

Interpreter

OptimizationDeoptimization

Client Compiler

Optimization

Server Compiler

(a) HotSpot VM

Interpreter

OptimizationDeoptimization

Client Compiler

Optimization

Server CompilerGraal

(b) GraalVM on HotSpot

Figure 3.2: Tiered-compilation on the JVM

of a method. Once a threshold is reached, the method is queued for JIT compilation.8 We say
the method is hot. The compiled code is orders of magnitude faster than the interpreter. Most
methods are only executed rarely and will thus never be compiled. During the execution of byte-
codes, the interpreter collects profiling information including branch probabilities or the types of
receiver objects at a virtual call. The compiler exploits this knowledge about the run-time be-
havior of the program to optimize the machine code for the (expected) use case. Many of these
optimizations speculate that the program will exhibit the same behavior in the future [Duboscq
et al., 2013]. For instance, if the profile shows that a branch was never taken, the compiler might
not produce code for the branch target. Another example are virtual call sites which might be
inlined if they were always called with the same receiver types. Since the program might change
its behavior, e.g., take an untaken branch or call a method with a different receiver type, the
compiled code is not valid in such a case. To ensure the semantic correctness of the machine
code, the compiler inserts checks to verify that the assumptions still hold. In case they do not,
the compiled code triggers a so-called deoptimization, which means that execution is continued
in the interpreter [Hölzle et al., 1992; Wimmer et al., 2017]. Since interpreted code has a differ-
ent stack and register layout than compiled code, the VM has to create an interpreter frame and
populate it with the contents of machine registers and stack slots.

The HotSpot VM includes two compilers, the client compiler (C1) [Kotzmann et al., 2008] and
the server compiler (C2) [Paleczny et al., 2001]. The goal of the client compiler is to provide fast
compilation speed and rapid start-up. The server compiler, in contrast, aims at good code quality
at the cost of a higher compilation time. To combine the advantages of both, the HotSpot VM
uses an approach called tiered compilation [Oracle Corporation, 2017], which utilizes both com-
pilers. Execution starts in the interpreter, which collects profiling information. Hot methods
are then compiled using the client compiler, which continues to collect profiling information. If
the method execution count exceeds another threshold, the method is scheduled for compila-
tion with the server compiler. Figure 3.2a illustrates the system. The client-compiled code with
profiling is still a lot faster than the interpreter. Therefore, more information is collected before
the method is processed by the server compiler, which can therefore produce better optimized
code.

8The default threshold is 10000 [Oracle Corporation, 2018].

38 The Graal Virtual Machine

JVM and Application Warmup When the JVM starts executing an application, all methods
are interpreted in the beginning. Eventually, the hot parts are compiled and executed via native
machine code. That means the execution of the application gains speed after a while. We say the
application warms up. For deterministic programs, especially benchmarks, it is often assumed
that after the warmup phase the application will reach a steady state of peak performance. In real-
ity, however, determining if an application has reached its steady state is hard or even impossible,
as demonstrated by Barrett et al. [2017].

3.2.1 Graal on the HotSpotVM

In theGraal-on-HotSpot deployment model, the server compiler is replaced by the Graal compiler
as the second-tier compiler, as depicted Figure 3.2b. The Graal compiler is itself written in Java,
which enables a fast development cycle and allows us to use advanced debugging techniques
such as hot code replacement.9 It is implemented in a modular way so that its components, e.g.
the register allocator, can be easily replaced with a different implementation. This makes it a
practical environment for (dynamic) compiler research. The Graal compiler communicates with
the HotSpot VM, which is implemented in C++, via the JVM Compiler Interface [JVMCI, 2014].
JVMCI is part of Java 9 and later releases, however, all results presented in this work are based
on a JVMCI enabled development version of Java 8.10,11

A Note on Graal and Meta-circularity

The fact that Graal on the HotSpot VM is a meta-circular system—meaning that Graal is itself
implemented in Java—has some interesting consequences.

Like any other Java code, the source code of the compiler is compiled to bytecodes which are then
executed by the JVM. If the JVM decides that a method should be compiled with the second-tier
compiler, Graal is invoked. Like other bytecodes, Graal is first executed by the interpreter. The
hot parts of Graal are scheduled for compilation and might even be compiled by Graal itself.
Therefore, Graal starts slow (interpreted) and gets faster over time (JIT compiled). But Graal
also competes with the application for compiler threads and might delay the warmup of the
application. The situation is two-fold. On the one hand, the application is what we are actu-
ally interested in, so we should compile it early. On the other hand, if Graal gets compiled the
compilation of application code will be faster. The current trade-off is that compilation of Graal
methods will stop after the first compiler tier. This means that Graal will only be compiled by the

9https://wiki.eclipse.org/FAQ_What_is_hot_code_replace%3F
10http://hg.openjdk.java.net/graal/graal-jvmci-8/
11http://www.oracle.com/technetwork/oracle-labs/program-languages/downloads/index.html

https://wiki.eclipse.org/FAQ_What_is_hot_code_replace%3F
http://hg.openjdk.java.net/graal/graal-jvmci-8/
http://www.oracle.com/technetwork/oracle-labs/program-languages/downloads/index.html

3.3 The Graal Compiler 39

client compiler. Therefore, the Graal coding style favors patterns that are easy to optimize. For
example, it prefers virtual calls over interface calls and avoids the use of lambda expressions12 or
streams.13

Another unfavorable effect of meta-circularity is profile pollution. Graal makes use of features
from the Java standard library, for example, collections or sorting. Since profiling in HotSpot is
not context sensitive, the profile of the shared code includes information from the application as
well as about Graal. This might misguide the compiler and produce code that is not optimal for
the application. For example, an application always calls Arrays.sort(T[], Comparator<T>)

with the same comparator, Due to the profiling information the JIT compiler can inline the
compare() method of that comparator. Unfortunately, Graal also uses this function, so the pro-
file will show two receiver types and the compiler refuses to optimize the call.14 However, Graal
reduces the effect of profile pollution by using custom data structures.

For both problems there are proper solutions. One would be to run Graal in a different JVM
context with a separate compilation queue and distinct profiling information. Another solution
would be to compile Graal ahead-of-time. Substrate VM already applies the second solution, i.e.,
it contains a pre-compiled version of Graal. Project Metropolis aspires towards the same for the
HotSpot VM [OpenJDK, 2018].

3.3 The Graal Compiler

To translate Java bytecodes to machine code, the Graal compiler involves two transformation and
three translation stages. During the process, the compilation unit is represented in four different
shapes, as shown in Figure 3.3.

Bytecode Parser First, the bytecode parser translates the bytecodes into a high-level interme-

diate representation (HIR), which is graph-based [Duboscq et al., 2013; Click and Paleczny, 1995]
and in static single assignment form (SSA, see Section 2.4). Many of the instructions, called nodes
in HIR, are floating, which means that they are not bound to a specific basic block. Their posi-
tion is only defined by their inputs (dependencies) and users (dependants). Figure 3.4 shows an
example of the high-level IR. Although Java bytecode can describe irreducible programs, Graal

12https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
13http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
14Note that static methods such as Arrays.sort() are often inlined into the caller, where we might have precise

receiver type knowledge and could optimize the comparator call after all.

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html

40 The Graal Virtual Machine

Bytecode Parser

Front End

LIR Generator

Back End

Code Generator

(a) Phases

Bytecode

HIR

HIR

LIR

LIR

Machine Code

(b) Program representations

Translate Java bytecodes to
the graph-based high-level
IR.
Perform optimizations on the
graph.

Translate the high-level
graph to the low-level IR.

Perform register allocation.

Emit machine code for LIR
instructions.

(c) Responsibility

Figure 3.3: Graal compiler pipeline

handles only reducible control flow (Section 2.2.2). This assumption simplifies all control-flow-
sensitive phases. Since Java programs are always reducible [Appel and Palsberg, 2003, Chapter
18], this restriction is not an issue in practice.15

Front End The front end16 performs a number of optimizations [Stadler et al., 2013; Prokopec
et al., 2017], including polymorphic inlining [Deutsch and Schiffman, 1984], partial escape analy-
sis and scalar replacement [Stadler et al., 2014], loop unrolling [Stadler et al., 2013], global value
numbering [Click and Paleczny, 1995], strength reduction, constant folding, branch and dead-code

elimination [Cooper and Torczon, 2011] as well as speculative JVM-specific optimizations [Du-
boscq, 2016]. In addition, the front end transforms the HIR from JVM-specific concepts (e.g., an
instruction representing a getfield bytecode) to machine-level constructs (a null-check and a
raw memory access). The scheduler is the final phase of the front end. All remaining floating
nodes are assigned to basic blocks and the order of the nodes within the blocks is finalized. Refer
to Click [1995, Chapter 6.3] for more details on this procedure.

LIR Generation The scheduled graph is then translated to a low-level intermediate repre-
sentation (LIR) before entering the back end. The LIR uses a conventional CFG representation
with basic blocks (see Section 2.2). Critical edges are split (see Definition 15). Every block is
associated with a list of LIR instructions, which are close to the actual machine instructions.
15Note, however, that it is possible to create irreducible loops in Java bytecode.
16 The use of the term front end might seem strange in this context since it is often associated with the component

that deals with the programming language. Clang [2018] for example is the C/C++ front end for the LLVM com-
piler [Lattner and Adve, 2004]. Following the definition of Cooper and Torczon [2011] “the front end focuses on
understanding the source-language program.” In the case of Graal, the source-language is Java bytecode and the
front end deals with the semantics of bytecodes. Therefore, the term front end is indeed appropriate.

3.3 The Graal Compiler 41

int foo(int value0, int value1,
boolean cond) {

final int result;
if (cond) {

result = value0 + value1;
} else {

result = value1;
}
return result;

}

(a) Source code

Start

If

Begin Begin

End End

Merge

Return

==

P(2) Const(0)

Phi

+

P(0) P(1)

false true

(b) HIR

The Java code snippet (left) and the corresponding high-level graph (right). Example borrowed
from Duboscq et al. [2013]. A downwards facing edge (red) represents a control-flow successor
of a node. For example, the true and the false successors of the If node. Upwards facing edges
are dependencies and come in two forms: They are either input edges (blue), which represent
data dependencies. For example, the + node calculates the sum of the two inputs, the parameter
nodes P(0) and P(1). In addition, there are association edges (black). They represent non-data
dependencies. For example, a Phi node is always attached to a Merge node. Duboscq et al.

[2013] give more details on this IR.

Figure 3.4: Graal High-level Intermediate Representation (HIR)

Although they are specific to the target architecture, the back end phases are implemented in
a machine-independent manner. LIR instructions may define (output) or use (input) operands.
These operands can be variables, registers, virtual or physical stack slots, or constants. All operands
are associated with a type, called LIR kind, which determines the register class that can hold the
content. In addition, LIR kinds store reference information, that is, whether the operand is a
pointer to a heap object. This is information needed for the garbage collector, in order to find all
referenced objects. The LIR generator also features a simple DAG17 matcher for common patterns.
Nodes that are not processed by the matcher are translated to one or several LIR instructions.
Figure 3.5 shows an example of the LIR.

Back End The main responsibility of the back end is register allocation. Before register allo-
cation, the LIR still adheres to the SSA form, so every variable has a single definition. For ϕs, the
LIR uses the representation described in Section 2.4.1. The ϕin variables are defined by the label
instruction, which can be found at the beginning of every block. The ϕout values are attached as
usages of the unconditional jump instruction at the end of the predecessors of the merge block.
For fixed register constraints, for example as required by calling conventions, the LIR instructions
use register operands directly. These usages do not adhere to the single definition property of the
SSA form. However, a fixed register is never live across a basic block boundary, so these require-
ments can be handled locally. The register allocator replaces variables with machine registers
17Directed Acyclic Graph.

42 The Graal Virtual Machine

B0 -> B1,B2
[rsi|DWORD, rdx|DWORD, rcx|DWORD, rbp|QWORD] = LABEL
v5|QWORD = MOVE rbp|QWORD
v0|DWORD = MOVE rsi|DWORD
v1|DWORD = MOVE rdx|DWORD
v2|DWORD = MOVE rcx|DWORD
TEST (x: v2|DWORD, y: v2|DWORD)
BRANCH condition: =0 trueDest: B1 falseDest: B2

B2 <- B0 -> B3
[] = LABEL numbPhis: 0
v3|DWORD = ADD (x: v0|DWORD, y: v1|DWORD)
JUMP ~[v3|DWORD] destination: B3

B3 <- B2,B1
[v4|DWORD] = LABEL numbPhis: 1
rax|DWORD = MOVE v4|DWORD
RETURN (savedRbp: v5|QWORD, value: rax|DWORD)

B1 <- B0 -> B3
[] = LABEL numbPhis: 0
JUMP ~[v1|DWORD] destination: B3

(a) Before register allocation

B0 -> B3,B2
[rsi|DWORD, rdx|DWORD, rcx|DWORD, rbp|QWORD] = LABEL
TEST (x: rcx|DWORD, y: rcx|DWORD)
BRANCH condition: =0 trueDest: B3 falseDest: B2

B2 <- B0 -> B3
[] = LABEL numbPhis: 0
rsi|DWORD = ADD (x: rsi|DWORD, y: rdx|DWORD)
rdx|DWORD = MOVE rsi|DWORD // phi resolver
JUMP ~[] destination: B3

B3 <- B2,B0
[] = LABEL numbPhis: 1
rax|DWORD = MOVE rdx|DWORD
RETURN (savedRbp: rbp|QWORD, value: rax|DWORD)

(b) After register allocation

The low-level intermediate representation (LIR) of the foo() method from Figure 3.4 for
AMD64. Representation as shown by the Client Compiler Visualizer [Wimmer, 2007]. Operands
have the form v1|DWORD, where the first part is the variable or register name and the second
the kind, i.e., the width and register class. On the left, the LIR after LIR generation. Note the
representation of ϕin/ϕout as operands of the LABEL and JUMP instructions in the blocks B3, B2
and B1. The right figure shows the LIR after register allocation. The block B1was empty and has

therefore been deleted. The ϕ has been replaced by a move in block B2.

Figure 3.5: Graal Low-level Intermediate Representation (LIR)

or stack slots and also destructs the SSA form. Machine instructions in modern architectures
can often directly address memory. Therefore, a LIR instruction differentiates between usages
that must have a register and those that could also use a memory operand. The register allo-
cator uses this information to reduce the register pressure. After register allocation, the back
end performs simple peephole optimizations such as removing empty blocks (introduced by crit-
ical edges splitting) or eliminating redundant explicit null-checks. Figure 3.5b shows the LIR
example after register allocation.

Code Generation Code generation is the last phase in the compiler pipeline. Every LIR in-
struction has an emit() method that writes machine instructions into a code buffer. Usually, a
LIR instruction will emit a single machine instruction, although it could also produce more than
one. The machine instructions are directly emitted to a byte array in their binary representation.
In addition to the code array, the code generator collects meta-information needed by the virtual
machine, for example, the frame layout for deoptimization or embedded object constants which
might be moved by the garbage collector.

43

Chapter 4

Trace Register Allocation

Trace register allocation relinquishes the idea that register allocation needs to be done globally,
i.e., for the whole compilation unit at once, using the same allocation algorithm. Instead, the
idea is to focus on those parts of the compilation unit which are considered the most important.
For those parts we invest compile time to find a good allocation. For the remaining parts of the
compilation unit, any valid allocation is fine. To achieve this, we partition the control-flow graph
into lists of sequentially executed basic blocks, based on their execution frequency. We call those
lists traces. We allocate each of these traces independently, potentially using different allocation
strategies, i.e., allocation algorithms. Due to their simple structure, traces are easy to allocate, so
the strategies are simpler to implement than a global allocation approach. The allocation results
of all traces are later combined to a valid global allocation.

Why are they called Traces? Many research directions in the field of programming lan-
guage implementations utilize the term trace. Examples from our research group include com-
piling traces of executed bytecodes [Häubl and Mössenböck, 2011], tracing the execution of pro-
grams [Schatz and Prähofer, 2013], or tracking memory allocations via memory traces [Lengauer
et al., 2016]. Although some of these works relate to our approach, we use the term trace in
the legacy of trace scheduling, for example by Fisher [1981], Ellis [1985] or Lowney et al. [1993],
which operates on the same structure as our approach.

The remainder of this section gives an overview of the main components of our trace register
allocation approach. Figure 4.1 shows the components of the trace register allocation framework.
We will first give a brief overview of the whole picture before going in to the details in the
following sections and chapters.

Trace Building The trace builder takes a control-flow graph and partitions it into distinct traces.
See Figure 4.2 for an example. It uses profiling information gathered by the VM to find long
hot traces with high execution frequencies.

44 Trace Register Allocation

Trivial RA (Section 5.2)

Bottom-Up RA (Section 5.3)

Linear Scan RA (Section 5.1)

Policy (Chapter 8)

ThreadPool (Chapter 9)

(Chapter 5)

for each trace(Section 4.4)

Global Liveness Analysis(Section 4.3)

Trace Building(Section 4.1)

Data-flow Resolution(Section 4.5)

Allocate trace

sw
itc

h

The left-hand side (gray boxes) shows the main components of the trace register allocation
framework, i.e., the trace builder, the global liveness analysis, the allocation loop and the data-
flow resolution. They work on a global scope, i.e., on the whole compilation unit. The allocation
strategies on the bottom right (blue) find an allocation result for a single trace. For every trace,
the framework can switch between different strategies. A policy, depicted above the strategies
(green), decides which strategy should be used for a given trace. Traces can be processed in

parallel, e.g., by using a thread pool as visualized on the top right (purple).

Figure 4.1: Trace register allocation overview

Global Liveness Analysis To enable independent processing of traces, we need liveness infor-
mation of variables at trace boundaries. Therefore, a global liveness analysis is required.
This analysis also operates on the control-flow graph and calculates the set of live variables
at every inter-trace edge.

Allocate Traces Using the information from the trace builder and the global liveness analysis,
the registers are allocated. For every trace we are free to choose one of several allocation
strategies, based on the properties of the trace. Although we could process the traces in
arbitrary order, we allocate important traces first. We exploit information about already
processed traces to reduce the amount of data-flow resolution at trace boundaries.

Data-flow Resolution Since the location of a variable might be different across an inter-trace
edge, data-flow resolution is needed for these edges. That phase will insert move operations
from one location to another whenever needed.

4.1 Trace Building

The aim of a trace building algorithm is to find traces in the control-flow graph. A trace is a
sequence of basic blocks connected with edges. Traces have interesting properties that we can
exploit in a register allocator. Let us define a trace more formally and introduce some notations
to make reasoning simpler.

4.1 Trace Building 45

Definition 30 (Trace). A trace T is a sequence of basic blocks ⟨b0, . . . , bn⟩. The trace length |T |
denotes the number of blocks in a trace. We use the notation T [i] to refer to the ith block in a
trace with i ranging from 0 to |T |−1. We call the first block T [0] in a trace the trace head. There
is an edge between two consecutive blocks in a trace, T [i] ∈ succ(T [i− 1]) for i > 0. Therefore,
the blocks might be executed sequentially. We also define that the edge (T [i− 1], T [i])must not
be a back edge. This implies that all blocks of a trace T are distinct, so T [i] ̸= T [j] for i ̸= j.

The set of Traces is a partition of the blocks of a CFG. Every block is in exactly one trace, so
T ∩ T ′ = ∅ for T, T ′ ∈ Traces and T ̸= T ′. We write T = traceOf(b) if T is the trace
that contains block b and b ∈ T if T = traceOf(b). Traces are non-empty, i.e., |T | > 0 for
T ∈ Traces.

We call an edge (ba, bb) between two blocks of the same trace an intra-trace edge, i.e., if ba, bb ∈ T .
If not, i.e., traceOf(ba) ̸= traceOf(bb), it is an inter-trace edge. Any block in a trace can be the
source or the target of an inter-trace edge. In other words, a trace can have multiple entries and
exits.

There are many possible ways of finding trace partitions in the CFG.1 In the simplest case, every
block can be treated as a separate trace. In this case trace register allocation would be equivalent
to local register allocation. However, longer traces offer more opportunities for optimization,
for example, by moving spill code out of loops, and thus to improve the quality of the register
allocation. Therefore, we need more sophisticated trace building strategies. In the following, we
propose two trace building strategies that utilize the run-time feedback provided by the execution
environment.

4.1.1 Unidirectional Trace Building

The unidirectional trace builder tries to minimize the trace exit probability. The algorithm, as
shown in Algorithm 1, starts a new trace by selecting a block where all predecessors are already
part of some other trace. If there are multiple candidates, we choose the block with the highest
execution frequency. At the beginning, the only eligible block is the method entry. The block
is selected as the header of the new trace. Next, we select the block with highest execution
frequency from the set of successors that are not yet in any trace and add it to the current trace.
We continue adding blocks in this way as long as possible. If there are no more successors the
trace is complete andwe proceed with the next trace. This is repeated until all blocks are assigned
to a trace. Figure 4.2c depicts the result of the algorithm for the code in Figure 4.2a.

1 The number of possible partitions of a set is called the Bell number [Flajolet and Sedgewick, 2009]. However, only
some of them fulfill all the properties we require for a trace partition.

46 Trace Register Allocation

long *allocateArray(int length, boolean fillContents) {
/*B0*/ if (TLAB.top + length + 1 <= TLAB.end) {
/*B1*/ result = TLAB.top;

TLAB.top += length + 1;
} else {

/*B2*/ result = heapAlloc(length + 1);
if (fillContents) {

/*B3*/ long *ptr = result + length;
/*B4*/ while (result < ptr) {
/*B5*/ *ptr = 0; ptr--;

} /* critical edge B7*/
} else { /* critical edge B8*/ }

}
/*B6*/ result[0] = length;

return result;
}

(a) C-like source code

b0

b1

b6

b2

b3

b4

b5

b8

b7

(0.3)

(0.1)

(8.1)

(8.0)(0.1)

(0.2)

(1.0)

(0.7)

(1.0)

(b) Control-flow graph

T0 T1 T2 T3

b0

b1

b6

b2

b3

b8

b4

b5 b7

(1.0)

(0.7)

(0.3)

(0.1)

(8.1)

(8.0)

(1.0)

(0.1)

(0.2)

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8] [9]

(c) Unidirectional trace builder

T0 T1T2 T3

b0

b2

b3

b4

b5

b8

b7

b1

b6

(1.0)

(0.7)

(0.3)

(0.1)

(8.1)

(8.0) (1.0)

(0.1)

(0.2)

[1]

[2]

[3]

[4]

[5] [6]

[7]

[8]

[9]

(d) Bidirectional trace builder

Source code, control-flow graph and trace-building results of allocateArray. The values in
parentheses (e.g. (0.8)) denote relative execution frequencies. The numbers in square brackets

(e.g. [2]) denote the order in which the trace builder processed the block.

Figure 4.2: Trace-building example for allocateArray

Although the algorithm is simple, it is not trivial to see that it terminates under all circumstances.
Let us therefore analyze it in more depth.

Theorem 4. The unidirectional trace builder described in Algorithm 1 terminates for every (re-
ducible) CFG without critical edges.

Proof. Let us first discuss the termination condition of Algorithm 1. The inner loop on line 9
continues until the eligible set E is empty. In the loop, E is redefined on line 13. It is easy to see
that its size is bound by B. The size of B, however, is reduced by one in every iteration of the
inner loop due to line 12. Therefore, the inner loop will eventually terminate.

4.1 Trace Building 47

Algorithm 1 Pseudocode for the Unidirectional Trace Builder
1: procedure UnidirectionalTraceBuilder(CFG)
2: (Blocks,Edges)← CFG
3: Traces← {}
4: B ← Blocks ▷ Block not yet in a trace
5: while |B| > 0 do ▷ There are blocks not yet in a trace
6: T ← ⟨⟩ ▷ New trace
7: E ← {b ∈ B | pred(b) ∩B = ∅}
8: ▷ Eligible blocks where all predecessors are in a trace
9: while E ̸= ∅ do

10: b← bmax ∈ E where freq(bmax) is maximal ▷ Block with highest frequency
11: T ← T + ⟨b⟩ ▷ Add block to trace
12: B ← B \ b ▷ Block in a trace
13: E ← succ(b) ∩B ▷ Eligible blocks, successor not in a trace
14: end while
15: Traces← Traces ∪ T ▷ Add T to the set of traces
16: end while
17: return Traces
18: end procedure

How about the outer loop? Due to the condition on line 5, the loop terminates if all blocks are in a
trace, so thatB is empty. For termination we need to ensure that the size ofB is reduced in every
iteration. We have already seen that the inner loop, if entered, will always terminate and reduce
B in every iteration. It remains to show that we will enter the inner loop at least once in every
outer-loop iteration. In other words, we have to show that the set {b ∈ B | pred(b)∩B = ∅} on
line 7 is never empty. In the first iteration of the outer loop all blocks are inB, so pred(b)∩B will
be non-empty for every block unless pred(b) is empty. Per definition, the only block without
predecessors is the method entry block bentry . This means that we will find at least one trace
containing bentry . In the general case, B is a proper subset of the blocks (B ⊂ Blocks). So some
blocks are already in a trace (Blocks \ B) and some are not (B). Let us now assume that E on
line 7 is empty. Since we know that bentry /∈ B and all blocks are per definition reachable by
bentry , there must be an inter-trace edge from a block b1 /∈ B to a block b2 ∈ B. Also, for E to
be empty, b2 must have another predecessor b3 ∈ B. See Figure 4.3a for an illustration. Note,
that the building algorithm is greedy, which means that it will extend a trace as long as possible.
If block b2 would be the single successor of b1, it would have been added to the trace due to the
construction of the eligible set on line 13. Therefore, since b1 /∈ B, there must be another block
b4 /∈ B and an edge (b1, b4). However, as we can see in Figure 4.3b, this would mean that the
edge (b1, b2) is critical which would violate our assumption that there are no such edges inCFG.
Since b4 must exist, b2 can have only a single predecessor b1. More specifically, b3 cannot exist
as shown in Figure 4.3c. Thus, no predecessor of b2 is inB and the setE is not empty (it includes
at least b2) which violates our assumption.

48 Trace Register Allocation

b1

b2

Blocks \B B

b3

(a) Non-greedy

b1

b2

Blocks \B B

b3

b4

critical edge

(b) Greedy with Critical Edge

b1

b2

Blocks \B B

b4

(c) Conclusion

Attempt to construct a non-terminating example for Algorithm 1. Blocks are all block of the
CFG. The blocks inB are not yet assigned to a trace. Due to the greedy nature of the algorithm
the situation in sub-figure (a) cannot occur since b2 would be appended to the trace containing
b1. So there must be a block b4 as shown in sub-figure b. This, however, violates our assumption

that there are no critical edges. Thus, b3 cannot exist c and b2 is eligible.

Figure 4.3: Termination of the unidirectional trace building algorithm

4.1.2 Bidirectional Trace Building

The bidirectional trace builder creates traces in decreasing order of their maximum block exe-
cution frequency. Algorithm 2 outlines the idea in pseudocode. It first selects the block with
the highest execution frequency from all blocks that are not yet part of a trace. From this initial
block, it first grows the trace upwards. Among all predecessors from the candidate set we select
the one with the highest execution frequency and prepend it to the trace. Note that we exclude
predecessors that are the source of a loop back-edge. This means that after we processed a loop
header we always continue with the block entering the loop, never with the loop end block. Once
there is no candidate left we start the downwards pass, again starting at the initial block. We pro-
ceed in a way that is similar to the unidirectional trace builder. Bidirectional trace building has
already been described by Ellis [1985] and Lowney et al. [1993]. Figure 4.2d shows the traces
formed by the bidirectional trace builder. The example illustrates that both strategies potentially
lead to different results.

Since the bidirectional trace builder imposes less restrictions for starting a new trace, the termi-
nation of the algorithm is easier to see.

Theorem 5. The bidirectional trace builder (Algorithm 2) terminates for every CFG that is re-
ducible and has no critical edge.

Proof. Both inner loops of Algorithm 2 terminate if the respective eligible set E becomes empty.
Both sets are bound by B (line 11 and line 20). In every inner loop, B is decreased by one so
the inner loops terminate eventually. The outer loop terminates if B is empty. Since we pick a
new s ∈ B for every iteration and remove s from B in line 8 the outer loop is also guaranteed
to terminate.

4.1 Trace Building 49

Algorithm 2 Pseudocode for the Bidirectional Trace Builder
1: procedure BidirectionalTraceBuilder(CFG)
2: (Blocks,Edges)← CFG
3: Traces← {}
4: B ← Blocks ▷ Block not yet in a trace
5: while |B| > 0 do ▷ There are blocks not yet in a trace
6: s← bmax ∈ B where freq(bmax) is maximal ▷ Block with highest frequency
7: T ← ⟨s⟩ ▷ New trace with s
8: B ← B \ s ▷ Block s in a trace
9: b← s ▷ Start with block s

10: loop ▷ Go upwards
11: E ← {b′ ∈ (pred(b) ∩B) | (b′, b) ∈ Edges not a backedge}
12: ▷ Eligible blocks, predecessors that do not form a loop and are not in a trace
13: if E = ∅ break ▷ No more eligible blocks, leave loop
14: b← bmax ∈ E where freq(bmax) is maximal ▷ Block with highest frequency
15: T ← ⟨b⟩+ T ▷ Prepend block to trace
16: B ← B \ b ▷ Block in a trace
17: end loop
18: b← s ▷ Reset current block to s
19: loop ▷ Go downwards
20: E ← succ(b) ∩B ▷ Eligible blocks, successor not in a trace
21: if E = ∅ break ▷ No more eligible blocks, leave loop
22: b← bmax ∈ E where freq(bmax) is maximal ▷ Block with highest frequency
23: T ← T + ⟨b⟩ ▷ Append block to trace
24: B ← B \ b ▷ Block in a trace
25: end loop
26: Traces← Traces ∪ T ▷ Add T to the set of traces
27: end while
28: return Traces
29: end procedure

50 Trace Register Allocation

Discussion

Figure 4.2 shows that the traces formed by the two trace building algorithmsmay differ. While the
unidirectional algorithm favors the execution paths that aremore likely, for example the common
case b0, b1 and b6, the bidirectional trace builder creates traces where most time is spent. In the
allocateArray example, this is the initialize loop of the heap allocation case. Both methods lead
to interesting results. Since our goal is to focus on the common case, the unidirectional trace
builder is our algorithm of choice. We evaluated both approaches and came to the conclusion
that the unidirectional trace builder is not only simpler but also achieves slightly better results
than its bidirectional counterpart (see Figure 7.12).

4.2 Trace Properties

Although it seems intuitive that register allocation for a trace is simpler than for a general control-
flow graph, traces have properties that are not self-evident. Some originate from the general
definition of traces (Definition 30), others are due to our trace building strategies. Many of these
properties can be exploited by a register allocation strategy to simplify its algorithmic complexity.
In the following, we summarize these observations. Keep in mind that we assume that the CFG
is reducible and does not contain critical edges.

Definition 31 (Greedy Trace Builder). A trace builder is upwards (downwards) greedy if it
prepends (appends) blocks to a trace until there is no more predecessor (successor) that is not
already in a trace.

Theorem 6. The unidirectional and bidirectional trace builders are greedy.

Proof: Unidirectional. This directly follows from the calculation of the eligible sets on line 7 and
line 13 of Algorithm 1.

Proof: Bidirectional. This directly follows from the calculation of the eligible sets on line 11 and
line 20 of Algorithm 2.

4.2.1 Greedy Trace Properties

The following properties hold for all greedy trace builders.

4.2 Trace Properties 51

Theorem 7 (Start Trace). The first trace of a greedy trace builder always contains the start block
bentry of the CFG.

Proof. Predecessors are prepended as long as they are not the source of a loop back edge. Since
all blocks are reachable from the start block bentry the algorithm will eventually prepend bentry

and stop the upwards pass.

Theorem 8 (Non-loop-header Trace Head). A loop header bh ∈ L of a loop L in a trace T is
always preceded by a block that is not in the loop, the loop entry. In other words, a loop header
is never a trace head, or if bh = T [i] then i > 0 and T [i− 1] /∈ L.

Proof. By definition of a trace (Definition 30), the predecessor of a loop header bh in trace T
cannot be a loop end. From Theorem 3 we know that there is at least one loop entry be. Due to
upwards greediness, be would be added to T if not already in a trace. However, due to downward

greediness and the fact that be has only bh as its successor (Corollary 1), bh would have been
appended to traceOf(be). Therefore, be and bh are in the same trace, next to each other.

Theorem 9 (Single-Predecessor Trace Head). If the trace builder is greedy, every trace head has
no or a single predecessor.

Proof. We already that know that a loop header cannot start a trace (Theorem 8). Let us assume
there is a trace head bh of trace T with more than one (non-back-edge) predecessor. Since the
trace builder is upwards greedy, all predecessors of bh must be already in traces before T is built,
otherwise they would be prepended to T. Since the trace builder is downwards greedy, a trace
containing a predecessor bp of bh would have added bh to itself, unless bp has another successor.
However, if bp hasmore than one successors (andwe assumed bh hasmore than one predecessors)
the edge (bp, bh)would be critical. Therefore, either bh has only one successor or bh is not a trace
header.

See also Figure 4.3 for a visualization of this argument.

4.2.2 Dominance Properties of Traces

Theorem 10 (Trace Block Dominance). Blocks in a trace are ordered according to their domi-
nance. This means that if two blocks T [i], T [j] are in the same trace T and they are in a strict
dominance relation T [i] ∈ sdom(T [j]), the dominating one is comes earlier in the trace (i < j).

52 Trace Register Allocation

b1

b2

b3 cr
iti
ca

le
dg

e

Figure 4.4: Non-sequential forward edges are critical edge

Proof. By contradiction. Let T [i], T [j], i < j and T [j] ∈ sdom(T [i]). From Theorem 1 we
know that every path from a block to its strict dominator contains a back edge. So the path
⟨T [i], T [i+1], . . . , T [j]⟩, which is a subset of the trace T contains a back edge which is prohibited
by the definition of a trace (Definition 30).

Theorem 11 (Consecutive Intra-trace Edges). If a control-flow graph does not contain critical
edges, an intra-trace edge either connects two blocks that are next to each other in the trace, or
it is a back edge.

Proof. By contradiction. Due to Definition 30 we know that every block in a trace T [i], with
exception of the last one, has at least one successor, namely the next block in the trace T [i+ 1].
Analogously, every block T [i], that is not the trace head, has at least one predecessor, namely the
previous block in the trace T [i−1]. Without loss of generality we assume that the trace consists
of three blocks ⟨b1, b2, b3⟩. Figure 4.4 illustrates such a trace. Now, let there be a forward edge
(b1, b3). However, this means that the source block b1 has two successor, namely b2 and b3, and
the target block b3 has more than one predecessor, namely b1 and b2. Therefore, the edge (b1, b3)
is a critical edge, which contradicts our assumption that there are no critical edges.

Corollary 2 (Loop End/Trace End). If a control-flow graph does not contain critical edges, a
back edge can only occur at the end of a trace.

Proof. From Corollary 1 we know that a loop end has only one successor, the loop header. How-
ever, by Definition 30, the trace builder does not follow a back edge. Therefore, there is no eligible
successor and the trace must end at a loop end.

Theorem12 (TraceHeadDominator). Let bi be a block of trace T. Every dominator bd ∈ dom(bi)

is either in T or bd also dominates the trace head bh of T.

Proof. Assume that bd ∈ dom(bi), bd /∈ T and bd /∈ dom(bh) where bh is the trace head. This
would mean that there is a path ⟨bentry, . . . , bh⟩ which does not include bd. Since bh ⇝ bi,
there would also have to be a path ⟨bentry, . . . , bi⟩ that does not include bd. Therefore, bd cannot
dominate bi.

4.3 Global Liveness Analysis 53

Theorem 13 (Trace Head Liveness). Assuming SSA form, a value which is live at a certain point
in a trace T is either defined in T or live at the beginning of the trace head of T.

Proof. Due to the dominance property (Property 2) of the SSA form we know that a value v that
is used in block bi is defined in a dominator bd of bi. If v is not defined in T then there is a path
from the definition in bd to the usage that goes through the trace head bh. Therefore, v must be
live at the beginning bh.

Theorem 14 (No Lifetime Holes in Traces). The lifetime interval for a variable in a trace does
not contain lifetime holes.

Proof. By Definition 27, a lifetime hole can only occur if there are non-consecutive blocks in the
linearized form of the CFG. By Definition 30, this does not hold for a trace.

Definition 32 (Interval Graph). Following Brisk and Sarrafzadeh [2007, Definition 1], which
originates from Lekkeikerker and Boland [1962], a graph is an interval graph if it is the interfer-
ence graph of some set of live ranges.

Corollary 3 (The Interference Graph of a Trace is an Interval Graph). By the definition of an
interference graph and Theorem 14, the interference graph of a trace is an interval graph.

Theorem 15 (Trace Domination). Assume that a greedy trace builder builds traces in the order
T0, T1, . . . , Tn. Then we know that for a block b in trace Tk all dominators dom(b) of b are in
traces T0, . . . , Tk.

Proof. Due to upwards greediness, the single predecessor bp (Theorem 9) of trace header bh of
a trace Tk is already in a trace T0, . . . , Tk−1. Since bentry ∈ T0 (Theorem 7) there is a path
⟨bentry, . . . , bp, bh⟩ which contains all dominators of bh. So, due to Theorem 12, all dominators
of all blocks in Tk are either in Tk or in dom(bh).

4.3 Global Liveness Analysis

A core feature of our trace register allocation approach is that traces can be processed indepen-
dently by the allocator, potentially with different strategies. However, a trace in general does not
have enough information about the liveness of variables.

Let’s have a look at Figure 4.5. There is no usage of totalFS in T1, so we could conclude that
we do not need a register for storing its value. In trace T2, on the other hand, it seems that
only totalFS is live. However, when looking at the whole method, it becomes clear, that this is

54 Trace Register Allocation

T1

T2

int getOffset(int totalFS)

// final int add;

if (!this.addFrameSize)

// add = 0;

ϕout=(0)

(add)=ϕin

return this.offset + add;

// add = totalFS;

ϕout=(totalFS)

b0

b1

b2

b3

th
is

to
ta

lF
S

ad
d

th
is

to
ta

lF
S

Example based on the code in Listing 2.

Figure 4.5: Traces without global liveness information

wrong. In T1, totalFS is live until the end of b0, as shown in Figure 4.6. Additionally, this is
live throughout trace T2, although it is not used there at all. So we need to exhibit global liveness
information to the traces in order to perform register allocation properly.

Different register allocation algorithms use different data structures for modeling liveness, for
example intervals in linear scan or an interference graph in graph coloring. Since we want to
make the framework as flexible as possible, we do not force a strategy to use a certain model
of liveness. Therefore, we maintain information about liveness at trace boundaries in a generic
form. Every block in a trace has two sets, livein and liveout: liveout stores all variables that are
live at the end of the block, and livein stores those that are live at the beginning of the block. See
Figure 4.6 for an example. The set liveout can be seen as a pseudo usage of all variables in this
set. It keeps those variables alive in case they are needed in other traces that branch off from this
blocks. The set livein at the header of a trace is a pseudo definition of all variables in this.

4.3.1 Liveness Analysis

To compute these sets, we perform a liveness analysis. In the first prototype we used a stan-
dard iterative data-flow analysis [Cooper and Torczon, 2011, Chapter 9.2.2]. However, since the
variables in LIR are in SSA form, we can exploit the dominance and single definition properties.
We thus follow an approach described by Wimmer and Franz [2010] for SSA-based linear scan
register allocation. The analysis is done in a single backwards iteration over the blocks in reverse
postorder (see Definition 22). We maintain a set of live variables at block boundaries which we

4.3 Global Liveness Analysis 55

T1

T2

int getOffset(int totalFS)

// final int add;

if (!this.addFrameSize)

liveout =(this,totalFS)

(this,-)= livein

// add = 0;

ϕout=(0), liveout =(this)

(this)= livein, (add)=ϕin

return this.offset + add;

(this,totalFS)= livein

// add = totalFS;

ϕout=(totalFS),

liveout =(this)

b0

b1

b2

b3

th
is

to
ta

lF
S

ad
d

th
is

to
ta

lF
S

Figure 4.6: Traces with global liveness information

later use for the livein and liveout sets. For loop headers, the live sets in the loop need to be up-
dated, as proposed by Wimmer and Franz [2010]. Nevertheless, this approach offers significant
speedup over the iterative approach.

4.3.2 Representation of Global Liveness

The most convenient way to represent liveness information is to add pseudo usages and defini-
tions directly to the LIR, as shown in Figure 4.6. The representation is similar to the notion of
ϕs. The advantage is that phases can process the pseudo usages just as any other usage without
special handling. Pseudo usages will be picked up by (trace-local) liveness analysis and the regis-
ter allocator will assign locations to them. These locations are then used by the global data-flow
resolution (see Section 4.5). The downside is that the in-LIR variant poses overhead in terms of
space, because the livein and liveout sets at both ends of an edge are redundant, and in terms of
time, since the iteration of LIR instructions gets slower due to the increased number of operand
references. In addition, it increases the number of indirections, since all operands in LIR are
objects (of class Variable in this case), although a primitive integer value would be sufficient for
encoding variables.

Therefore, we decided to use an external data structure to capture only the required information.
Our first observation was, that for every control-flowmerge, the liveness information is the same
at the end of all predecessors. This is only true because there are no critical edges. Also note
that ϕs are still represented in the LIR. Therefore, it is sufficient to store only livein at the merge,
and use this set also for all predecessors. We can use a similar optimization for control-flow

56 Trace Register Allocation

T1

T2

int getOffset(int totalFS)

// final int add;

if (!this.addFrameSize)

// add = 0;

ϕout=(0)

(add)=ϕin

return this.offset + add;

// add = totalFS;

ϕout=(totalFS)

b0

b1

b2

b3

th
is

to
ta

lF
S

ad
d

th
is

to
ta

lF
S

liveB0
out = (this, totalFS)

liveB3
in = (this)

The set liveout is stored at the end of split blocks and the set livein at the beginning of merge
blocks.

Figure 4.7: Representation of liveness

splits, although a variable that is live at the end of a branching block might not be needed in all
successors. The edge (b0, b1) in T1 of Figure 4.6 demonstrates the situation. The variable totalFS
is live at the end of b0 but not at the beginning of b2. However, this is usually not a problem.
During trace-local liveness analysis—assuming that we do it via a backwards pass—we would
see a pseudo definition without usage, which we can simply ignore. Thus, it is sufficient to store
liveout at the end of splitting blocks, and livein at the beginning of merge blocks, which reduces
the memory requirement to at least a third.2 Figure 4.7 shows the improved global liveness
information for the previous example.

4.4 Allocating Registers

The allocation step is the core of the framework and the basis for its flexibility. Essentially, as
long as there is an unprocessed trace, the framework selects one and allocates registers for it.
How registers are allocated is not relevant to the framework. We implemented three different
allocation strategies for different purposes. The details of them are described in Chapter 5. For
every trace, the framework can use a different strategy. The decisionwhich strategy ismost suited
is based on heuristics, which are discussed in Chapter 8. Note that traces could be processed in

2Also, we can use an int[] instead of a Variable[] array. Thismeans that in addition to removing one indirection,
only half of the memory is needed assuming that int requires 32 bits and a reference 64 bits.

4.5 Global Data-flow Resolution 57

T1

T2

int getOffset(int totalFS)

// final int add;

if (!this.addFrameSize)

// add = 0;

ϕout=(0)

(add)=ϕin

return this.offset + add;

// add = totalFS;

ϕout=(totalFS)

b0

b1

b2

b3

th
is

to
ta

lF
S

ad
d

th
is

to
ta

lF
S

liveb0out = (this, totalFS)

locb0out = (reg1 , reg2)

locb2in = (reg2 , reg1)

liveb3in = (this)

locb2out = (reg2)

locb3in = (reg1)

Figure 4.8: Representation of the locin/locout sets

arbitrary order, even in parallel as demonstrated in Chapter 9. However, traces that are processed
later can exploit information about already processed traces. Therefore, traces are processed in
order of their importance.

In addition to allocating registers in the trace, the allocation strategy needs to record the location
of variables at inter-trace edges. This information is stored in locin and locout sets. In contrast to
the livein/liveout sets, the location sets are needed for both ends of an edge, since variables might
be in different locations in different traces. Figure 4.8 shows the location sets for the getOffset
example.

4.5 Global Data-flow Resolution

Since traces are processed independently, the location of a variable might differ at the two ends of
an inter-trace edge. See the edge (b0, b2) in Figure 4.8, for example. In b0 of T1, this is stored in
reg1. However, in b2 the value is in reg2. Therefore, when crossing the edge, we need to adjust
the locations to get a valid allocation. To do so, we need to insert moves which are executed
when following the edge. For our example this means that we have to insert the moves at the
beginning of b2. This global data-flow resolution is done for every inter-trace edge. Figure 4.9
shows the example with the inserted move instructions.

58 Trace Register Allocation

T1

T2
int getOffset(reg1 ,reg2)

// final int add;

if (!reg1 .addFrameSize)

// add = 0;

reg2 = 0;

return reg1 .offset + reg2 ;

st1 = reg1 ; // tmp this

reg1 = reg2 ; // totalFrameSize

reg2 = st1 ; // this

// add = totalFrameSize;

st2 = reg2 ; // tmp this

reg2 = reg1 ; // add

reg1 = st2 ; // this

b0

b1
b2

b3

locB0
out = (reg1 , reg2)

locB2
in = (reg2 , reg1)

locB2
out = (reg2)

locB3
in = (reg1)

Result of data-flow resolution for the allocation of addOffset in Figure 4.8. There are two inter-
trace edges that need data-flow resolution, namely (b0, b2) and (b2, b3). For the first edge we
need to insert moves from reg1 to reg2 for this and from reg2 to reg1 for totalFS. Since the
moves are cyclic we introduce a temporary stack slot st1 to break the cycle. The moves are
inserted at the beginning of b2. For the edge (b2, b3) we need to fix the data-flow mismatch for
this with a move from reg2 to reg1. In addition, we need to destruct the ϕ which assigns add
to totalFS. To do so we insert a move from reg1 to reg2. As this example demonstrates, ϕs
and data-flow mismatches need to be resolved simultaneously since they may also introduce a
cycle. We therefore introduce another temporary stack slot st2. The resolution code is inserted

at the end of b2.

Figure 4.9: Inserted move instructions for global data-flow resolution

Where should the phase place the resolution code? As suggested in the above example, we would
want to insert it along a control-flow edge. Since there are no critical edges, this is easy. Either
the source of an edge has only a single successor, then we can insert the code at the end of the
source block. Otherwise, the target must have only a single predecessor. Therefore, we can place
the code in the target block.

Conceptionally, all resolution moves are done in parallel. In reality, however, most processors
force us to place the moves in sequential order.3 Since there might be write-after-read depen-
dencies (also called anti-dependencies) [Cooper and Torczon, 2011, Chapter 12.2] between move
instructions, we need to be careful with the order in which we insert the moves. In the worst
case, those dependencies are cyclic, that means that we cannot find an order so that all dependen-
cies are satisfied. The edge (b0, b2) in Figure 4.8 shows such an example. To resolve the location
mismatch for this we need to insert a move from reg1 to reg2. However, to fix the data flow
totalFS, a move from reg2 to reg1 is required. No matter how we place the moves, we would

3Mohr et al. [2013] proposed special hardware to speed up the shuffle code. While this would avoid the move emis-
sion, compiler support is still required [Buchwald et al., 2015].

4.5 Global Data-flow Resolution 59

overwrite one of the two values. Note, that the cycle can consist of an arbitrary number of move
instructions. To break such a cycle, we introduce a new temporary stack slot. Figure 4.9 shows
the result for the example.

In addition to a location mismatch, there might be ϕin/ϕout pairs that need to be resolved. We
need to handle them in parallel to the locations, since they might have interdependencies. The
edge (b2, b3) in Figure 4.8 shows an example. Due to the location mapping for this, we need a
move from reg2 to reg1. To resolve the ϕ for add, the content of reg1 should be copied to reg2.
Again, this forms a cycle and requires a temporary stack slot to break it.

61

Chapter 5

Register Allocation Strategies

The task of a register allocation strategy is to solve the register allocation problem, i.e., to replace
variables with registers, for a single trace. Since a trace is a list of sequential blocks, allocating
registers for a trace is significantly simpler than for a method with arbitrary control-flow. First,
there are no holes in the lifetime intervals of variables (see Theorem 14). Since variables adhere
to the SSA form, we know that a variable is live from its definition in the trace (either the explicit
definition, or the livein set of the trace header, see Theorem 13) to the last usage in the trace,
which might be a real usage or an entry in the liveout set. In addition, a strategy must resolve
ϕ-functions for the predecessor that is in the same trace as the merge block. (Inter-trace edges
with ϕs are handled by the global data-flow resolver, which was discussed in Section 4.5.)

In the course of this work, we implemented three strategies, a linear scan allocator (Section 5.1),
a special trivial trace allocator (Section 5.2) and a fast bottom-up allocator (Section 5.3).

5.1 Linear Scan Allocator

The trace-based linear scan algorithmoriginated from an adaption of the global approach byWim-
mer andMössenböck [2005] andWimmer and Franz [2010], which is the default register allocator
in Graal. However, due to the straightforward structure of traces, the implementation could be
significantly simplified. As a result, large parts of the code have been rewritten. In this section,
we given an overview of our trace-based linear scan strategy with a focus on the differences to
the global variant.

Figure 5.1 shows the phases of the trace-based linear scan strategy. The general idea is that first
an interval representation of liveness is created. These intervals capture all information neces-
sary to perform the actual allocation. Working with intervals as an intermediate data structure
is more efficient than modifying the LIR directly. This is especially important, since decisions

62 Register Allocation Strategies

Interval Building

Register Allocation on Intervals

Local Data-flow Resolution

Register Assignment on LIR

LIR of Trace with Variables

LIR of Trace without Variables

Figure 5.1: Trace-based linear scan

during allocation are not final in general. For example, the spill position, i.e., the position where
a variable is spilled to the stack, might change during allocation. After the allocation pass is
finished, a data-flow resolution phase handles data-flow mismatches and ϕs across intra-trace
edges, which might have been introduced by interval splitting. Last but not least, the variables
in the LIR are replaced by the locations stored in the corresponding intervals.

5.1.1 Interval Building

First, we number the instructions of the traces. For technical reasons we only use even numbers,
and start at 2. The interval builder performs a backwards liveness analysis. It creates an interval
for every variable and every register in the LIR instructions of the trace. Variable intervals are
used to perform register allocation. Since they have no lifetime holes (see Theorem 14) their
representation is simple. For every interval, we store the variable, the (allocated) location, the
spill slot, a from and a to position, as well as a list of usages. Listing 1 in the appendix shows
the relevant parts of the class TraceInterval. Register intervals are used to track fixed register

constraints, which are imposed by calling conventions,1 instruction set restrictions,2 or special
purpose registers used by the virtual machine.3 The allocator needs to respect these requirements
while it allocates registers for variables. Fixed registers do not adhere to SSA form, since a
register might be defined multiple times. This implies that register intervals can have lifetime
holes. Therefore, they are represented as a list of live ranges, each with a from and to position.
These ranges are usually short, spanning only very few instructions, and are never live across a
block boundary.

1Calling conventions specify, for example, parameter or return registers.
2For example, the result of the idiv instruction on AMD64 is implicitly stored in rax and rdx [Intel, 2013b].
3On HotSpot, register rbp is used as the frame pointer register on AMD64.

5.1 Linear Scan Allocator 63

v2|DWORD = ADD (x: v0|DWORD, y: v1|DWORD)

rsi|DWORD = ADD (x: rsi|DWORD, y: rdx|DWORD)

rax|DWORD = ADD (x: rsi|DWORD, y: rdx|DWORD)

add esi, edx

mov eax, esi

add eax, edx

hint succeded

hint missed

(a) LIR before register allocation (b) LIR after register allocation (c) Machine code

On the left, the ADD instruction in LIR with two input operands (v0, v1) and one output operand
(v2). To efficiently model the AMD64 two-address add [Intel, 2013b], there is a hint from v2 to
v0. If the hint succeeds, only one add instruction is emitted (top right). If the hint is missed,

there is an additional mov instruction (bottom right).

Figure 5.2: Two-address instructions

Hints During interval building we record hints for intervals, which where proposed by Wim-
mer and Mössenböck [2005] for global linear scan. A hint is a reference to a variable or fixed
interval. It advises the allocator to assign to a variable the same register as in the hint, if the re-
spective register is available. Register hints are a light-weight alternative to coalescing, i.e., merg-
ing two non-overlapping intervals. In Graal, the main source for hints are move instructions. If
the hint is adhered, the move instruction can be removed. In addition, hints are important for
two-address instructions, i.e., instructions where the result is stored back to one of the operands.
These instructions violate SSA form since they redefine a value. In LIR, such instructions are rep-
resented as three-address instructions and emit two machine instructions, a move and the actual
operation. Figure 5.2 shows an example. To avoid the move—if possible—a hint is added from
the operand to the result variable.

The variables defined via the ϕin set also get a hint to their respective value in the ϕout set of the
intra-trace predecessor. Note that such a predecessor is always within the trace, due to the fact
that a loop header is never a trace head (Theorem 8).

5.1.2 Register Allocation on Intervals

The main register allocation procedure iterates all intervals in the order of increasing start po-
sitions. In each iteration one interval is processed. We refer to this as the current interval. The
from position of this interval is the current position. The allocator organizes the intervals in four
sets:

• Unhandled variable intervals are intervals which are not yet live, i.e., they start after the
current position. This set is sorted by increasing from positions.

64 Register Allocation Strategies

• Active variable intervals are live at the current position and have a register assigned. They
are sorted by increasing to positions.

• Active register intervals are fixed register intervals that have a range that covers the current
position. They are also sorted by increasing to position of their current ranges.

• Inactive register intervals do not have a range covering the current position. They are sorted
by increasing from positions of their next range.

The allocator continues as long as there are intervals in the unhandled set. The interval with
the lowest from position is removed from the set and is processed. First, the other interval sets
are adjusted. Variable intervals with a to position smaller than the current position are removed
from the active set. The register intervals in the active (inactive) set are removed if the to (from)
position of their current range is smaller than the current position. The removed register intervals
might be readded to the active or inactive set if there is another range with ends after the current
position.

Next, the allocator tries to assign a free register to the current interval. To do so, it builds a map
from registers to free-until positions, i.e., to the position when the registers become available.
All entries are initialized with infinity. The registers assigned to variable and fixed intervals in
the active sets are removed. Finally, for all inactive register intervals we record the from position
of the next range. From this set of feasible registers, the allocator selects the register with the
smallest free-until position that is still bigger than the current interval’s to position. If there is
such a register the allocation succeeded. However, due to fixed register constrains, there might
be no register available for the full interval. In that case, we select the register with the biggest
free-until position, split the current interval at this position and assign the register to the partial
interval. The split child is added to the unhandled list. In addition, we insert a move from the
parent interval to the child interval at the split position. In case the current interval has a hint,
we favor the hint register by ignoring the free-until position. However, a partially available hint
will never overrule a fully available register.

If we fail to find a register that is either fully or partially free, we need to spill. The goal is to select
a register which is not accessed until the next usage of the current interval. Again, we collect
information about the feasible registers. In case the register is occupied by a variable interval,
we record the next usage of this interval, which is where the interval needs to be reloaded. We
remove active fixed intervals from the list since we cannot spill them. The from position of the
next range of inactive fixed intervals also contributes to the next usage of a register. With this
information at hand, we select the register with the highest next usage position. If two registers

5.1 Linear Scan Allocator 65

have the same position, we favor the one where the corresponding variable interval has already
been spilled in the past. That way, we can avoid to insert a spill move. If we do not find a register,
we bailout and abort compilation.4 Otherwise, the candidate register is occupied by a variable.

We split the interval which currently occupies the register at the current position, as well as
before the next usage. The parent interval has already a register assigned and will not be touched,
other than setting the to position. The first split child is located on the stack. The last split child
is unassigned and inserted into the unhandled list. Finally, we set the location of the current
interval to the freed register and are finished.

However, an inactive register interval might restrict the period for which a register candidate is
available. If the start of the next range of the fixed interval is greater than the to position of the
current interval, we can use the register for the entire interval. Otherwise, the register is only
partially available and we perform the same actions as in the allocate free register scenario, i.e.,
split the current interval and add the split child to the unhandled list.

Splitting and Spilling When an interval needs to be split, the algorithm computes the latest
possible split position. However, we can split the interval anywhere between the last usage and
the latest position. If both positions are in the same block, no optimization is possible. Otherwise,
we split the interval in the block with the lowest execution frequency between both positions.
Therefore, the corresponding move instruction is executed less often. Since we need to ensure
that moves which are inserted at a particular position are properly ordered, we split the intervals
at block boundaries and let the local data-flow resolution phase deal with it. Since we are in SSA
form, we only need to spill a value once. The spill position is independent from the split positions,
as long as the spill happens between the definition of the value and the first stack interval. Similar
to the split position we choose the block with the lowest execution frequency.

5.1.3 Local Data-flow Resolution

Due to interval splitting, the location of a value might be different at both ends of an intra-trace
edge. Similar to the global data-flow resolution, which we described in Section 4.5, we perform
a local resolution phase. It also takes care of ϕ-instructions. The only difference to its global
counterpart is that the local resolution operates on intervals instead of on the global liveness

information. It is worth noting that due to the placement of the resolution moves, the local and
the global data-flow resolution phases do not interfere.

4Usually, this is an evidence for a compiler bug, since the number of registers required at the current position—that
are active fixed register intervals and registers required by the current instruction—is higher than the number of
available registers. In production this should never happen.

66 Register Allocation Strategies

b1

b2

b3

b4

critical edge

(a) Critical edge

b1

b2

b3

b4

bh
be

(b) Link trace

b1

b2

b3

b4

bt

(c) Trivial link trace

Figure 5.3: Link traces

5.1.4 Register Assignment on LIR

Since the algorithm splits already assigned intervals, the final location of a variable at a given
instruction is only known when all intervals are processed. Therefore, we conclude linear scan
allocation with an assignment phase, which iterates all instructions and replaces all variables
with the location recorded in the corresponding interval.

5.2 Trivial Trace Allocator

As already mentioned, control-flow can exit and enter a trace at any block. Let us consider the
example in Figure 5.3a. If an edge would lead from inside a trace (i.e., not from the last block)
to the middle of another trace, this edge would be critical. Therefore, there must be (at least) a
trace in between which is entered at the head and left via the last block, as shown in Figure 5.3b.
Often, this trace consists of a single block. Figure 5.3c depicts an example. We call such traces
trivial traces.

Definition 33 (Trivial Trace). A trivial trace is a special kind of trace with a single basic block
which contains only a single jump instruction.

Trivial traces are very common. For the DaCapo benchmark suite, about 40% of the traces are
trivial (see Figure 8.2). The unidirectional trace-building example in Figure 4.2c contains one
trivial trace (T3). In the bidirectional case (Figure 4.2d) two out of four traces are trivial (T2 and
T3).

5.2 Trivial Trace Allocator 67

ϕout = (v6, v0, v6)

bp

…

bt

locbtin=loc
bp
out

livebtin = (v0, v1, v4, v6)

loc
bp
out = (reg2 , reg3 , st0 , reg1)

locbtout = (reg2)

livebtout = (v0)

(a) Before allocation

ϕout = (reg1 , reg2 , reg1)

bp

…

bt

locbtin=loc
bp
out

livebtin = (v0, v1, v4, v6)

loc
bp
out = (reg2 , reg3 , st0 , reg1)

locbtout = (reg2)

livebtout = (v0)

(b) After allocation

Example allocation of a trivial trace consisting of block bt. A trivial trace is a trace consisting
of a block without any instruction (except a jump). There are several interesting observations
to make. First, the live sets are ordered w.r.t. the variable indices. Second, the liveout set is a
subset of livein. Third, the values in ϕout are ordered w.r.t. to their respective ϕin and there

might be duplicates and variables not in liveout.

Figure 5.4: Example of a trivial trace allocation

Due to their simple structure, trivial traces are significantly easier to allocate than general traces.
But why do we even have to allocate them? Like for every other trace, we need to populate the
locin and locout locations according to their respective livein and liveout sets. In addition, there
may be outgoing values in ϕout, which need to be replaced with a register or stack slot. However,
both requirements are easy to fulfil.5

Figure 5.4a shows a typical example of a trivial trace. The variables in the livein and liveout sets
are sorted by construction. Also, since there cannot be a variable definition in a trivial trace,
liveout is a subset of livein. In which case is liveout a proper subset of livein? As described in
Section 4.3.2, the live sets are shared between a split block and its successors. So a variable v

might be live in a sibling of a trivial trace block, but in or after the trivial trace. Therefore, v is
in livein but not in liveout of the trivial trace. The outgoing ϕout variables can only reference
variables in livein. However, the order in which variables occur in ϕout is arbitrary. There might
even be duplicates.

Algorithm 3 shows the allocator in pseudo code. It assumes that the live sets are ordered ac-
cording to their variable index.6 First, on line 2, the locin is set to the locout of the predecessor.
Next, the algorithm iterates over all incoming variables (line 5). In case the variables occur in
the liveout set of the trivial trace, the locout location is set to the current locin location (loop 6).
Afterwards, the allocator resolves ϕ values for the ϕout list on line 11. Since the livein set is
sorted, we can binary search for the index of the respective location in the locin set. Note that we

5One might say trivially…
6In our implementation this is true by construction of the sets by the global liveness analysis (Section 4.3.2).

68 Register Allocation Strategies

Algorithm 3 Trivial Trace Allocation Strategy
1: procedure TrivialTraceAllocator(locpredout , livein, liveout, ϕout)
2: locin ← locpredout ▷ Incoming locations are the outgoing of the predecessor
3: locout ← new list of size |liveout|x] ▷ Reserve space for outgoing locations
4: idxout ← 0 ▷ Incoming and outgoing indices might diverge
5: for idxin ∈ {0, . . . , |locin| − 1} do
6: if liveout[idxout] = livein[idxin] then ▷ The incoming variable is also in liveout
7: locout[idxout]← locin[idxin] ▷ Set outgoing location
8: idxout ← idxout + 1 ▷ Increment outgoing index
9: end if

10: end for
11: for idxϕ ∈ {0, . . . , |ϕout| − 1} do
12: val← ϕout[idxϕ] ▷ Get ϕout value
13: if val is variable then
14: idxin ← binarySearch(val, livein) ▷ Find location index for val using binary search
15: ϕout[idxϕ]← locin[idxin] ▷ Update ϕout

16: end if
17: end for
18: return (locin, locout)
19: end procedure

also experimented with a version that used a variable-to-location map to avoid repetitive search-
ing. However, empirical experiments suggest that the binary search variant outperforms themap
approach by 40%. We account this to the reduced number of allocations.

5.3 Bottom-Up Allocator

Not all traces of a method are equally important for peak performance. As already said, we do
not want to spend too much time on traces that are infrequently executed. Although the linear
scan strategy outlined in Section 5.1 exhibits a linear time behavior with respect to the number
of instructions [Eisl et al., 2016], it is relatively complex and requires multiple passes over the
instructions of a trace. The constant factors are relevant in practice. Therefore, we aim for a fast,
general-purpose allocation strategy that sacrifices peak performance for allocation time. The
idea is to perform (local) liveness analysis, register selection and LIR modification in a single
backwards pass over the instructions. Therefore, we call this strategy bottom-up allocator.

5.3.1 Tracking Liveness Information

In the bottom-up allocator, liveness information is never maintained for the whole trace but
is only known locally for the current instruction. This information is tracked using two data
structures. The register content map stores the current contents of every register. The entry for

5.3 Bottom-Up Allocator 69

Algorithm 4 Bottom-up allocator: allocateTrace
1: procedure allocateTrace(T)
2: blast ← null
3: variable location, register content← preinitFromSuccessor(T)
4: for b ∈ reverse(T) do ▷ Iterate blocks in reverse order
5: if blast ̸= null then
6: resolvePhis(b, blast) ▷ Handle ϕs in Trace, see Algorithm 12
7: end if
8: for all inst ∈ reverse(instructions(b)) do ▷ Iterate instructions in reverse order
9: allocateInstruction(inst, b) ▷ See Algorithm 5

10: end for
11: blast ← b
12: end for
13: resolveLoopBackEdge(T) ▷ Handle loop intra-trace back-edge
14: end procedure

a register points to a variable if the variable is currently stored in this register. It can also point
to a register itself, which indicates that there is a fixed register constraint, e.g., due to calling
convention requirements. An entry in the register content map might be empty in case the
register is currently unused. The second data structure is the variable location map. It tracks
the current location of every variable, which is either a register, a stack slot, or empty if the
variable is not live. We also trackwhich registers are used in the current instruction. Thememory
requirement is therefore linear in the number of registers and the number of variables. Only the
size of the second map depends on the compilation unit while the size of the first one is fixed for
a given architecture.

Note that the bottom-up approach does not require the SSA-property and can deal with lifetime
holes without modification. In fact, it does so for fixed register constraints, which do not adhere
to the SSA properties.

5.3.2 Register Allocation

Register allocation is done in a single backward pass over the instructions of a trace (see Algo-
rithm 4). If the last block of the trace has a successor that has already been allocated, we use the
allocation information from this successor to initialize the variable location and register content

maps.

An instruction is processed in two phases, as outlined in Algorithm 5. We start with the values
that are defined (inst.output()) by the instruction before dealing with the values that are used
by it (inst.input()). When visiting the values, we first process fixed register usages to mark
them as used in the register content map (see Algorithm 6). Next, we iterate the operands of the
instruction. We start with those variables whichmust reside in a register (see Algorithm 7). Such

70 Register Allocation Strategies

Algorithm 5 Bottom-up allocator: allocateInstruction
1: procedure allocateInstruction(inst)
2: if inst.isCall() then
3: spillCallerSavedRegisters(inst)
4: end if
5: allocateOps(inst.output()) ▷ Allocate output operands
6: freeRegisters(inst.output()) ▷ Free register in output operands
7: allocateOps(inst.input()) ▷ Allocate input operands
8: end procedure

9: procedure allocateOps(ops)
10: for all op ∈ ops if isF ixedRegister(op) do ▷ Fixed-register operands
11: allocFixedRegister(op) ▷ No need to reassign, see Algorithm 6
12: end for
13: for all op ∈ ops if requireRegister(op) do ▷ Variables which require a register
14: op← allocRegister(op) ▷ See Algorithm 7
15: end for
16: for all op ∈ ops if mayBeOnStack(op) do ▷ Variables which might be on stack
17: op← allocStackOrRegister(op) ▷ See Algorithm 8
18: end for
19: end procedure

20: procedure freeRegisters(ops)
21: for all reg ∈ ops if isRegister(reg) do ▷ Free registers that have been defined
22: variable location[register content[reg]]← null ▷ Clear variable location
23: register content[reg]← null ▷ Clear register content
24: end for
25: end procedure

Algorithm 6 Bottom-up allocator: allocFixedRegister
1: procedure allocFixedRegister(reg)
2: evacuateRegisterAndSpill(reg) ▷ Spill reg if occupied, see Algorithm 11
3: setLastRegisterUsage(reg) ▷ Mark register as used in the current instruction
4: end procedure

5.3 Bottom-Up Allocator 71

Algorithm 7 Bottom-up allocator: allocRegister
1: function allocRegister(var)
2: loc← variable location[var]
3: if isRegister(loc) then ▷ Variable is already in a register
4: setLastRegisterUsage(loc) ▷ Mark register as used in the current instruction
5: return loc
6: end if

▷ Variable on the stack or not allocated, need new register
7: reg ←findFreeRegister(var) ▷ See Algorithm 9
8: if no reg avaiable then
9: reg ←findRegisterToSpill(var) ▷ See Algorithm 10

10: end if

11: variable location[var]← reg ▷ Update variable location
12: register content[reg]← var ▷ Update register content
13: setLastRegisterUsage(reg) ▷ Mark register as used in the current instruction

14: if isStack(loc) then ▷ Variable was on the stack, need spill move from reg to stack
15: if var is an input operand then ▷ Input operand, is live before the instruction
16: insertMoveBefore(loc, reg) ▷ Might be destroyed by an output operand
17: else ▷ Output operand, is live after the instruction
18: insertMoveAfter(loc, reg)
19: end if
20: end if

21: return reg
22: end function

Algorithm 8 Bottom-up allocator: allocStackOrRegister
1: function allocStackOrRegister(var)
2: loc← variable location[var]
3: if loc ̸= null then ▷ Variable is already in a stack slot or a register
4: setLastRegisterUsage(loc) ▷ Mark register as used in the current instruction
5: return loc
6: end if

▷ Variable not allocated, find register or stack slot
7: loc←findFreeRegister(var) ▷ Try first to get a register, see Algorithm 9
8: if loc ̸= null then ▷ Register available
9: setLastRegisterUsage(loc) ▷ Mark register as used in the current instruction

10: register content[loc]← var ▷ Update register content
11: else ▷ No register available, use stack slot
12: loc←allocateSpillSlot(var) ▷ Get a spill slot for the variable
13: end if

14: variable location[var]← loc ▷ Update variable location
15: return loc
16: end function

72 Register Allocation Strategies

Algorithm 9 Bottom-up allocator: findFreeRegister
1: function findFreeRegister(var)
2: for all reg ∈ allocatableRegisters(var) do
3: if register content[reg] = null then
4: return reg ▷ Free register found
5: end if
6: end for
7: return null ▷ No free register found
8: end function

Algorithm 10 Bottom-up allocator: findRegisterToSpill
1: function findRegisterToSpill(var)
2: for all reg ∈ allocatableRegisters(var) do
3: if ¬isUsedInCurrentInstruction(reg) then ▷ Register which is not used currently
4: evacuateRegisterAndSpill(reg) ▷ Spill reg, see Algorithm 11
5: return reg
6: end if
7: end for
8: error No register found for spilling
9: end function

Algorithm 11 Bottom-up allocator: evacuateRegisterAndSpill
1: procedure evacuateRegisterAndSpill(reg)
2: var ← register content[reg] ▷ Get current register content
3: register content[reg]← null ▷ Clear register content
4: stack ←allocateSpillSlot(var) ▷ Get a spill slot for the variable
5: variable location[var]← stack ▷ Update variable location
6: insertMoveAfter(reg, stack) ▷ Insert reload from stack to register
7: end procedure

Algorithm 12 Bottom-up allocator: resolvePhis
1: procedure resolvePhis(bsrc, bdest)
2: for i ∈ {0, . . . , |ϕbsrc

out |} do
3: out← ϕbsrc

out [i]
4: in← ϕbdest

in [i]
5: loc← variable location[out]
6: if loc ̸= null then ▷ Outgoing variable already in a location
7: insertMoveAfter(in, loc) ▷ Insert move from out to in
8: else ▷ Outgoing variable not yet assign, reuse incoming
9: variable location[out]← in ▷ Update predecessor location

10: if isRegister(in) then
11: register content[in]← out ▷ Update register content
12: end if
13: end if
14: end for
15: end procedure

5.3 Bottom-Up Allocator 73

a variable might already be in a register. In this case we only need to replace its occurrence in
the instruction with the register and are done. If the location of the variable is not yet defined,
i.e., if it is the last usage of the variable, or if it is currently stored on the stack, we need to find
a free register for it (see Algorithm 9). To do so, we iterate the list of registers and look up their
register content entry. If we find a register that is unused, i.e., its entry is empty, we can assign
it to the current variable. If there is no free register, we need to free one by spilling one of the
registers. This is shown in Algorithm 10. We heuristically choose the first register which is not
used in the current instruction and is not a fixed register. We spill the variable in this register and
insert a move from the spill slot to the register (i.e., a reload) right after the current instruction
(Algorithm 11). If the variable that is to be loaded into this register was previously on the stack,
we also insert a move from the stack slot to the register before the current instruction.

After all strict register requirements are fulfilled, we process the variables which might either be
in a register or on the stack (see Algorithm 8). If the variable is already in a location, we are done.
Otherwise we try to allocate a free register (Algorithm 9). If no register is available, we allocate
the variable to a stack slot.

5.3.3 ϕ-resolution

At block boundaries the allocator needs to take care of ϕ-instructions. As explained in Sec-
tion 2.4.1, ϕ-instructions are basically parallel moves from the locations in the predecessor block
(ϕout) to the locations in the successor block (ϕin). At the beginning of a basic block, all variables
in the ϕin set have already been assigned to a location. Due to the single definition property of
the SSA form (Property 1), we know that these variables are not live in any predecessor, i.e., they
are defined at the beginning of the merge block. Therefore, we can directly reuse their locations
for those variables in the ϕout set which are not yet mapped to a location. This way we can
avoid unnecessary move operations. For the variables that are already assigned to a different
location, we need to insert moves to satisfy the data-flow requirements. Algorithm 12 shows
this resolution step.

Figure 5.5 shows an example for ϕ-resolution. Figure 5.5a shows a trace consisting of two blocks
b1 and b2. Block b2 is a merge that contains two ϕ-variables, c and d. In the predecessor b1, these
variables are matched to a and b, respectively. After allocation of b2 (Figure 5.5b) we allocated
b to reg2, c to reg0 and d to reg1. Before we continue with b1, we need to resolve the data
flow between ϕout and ϕin. Namely, we want to map a to reg0 and b to reg1. Since a is not
yet assigned to a location, we can simple replace it with reg0. Variable b, on the other hand is
already stored in reg2. To resolve this data-flow mismatch, we need to insert a move from reg2

to reg1. Figure 5.5c shows the result of the resolution step.

74 Register Allocation Strategies

…

ϕout(a, b)

ϕin(c, d)

use(b)

…

b1

b2

(a) Before b2

…

ϕout(a, b)

ϕin(reg0,reg1)

use(reg2)

…

b1

b2

(b) After b2

…

reg1 ← reg2

ϕout(reg0,reg2)

ϕin(reg0, reg1)

use(reg2)

…

b1

b2

(c) After b1
Figure 5.5: ϕ-resolution in the Bottom-Up allocator

5.3.4 Loop Back-Edge

A loop back-edge can only occur at the end of a trace (Corollary 2). Once again, we need a
resolution step for this edge to fix the data-flow. This is handled in a similar fashion as done in
the global data-flow resolution.

5.3.5 Example

Figure 5.6 depicts bottom-up allocation of a simple trace T1 with two blocks, b1 and b2. For
readability, we omitted the details of the instructions and only show the operand modes use,
def and usestack, where the last one represents a usage which can directly access the stack. To
the right of the blocks, we visualize the live intervals of the variables. This information is never
explicitly stored. Next to the intervals, we describe the action that is performed when processing
the corresponding instruction. Actions are numbered from (0) to (9) in processing order. On
the right-hand side of Figure 5.6, we display the contents of the variable location and the register
content maps after the instruction has been processed.

The allocator starts with the outgoing values at line L6 at the end of block b2. The successor
trace T0 has already been allocated, so the algorithm can match the incoming variable location
livein(reg0) of block b0 with the outgoing variable locations liveout(a) in b2. This initializes the
variable location entry of a to reg0 and the register content of reg0 to a. Also, a is replaced with
reg0 in the instruction at L6 (0). We continue with the instruction in line L5. Variable b has
no location assigned to it so we query the register content map for the next free register which
is reg1 (1). The next instruction to be processed is the usage of c in line L4. All registers are
currently occupied so the allocator arbitrarily selects reg0 for spilling (2). Since the location of
a changes from a register to a stack slot, we insert a move from the stack slot sta to reg0 right

5.3 Bottom-Up Allocator 75

T0

T1

L0: livein(a, b)

L1: def{c}

L2−: sta ← reg1

L2: use{a, c}

L2+: reg1 ← stb

L3: usestack{a}

L4: use{c}

L4+: reg0 ← sta

L5: use{b}

L6: liveout(a)

Lx: livein(reg0)

. . .

b1

b2

b0

a b c a b c reg0 reg1

reg0

reg1

stack

variable location register content

(0) assign reg0 to a reg0 — — a —

(1) assign reg1 to b reg0 reg1 — a b

(2) assign reg0 to c sta reg1 reg0 c b

(3) insert reg0 ← sta

(4) use a on stack (sta) sta reg1 reg0 c b

(5) assign reg1 to a reg1 stb reg0 c a

(6) insert reg1 ← stb

(7) insert sta ← reg1

(8) free reg0 reg1 stb — — a

(9) finished reg1 stb — — a

(a) Allocation Example

T0

T1

L0: livein(reg1, stb)

L1: def{reg0}

L2−: sta ← reg1

L2: use{reg1, reg0}

L2+: reg1 ← stb

L3: usestack{sta}

L4: use{reg0}

L4+: reg0 ← sta

L5: use{reg1}

L6: liveout(reg0)

Lx: livein(reg0)

. . .

b1

b2

b0

(b) After Allocation

Figure 5.6: Bottom-Up allocation example

after the instruction that is currently processed (3) at line L4. We continue at line L3 with the
usage of variable a, which is currently stored in stack slot sta. Since the instruction can directly
address the stack, the allocator simply replaces the variable with sta (4). Next we process the
instruction in line L2. Variable a is currently located in stack slot sta, but the current usage
requires a register. Since all registers are occupied, we need to select one for spilling. We cannot
spill reg0 because it is the location of c, which is used in the current instruction. Therefore, we
choose reg1 and assign it to a (5). As reg1 contains the value of variable b, we need to insert
a move from stb to reg1 after line L2 (6). Variable a also changed its location from sta to reg1.
To adjust the data-flow, the allocator inserts a move from reg1 to the stack slot sta before the
current instruction on line L2 (7). The allocator advances to line L1which contains the definition
of variable c. We mark the register reg0 as free and clear the entry for c in the variable location
map (8). The last instruction on line L0 contains pseudo usages of variables a and b. The operands
of the instruction are replaced with the current locations of the variables. Figure 5.6b shows the
result after allocating the trace is finished.

5.3.6 Ideas that did not Work Out

We kept the bottom-up allocator as simple as possible since its main goal is to be fast. However,
we did experiment with modifications to improve the quality of allocation. We want to describe
them here and explain why they were removed again.

76 Register Allocation Strategies

Reduce Spill Moves The placement of spill moves is suboptimal. Due to SSA form, it is suffi-
cient to spill a variable only once since it never changes. Still, the bottom-up allocatorwill happily
update the stack-slot every time a variable’s location changes from a register to the stack. We
implemented a mode where spilling is delayed and the move is inserted only after the definition
of the variable is reached. Although, this reduces the number of moves significantly, it did also
increase compile time.

Better Spilling Heuristics The bottom-up allocator always spills the first non-blocked reg-
ister. We experimented with the furthest-first strategy [Guo et al., 2003], i.e., we selected the
register whose next usage was farthest away. However, it had again a negative influence on
compile time, so we abandoned the idea.

Round Robin Selection Due to our spilling and selection strategy, registers which come first
in the set of available registers, are used more frequently than those at the end of the set. Only
recently, Chen et al. [2018] proposed using a round-robin-style register set. In theory, this would
distribute the register usage better. In addition, the spilling heuristic could easily select a reg-
ister which has not been allocated recently. In practice, it did not make a difference, neither
in terms of peak performance nor in compile time. In favor of simplicity, we kept the original
implementation.

Summing it up Although, the described modifications did not work out for our use case,
they might be worth revisiting if the focus shifts. We also want to remark that our main target
was AMD64, which performs hardware optimizations such as register renaming [Hennessy and
Patterson, 2003]. Simpler architectures might be more sensible to the optimizations above.

77

Chapter 6

Inter-trace Optimizations

We have already argued that traces can be processed independently of each other. The data-
flow resolution guarantees the correctness of trace register allocation. It does so by inserting
moves whenever the location of a variable is different across an inter-trace edge. If we manage
to assign the same location, we can avoid the moves and therefore improve the allocation quality.
We implemented three optimizations to reduce the number of moves introduced during data-flow
resolution and thus to avoid unnecessary spill moves. They all follow the same idea.

All optimizations provide allocation strategies with information from already processed traces to
guide the allocation of an unprocessed trace. Therefore, the order in which we process traces has
an influence on the allocation quality. As a basic principle of trace register allocation, we strive
for the best allocation of a trace, ignoring the rest of the compilation unit. Using information from
other traces violates this principle, since it restricts the freedom of the current trace. To keep the
influence on peak performance low, we allocate traces in decreasing order of importance. In our
case, importance is basically defined by the order the trace builder finds traces (see Section 4.1).
The only exceptions are trivial traces. We allocate them right after their preceding trace.1 For
instance, in the bidirectional trace-builder example in Figure 4.2d, we would allocate T2 and T3
before T1.

Also, the optimizations work on the scope of inter-trace edges. This retains the non-global char-
acter of the approach and keeps the complexity limited. In addition, we communicate all infor-
mation that is needed for the optimizations via the global liveness information (see Section 4.3.2).
Using this canonical representation decouples the optimizations from the details of the allocation
strategies. For instance, there is no need to keep the intervals of the linear scan strategy live.

1As we have argued in Theorem 9, the trace head has at most one predecessor.

78 Inter-trace Optimizations

T1

T2

int getOffset(int reg2 ())

// final int add;

if (!reg1 () .addFrameSize)

// add = 0;

ϕout=(0)

(reg2 ())=ϕin

return reg1 () .offset + reg2 ()
;

// add = totalFS;

ϕout=(totalFS)

b0

b1

b2

b3

th
is

to
ta

lF
S

ad
d

th
is

to
ta

lF
S

liveb0out = (this, totalFS)

locb0out = (reg1 , reg2)

liveb3in = (this)

locb3in = (reg1)

hints

hint

hint

Inter-trace hint (orange) for trace T2 from the allocation result in T1. Note that the liveout and
livein sets, as well as the ϕin sets, are considered. Full source code for the getOffset method

is depicted in Listing 2.

Figure 6.1: Inter-trace hints example (getOffset)

6.1 Inter-trace Hints

Inter-trace hints are themost straight forward optimization. We use use livein/liveout andϕin/ϕout

of an already allocated predecessor trace as a hint for the current trace. Figure 6.1 depicts an ex-
ample. Trace T1 has already been allocated. When allocating T2, the liveb0out advises the strategy
to allocate this to reg1 and totalFS to reg2. Also the ϕin set in b3 suggests to allocate totalFS

to reg2. Note, however, that two inter-trace hints may disagree. The final decision which hint is
followed—if any—is made by the allocation strategy.

Every strategy has a different way of handling inter-trace hints. In the linear scan strategy (Sec-
tion 5.1), the inter-trace hints are an addition to the already existing (intra-trace) hints. Only the
locout of the (single) predecessor of the trace head is considered. This offers several advantages.
First, if we allocate traces in trace building order, the predecessor has already been allocated.
This is due to the greediness of the trace building algorithms (Definition 31). Second, as shown
in Theorem 13, all variables that are entering a trace are live at the beginning of the trace head.
Processing the trace head is therefore sufficient to get hints for all variables. We explicitly do
not use inter-trace hints for variables defined by ϕs because we favor the hint coming from the
predecessor that is part of the current trace.

6.2 Spill Information Sharing 79

The trivial trace allocator (Section 5.2) simply forwards the hinting information to make it avail-
able to its successor. That is why trivial traces are handled as soon as possible.

The bottom-up strategy (Section 5.3) uses the locout and ϕout information from an already allo-
cated successor of the last block in the trace to initialize the current mapping of variables. Note
that not all variables must be live until the end of a trace. Therefore, we might miss hints for
some variables. We experimented with better hinting strategies for the bottom-up allocator, but
discarded the idea in favor of faster allocation.

6.2 Spill Information Sharing

Since LIR is in SSA form, the value of a variable can be inferred from its single definition point.
Due to spilling and spill-position optimization a value might be available in two locations at
the same time, i.e., in a register and in a stack-slot. If this is the case at the source of an inter-
trace edge, we can exploit it to avoid redundant spill moves. To do so, we inform the allocation
strategies that the value is not only available in a register but that there is also a copy on the
stack. The linear scan strategy treats intervals with this information as preferred candidates
for spilling, since their value is already available in memory so the spill move can be omitted.
Similar to inter-trace hints, the trivial trace allocator simply forwards the spill information to
its successor. Due to its greedy fashion, the bottom-up strategy does not incorporate enough
knowledge to provide spill information. While the allocator could be extended to provide the
information, we refrained from doing so.

6.3 Known Issue: Spilling in Loop Side-Traces

The non-global scope of trace register allocation is a natural boundary for optimizations. How-
ever, in the evaluation of our benchmarks, we did not encounter a situation where this was an
issue, except for one benchmark. The issue can occur when spill moves are introduced in a side-
trace of a loop for variables that were not spilled in themain-trace, i.e., in the trace with the loop
header. Figure 6.2 shows an example: In trace T1 the allocator is able to move the spill code for
x out of the loop (i.e., from b4 to b1). In trace T2, when spilling y, we cannot hoist the spill move
out of the loop, since the block entering the loop (b1) is not part of T2. This means that we need
to execute the spill move inside the loop, every time we enter b6. Doing the spill also in b1 would
be preferable, but since register allocation of traces is decoupled, this is not possible. Note that
in any case, we cannot remove the load of y at the end of b6.

80 Inter-trace Optimizations

T1 T2

x← · · ·

y ← · · ·

spill(x)

· · ·

· · ·

spill(x)

. . .

. . .

spill(y)

. . .

load(y)

· · ·

b1

b2

b3

b4

b5

b6

m
ov

e
sp

ill
ou

to
fl
oo

p
x y

x y

Spilled ranges are highlighted in orange.

Figure 6.2: Spilling in side-traces of a loop

The effect of this issue can be seen in the results of the sunflow benchmark in Figure 7.11a.
The hot loop of the benchmark contains a switch statement where in every branch the register
pressure is higher than the number of available registers. The trace allocator creates one long
trace containing the loop header and the most likely branch of the switch. In this trace the spills
can be moved out of the loop. For the other branches, separate traces are created where the spill
moves cannot be hoisted out of the loop. Our investigation showed that in this benchmark the
number of executed spill moves is higher with our trace allocator than with the global linear scan
allocator.

There aremultiple potential solutions to the general problem. We could conservatively insert spill
moves for variables that are only used in side traces into the main-trace and try to hoist them out
of the loop. Later, we could delete them, if they turn out to be unnecessary. However, this would
sacrifice non-globalness of trace register allocation. Another possibility is to apply the decoupled
register allocation idea, proposed for example by Braun and Hack [2009], Tavares et al. [2011], or
Barik et al. [2013]. Their allocator is split into two independent phases. First, spilling decisions
are made based on the register demands. The result is a compilation unit for which registers can
be allocated without spilling. A similar approach could be applied to trace register allocation. A
pre-phase could compute the spill decisions of traces and propagate this information to preceding
traces. See Section 10.1.3 for more details on decoupled register allocation.

In our specific case, the stack interval optimization, which we will describe next, mitigates the
above problem. Note, however, it does not solve the problem in general.

6.4 Stack Intervals 81

6.4 Stack Intervals

While further investigating the benchmark that uncovered the loop side-trace spilling problem,
we noticed that there were many variables that were spilled in the main-trace and not used in
the side-trace. Although those variables were first-class spill candidates due to spill information

sharing, the linear scan strategy first tries to allocate a register for them. To some extent this
seems reasonable. The variable is live because there is a path to a usage. If the register pressure
is low, storing the variable in a register is favorable for its future usage. However, we have
to move it from the stack slot to the register. If this happens in a hot loop it has a significant
performance overhead. Based on this observation, we decided not to allocate registers for stack
intervals, i.e., intervals that are in a stack slot at the beginning of the trace and have no usage
in the current trace. It turned out that this heuristic mitigates the issues we were seeing in our
early evaluation and no other benchmark is negatively affected by it.

Note that this optimization was explicitly added to the linear scan strategy. After interval build-
ing, we remove intervals that are allocated on the stack and have no usages in the current trace
from the unhandled list and take the stack slot as their location. The bottom-up strategy allo-
cates registers on demand, so it will never try to allocate a register for a variable without a usage,
assuming it is in a stack slot at the end of the trace. Also for the trivial trace allocator, this is a
non-issue.

83

Chapter 7

Evaluation

In this chapter, we want to verify that our implementation of trace register allocation solves
the problems as well as reaches the goals we described in the introduction (Section 1.4 and Sec-
tion 1.5). To validate our approach, we want to answer the following questions positively.

Can the trace register allocation approach …

RQ1 …reach the same code quality as a state-of-the-art global allocator? [Eisl et al., 2016]

RQ2 …be as fast as a global allocator for the same quality of allocation? [Eisl et al., 2017]

RQ3 …enable fine-grained trade-offs between compile time and allocation quality? [Eisl et al.,
2017]

RQ4 …reduce the compilation latency, i.e., the duration until the result of a compilation is avail-
able? [Eisl et al., 2018]

In this chapter we present results and show that the trace register allocation approach can pos-
itively answer RQ1 and RQ2. To give more insights on code quality, we also give a detailed
evaluation of the inter-trace optimizations, which were presented in Chapter 6.

In the following two chapters on register allocation policies (Chapter 8) and parallel trace register
allocation (Chapter 9), we present how we approached RQ3 and RQ4.

All experiments were performed on GraalVM on top of HotSpot (Section 3.2.1). We start with
a discussion of the benchmark suites. Afterwards, we compare our trace register allocation ap-
proach with the global linear scan approach in terms of allocation quality and compile time.

84 Evaluation

7.1 Benchmarks

To ensure that our approach is applicable to a broad area of workloads we used a variety of
common Java benchmark suites. In the following, we provide details about their structure and
how we collected the results.

7.1.1 SPECjvm2008

The SPECjvm20081 benchmark suite consists of a collection of real-world Java applications. Its
goal is to benchmark core functionality of a Java Runtime Environment, including the processor
and memory subsystems but excluding disk I/O and inter-machine networking. The result met-
ric is throughput-based, i.e., an operation is executed repeatedly for a fixed amount of time. The
number of performed operations during this time is the score. Therefore, higher numbers reflect
a better performance of the system. The harness first warms up the benchmark for 120 seconds
to trigger JIT compilation. The warmup is followed by a 240 second interval for the actual mea-
surement. Usually, all benchmarks of SPECjvm2008 are executed in the same JVM instance. This
means that the order in which the benchmarks are executed is important since profiling data is
shared for all benchmarks. However, different applications exhibit different profiling patterns, so
this leads to what we call profile pollution, i.e., that the profile does not represent the current—and
expected future—behavior of the application. Therefore, we start a new JVM instance for every
benchmark. We believe that this is a more realistic methodology.

The SPECjvm2008 suite also incorporates a startup mode. Its goal is—according to the vendor—to
benchmark the “user experience of Java.” In this mode, the benchmark workloads are only ex-
ecuted once without any warmup. The duration of this run is used to calculate a throughput
value. For most benchmarks, this interval is too short to even trigger JIT compilation, so the sig-
nificance of this mode for evaluating our approach is very limited. We therefore do not present
startup numbers.

7.1.2 SPECjbb2015

SPECjbb20152 is a server benchmark suite for Java. In contrast to the SPECjvm2008, it does
not consist of multiple independent benchmarks but executes a single business application. The
benchmark models the components of the IT infrastructure of a sales company. The different

1https://www.spec.org/jvm2008/
2https://www.spec.org/jbb2015/

https://www.spec.org/jvm2008/
https://www.spec.org/jbb2015/

7.1 Benchmarks 85

components (controller, backend, transactors) can either be executed on a single JVM or on mul-
tiple instances to test outbound communication performance [SPEC, 2017]. Since we are only
interested in compiler performance, we are only evaluating the single-JVM mode. The harness
provides two metrics: the critical score, which relates to response time, and the max value,
which measures throughput.

7.1.3 DaCapo

The DaCapo benchmark suite was proposed by Blackburn et al. [2006] to tackle certain short-
comings of the SPEC suites such as more complex code patterns, a more diverse object behavior,
and more demanding memory requirements.3 We used the 9.12 version of DaCapo for our exper-
iments. Similar to SPECjvm2008, DaCapo consists of a set of real-world applications. The bench-
marks are iteration-based, meaning that they run the same workload for a predefined number
of times in order to warm up the virtual machine. We chose this number high enough to make
sure that all important methods are compiled. Since the work performed in one iteration varies
considerably from benchmark to benchmark, the iteration numbers range from 5 to 120. For
getting more stable results, the final performance result for a benchmark is the average of the
time for the last n iteration, where n is a number between 5 and 10, depending on the total num-
ber of iterations. Since the result is a time value, lower numbers mean better performance (in
contrast to the SPEC suites). As for SPECjvm2008, every benchmark is executed in a fresh virtual
machine.

Note that, due to Java 8 compatibility issues, we excluded the eclipse, tomcat,4 tradebeans,
and tradesoap benchmarks. To minimize the effect of disk I/O, we executed the benchmarks in
a fresh directory on a ram disk. For some benchmarks, for instance lusearch, luindex, h2, or
batik, this is necessary to get stable results.

7.1.4 Scala-DaCapo

There is a multitude of programming languages that are compiled to Java Bytecode and executed
on JVMs. Examples include Clojure, Groovy, JRuby, Jython, and Scala. However, with the excep-
tion of the jython benchmark in DaCapo, those languages are not represented by the benchmark
suites described above. To cope with this, at least with respect to Scala, Sewe et al. [2011] pro-
posed the Scala-DaCapo benchmark suite. They show that Scala workloads differ significantly

3Note that they compared against older versions of the SPEC benchmark suites, so some points of criticismmight no
longer be valid. Also, we are using a newer version of DaCapo than the one analyzed in the paper by Blackburn
et al. [2006].

4https://bugs.openjdk.java.net/browse/JDK-8155588

https://bugs.openjdk.java.net/browse/JDK-8155588

86 Evaluation

from Java, for example in term of call site polymorphism or the number of boxed values. This
poses different challenges to the JVM and especially to the JIT compiler, as for example shown
by Stadler et al. [2013] in the case of Graal. Scala-DaCapo uses the same benchmarking harness
as DaCapo, which is why we often present the results together.

7.2 Configurations

To answer RQ1 and RQ2, we compared our approach against the global linear scan allocation
(GlobalLSRA) that is the default in Graal. We used the TraceLSRA configuration, i.e., only using
the linear scan and the trivial trace strategy, since this is the configuration that achieves the best
allocation quality. In order to positively answer RQ1 and RQ2, the TraceLSRA configuration
needs to perform at least as good as GlobalLSRA. For some benchmarks we also included the
BottomUp configuration, where we only used the bottom-up and the trivial trace strategy.

7.3 Peak Performance/Allocation Quality

Let us first focus on RQ1, i.e., whether the trace register allocator can compete with a state-of-
the-art global register allocator in terms of allocation quality.

7.3.1 DaCapo and Scala-DaCapo

AMD64 The top half of Figure 7.1 depicts the composite performance results for DaCapo and
Scala-DaCapo on AMD64. The experiments were performed on our X3-2 cluster. The details
of the machine are given in Section C.1 in the appendix. For every experiment, we randomly
selected a node from the cluster to execute a benchmark suite (DaCapo or Scala-DaCapo) with
a single configuration. For every benchmark, we started a new Java VM with an initial and
maximum heap size of 8GB. To avoid distortion due to node switching, we fixed the CPU and the
memory of the JVM to a single NUMA node using the hwloc-bind5 utility. Figure 7.1 shows the
composite results for the benchmark suites, i.e., every observation in the box plot [Tukey, 1977]
(e.g., a dot) represents the mean result of a single benchmark (e.g., the mean of all lusearch runs
with the TraceLSRA configuration). A per-benchmark evaluation is given in Figure 7.2, where
an observation represents a single benchmark run. The results are all relative to TraceLSRA. We
used the git6 revision b398d21c7c21 of Graal for this evaluation.7

5hwloc-bind(1) — Linux man page: https://linux.die.net/man/1/hwloc-bind
6git(1) — Linux man page: https://linux.die.net/man/1/git
7https://github.com/zapster/graal

https://linux.die.net/man/1/hwloc-bind
https://linux.die.net/man/1/git
https://github.com/zapster/graal

7.3 Peak Performance/Allocation Quality 87
B
enchm

ark
Execution

T
im

e
R
egister

A
llocation

T
im

e

GlobalLSRA TraceLSRA BottomUp

100%
105%
110%
115%
120%
125%
130%
135%
140%

60%
80%
100%
120%
140%
160%
180%
200%
220%
240%

100%
105%
110%
115%
120%
125%
130%
135%
140%

60%
80%
100%
120%
140%
160%
180%
200%
220%
240%

Benchmark execution time (allocation quality) and register allocation time. Values relative to
TraceLSRA median. Every observation in the box plot, e.g., a dot, is the median result of a
benchmark, e.g., lusearch. For every benchmark we collected at least 38 results. The experi-

ments were conducted with the git revision b398d21c7c21 of Graal. Lower is better ↓.

Figure 7.1: Composite results for DaCapo and Scala-DaCapo on AMD64

The figures suggest that there is no significant performance difference between the GlobalLSRA
and the TraceLSRA configuration. GlobalLSRA performs worst on the luindex benchmark
from DaCapo, where it is 5% slower than TraceLSRA on average. On the other hand, GlobalL-
SRA is 2% faster on the factorie benchmark from Scala-DaCapo.

The BottomUp configuration shows a significant difference to TraceLSRA. The median slow-
down is 11%. The worst case is the sunflow benchmark from DaCapo, where the gap is as big
as 40%. Some benchmarks are insensitive to register allocation. For example, the avrora bench-
mark from DaCapo shows hardly any difference to between the configurations.

SPARC Register allocation is highly influenced by the underlying processor. Also the operat-
ing system plays a role since it affects the calling conventions and other register constraints. To
avoid optimizing towards a single processor/operating system pair (e.g., AMD64 and Linux) we
also verified our approach on a SPARC processor running a Solaris operating system. The details
of this setup are presented in Appendix C.3. Since SPARC is a RISC (reduced instruction set com-
puter [Hennessy and Patterson, 2003]), it imposes different challenges on a register allocator than
an AMD64, which is a CISC (complex instruction set computer [Hennessy and Patterson, 2003]).
RISC architectures are usually load/store architectures. They first load operands from memory

88 Evaluation

avrora batik fop h2 jython luindex lusearch pmd sunflow xalan

D
aC

apo

90%
95%

100%
105%
110%
115%
120%
125%
130%
135%
140%
145%

90%
95%
100%
105%
110%
115%
120%
125%
130%
135%
140%
145%GlobalLSRA

TraceLSRA

BottomUp

actors apparat factorie kiama scalac scaladoc scalap scalariform scalatest scalaxb specs tmt

Scala-D
aC

apo

90%
95%
100%
105%
110%
115%
120%
125%
130%
135%
140%
145%

90%
95%
100%
105%
110%
115%
120%
125%
130%
135%
140%
145%

Same data as in Figure 7.1. Values relative to TraceLSRA median. Lower is better ↓.

Figure 7.2: Peak performance of individual benchmarks from (Scala-)DaCapo on AMD64

to a register, perform an operation on them, and then store the results back. CISC, in contrast,
allow direct addressing of memory in many operations. Consequently, RISCs usually have more
registers than CISCs, which makes spilling less likely. On the other hand, on a CISC, reloading a
spilled value is often not necessary, because instructions can directly use it from memory.

Figure 7.3 shows the results for DaCapo and Scala-DaCapo on SPARC. The conclusion is the
same as on AMD64. Trace register allocation achieves the same performance as GlobalLSRA. It
is worth noting, that the linear scan implementation (and also our trace-base linear scan imple-
mentation) was tuned for AMD64 [Wimmer and Mössenböck, 2005]. We think that an investi-
gation on whether RISC architectures offer further opportunities for trace register allocation is
interesting future work.

7.3 Peak Performance/Allocation Quality 89
B
enchm

ark
Execution

T
im

e

GlobalLSRA TraceLSRA
97.5%
98.0%
98.5%
99.0%
99.5%
100.0%
100.5%
101.0%
101.5%
102.0%
102.5%
103.0%

97.5%
98.0%
98.5%
99.0%
99.5%
100.0%
100.5%
101.0%
101.5%
102.0%
102.5%
103.0%

Values relative to TraceLSRA median. Same methodology as in Figure 7.1. For every bench-
mark we collected at least 15 results. The experiments were conducted with the git revision

3e8cb34059d2 of Graal. Lower is better ↓.

Figure 7.3: Composite peak performance results for DaCapo and Scala-DaCapo on SPARC

7.3.2 SPECjvm2008

The AMD64 results for SPECjvm2008 are summarized in Figure 7.4. The experiments were per-
formed on our X5-2 cluster (see Appendix C.2). Again, the results for GlobalLSRA are in the
same range as for the TraceLSRA configuration. They span from 1.2% slower to 5% faster com-
pared to TraceLSRA.One interesting observation is that the difference on the crypto.signverify
is significant in favor of GlobalLSRA. It seems that the trace register allocator always chooses
a less optimal allocation than the global linear scan approach.

7.3.3 SPECjbb2015

The results for SPECjbb2015 in Figure 7.5 show no significant difference between GlobalLSRA
and TraceLSRA (again on X5-2). In our experiments, it appeared as if GlobalLSRA performs
better on the criticalmetric (responsiveness) and TraceLSRA on max (throughput). However,
the results vary too much to draw a definite conclusion.

7.3.4 Answering RQ1

The benchmark results let us conclude that RQ1 can be answered positively, i.e., that trace reg-
ister allocation can achieve the same allocation quality as a state-of-the-art global allocator.

90 Evaluation

co
m

po
si
te

co
m

pi
le
r.c

om
pi

le
r

co
m

pr
es

s

cr
yp

to
.a
es

cr
yp

to
.r
sa

cr
yp

to
.s
ig
nv

er
if
y

de
rb

y

m
pe

ga
ud

io

sc
im

ar
k.
ff
t.l

ar
ge

sc
im

ar
k.
ff
t.s

m
al
l

sc
im

ar
k.
lu

.la
rg

e

sc
im

ar
k.
lu

.s
m

al
l

sc
im

ar
k.
m

on
te
_c

ar
lo

sc
im

ar
k.
so

r.l
ar

ge

sc
im

ar
k.
so

r.s
m

al
l

sc
im

ar
k.
sp

ar
se

.la
rg

e

sc
im

ar
k.
sp

ar
se

.s
m

al
l

se
ri
al

su
nfl

ow

xm
l.t

ra
ns

fo
rm

xm
l.v

al
id

at
io

n

70%

80%

90%

100%

110%

GlobalLSRA

TraceLSRA

Composite result on the very left. Values relative to TraceLSRA median. For every bench-
mark we collected at least 20 results. The experiments were conducted with the git revision

5e7a1574d37b of Graal. Higher is better ↑

Figure 7.4: Peak performance results for SPECjvm2008 on AMD64

7.4 Compile Time

Defining ameaningful compile timemetric is inherently more difficult for a dynamic compilation
system than for a static compiler. On the one hand, the compilation and the execution of every
benchmark are intertwined. Compile time is an integral part of the run time. On the other hand,
experiments are harder to reproduce, since the executed machine code can be different for every
run after recompilation and depends on non-deterministic factors such as the order in which
compilation happens.

The meta-circular aspect of the GraalVM adds another layer of challenges to the problem. Since
the compiler itself is subject to compilation, as it is implemented in Java, changes in the compiler
influence not only the generated machine code, but also the time it takes to translate the com-
piler itself (compiler compile time). To minimize this effect, Graal avoids self-compilation, i.e.,
all methods in the Java packages jdk.vm.ci and org.graalvm.compiler are compiled by the
HotSpot client compiler and not by the Graal compiler. This on the other hand means that Graal
code is less optimized which again affects compile time.

7.4 Compile Time 91

critical max

GlobalLSRA TraceLSRA GlobalLSRA TraceLSRA
90%

95%

100%

105%

110%

We collected at least 20 results for every configuration. The experiments were conducted with
the git revision 5e7a1574d37b of Graal. Higher is better ↑.

Figure 7.5: Peak performance results for SPECjbb2015 on AMD64

We need to accept that compile time results in our system are influenced by the surrounding
context and that not all differences are necessarily caused by a change in the register allocator.
Not all effects that we see in the evaluation of a specific implementation must also happen in
a different context. Project Metropolis [OpenJDK, 2018] could mitigate these shortcomings. Its
goal is to ahead-of-time compile the Graal compiler into a shared library so that it is not compiled
during application run time. Unfortunately, at the time of writing, the project was just started.
Repeating the compile time experiments in this deployment is highly interesting future work.

For our compile time metric we measure the CPU time spend on register allocation. We also refer
to it as register allocation time. CPU time is the time the compiler thread did actual work and was
not waiting, for example, because of preemption. Ignoring wait time is fair, since compilation of
a method is single threaded,8 so there is no waiting for resources. In the case of trace register
allocation, register allocation time includes all phases of the framework: trace building, global
liveness analysis, global data-flow analysis and the actual processing of the traces.

We only present compile time results for DaCapo and Scala-DaCapo since, due to the harness,
the results of (most) DaCapo-style benchmarks are more stable than the results of the SPEC
benchmarks. Also, we present only results for AMD64. We did experiments on SPARC, but the
number of machines is limited (Appendix C.3). Anyhow, since SPARC offers more registers, the
pressure on the register allocator is lower than on AMD64.

The lower half of Figure 7.1 depicts the composite register allocation time results for DaCapo
and Scala-DaCapo on AMD64. Figure 7.6 shows the results for the individual benchmarks. In
summary (Figure 7.1), GlobalLSRA and TraceLSRA operate in the same range, although our
implementation seems to be faster by a median difference of 4%. Figure 7.6 indeed shows that

8Except when it is not, see Chapter 9.

92 Evaluation

avrora batik fop h2 jython luindex lusearch pmd sunflow xalan

D
aC

apo

40%
60%
80%

100%
120%
140%
160%
180%
200%
220%
240%
260%

40%
60%
80%
100%
120%
140%
160%
180%
200%
220%
240%
260%GlobalLSRA

TraceLSRA

BottomUp

actors apparat factorie kiama scalac scaladoc scalap scalariform scalatest scalaxb specs tmt

Scala-D
aC

apo

40%
60%
80%
100%
120%
140%
160%
180%
200%
220%
240%
260%

40%
60%
80%
100%
120%
140%
160%
180%
200%
220%
240%
260%

Same data as in Figure 7.1. Values relative to TraceLSRA median. Lower is better ↓

Figure 7.6: Register allocation time of individual benchmarks from (Scala-)DaCapo

trace register allocation outperforms GlobalLSRA on a number of benchmarks. Most notable is
jython, where GlobalLSRA takes more than twice as long as TraceLSRA. The jython bench-
mark produces Java bytecodes dynamically and the generated methods tend to become signifi-
cantly larger than typical Java or Scala methods. As we will show in Section 7.4.1, trace register
allocation performs especially well on large methods. It is only fair to note that there are also
cases where GlobalLSRA is faster than TraceLSRA. On the actors benchmark from Scala-
DaCapo, for example, GlobalLSRA is 7% faster.

The BottomUp configuration is significantly faster than TraceLSRA in all cases. The median
speedup is 41%. Again, jython stands out. On this benchmark, the BottomUp configuration is
50% faster than TraceLSRA.

7.4 Compile Time 93

0

200

400

600

0 10000 20000 30000
Number of LIR Instructions

Re
gi
st
er

A
llo

ca
tio

n
Ti
m
e
[m

s]
1

10

100

1000

10000

GlobalLSRA

TraceLSRA

BottomUp

Register allocation time in milliseconds vs. number of LIR instructions for DaCapo and Scala-
DaCapo on AMD64. Each dots denotes a bucket of 800 instruction each. The y-value is the
median register allocation time. The size of the dot indicates the number of methods in the

bucket. The error bars represent the lower and upper quartiles. Lower is better ↓.

Figure 7.7: Register allocation time vs. LIR instructions for DaCapo and Scala-DaCapo

7.4.1 Compile Time per Method

To gain more insight on the compile-time behavior of the various register allocation approaches,
we investigated the register allocation time on a per-method basis. Figure 7.7 shows the relation-
ship between of the number of LIR instructions of a method and its register allocation time. Note
that the figure represents the results of all DaCapo and Scala-DaCapo benchmarks. Plotting all
79155 compilations is not feasible, so we group the method sizes into buckets of 800 instructions
and print a circle for the median register allocation time of this group. The size of the circles indi-
cates the number of methods in a bucket (logarithmic scale). The plot suggests that TraceLSRA
performs particularly well for large method, compared to GlobalLSRA. As expected, BottomUp
is faster than the other configurations.

Since the method sizes are not evenly distributed, we show the results for small methods in
Figure 7.8. In this case, the TraceLSRA has no advantage over the GlobalLSRA configuration.
The BottomUp allocator, however, continues to outperform the other approaches in terms of
register allocation time.

94 Evaluation

0

2

4

0 250 500 750 1000
Number of LIR Instructions

Re
gi
st
er

A
llo

ca
tio

n
Ti
m
e
[m

s]

GlobalLSRA

TraceLSRA

BottomUp

100

1000

Register allocation time vs. number of LIR instructions for methods with less than 1000 LIR
instructions. Same methodology as in Figure 7.7. Bucket width is 40. Lower is better ↓.

Figure 7.8: Register allocation time vs. LIR instructions for (Scala-)DaCapo (small methods)

7.4.2 Overall Compile Time

The compile time results that we presented so far only show register allocation time. The ultimate
goal, however, is to reduce the overall compile time, i.e., the time required for all phases, not only
for the register allocator.

The Graal compiler is currently tuned for peak performance. The majority of the compile time is
spent in the front end on code optimizations. Figure 7.9 shows how much of the overall compile
time can be accounted to register allocation. With TraceLSRA, 7% of the time is spend on register
allocation, while in the BottomUp configuration this number goes down to 4%. Repeating this
experiments with a Graal configuration that is tuned towards compile time rather than towards
peak performance, would showmore potential for saving compile time by optimizing the register
allocation.

7.4.3 Answering RQ2

As for peak performance, the trace register allocation approach can compete with state-of-the
art global register allocators. Thus we can affirm RQ2.

7.5 Inter-trace Optimizations 95

2%

4%

6%

8%

10%

12%

14%

16%

2%

4%

6%

8%

10%

12%

14%

16%

GlobalLSRA TraceLSRA BottomUp

Re
gi
st
er

A
llo

ca
tio

n/
Co

m
pi
le

Ti
m
e

Overall compile time on AMD64. Same methodology as in Figure 7.1. Lower is better ↓.

Figure 7.9: Share of register allocation time in the overall compile time for (Scala-)DaCapo

co
m

po
si
te

av
ro

ra

ba
ti
k

fo
p

h2 jy
th

on

lu
in

de
x

lu
se

ar
ch

pm
d

su
nfl

ow

to
m

ca
t

tr
ad

eb
ea

ns

tr
ad

es
oa

p

xa
la
n

95%

100%

105%

110%

115%

120%

125%

95%

100%

105%

110%

115%

120%

125%TraceRA (spill info sharing and inter-trace hints)

TraceRA (inter-trace hints)

TraceRA (without optimization)

Performance impact of inter-trace hints and spill information sharing on DaCapo on AMD64.
Numbers relative to the performance of TraceLSRAwith inter-trace hints and spill information

sharing. Lower is better ↓.

Figure 7.10: Influence of inter-trace hints and spill information sharing on peak performance

7.5 Inter-trace Optimizations

Since the time we did our original experiments on inter-trace optimizations as described in Chap-
ter 6 [Eisl et al., 2016], the trace register allocation implementation was further improved. Most
optimizations where algorithmic improvements, i.e., doing the same work in less time. However,
results for the stack interval optimization described in Section 6.4 where not yet published. Yet,
we decided to use the original measurements [Eisl et al., 2016] in order to be consistent to this
paper and because the results did not change much. Also, some optimizations are now manda-
tory and can no longer be deactivated easily. The new changes do not invalidate the arguments
presented in the above-mentioned chapters but only the relation to global linear scan. Therefore,
the numbers presented in this chapter are taken from [Eisl et al., 2016]. We used the git revision
a563a1d51507 of Graal for our evaluation.

96 Evaluation

avrora batik fop h2 jython luindex lusearch pmd sunflow xalan

80%

85%

90%

95%

100%

105%

110%

115%

120%

80%

85%

90%

95%

100%

105%

110%

115%

120%
GlobalLSRA

TraceLSRA

(a) Without stack interval optimization

avrora batik fop h2 jython luindex lusearch pmd sunflow xalan

80%

85%

90%

95%

100%

105%

110%

115%

120%

80%

85%

90%

95%

100%

105%

110%

115%

120%
GlobalLSRA

TraceLSRA

(b) With stack interval optimization

The influence of stack interval optimization on DaCapo. Same methodology as in Figure 7.2.
Note the impact on the sunflow benchmark. Lower is better ↓.

Figure 7.11: Peak performance impact of the stack interval optimization on DaCapo

Figure 7.10 shows our evaluation of the inter-trace optimizations of DaCapo on AMD64.9 The
figure clearly shows that inter-trace hints are the most influential optimization. The most signifi-
cant change is on sunflowwith about 10% improvement when enabled. The core of the sunflow
benchmark is a hot loop with multiple equally hot branches (see also Section 6.3). Since every
branch will be allocated in a different trace, sharing allocation information is utterly important.
Also jython is highly affected by inter-trace hints: Turning them off, results in a 5% degrada-
tion.

The influence of spill information sharing is less significant. The luindex and the sunflow bench-
marks seem to be the most influenced. However, spill information sharing is important for ex-
panding the applicability of the stack intervals optimization.

9 Note that this evaluation was performed on an older version of the HotSpot VMwhere tradesoap and tradebeans
still worked.

7.6 Trace Builder Evaluation 97

co
m

po
si
te

av
ro

ra

ba
ti
k

fo
p

h2 jy
th

on

lu
in

de
x

lu
se

ar
ch

pm
d

su
nfl

ow

to
m

ca
t

tr
ad

eb
ea

ns

tr
ad

es
oa

p

xa
la
n

95%

100%

105%

110%

115%

120%

125%

95%

100%

105%

110%

115%

120%

125%TraceRA (unidirectional)

TraceRA (bidirectional)

Results for AMD64. Same methodology as in Figure 7.2. Lower is better ↓.

Figure 7.12: Unidirectional vs. bidirectional trace builder w.r.t. peak performance of DaCapo

The stack interval optimization was added after the other inter-trace optimizations. Figure 7.11
shows its impact on the peak performance of DaCapo. In the version without the optimization
(Figure 7.11a) there is an outlier in terms of peak performance, namely sunflow where Glob-
alLSRA is about 9% faster than TraceLSRA. The benchmark in running into the loop spilling
problem that was discussed in Section 6.3. In Figure 7.11a, which includes the stack intervals
optimization, this outlier is gone. The other benchmarks (including Scala-DaCapo) are not sig-
nificantly affected. However, note that the issue is not directly solved by the optimization but
only mitigated.

7.6 Trace Builder Evaluation

Figure 7.12 compares the unidirectional and the bidirectional trace building algorithms. The re-
sults were again conducted for our first evaluation [Eisl et al., 2016]. The numbers suggest that
they both perform about equally well. We decided to use the unidirectional trace builder by de-
fault, since it is the simpler algorithm and it follows our focus on the common case philosophy
more closely.

99

Chapter 8

Trace Register Allocation Policies

In Chapter 5 we proposed three allocation strategies: The linear scan strategy (Section 5.1) to
produce good code, the bottom-up strategy (Section 5.3) for fast allocation, and the trivial trace
strategy (Section 5.2) for special traces. In this chapter we focus on the question when to use
which strategy. The goal is to gain a fine-grained control over the trade-off between compile-
time and peak-performance. Doing so allows us to answer RQ3 (Chapter 7).

Intuitively, we want to use linear scan for the important traces and bottom-up for the others and
thus, reduce allocation time. Of course, trivial traces should be processed by the trivial trace
allocator unconditionally, since it is fast and optimal. To apply this in practice, we need to define
our notion of importance. We evaluated a case study of 8 decision heuristics, so-called allocation
policies [Eisl et al., 2017].

First, we identified properties, which allow us to characterize a trace. Based on these properties,
we developed policies to select either the linear scan, the bottom-up, or the trivial allocator. The
list of properties and policies is non-exhaustive.

8.1 Properties

Our allocation policies are based on properties of basic blocks, traces, the complete compilation
unit, or a combination of them.

100 Trace Register Allocation Policies

8.1.1 Block Properties

A trace consists of a sequence of basic blocks. For every block b we know its relative execution
frequency, which we denote as freq(b). It is a real number estimating how frequently this block
is executed per invocation of the enclosing method. A value of 0.5 means that the block is
executed in 50% of all invocations. For blocks inside of loops this value can be larger than 1.
For example, if a loop header is entered with a probability of 1, a frequency of 10 indicates a
loop iteration count of 10. Note that these numbers are relative to the invocation count of the
enclosing method. Therefore, the frequency of the method entry block is always 1. We cannot
infer absolute execution counts from these numbers. The block frequencies are calculated from
branch profiles collected by the virtual machine in previous executions of the compilation unit.

Another blockmetric is the loop nesting level, or loopDepth(b). It indicates onwhich loop nesting
level this block occurs. However, this metric can be misleading since not all branches inside a
loop are equally likely. It should be used as a structural indicator only.

Due to the Global Liveness Analysis, described in Section 4.3, we can also consider the livein and
liveout sets as block properties, i.e., the variables that are live at the beginning and the end of the
block. More live variables increase the likelihood of spilling.

8.1.2 Trace Properties

The properties of the blocks in a trace can be aggregated to define properties for the trace. For
example, the frequency of a trace can be defined as the maximum frequency of the blocks in the
trace.

Another important property of a trace is its triviality, i.e., the fact that a trace consists of a single
block containing just a jump instruction. It determines whether or not the framework can use
the trivial trace allocator.

We also consider the trace building order, denoted by id(trace), as a trace property. The trace
building algorithms, as described in Section 4.1, construct important traces first. That means
that a trace with a lower number is generally more performance-critical than one with a higher
number.

8.2 Policies 101

8.1.3 Compilation Unit Properties

For compilation units we can apply the same aggregation techniques as for traces. We use com-
pilation unit properties to set trace properties into relation. For example, the maximum block
frequency of a trace vs. the maximum block frequency of the whole compilation unit. We also
exploit structural properties of a compilation unit to switch between different sub-policies. For
instance, if a method contains a loop we might want to choose a different decision model than
for methods without loops.

8.1.4 Aggregation of Properties

As outlined above, we aggregate the block properties to calculate new metrics for traces of the
compilation unit. We consider different aggregation functions including maximum, minimum,
sum, average, and count.

8.2 Policies

Wedeveloped a set of 8 allocation policies, based on the identified properties. A policy is a decision
function that selects an allocation strategy for a given trace.

For trivial traces, we always use the trivial trace allocator. For non-trivial traces, we have to
decide whether to use the trace-based linear scan or the bottom-up approach. We describe this
decision as a hotness condition. If the condition is true the trace is considered important, i.e., we
use the linear scan approach for it.

In the remainder of this section, trace refers to the trace for which we want to choose a strategy.
We use the term method to describe the set of all blocks of the method (compilation unit).

TraceLSRA This policy uses the linear scan strategy for all traces that are not trivial.

102 Trace Register Allocation Policies

BottomUp TheBottomUp policy uses the bottom-up strategy for all traces that are not trivial.1

Ratio The Ratio policy uses linear scan for a fixed fraction p of the traces.

id(trace) ≤ |traces| × p

Since traces are processed in trace-building order (i.e., in the order of their importance), a
fraction of p = 0.5means that the first 50% of the created traces (i.e., those with an id less
or equal to |traces| × 0.5) is allocated with linear scan (or the trivial allocator).

Budget The Budget policy is a budget-based approach. The idea is to allocate traces with the
linear scan strategy in trace-building order until we run out of budget.⎛⎜⎝ ∑

t∈traces
id(t)<id(trace)

∑
b∈t

freq(b)

⎞⎟⎠ <

(∑
b∈method

freq(b)

)
× p

The cost function is the sum of the block frequencies of all traces that have already been al-
located. The budget is a fraction of the total sum of the block frequencies in the compilation
unit.

Loop The Loop policy uses the linear scan strategy for all traces that contain at least one block
that is in a loop.

HasLoop(trace) ∨ ¬HasLoop(method)

where HasLoop(blocks) is defined as:

∃ b ∈ blocks where loopDepth(b) > 0

1Due to implementation reasons, there is one exception to this rule, namely traces with edges to compiled exception
handlers. These edges require slightly different handling. Graal assumes that the framestate at the instruction
that causes the exception, e.g., a call, is the same as at the beginning of the exception handler. In other words,
we are not allowed to insert moves between the throwing instruction and the end of the block. The linear scan
implementation in Graal guarantees this by design. The bottom-up allocator, however, does not. It could be easily
implemented in the bottom-up allocator, but it would make the algorithm more complicated. Since exceptions
in Graal are usually handled via deoptimization, this case is uncommon. To keep the implementation simple, we
decided to ignore this special case and fall back to the linear scan strategy if it occurs. The entry for the BottomUp
policy in Figure 8.2 shows that the fraction of linear-scan-compiled traces is indeed marginal (∼0.3% as depicted
in Table 8.1 in the evaluation).

8.2 Policies 103

The idea is that we consider loops to be performance-critical, so we want to find a good
allocation for them. In addition to that, linear scan is used if the whole compilation unit
does not contain a loop at all. The rationale behind this is that the virtual machine com-
piles only methods which either exceed a certain invocation threshold or a loop back edge
threshold. If a method without a loop is queued for compilation, the runtime did so due
to the invocation count only. This means that the method was called often enough to be
considered important.

LoopBudget This policy combines the Loop policy with the Budget policy. Instead of using
linear scan for all compilation units without loops, we apply the MaxFreq condition.

HasLoop(trace) ∨
(
¬HasLoop(method) ∧ Budget(trace)

)

The resulting policy can decrease compile time compared to the Loop policy since fewer
traces are allocated with linear scan. Nevertheless, loop traces are still prioritized.

MaxFreq The MaxFreq policy considers a trace important if the maximum execution fre-
quency of the blocks in the trace is greater than a fraction p of the maximum frequency of
the blocks in the compilation unit.

max
bt∈trace

freq(bt) > max
bm∈method

freq(bm)× p

Only traces with high-frequency blocks are allocated with the linear scan strategy since
these traces are most critical for performance. For example, if p = 0.8, a trace is compiled
with the linear scan allocator if its frequency is larger than 0.8× the frequency of the most
frequent block of the method.

NumVars The NumVars policy uses linear scan for all traces where the maximum number of
live variables at block boundaries exceeds a certain threshold p.

max
b∈trace

(
max

(
|livein(b)|, |liveout(b)|

))
> p

The idea is that traces with a higher number of live variables are more likely to require
spilling. The spilling mechanism in the linear scan strategy leads to better code than the
spilling mechanism in the bottom-up allocator. On the other hand, if no spilling is needed
the bottom-up allocator produces code of similar quality as the linear scan allocator but in
shorter time.

104 Trace Register Allocation Policies

B
enchm

ark
Execution

T
im

e
R
egister

A
llocation

T
im

e

Tr
ac

eL
SR

A

Ra
tio

-0
.8

Bu
dg

et
-0
.9
99

99
5

Ra
tio

-0
.5

Lo
op

N
um

Va
rs
-8

Bu
dg

et
-0
.9
8

M
ax

Fr
eq

-0
.1

Lo
op

Bu
dg

et
-0
.5

Ra
tio

-0
.3

N
um

Va
rs
-1
5

M
ax

Fr
eq

-0
.8

Bu
dg

et
-0
.5

Bo
tto

m
U
p

100%

105%

110%

115%

120%

125%

130%

45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%
100%
105%

100%

105%

110%

115%

120%

125%

130%

45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%
100%
105%

Evaluation of register allocation policies for DaCapo and Scala-DaCapo on AMD64. Values
relative to TraceLSRA median. Same methodology as in Figure 7.2. Lower is better ↓.

Figure 8.1: Peak performance and register allocation time of various allocation policies

8.3 Evaluation

The goal of this evaluation is to answer RQ3 and to support our claim that selective trace-based
register allocation is an appropriate approach for controlling the trade-off between compile time
and peak performance on a fine-grained level. To this end, we study the impact of the 8 allo-
cation policies discussed in the last section. For policies with parameters we compare multiple
values to further highlight the flexibility of our approach. In total, we selected 14 configura-
tions as case study to supports our claim. Our experiments were performed using git revision
f5cad2eda111.

We performed the experiments on the X3-2 cluster (see Appendix C.1) with at least 30 repetitions.
The baseline is again the trace-based linear scan allocator, denoted by TraceLSRA. We show the
numbers relative to the baseline of a given benchmark.

Figure 8.1 shows the total peak performance and the register allocation time for various allocation
policies relative to the trace-based linear scan. For measuring the register allocation time, we
included all compilations of the benchmarks, including those in warm-up iterations, since the

8.3 Evaluation 105

Bottom-Up Strategy

Linear Scan Strategy

Trivial Strategy

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Tr
ac

eL
SR

A

Ra
tio

-0
.8

Bu
dg

et
-0
.9
99

99
5

Ra
tio

-0
.5

Lo
op

N
um

Va
rs
-8

Bu
dg

et
-0
.9
8

M
ax

Fr
eq

-0
.1

Lo
op

Bu
dg

et
-0
.5

Ra
tio

-0
.3

N
um

Va
rs
-1
5

M
ax

Fr
eq

-0
.8

Bu
dg

et
-0
.5

Bo
tto

m
U
p

The distribution is calculated per benchmark. The figure shows the mean over all benchmarks.

Figure 8.2: Distribution of the allocation strategy per policy

peak performance of the last iteration depends on all these compilations. Figure 8.2 depicts the
distribution of the allocation strategies for the various policies. Not surprisingly, the numbers
suggest that there is a correlation between the percentage of linear-scan-compiled traces and the
register allocation time in Figure 8.1. Unless otherwise noted, the numbers mentioned in this
section represent the geometric mean of the averaged benchmark results relative to TraceLSRA.
All results are summarized in Table 8.1.

TraceLSRA TraceLSRA is the policy that performs best with respect to peak performance. It
is the upper bound in terms of register allocation time but also produces the best code. In
this baseline configuration, linear scan is used for 61% of the traces. The other traces are
trivial and are therefore allocated by the trivial trace allocator.

BottomUp The BottomUp policy, on the other hand, is the lower bound with respect to allo-
cation time. It requires only about 57% of the time used by TraceLSRA. In terms of peak
performance, this policy is the slowest with an average performance decrease of about 11%.
For the sunflow benchmark from the DaCapo suite, however, the performance penalty is
30%.

Ratio In our experiments, we evaluated the Ratio policy with the parameters 0.8, 0.5, and
0.3. Although the number of linear-scan-allocated traces decreased by 17% for p = 0.8,
this is hardly noticeable in the allocation time and the peak performance. Setting p = 0.5

106 Trace Register Allocation Policies

decreases the time for allocation to 87%. The performance slowdown is about 1% relative
to TraceLSRA. With p = 0.3 allocation time is further reduced to 80% with a performance
degradation of 4%. In this configuration, only 13% of the traces are allocated with the
linear scan strategy. The results suggest that the Ratio policy allows a fine-grained tuning
of compile time vs. peak performance.

Budget The Budget policy exhibits a non-linear behavior with respect to the parameter p. For
p = 0.99995, we see a performance degradation of only 1% while the register allocation
time goes down to 93%. Only 33% of the traces use the linear scan strategy. Setting p =

0.98 reduces the allocation time to 77% with a performance decrease of 3%. For p = 0.5,
allocation time drops to 62%. The linear scan strategy is used for only 1% of the traces. In
this configuration, basically, only the first trace of a method is considered important. The
performance decrease is 10%, which is almost at the level of the BottomUp policy (11%).

Loop The Loop policy triggers for 26% of the traces, which is slightly less than half of the non-
trivial traces (61%). Performance-wise this policy is about 2% slower than TraceLSRA. On
the other hand, it requires only 86% of the time for register allocation.

LoopBudget The LoopBudget policy (p = 0.5) combines the advantages of Loop, i.e. good
and stable peak performance, with the fast allocation time of the Budget policy. About
11% of the traces use the linear scan strategy. The allocation time therefore drops to 79%
compared to TraceLSRA. With respect to peak performance this policy is 3% slower.

MaxFreq We evaluated the MaxFreq policy with p = 0.1 and p = 0.8. Compared to the
TraceLSRA policy, MaxFreq with p = 0.1 is about 3% slower regarding peak perfor-
mance. Again, sunflow exhibits the worst behavior with a performance decrease of 20%.
Allocation time, on the other hand, is only about 77% of the time used by TraceLSRA.
With p = 0.8 the allocation time drops to 71%. However, the impact on peak performance
is significant. On average, the generated code is 7% slower than with TraceLSRA (max.
31%).

NumVars The evaluation of the NumVars policy shows that 32% of the traces have at most 8
live variables at their block boundaries (and are not trivial). Allocating these traces with
the bottom-up strategy reduces the allocation time to 92%. Performance decreases by 3%.
Extending the scope to 15 variables increases the fraction of bottom-up-allocated traces
to 51% and reduces performance by 5% compared to TraceLSRA. However, the register
allocation time goes down to 76%.

8.3 Evaluation 107

8.3.1 Discussion

Some of the evaluated policies are more appealing than others. The Ratio policy convinces due
to its simplicity and scalability. There is no need to calculate metrics and the parameter correlates
with the register allocation time saving. The Budget policy seems to offer the best trade-off, i.e.,
most compile time savings for the lowest performance penalty. However, it requires summing
up the frequencies of all blocks. Loop is interesting because it solely depends on the structure
of the trace, not on profiled frequencies. Therefore, this policy is an option even if profiling is
not available or inaccurate. The NumVars policy is disappointing, especially for lower numbers
where it achieves little compile time improvement for relatively high performance degradation.

8.3.2 Answering RQ3

Our trace-based register allocation approach offers the flexibility to switch between allocation
algorithmswithin the same compilation unit. This gives us fine-grained control over the trade-off
between compile time vs. peak performance, which is not supported in other register allocation
approaches. Most policies can be parameterized, which allows adjusting the trade-off between
compile time and peak performance on a fine-grained level. Our results confirm that our trace
register allocation policy framework offers unique flexibility not seen in other approaches. Thus,
trace policies answer RQ3 positively.

108
Trace

Register
A
llocation

Policies

Register Allocation Time (∆%) Peak Performance (∆%) Strategy (%)

Policy mean median min min max max mean median min min max max LS BU TT

TraceLSRA 0.0 0.0 0.0 avrora 0.0 avrora 0.0 0.0 0.0 avrora 0.0 avrora 61.2 38.8
Ratio-0.8 −1.3 −0.6 −10.7 jython 3.0 avrora 0.7 0.4 −0.8 kiama 6.5 apparat 43.9 17.3 38.8
Budget-0.999995 −7.5 −4.9 −33.4 jython −0.1 avrora 0.7 0.5 −0.2 sunflow 2.0 scalaxb 32.6 28.7 38.7
Ratio-0.5 −12.6 −11.0 −30.6 jython −2.8 avrora 1.5 1.1 0.1 scalatest 9.2 sunflow 22.4 38.8 38.8
Loop −14.0 −13.1 −27.4 jython −4.8 avrora 2.2 1.8 0.3 scalaxb 5.5 xalan 26.4 34.8 38.7
NumVars-8 −7.9 −8.3 −14.2 scalatest −2.3 luindex 2.6 2.2 0.2 sunflow 8.7 apparat 29.2 32.0 38.7
Budget-0.98 −23.2 −21.5 −44.9 jython −11.3 avrora 3.3 2.9 0.6 scalatest 9.0 luindex 11.4 49.9 38.7
MaxFreq-0.1 −23.5 −21.9 −47.0 jython −7.7 avrora 3.4 2.7 0.1 avrora 19.6 sunflow 11.3 50.0 38.7
LoopBudget-0.5 −21.0 −20.5 −34.9 scalac −10.9 lusearch 3.5 3.8 0.2 scalatest 6.7 apparat 11.2 50.0 38.7
Ratio-0.3 −20.3 −19.2 −42.4 jython −8.1 avrora 3.6 3.0 0.7 scalatest 17.2 sunflow 12.6 48.6 38.8
NumVars-15 −23.9 −25.1 −34.0 scalac −6.4 sunflow 5.4 5.1 0.6 avrora 13.3 scalaxb 10.2 51.2 38.7
MaxFreq-0.8 −29.2 −28.5 −49.1 jython −16.5 avrora 7.2 5.5 0.6 avrora 30.5 sunflow 4.8 56.6 38.6
Budget-0.5 −37.5 −37.0 −52.9 jython −29.5 avrora 9.7 9.2 0.5 scalatest 30.6 sunflow 1.4 60.0 38.6
BottomUp −43.0 −42.3 −54.6 jython −36.0 factorie 10.6 9.6 0.8 scalatest 31.7 luindex 0.3 61.2 38.4

For every configuration, we show the (geometric) mean, the median, the min and max values of the benchmark results for both the register allocation
time as well as the peak performance (lower is better). For min and max we also show the corresponding benchmark. The given numbers are the
differences relative to TraceLSRA in %. The last three columns depict the distribution between the allocation strategies, Linear Scan Allocator (LS),
Bottom-Up Allocator and Trivial Trace Allocator (TT).

Table 8.1: Experimental results for trace register allocation policies

109

Chapter 9

Parallel Trace Register Allocation

In this chapter, we focus on RQ4, i.e., whether trace register allocation can reduce compilation
latency. Compilation latency is the duration required to compile a given method. If compilation
happens on the main thread, latency has a significant impact on response time, since the execu-
tion of the application is delayed. But also for systems with one or more background compilation
threads [Krintz et al., 2001], short latencies mean that the compiled code is available earlier and
can therefore be executed earlier.

We exploit the flexibility of trace register allocation to reduce compilation latency without im-
pacting peak performance. The idea is to use multiple threads to allocate traces concurrently. The
trace register allocation framework allows traces to be allocated in arbitrary order. However, as
discussed in Chapter 6, traces that are processed later can profit from decisions in already allo-
cated traces. Optimizations based on this principle can improve the peak performance for some
DaCapo benchmarks by up to 10%, as shown in Figure 7.10. We want to ensure that concurrent
allocation does not influence the allocation quality. Therefore, we define dependencies in a way
that all the information available in the serial mode is also available in the parallel mode.

We prototyped parallel trace register allocation and summarized our findings in awork-in-progress
paper, which is currently under review [Eisl et al., 2018]. However, the current implementation
is only a proof-of-concept and is not used by default.

9.1 Concurrency Potential

Before investing time on an implementation, we wanted to gain more insight into whether there
is enough potential for parallelization. Therefore, we simulated the speedups when using 2, 4
and 8 threads for register allocation of the DaCapo and Scala-DaCapo benchmarks.

110 Parallel Trace Register Allocation

Not all traces require the same time for allocation. We use the number of instructions as a compile
time estimator since it correlates with the time required for register allocation, as depicted in
Figure 7.7. The lower bound for compile time is the length of the critical path in the dependency
graph. Our experiments show that the (geometric) mean of the critical path length is 51% (min =

44%,max = 57%) of the number of instructions in the compilation unit. That means that ideally,
with an infinite number of threads and ignoring all overheads, the register allocation step could
be done in about half the time.

To simulate the concurrency potential with a given number of threads, we need to find a sched-
ule that satisfies the dependencies. Finding an optimal schedule with minimal duration is NP-
hard [Pinedo, 2016]. Therefore, we apply a simple heuristic for finding a schedule. Whenever a
thread is idle, we assign it to the longest trace in terms of instructions, whose predecessor traces
have already been processed. For 2 threads, the simulated register allocation time goes down by
68% (64%, 71%). This is already an interesting result, since adding only a single thread to the sys-
tem can potentially improve register allocation time by about 30%. Another noteworthymetric is
the utilization of the threads, that is the ratio between work and idle time. For 2 threads this ratio
is 74% (70%, 78%), which means that allocation threads are idle only one fourth of their run time.
If 4 threads are used, the simulated allocation time is 56% (50%, 61%) of the single-threaded case.
However, the utilization also decreases to 45% (41%, 50%). The threads are idle more than half
of the time. With 8 allocation threads the allocation time is 52% (45%, 58%), which is almost the
best that can be achieved given a mean critical path length of 51% of all instruction. As expected,
the thread utilization further decreases to 24% (22%, 28%).

9.1.1 Example

Let’s illustrate the simulation with an example. We chose the method PrintStream.write()1

from the Java standard library, since it is small enough to be understandable, yet long enough
to exhibit scheduling potential. After high-level optimizations (e.g., inlining) there are 19 traces.
Their dependencies are depicted in Figure 9.1. The values in parentheses are the trace lengths in
instructions. The compilation unit consists of 168 instructions in total, which is also the length
of the single threaded schedule. Figure 9.2 shows the calculated schedule as a Gantt chart [Gantt,
1913] for 2, 4 and 8 threads (top, middle, bottom, respectively). Each rectangle represents a trace
with its number. The horizontal axis depicts the length in terms of instructions. The length of
the schedule with 2 threads is 104 instructions with a thread utilization of 81%. With 4 threads
the utilization decreases to 50%. However, the length of 84 is already optimal, i.e., the critical

path length. Therefore, increasing the number of threads to 8 cannot yield any improvements
and utilization drops to 25%. Figure 9.2 also shows that although 8 threads are available, only 5

are used.
1Full descriptor: java.io.PrintStream.write(byte[], int, int)void

9.1 Concurrency Potential 111

T0

T1 T3 T18

T4 T8 T10T2 T5 T14

T6 T7 T12 T9 T11

T15 T16T13

T17

(36)

(16)

(2)

(19)

(14)(15)

(2) (5)

(10)

(2)

(7)

(2)(6)

(2)

(5)

(7) (7)

(7)

(4)

Dependency graph for the method PrintStream.write(). The values in parentheses are the
length of the traces, i.e., the number of instructions. The critical path (T0–T17, orange edges)

is 84 instructions long.

Figure 9.1: Trace dependency graph for PrintStream.write()

0
1 2
3 4

5
6

78
910

11
12

1314
15 16

17
18

0
1

2

3 4
5

6
7

8 9
10 11

12 13

14
15

16
17

18

0
1

2

3 4
5 6

7
8 9

10 11

12 13

14
15

16

17

18

2
Th

reads
4
Th

reads
8
Th

reads

0 10 20 30 40 50 60 70 80 90 100

0
1
2
3
4

0
1
2
3
4

0
1
2
3
4

Gantt chart [Gantt, 1913] for 2, 4 and 8 threads. The horizontal axis denotes the number of
instructions. The compilation unit consists of 168 instructions in total. The critical path (red

vertical line) is 84 instructions long.

Figure 9.2: Trace allocation scheduling for PrintStream.write()

112 Parallel Trace Register Allocation

9.2 Evaluation

To verify that the theoretic results presented in Section 9.1 also apply in practice, we prototyped
a parallel version of our trace register allocator. More specifically, we wanted to ensure that
parallel register allocation (1) can improve register allocation latency, and (2) does not impair
allocation quality. We used a standard Java thread pool2 with a fixed pool size for the allocation
threads. Idle threads are kept alive to avoid the overhead for starting a new thread. Once a
trace is allocated, its successors are added to the work queue, if all traces on which they depend
have already been processed. We use a priority queue,3 where traces are ordered by decreasing
instruction count, so that longer traces are allocated first.

From the register allocation point of view, synchronization is only needed for the queue and for
tracking dependencies on finished traces. Accessing and modifying traces is safe by design of
the trace register allocator if the dependencies are respected. However, Graal assumes that every
method is compiled by just a single thread and therefore uses unsynchronized data structures. For
example, the map from the register class to the set of available registers, which is lazily initialized.
For our concurrent allocation approach, this is a problem. We worked around this issue, for
example, by pre-populating cached maps, duplicating data-structures or simply recalculating
results. These workarounds cause allocation time overheads which we are willing to accept for
our prototype. We are confident that most of them could be mitigated by a more advanced
implementation.

By default, GraalVM uses multiple compiler threads to concurrently compile different methods.
Compilation happens in the background, that means the application continues to execute while a
method is compiled. The compiler threads compete with the application threads. Adding threads
for register allocation makes the situation even more challenging. To keep this interference low,
we suppressed the parallel compilation of different methods and rather used the threads for the
parallel allocation of registers. To measure register allocation time, we take a timestamp4 before
and after register allocation and report the difference, i.e., the duration. In other words, the
duration is the time elapsed from the beginning of register allocation until it is finished and the
result is available. Of course, the numbers are influenced by the scheduling of threads by the
virtual machine. For example, if the VM decides to preempt the register allocation threads in
favor of an application thread, the duration increases although the compiler or allocator did not
perform more work. More precisely, the duration does not represent CPU time. However, the
metric of duration is what we are interested in, since the goal is not to reduce the work that is
done by the allocator but to have the result available earlier.

2See ThreadPoolExecutor:
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html

3See PriorityBlockingQueue:
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/PriorityBlockingQueue.html

4See System.nanoTime(): https://docs.oracle.com/javase/8/docs/api/java/lang/System.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/PriorityBlockingQueue.html
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html

9.2 Evaluation 113

40%
50%
60%
70%
80%
90%
100%
110%
120%

40%
50%
60%
70%
80%
90%
100%
110%
120%

No
Threads

1
Thread

2
Threads

4
Threads

8
Threads

DaCapo and Scala-DaCapo on AMD64. Values are relative to 1 allocation thread. Lower is
better ↓.

Figure 9.3: Concurrent register allocation time

We evaluated our approach using (Scala-)DaCapo on the X3-2 cluster (see Appendix C.1). For
each configuration, we collected at least 10 results. The experimental results are summarized
in Figure 9.3. Note that the reported values are the durations of register allocation, including
all necessary phases. This includes trace building, global liveness analysis and global data-flow

resolution. Note that the potential analysis in the previous section only reasons about the register
allocation allocation itself, not about the global phases. All numbers are relative to the 1 Thread
configuration, which uses the priority queue and the other synchronization mechanisms, but the
thread pool only consists of a single thread. To see the overhead imposed by our prototype, we
also compare it against the No Threads configuration, i.e., the trace register allocation where all
work is done by the single compiler thread. The mean overhead of 23% might seem high at first
sight. However, as already mentioned before, our implementation is an initial proof-of-concept
prototype. We are confident that this gap can be reduced by a more advanced implementation.

To answer the question whether we can reduce allocation latency, we evaluated the prototype
with 2, 4, and 8 allocation threads. Using 2 threads instead of one decreases the latency by 21%
(4%, 37%). Using 4 threads instead of one decreases the latency by 30% (7%, 53%). As we already
expected from the potential analysis, using 8 threads does not give any further advantages. In
fact, the result is slightly worse than with 4 threads. This is due to the additional synchronization
effort and the fact that we are close to the number of hardware threads.

The second assumption we wanted to verify in this evaluation is that parallel register allocation
does not affect allocation quality. To do so, we report steady-state performance in Figure 9.4. The
results suggest that parallel register allocation has no negative impact on allocation quality.

114 Parallel Trace Register Allocation

90%
92%
94%
96%
98%
100%
102%
104%
106%
108%
110%

90%
92%
94%
96%
98%
100%
102%
104%
106%
108%
110%

No
Threads

1
Thread

2
Threads

4
Threads

8
Threads

DaCapo and Scala-DaCapo on AMD64. Lower is better ↓.

Figure 9.4: Benchmark execution time for concurrent register allocation

9.2.1 Answering RQ4

Although our prototype is in an early stage, the results show that parallel register allocation is
practical and can improve compilation latency without impairing the allocation quality. RQ4
can thus be answered positively.

9.3 Future Directions

For our parallel trace register allocation experiment, we applied a strict dependency model to
guarantee the same results in serial and parallel mode. All preceding traces with higher impor-
tance must have been allocated before processing the succeeding trace. This could be relaxed by
processing a trace on a new thread already when its most important predecessor trace has been
processed, which would open up more potential for parallelization (although some inter-trace
data flow might become suboptimal). We used the number of instructions as the priority func-
tion for selecting the next trace to be processed. An alternative would be to use the number of
successors in the dependency graph in order to enable more concurrency opportunities.

115

Chapter 10

Related Work

Trace register allocation relates to a variety of research areas in the field of compilers and virtual
machines. The diverse field of register allocation is of course highly relevant for our work. Thus,
we first look at common register allocation approaches and discuss their complexity and optimal-
ity results. Optimizations that work on non-global code units, such as traces or regions, are often
motivated by similar considerations as in our approach. We also look at trace scheduling, since
this class of optimizations did not only influence the name of our approach, but also uses the
very same unit of scope. Another related area is trace compilation, which follows a very different
approach for compiling code than our method-based compilation does. However, there are areas
where trace compilation and trace register allocation can learn from each other. Liveness is the
core information of register allocation. Our global liveness information relates to other repre-
sentations of liveness used for register allocation and compilation in general. Our main focus is
on the improvement of compile-time characteristics by either trading-off peak performance, or
doing work in parallel. In the last section of this chapter we discuss other trade-off techniques
used in virtual machines.

10.1 Register Allocation

In our introduction in Chapter 1, we have already discussed two well established register allo-
cation approaches, graph coloring and linear scan. Register allocation is a very active area of
research in compiler construction for at least six decades. There are literally hundreds of pa-
pers on register allocation proposing dozens of different approaches. In this section we focus on
further work that either directly relates to trace register allocation, provides pointers for future
improvements, or is for other reasons interesting in this context.

116 Related Work

10.1.1 Local Register Allocation

Local register allocation, where registers are allocated just for a single basic block, is particularly
interesting for trace register allocation. Like a single basic block, traces consist of straight-line
code, which simplifies the allocation problem. Approaches that were proposed for local regis-
ter allocation can also be used for traces. Other results, for example, regarding complexity or
optimality, might apply as well, although the prerequisites must be considered carefully. If rea-
soning, for example, builds upon branch-free code, then it does not hold for traces because there
are control-flow joins and merges.

Approaches similar to our bottom-up allocation strategy have been described previously for lo-
cal register allocation, which is not surprising given its simple and straight-forward idea. Cooper
and Torczon discuss a bottom-up allocator in their book Engineering a compiler [2011, Chapter
13]. However, there are a few minor differences in our implementation. We initialize our vari-
able/location map to match the successor trace to avoid data-flow mismatches, which usually is
not done in local register allocators. Another difference is how we select spill candidates. The
bottom-up allocator described by Cooper and Torczon spills the register with the longest distance
to the next usage (furthest-first). While this improves the allocation quality, it also requires more
work to maintain this information. We experimented with similar heuristics, but they all have a
significant negative impact on allocation time. Since fast allocation time is the main goal of our
bottom up approach, we refrained from such optimizations.

Farach-Colton and Liberatore [2000] showed that local register allocation is NP-hard with re-
spect to minimal spill loads and stores. Since local register allocation can be trivially reduced

[Cook, 1971] to trace register allocation,1 the hardness result also applies to allocating a trace.
However, other results by Farach-Colton and Liberatore do not. The 2-approximation algorithm,
for example, assumes that the cost of a spill is the same for all program points. For traces this is
not true because of splits and joins. Whether the algorithm can be extended to traces is left for
future research.

The furthest-first heuristic is often used for selecting a spill candidate in local register allocators,
but also in global approaches such as linear scan. Facing the problem that no register is available
at a certain instruction, the furthest-first strategy selects the register whose next usage is the
furthest in the future. The heuristic is often contributed to Belady [1966] and Horwitz et al.
[1966], but apparently it dates back to FORTRAN compilers from the 1950s [Farach-Colton and
Liberatore, 2000]. It is optimal for basic blocks if a variable is never written, e.g., there is no need
to move its value from a register to memory [Farach-Colton and Liberatore, 2000]. We have
already seen that minimizing the spill costs is NP-hard.

1Every block is considered a trace.

10.1 Register Allocation 117

Although the furthest-first strategy is not optimal for realistic cost models, the heuristic has
successfully been applied in practice. Guo et al. [2003] evaluated the furthest-first strategy on
large basic blocks (300–5000 instructions). The blocks are the result of unrolling loop bodies
of number crunching libraries such as Fast-Fourier-Transformation or Matrix Multiplication. On
the MIPS architecture their compiler using a furthest-first strategy outperformed GCC and the
MIPSpro compiler by up to 33%. Especially in cases where the register pressure is high, the
heuristic seems toworkwell.2 Avariant of this heuristic is also used in our linear scan strategy.

10.1.2 Non-Global Register Allocation

In contrast to global approaches such as graph coloring or linear scan, there are register allocators
that operate on subparts of the method and merge the intermediate results for a final solution,
just like our trace register allocation approach. However, most of them do not strictly separate
the allocation of the subparts, or they force a particular allocation order, for example, from inner
loops to outer loops.

Callahan and Koblenz [1991] proposed hierarchical graph coloring as a technique to minimize
the number of dynamically executed spills by moving them to infrequently executed code parts.
They also divide the control-flow graph into what they call tiles and (partially) solve the register
allocation problem for each of them. Tiles are sets of basic blocks. Two tiles are either non-
overlapping or one is a proper subset of the other. Callahan and Koblenz use loop-nesting as
well as branches for their tile hierarchy. The difference to our approach is that tiles are not
independent but organized in a hierarchical tree. Allocation starts at the innermost tile (the leaf
of the tree). Once all children are processed, the parent tile uses the information of its children to
continue. It is also worth noting that the algorithm does not assign registers in the first pass but
uses pseudo registers to record the requirements of a tile. In a second top-down pass, physical
register are assigned and spill code is inserted if needed. Callahan and Koblenz use graph coloring
for allocating a tile. Also, the interference graph is used to communicate allocation decisions
from a sub-tile to its parent. This rules out the use of algorithms for tiles that do not work on
interference graphs, for example linear scan. The hierarchical graph coloring allocator features
preferencing as an alternative to coalescing. It supports local preferencing, which is similar to
the hints we use in our linear scan strategy, as well as inter-tile preferencing, which relates to
our inter-trace hints (Section 6.1). It is noteworthy that sub-tiles do not deal with variables
which are live but not used in the tile. This is somehow related to our handling of stack intervals
(Section 6.4). However, our approach basically works in top-down direction. Therefore, we still
maintain stack intervals to keep them in registers if possible, or inform successor traces that
these intervals are already spilled.

2However, no details are given about the allocation algorithms used in the reference compilers, nor whether they
apply global or local approaches. This makes is difficult to assess the results in more detail.

118 Related Work

The motivation for register allocation based on graph-fusion by Lueh et al. is similar to Calla-
han and Koblenz. Its goal is to minimize the number of dynamically executed spill instructions.
Their allocator works on regions of the control-flow graph, where a region can be a basic block,
a loop-nest, a superblock [Hwu et al., 1993], or some other combination of basic blocks. They
build the interference graph for each region and ensure that it is colorable by potentially spilling
live ranges, as it is done in the global graph coloring approach. However, registers are not yet as-
signed. Connected regions are then fused to build up the graph for larger parts of the compilation
unit. The key property of fusing is that it ensures that the graph stays colorable. If fused regions
would yield an uncolorable result, live ranges are split at the edge that connects the two regions
and shuffle code is inserted. This way, the interference graph for the whole compilation unit is
incrementally constructed. Due to the invariant that the graph is always colorable, the register
assignment phase can simply perform a Chaitin-style simplify and coloring. No more spill deci-
sions need to be made. Although, the fusion-based allocator starts with local spilling decisions,
the decisions are getting more global incrementally. Also, the actual register allocation is delayed
until a global view on the problem is available. In contrast to that, we solve the problem locally
and independently for each trace. In addition, the graph fusion approach uses the interference
graph as the single model for liveness. The complex fusion operation and the global assignment

phase limit the potential for doing work concurrently. In contrast to that, in our trace register
allocation approach the tasks are independent and are only connected via livein/liveout set at
trace boundaries. Once a trace has been processed, its result is final and will not be changed
apart from inserting resolution code.

Koes andGoldstein [2006b] proposed a global progressive register allocator usingmulti-commodity

network flow (MCNF).Their flow formulation explicitlymodels spill cost, register hints, live range
splitting and constant rematerialization. They first create a network for the local problem (i.e. for
a basic block) and then extend it to the global case. To find an initial solution, Koes and Goldstein
first use a heuristic approach (second-chance binpacking [Traub et al., 1998] or a simple graph
coloring) which yields a valid, but potentially suboptimal solution. Then their progressive solver
iteratively improves this result towards the optimal solution with respect to the overall costs.
The progressive model allows them to control the compile-time vs. peak-performance trade-offs
which relates to our allocation policies (Chapter 8). Note, however, that their decision whether to
continue optimizing or stop is global, i.e., on the whole method, while we distinguish between
important and unimportant traces. Later, Koes and Goldstein [2006a] proposed an extension to
their idea where they used traces instead of basic blocks as the scope for the local problem, which
further improved the quality and the speed of their approach. We find the idea of progressively
improving the allocation result very appealing. Applying their approach (or earlier work on a
local progressive allocator [Koes and Goldstein, 2005]) to traces could perfectly fit into our policy
model and poses an interesting future research direction.

10.1 Register Allocation 119

a b

cd

(a) chordal

a b

cd

(b) non-chordal

a b

cd

e

(c) non-chordal

A graph is chordal if every cycle with four or more edges has an edge which is not part of the
cycle but which connects two vertices on the cycle. Cycles of length four without a chord are

highlighted in red. Example taken from Pereira and Palsberg [2005].

Figure 10.1: Examples for chordal and non-chordal graphs

10.1.3 Decoupled Register Allocation

Decoupled register allocation is an interesting class of allocation approaches that got a lot of atten-
tion over the last years. Basically, the idea is to split the spilling and the actual register allocation
into two separate phases. Since the first phase guarantees that the register allocation will suc-
ceed, the second phase is very simple. Actually, the graph fusion approach by Lueh et al. [1997]
already follows a similar principle. However, most recent decoupled approaches exploit graph-
theoretic properties of chordal graphs.

Definition 34 (Chordal Graph). A graph is chordal if every cycle with four or more edges has a
chord. A chord is an edge which is not part of the cycle but which connects two vertices on the
cycle.

Figure 10.1 depicts examples for chordal and non-chordal graphs. In 2005, several research groups
have independently proven [Brisk et al., 2005; Hack, 2005; Bouchez et al., 2005] that interference
graphs for programs in SSA form are chordal.3 Hack et al. [2006] have motivated that chordal
graphs have two properties that are utterly relevant for register allocation:

1. Their chromatic number, i.e., the smallest number of colors needed to color a graph, is equal
to the size of the largest clique (see below).

2. They can be optimally colored in quadratic time with respect to the number of nodes.

Interference graph cliques are the set of variables that are live at the same time, i.e., the register

pressure. Consequently, if we can reduce the register pressure at every program point to be at
most the number of available registers, coloring will succeed. Optimal coloring means that we
can color a graph with as few colors as possible. In register allocation, however, we are only

3Those results eventually ended up in the PhD theses “Advances in Static Single Assignment Form and Register
Allocation” by Brisk [2006], “Register Allocation for Programs in SSA Form” by Hack [2007], and “A Study of
Spilling and Coalescing in Register Allocation as Two Separate Phases” by Bouchez [2009].

120 Related Work

interested in any coloring which does not exceed the number of registers. We can find such a
coloring in linear time, for example, by iterating the lifetime intervals in a linear scan fashion, as
suggested by Rong [2009]. Since this renders allocation a non-issue, it allows us to concentrate
solely on spilling. Braun and Hack [2009] discussed a spilling technique based on the furthest-

first heuristic. In its traditional form, all variables that are not used in the block itself but are live
afterwards have the same distance (∞). Braun and Hack [2009] extended this to control-flow
graphs. During the liveness analysis they collected the use-distance at basic block boundaries.
The minimum of the distances of the successors plus the distance to the block end is then used
as the furthest-first estimator. Another issue with decoupled spilling is that reloading a variable
from the stack destroys SSA form since it redefines a variable. Braun and Hack [2009] solved this
by introducing a new variable and placing ϕs in successor blocks to merge the original and the
reloaded version.4 See Braun et al. [2013] for more details on SSA form reconstruction.

Decoupled register allocation is interesting for trace register allocation formultiple reasons. First,
the interference graph of variables in a trace is an interval graph (Corollary 3), which is—in
the case of SSA form—a subclass of chordal graphs (see also Rong [2009]). Therefore, we can
decouple spilling and allocating registers for a single trace. However, we could extend this to a
set of traces, for example, the most important ones. This would allow us to systematically solve
the issue presented in Section 6.3. The question remains, how to deal with the loss of the single
definition property of SSA form due to the reloads from the stack? The good news is that these
violations are local to a trace. The overall framework does not care as long as the locin/locout sets
are preserved.5 We only need to ensure that our allocation strategies can deal with pre-spilled

variables. As already argued in Section 5.3, the bottom-up strategy does not strictly require SSA
form. We only need to ensure that whenever a variable is defined by a reload instruction, the
variable location is updated to the stack slot, since we need this information for updating the
locin/locout sets at trace boundaries. Also for the linear scan strategy (Section 5.1), dealing with
this special form of redefinition is possible. In the interval building step we create a new lifetime
interval for every definition of a variable. Whether there are multiple intervals for the same
variable does not matter since all the required moves have already been added. Since the linear
scan does no longer introduce new spills, this cannot interfere with the linear scan allocation
procedure.

Rong [2009] made some interesting observations regarding variable liveness and chordal inter-
ference graphs. First, he reformulated a theorem by Gavril [1974] saying that if and only if the
interference graph is chordal, the lifetime of the variables span a subtree in a tree of basic blocks.
Based on this formulation he proposed the class of tree register allocation. Moreover, he argues
that this model subsumes previous approaches such as linear scan or local register allocation.
Rong evaluated different tree structures such as a single basic block (local register allocation),

4However, the new ϕ defines yet another variable!
5In fact, register allocation in a trace always destroys SSA form!

10.1 Register Allocation 121

the dominator tree, extended basic blocks, and the maximal spanning tree. Clearly, traces fit
perfectly into this model, so trace register allocation belongs to the same class. For every tree,
Rong performs a decoupled spilling and allocation phase. A data-flow resolution phase fixes
mismatches on control-flow edges that are not part of a tree.

As Brisk and Sarrafzadeh [2007] showed, interference graphs which are interval graphs (Defini-
tion 32) have interesting properties for register allocation. One property is that the k-colorable
subgraph problem can be solved in polynomial time [Yannakakis and Gavril, 1987]. That means
that given an (interval) interference graph, we can get the largest subgraph (with respect to
nodes) which is k-colorable. The subgraph represents the variables that are kept in registers,
the others are spilled.6 Since interference graphs of traces are interval graphs (Corollary 3), this
also holds for trace register allocation. Note, however, that this is orthogonal to minimizing spill
costs which is NP-hard, as we have argued above.

The k-colorable subgraph problem can be solved in polynomial time for chordal graphs if k is
fixed [Yannakakis and Gavril, 1987]. In register allocation, k is the number of registers, which is
usually a constant for a given architecture. However, it is polynomial in the order of nk which
is for realistic cases still unpractical [Brisk and Sarrafzadeh, 2007].

10.1.4 Mathematical Programming Register Allocation Approaches

We have already seen several ways to model register allocation. However, most of them only
cover parts of the overall problem. Graph coloring nicely describes interference but fails when
spilling is involved. Linear scan precisely models live ranges and allows simple splitting, but in-
formation about control flow is mostly lost. The furthest-first spilling heuristic optimally handles
the selection of a register to be spilled, but does not model the cost of spill code. Also, architec-
tural irregularities like register aliasing [Lee et al., 2007] or fixed register constraints are often
ignored or handled heuristically. Unifying all requirements into a single model is appealing if an
optimal or near-optimal solution is the goal.

We have already discussed Koes and Goldstein’s MCNF model for register allocation. There are
a wide variety of register allocation approaches that apply different mathematical programming
models for solving the problem.

Goodwin and Wilken [1996] described an optimal register allocator as a 0-1 integer program-
ming problem. It incorporates coalescing, splitting, rematerialization, fixed registers, and spill
code placement. The input program is modeled as a function of boolean decision variables, each

6Note, however, that this ignores the fact that not all usages of a variable can directly access the stack. An interme-
diate register is needed. In practice, scratch registers could solve this issue.

122 Related Work

of which represents a certain allocation action, for example, inserting a spill move. Afterwards,
their allocator uses the CPLEX solver7 to find a solution. Once there is one, the actions asso-
ciated with variables that are assigned to 1 are performed. Since 0-1 integer programming is
NP-complete [Karp, 1972], the solver has exponential worst-case run time, so they use time lim-
its in their experiments. Since the high compile time overhead is not always practical nor needed,
they proposed a hybrid allocation approach. Based on profiling, they distinguish between critical

and non-critical regions in a function. Critical regions are allocated optimally, while others use a
standard graph coloring approach. Resolution code is inserted at region boundaries. This drasti-
cally reduces allocation time while the result is still near-optimal. The hybrid approach is similar
to our policies, which we use to switch between the linear scan and the bottom-up allocator. As
already remarked, adding an optimal allocation strategy would further enrich our system.

Scholz and Eckstein [2002] formulated register allocation as a partitioned boolean quadratic opti-

mization problem (PBQP). They specifically focused on irregularities of non-RISC architectures,
as for example used in digital signal processing (DSP). One of the main issues with comparable
approaches, for example, Goodwin and Wilken [1996], is the exponential solving time. To over-
come this issue, they developed a heuristic PBQP solver that exhibits nearly linear run time. The
allocator with the heuristic solver outperforms graph coloring in all but one of their (limited set
of) benchmarks (with a speedup of 1.9–10%) while showing a similar allocation time behavior.
The speedup of the optimal solution is in the range of 1.3 to 13.6%.

Later, Hames and Scholz [2006] presented a new branch-and-bound solver for PBQP to circum-
vent poor performance of the initial heuristic on SPEC2000 benchmarks on Intel’s IA-32 archi-
tecture. With this new solver, they were able to be within 3% of the optimal solution regarding
spill costs. Graph coloring, which is about 4× faster, the spill costs were never worse than 7%
above the optimum. However, overall results suggest that both, graph coloring and branch-and-
bound-based PBQP, are very close to the optimal solution and that there is only little room for
improvement (at least for IA-32).

Ebner et al. [2009] combined the decoupled register allocation idea with a mathematical model.
Since the actual allocation is a non-issue, their formulation deals with spill code placement. For
every variable, their allocator produces a network where the nodes represent positions at which
the variable is live, and the weighted edges denote the cost of reloading a variable between these
positions.8 Thenetworks for the individual variables are combined to correctly represent the reg-
ister demand by every program point. By searching for the minimum-cut in the combined net-
work, they get a solution to the reload placement problem. The comparison with the linear scan
implementation that was used by LLVM at that time [Lattner and Adve, 2004] showed that their
approach speeds up the execution of the compiled code for a selected set of benchmarks from

7https://www.ibm.com/products/ilog-cplex-optimization-studio
8In addition, a node representing the spill move is added. An interesting extension would be to support with multiple
spill moves.

https://www.ibm.com/products/ilog-cplex-optimization-studio

10.1 Register Allocation 123

the MiBench suite by up to 30% on a Very Long Instruction Word (VLIW) architecture. Especially
when register pressure is high, they achieve significant improvements. For the SPECint 2000
benchmark on an ARM Thumb their speedup is 6% on average. In addition, they present a La-

grangian relaxation algorithm that finds a valid solution fast and progressively improves it. This
allows them to trade-off compile time for code quality.

Lozano et al. [2012] modeled register allocation using constraint programming [Mayoh et al.,
2013]. One interesting property of their approach is the use of Linear SSA (LSSA). This is similar
to our global liveness information. Every block explicitly denotes livein and liveout variables.
They model every block independently. The blocks are only connected via their liveout/livein
relations. There are analogies to the way we allocate traces independently. We can think of two
potential crossover areas of their approach and ours. First, the constraints model could be applied
to traces instead of basic blocks to increase the scope for optimization. This is especially inter-
esting since their approach also integrates instruction scheduling, which could benefit from long
straight-line code. Second, we could integrate their local constraints model into our framework
to solve individual traces and combine this with our policies and existing strategies.

10.1.5 Register Allocation in Virtual Machines

Many of the register allocation approaches we already described, were developed for—or evalu-
ated on—virtual machines. There are, however, approaches that are interesting not only because
of their allocation algorithm, but because they explicitly integrate with a virtual machine.

Cavazos et al. [2006] proposed a hybrid optimizationmechanism to switch between a graph color-
ing and a linear scan allocator in the Jikes RVM.They use an offlinemachine learning algorithm to
find a decision heuristic. Their induced heuristic reduces the total time (compile time plus bench-
mark execution time) by 9% on average over graph coloring for a selected set of benchmarks from
the SPECjvm98 suite. To classify a method, they use properties which are similar to those we are
using in our policies in Chapter 8. However, we can change the allocation algorithm for each
trace even within a method. This allows a more fine-grained control over the compile-time vs.
peak-performance trade-off. Nevertheless, deducing parameters for our policies using machine
learning techniques seems like an interesting experiment to us.

Also related to our proposed bottom-up allocator is the work by Yang et al. [1999]. They de-
scribed LaTTe, a compile-only Java VM that focuses on compilation speed, including a fast, non-
local register allocator. Register allocation is performed on tree regions, which are trees of basic
blocks with a single entry and potentially multiple exits. The allocator does a backward pass to
collect register preferences based on the requirements at the exits of the allocation region. After

124 Related Work

collecting the references, a forward pass performs the actual register allocation. Their spilling
technique is similar to the approach used by our bottom-up allocation strategy. However, we per-
form allocation on traces instead of trees and require only a single pass over the instructions.

The (baseline) compiler of the CACAOVM uses a simple yet efficient register allocation scheme
[Krall, 1998]. It is tailored for allocation of an intermediate representation that is based on Java
bytecodes, as well as for RISC architectures like the Alpha processor, where there are many reg-
isters available. The first observation Krall [1998] made is that the Java-to-Bytecode compiler
javac already performs pre-coloring. Non-interfering local variables are assigned to the same
slot. Second, the live range of stack variables is implicitly encoded in the push and pop opera-
tions of the values.9 Therefore, no complex lifetime analysis is required, which enables a simple
first-come-first-serve allocation scheme. Another observation is that the expression stack at ba-
sic block boundaries is mostly empty (93%) or very small (< 7). This allows efficient interfacing
between basic blocks. The CACAO allocator first allocates these interface variables. Next, tem-
poral variables used only in a basic block are processed. Finally, local variables are assigned
on a global scope. Therefore, local variables are most likely to be spilled. While this approach
performs well if the register set is large and the method is small, it tends to be suboptimal for
architectures with only few registers, and if method size increases, for example, due to inlining,
as discussed by Steiner et al. [2007] and Steiner [2007].

10.2 Non-global Code Units

As we showed in this thesis, the global scope of a method is not always the adequate unit for
optimizations. In literature, alternative approaches were proposed.

Fisher [1981] introduced traces as compilation units for instruction scheduling on VLIW archi-
tectures. The goal is to reorder instructions so that instruction level parallelism (ILP) can be
increased. The Bulldog compiler by Ellis [1985] and later the Multiflow compiler by Lowney
et al. [1993] are popular implementations of this approach. Their definition of a trace is similar
to our use of the term. However, their traces do not span across loop headers. Although the
main focus of the approach is on scheduling, they treat registers as a scheduling resource in the
process [Lowney et al., 1993]. Freudenberger and Ruttenberg [1992] presented a detailed descrip-
tion of the interaction of those two optimizations. Whenever a trace is processed, they record the
register assignment decisions at trace exits and entries in a so-called value-location-map (VLM).
This is basically the same as our locin/locout sets. Subsequent traces need to adhere to the VLMs
of neighboring traces, i.e., the freedom of later traces is incrementally reduced. This relates to

9This also includes implicit pushing and popping, for example, by arithmetic instructions. Also, stack manipulation
instructions like dup and swap need special care.

10.3 Trace Compilation 125

our inter-trace hinting (Chapter 6). However, since we use a dedicated data-flow resolution to
fix mismatches, an allocation strategy is free to ignore hints. In Multiflow, values that are live
throughout a trace but never referenced are not immediately assigned to a register, but the deci-
sion is delayed until they are referenced in a later trace. There are similarities to stack intervals

in our approach.

For most of this thesis, we assumed methods to be the input to the compiler. However, a pro-
grammer usually (hopefully) partitions the code into methods based on software engineering
principles, which do not take into account what is important to be optimized by the compiler.
Outsourcing code into subroutines is mostly due to modularity or maintainability concerns, not
due to performance considerations. Method-based compilers “undo” this restructuring by ag-
gressively inlining methods. However, this can lead to big compilation units which increase the
pressure on the optimizations.

As an alternative, Hank et al. [1995] suggested region-based compilation which allows for aggres-
sive optimization while keeping the compilation unit size small. First, they perform aggressive
inlining to enlarge the scope. Afterwards, the basic blocks are partitioned into smaller regions
which are then compiled independently. Their region building algorithm starts similar to our
bidirectional trace builder. They use profiling data to select a start block and then append suc-
cessors before going upwards. They always add the most frequently executed successor or pre-
decessor. In contrast to our approach, they use a threshold value to limit the size of the region.
After there is an initial trace, the algorithm continues to append successors to the blocks as long
as their execution frequency exceeds the threshold.

Hank et al.’s analysis revealed, that programs exhibit different performance-critical interactions
between functions. Some benchmarks spend over 90% of the time in regions of one or two
functions. Other benchmarks, however, spend 70% of their time in regions consisting of blocks
from 10 or more functions. Their region-based approach is able to cope with all of them in a
uniform manner.

10.3 Trace Compilation

Hank et al. already pointed out that methods are not always the right unit of compilation. Nev-
ertheless, they still perform inlining before determining their units of operation. However, in
some cases this detour is not necessary or not even possible, for example, in the case of dynamic
machine code optimization. Although call and return instructions can still give a hint about
the original structure, determining which code segment belongs to which method is impractical.
Therefore, other approaches are required.

126 Related Work

Dynamo by Bala et al. [2000] was the first widely known system using an approach called trace

compilation for dynamic translation of compiled binaries. Their system executes machine code in
an interpreter. For every backward branch, they increment a counter associated with the branch
target. Once this counter exceeds a certain limit, their interpreter enters a recording mode, i.e.,
it appends every executed instruction to a trace buffer. Calls and returns are handled just as if
they would be jumps, i.e., functions are opaque to the trace. Recording continues as long as no
backward branch is taken.10 Once trace recording has finished, the machine code is transformed
into an IR and is optimized. Since traces are straight-line code, the optimizing compiler is sim-
ple and efficient. The optimized code is installed into a so-called fragment cache. Whenever the
interpreter would branch to the location that triggered trace recording, the compiled fragment
is invoked instead of interpreting the original machine instructions. Branches that exit the com-
piled code return to the interpreter, potentially through compensation code to fix the execution
state. To avoid switching to the interpreter, traces can be linked together.

Gal et al. [2006] showed that this approach perfectly fits the needs of resource-constrained de-
vices. Their light-weight implementation of a trace-based JIT compiler for a JVM reached a
performance that is comparable with full-fledged production quality systems. The traces are
recorded on bytecode level using an interpreter. Gal et al. use an SSA-based representation for
their compiler. Because only the relevant basic blocks are considered, bytecode parsing overhead
is avoided for uncommon parts. Similar to Dynamo, the HotPathVM performs trace merging

where different traces are stitched together. When compiling the child trace, they initialize the
state of the variables to the mapping present at the end of the parent trace. The idea is similar
to our inter-trace hints. For register allocation inside a trace, they use a bottom-up approach
which also emits machine code. As we do in our allocation strategies, ϕin and ϕout operands are
coalesced, if possible.

The trace-based approach is also suitable for dynamically typed languages as shown by Gal et al.
[2009]. The empirical study by Garret et al. [1994] suggests that dynamic types in the hot regions
of a program are relatively stable. Based on this assumption, Gal et al. generate type-specialized
native code for hot traces. They implemented this idea in TraceMonkey, a tracing JavaScript
virtual machine that was used in Mozilla’s Firefox browser.

Häubl and Mössenböck [2011] modified the HotSpot client compiler in order to perform trace-
based compilation. A difference to other tracing approaches is that when a call is encountered, a
new trace is started and linked to the current one. This keeps the exact call information, which is
important for a system like the HotSpot VM, that is tuned for method based compilation. Their
approach provided speedups of the compiled code compared to themethod-based client compiler,
although less code was compiled. They use the linear scan implementation for register allocation
that is used by default in the client compiler [Wimmer and Mössenböck, 2005].

10Or branches to already compiled segments, as we will see shortly.

10.4 Liveness and Intermediate Representations 127

Bolz et al. [2009] used trace compilation for obtaining an efficient JIT compiler for bytecode
interpreters that were implemented in the PyPy language implementation framework. They
applied the tracing compiler not to the user program but to the bytecode interpreter that was
written by the language implementer. This approach is also referred to as meta-tracing. The
meta-level imposes some challenges compared to traditional trace compilation. Usually, tracing
assumes that the path through a hot loop is the same inmost iterations. For bytecode interpreters,
the inner loop is the dispatch loop, where each iteration represents one interpreted bytecode.
Since usually a different bytecode is executed in every iteration, the original assumption does
not hold. To solve this problem, Bolz et al. proposed hints in the interpreter code to inform
the trace recording mechanism about program counter information in the language interpreter.
This information, in addition to the interpreter code, is used to refine trace-start and trace-end
conditions. In other words, a trace is an unrolled version of the dispatch loop that represents a
loop in the user program. The advantage of the meta-tracing approach is similar to Truffle (see
Chapter 3). A language implementer only needs to implement an annotated bytecode interpreter
and the meta-trace framework enables JIT compilation automatically.

There are some similarities between trace compilation and the traces we use for register alloca-
tion. Both work on straight-line code, which simplifies optimizations and analysis, for example,
when calculating lifetimes. One difference, however, is that in general, traces have no side en-
tries, i.e., a trace is always entered through its head.11 In the context of trace compilation, code
pieces (e.g. a basic-block or an instruction) can usually occur in multiple traces, i.e., there is some
kind of code duplication. This is not the case in our implementation. Although register allocation
is not the focus of trace compilation, allocation strategies used in this area can also be applied to
trace register allocation and vice versa.

10.4 Liveness and Intermediate Representations

A proper and easy-to-use notion of liveness is utterly important for register allocation. In our
approach, we use what we call global liveness information to decouple trace-local liveness from
liveness in other traces. Several related approaches have been proposed in literature.

Pereira and Palsberg’s paper on register allocation via puzzle-solving [Pereira and Palsberg, 2008]
sparked our interest in Static Single Information (SSI) form. SSI form, which was proposed by
Ananian [1999] and later refined by others [Singer, 2006; Boissinot et al., 2012], is an extension
to the SSA form. In addition to the ϕ functions at control-flow joins, SSI also has σ-functions12 at
control-flow splits. Basically, in SSI form, every usage of a variable post-dominates its definition.

11Although there are exceptions like in the approach by Häubl and Mössenböck [2011].
12Sometimes called π-functions.

128 Related Work

T1

T2

int getOffset(int totalFS_0)

// final int add;

if (!this.addFrameSize)

σout=(totalFS_0)

(totalFS_1)=σin

// add = 0;

ϕout=(0)

(add)=ϕin

return this.offset + add;

(totalFS_2)=σin

// add = totalFS;

ϕout=(totalFS_2),

b0

b1

b2

b3

th
is

to
ta
lF
S_
0

ad
d

th
is

to
ta
lF
S_
2

The example from Figure 4.5 in SSI form. Note the σout in b0, which renames totalFS in
the successor branches b1 and b2. While SSI form is sufficient to keep totalFS live until the
end of b2, the liveness of this in b2 is not represented properly, due to single-entry-single-
exit region bypassing [Singer, 2006]. See Figure 4.6 for our representation, which captures this

information.

Figure 10.2: Example for a program in SSI form

See Figure 10.2 for an example. SSI form has several interesting properties. Most important
for register allocation, the interference graph is an interval graph (Definition 32) [Boissinot et
al., 2012]. As we have already mentioned above, interval graphs allow solving the k-colorable

subgraph problem in polynomial time.

Pereira and Palsberg [2008] exploited a further extension to SSI form, namely elementary pro-

grams, in their register allocator based on puzzle-solving. In addition to ϕ- and σ-functions, they
insert parallel copies of all live variables in-between two instructions of a basic block to rename
variables. That way not only definitions and usages are unique, but also liveness of a variable at
every program point.

Although we borrowed ideas from the SSI representation and elementary programs, our IR does
not adhere to their definitions. First, SSI form might not provide all the liveness information that
we need. A σ-function (and the corresponding ϕ-function) might be omitted for variables that
are defined before a split, but only used after the corresponding control-flow join. Singer [2006]
calls this property single-entry-single-exit region bypassing. See the variable this in Figure 10.2.
This defeats the purpose of our liveness representation, since we need exact liveness information
in every trace. Also, we avoid excessive renaming of variables for the sake of fewer instruction

10.5 Compile-time Trade-offs and Concurrent Compilation 129

redefinitions. Still, our global liveness model (Section 4.3.2) provides properties to make regis-
ter allocation simpler, including interval interference graphs (Corollary 3) and the independent
allocation of traces.

Lozano et al. [2012] introduced Linear Static Single Assignment (LSSA) form as an intermediate
representation for their constraint-based register allocation and instruction selection approach. The
in- and out-delimiters in LSSA form are related to our representation. In our approach, however,
we distinguish between livein/liveout and ϕin/ϕout sets. While the latter are a proper part of the
IR, global liveness information is stored off-site.

10.5 Compile-time Trade-offs and Concurrent Compilation

The trade-off between time spent for executing application code and time spent in the runtime
is an important design parameter for a virtual machine. For many virtual machines, such as
the early Java VMs, portability was the main focus. The deployed code, e.g. Java bytecode,
is executed by an interpreter. Although optimization techniques were proposed, for example
by [Ertl and Gregg, 2003], the execution speed is limited. Many modern virtual machines use
dynamic compilation to produce efficient native machine code. However, for such systems the
time constraints for the compiler are very strict.

Some virtual machines, e.g., the CACAOVM [Krall, 1998] or the JalapeñoVM [Arnold et al.,
2000], follow a compile-only approach. This means that there is no interpreter but a baseline

compiler. Since every method needs to be compiled before it is executed, this compiler must
be fast. The CACAO baseline compiler therefore performs optimizations only on a local scope.
Systems such as the JalapeñoVM [Arnold et al., 2000] or the HotSpot VM [Paleczny et al., 2001],
introduce adaptive compilation, i.e., dynamic compilation and optimization of the most relevant
parts based on the current execution profile. They use multiple optimization stages that are in-
voked for performance-critical parts only. While Jalapeño uses a baseline compiler, HotSpot VM
features an interpreter for the initial execution. Methods are usually selected for optimization
based on profiling information, for instance invocation and loop counters, or stack sampling.
Although, these systems can select thresholds to control the compile time, they can do so only
on a per-method basis. Our trace register allocation policy approach is orthogonal to that. For a
compilation that is considered hot by the virtual machine, we can make a fine-grained compile
time vs. peak performance decision.

Just-in-time compilers often apply concurrency techniques to improve compilation performance.
The HotSpot VM, for example, executes the compilers in background threads [Kotzmann et al.,
2008]. So does V8, Googles JavaScript engine [McIlroy, 2018]. The advantage of this approach is

130 Related Work

that the main thread can continue executing the program, for example, in an interpreter, while
a method is compiled. HotSpot also uses multiple compiler threads [Oracle Corporation, 2015].
The synchronization overhead is low. Compilation threads need to synchronize at the beginning
when taking a method from the compilation queue and at the end when installing the code. The
compiler itself can be single-threaded. Also, adding more compiler threads scales well, as long as
there are enough methods in the queue. Background compilation on multiple threads improves
throughput, i.e., the number of units compiled in a given time frame. However, it cannot improve
compilation latency, i.e., the time that is required to compile a given method. This is in contrast
to our parallel register allocation approach where multiple threads can reduce the time required
for compiling a single method. However, the scaling potential is bound by the number and the
dependencies of traces.

131

Chapter 11

Conclusion and Future Work

Register allocation is a task that almost every compiler writer has to deal with. Most register
allocation approaches fall into one of two categories, local register allocation or global register
allocation. Local register allocators solve the problem for a single basic block. The absence of
control flow guarantees liveness properties, most importantly the absence of lifetime holes, which
renders the problem easy to tackle. However, the narrow scope limits the opportunities for op-
timizations. Especially spill decisions and spill placement suffer from this constraint. Global
register allocators, on the other hand, deal with the whole method at once. Their omniscient
view allows them to optimize decisions in a way that improves the quality of the allocation. This
comes at a cost. First, these optimizations require a lot of contextual information which needs
to be computed and/or stored. Second, a global allocator has to deal with control flow, which in
turn complicates the maintenance of the liveness, which is the central piece of information the
allocator deals with. Consequently, global register allocators are slower in terms of compilation
time and more complex in terms of implementation, compared to a local approach. Usually, a
compiler creator needs to choose. Either use a fast and simple-to-implement local register alloca-
tor and accept suboptimal allocation quality, or implement a complex and slower global allocator
to achieve better allocation results. Existing approaches did not offer a middle ground.

We wanted to gain the advantages of both worlds. The simplicity of a local allocator and the
allocation quality of a global approach. In this thesis, we presented the trace register allocation

framework, a novel, flexible, non-global and extensible register allocation approach, that com-
bines the advantages of local and global allocators. The approach works in two phases. A global

pre- and post-processing phase that deals with control flow and liveness, and the actual allocation
phase. Instead of processing a whole method at once, the framework divides the control-flow
graph into traces, i.e., lists of sequentially executed basic blocks. The allocator then handles one
trace at a time. From the allocator’s perspective, a trace is no different than a basic block. There
is no need to deal with control flow and the liveness behaves nicely. Therefore, we can apply
simple algorithms used for local register allocation. This is possible due to the information the
framework collects in the pre-processing phase. Register allocation can be done independently

132 Conclusion and Future Work

for each trace. This flexibility offers novel opportunities. First, we can choose different alloca-
tion algorithms for each trace. This allows us to invest more time on the important traces of the
methods and reduce the time spent on insignificant parts. We can make this decision based on
the structure of the trace, its expected execution frequency, or due to the compile-time budget.
Second, since traces can be processed independently, they can be allocated in parallel by multiple
threads and thus, compilation latency can be reduced without a negative impact on allocation
quality.

Although the simplicity and flexibility of our trace register allocation approach is compelling, we
wanted to convince ourselves that the idea can be successfully applied in practice. To quantify
success, we posed four research questions: RQ1: Can trace register allocation produce the same
code quality as state-of-the-art global allocators, despite the limited scope of traces? RQ2: Can
the result be found in the same amount of time? Once these two questions were answered, we
could focus on exploiting the unique flexibility of trace register allocation. Thus we stated RQ3:
Can different allocation strategies help us to better control the trade-off between compile time
and peak performance? Finally, we posed RQ4: Can the compilation latency, i.e., the duration
required to compile a given method, be reduced by allocating traces concurrently by multiple
threads without impacting allocation quality?

All four research questions could be answered positively. We implemented trace register allo-
cation in GraalVM, a production-quality Java Virtual Machine, and compared it to the existing
register allocator of Graal, a global linear scan implementation. In Section 7.3 we showed that
for common benchmarks there is virtually no difference in terms of allocation quality (RQ1).
This result is remarkable, because it suggests that a global view on the problem is not neces-
sary to achieve good performance. We also showed that trace register allocation is at least as
fast as global linear scan, sometimes even slightly faster (RQ2, Section 7.4). Especially for large
compilation units, traces offer a compile time advantage over the existing allocator. Section 8.3
demonstrates how the careful selection of trace register allocation strategies allows us to grad-
ually reduce register allocation time from 0 to 40%, depending on how much peak performance
we are willing to sacrifice (ranging from 0–12%, on average) (RQ3). Finally, in Section 9.2, we
showed that register allocation can be parallelizedwithout a negative effect on peak performance.
With our early prototype we were able to reduce register allocation time by 30% when using 4

threads compared to a single allocation thread (RQ4).

In our research, we focused primarily on achieving better compile-time behavior than existing
global approaches. In terms of allocation quality, we were satisfied with reaching the same re-
sults as the global linear scan allocator. We think that exploring further improvements of the
allocation quality a highly interesting research direction. From our perspective, this poses the
following challenges. First, the question is whether there is even potential for improvement. We
believe that this question should be answered before investing resources on this topic. Ideally, the

133

experimentation platform, be it Graal or any other system, should be equipped with an allocator
that finds an optimal or near-optimal allocation. Only if this uncovers missed opportunities that
really make a difference, working towards improving the allocation quality of the trace register
allocator makes sense. The absence of this upper bound on allocation quality is one of the reasons
why we focused on compile time first. This brings us to the second challenge. One of the key
principles of trace register allocation is to reduce the allocation scope and to divide the problem
into smaller sub-problems that are easier to solve than the whole problem. While this simplifies
the problem we need to solve, it also reduces the amount of information that is available. In this
respect, a global allocator has an immanent advantage over the trace-based approach (whether
this advantage is exploited or not). We think that one of most the promising ideas to improve
allocation quality of a trace register allocator is to apply methods, that are too costly for the
global scope, to a single trace, or a set of important traces. We envision strategies that compute
the optimal allocation for a few traces, while the rest of the method uses the heuristic methods
that we described here.

The idea of trace-based processing does not end with register allocation. In fact, similar ideas
were already applied to instruction scheduling decades ago. We are confident that other opti-
mizations can also profit from the approaches we developed for trace register allocation. We
believe that our results lay the foundation for future research in the area of trace-based opti-
mizations, and in particular to trace register allocation. We are convinced that the flexibility of
our approach can push the boundaries of current register allocation and optimization techniques
and can have an impact on both, research and production compilers.

135

Appendix A

Additional Sources

136 Additional Sources

Listing 1 Fields of the TraceInterval Class
class TraceInterval {

/** The variable for this interval prior. */
final Variable operand;

/** The start of the range, inclusive. */
int intFrom = Integer.MAX_VALUE;

/** The end of the range, exclusive. */
int intTo = Integer.MAX_VALUE;

/** List of (use-positions, register-priorities) pairs, sorted by use-positions. */
int[] usePosListArray;

/** The register or spill slot assigned to this interval. */
AllocatableValue location;

/** The stack slot to which all splits of this interval are spilled if necessary. */
AllocatableValue spillSlot;

/* ... */
}

Listing 2 Java Source of StackSlot.getOffset()
class StackSlot {

int offset;
boolean addFrameSize;

int getOffset(int totalFrameSize) {
final int add;
if (!this.addFrameSize) {

add = 0;
} else {

add = totalFrameSize;
}
return this.offset + add;

}

/* ... */
}

137

Appendix B

Graal Backends

Thebasic parameters for register allocation in GraalVMdepends on three factors: the architecture
(processor), the virtual machine, and the operating system. We evaluated Graal on top of the
HotSpot VM, with AMD64 on Linux and SPARC on Solaris.

B.1 AMD64 on HotSpot

For AMD64 on HotSpot, the configuration is done by the AMD64HotSpotRegisterConfig class,
which is part of JVMCI [2014]. There are 14 general purpose registers, namely rax, rcx, rdx,
rbx, rbp, rsi, rdi, and r8–r14. The register rsp is used as the frame pointer, r15 is the thread
register which contains a pointer to the current thread storage (e.g., to access ThreadLoacals). If
compressed object pointers [Oracle Corporation, 2018] are enabled, r12 is used as the heap base

register. HotSpot uses 16 floating point registers, xmm0–xmm15. If the processor supports AVX512,
there are 16 additional registers xmm16–xmm31.

The calling convention for Java methods uses 6 general purpose registers (rsi, rdx, rcx, r8, r9,
rdi) for integers and reference types, and 8 floating point registers (xmm0–xmm7). Additional
parameters are passed via the stack. The rbp register is an implicit parameter, which contains
the frame pointer of the calling method. However, it can be reassigned, just like other parameter
registers.

Integer values are returned via rax, floating point values via xmm0. All allocatable registers are
caller-saved, i.e., they need to be spilled before every call.

138 Graal Backends

B.2 SPARC on HotSpot

The register set on SPARC is slightly more complex. There are 23 general purpose register, g1,
g4 and g5, o0–o5, l0–l7, and i0–i5. The frame pointer is in o6, g0 is always zero, and other
registers are system-reserved. The register g6 is the optional heap base register. SPARC has
separate registers for single precision (float, f8–31) and double precision (double, register pairs
d32_d33–d62_d63) floating point values.

Integer parameters are passed via i0–i5 (callee side), single precision floats via f0–f7, double
precision floating point values via d0_d1–d6_d7. The return register is either i0, f0, or d0_d1.

The SPARC architecture features a register window. At every procedure call the registers i0–i7
and l0–l7 are automatically stored in a predefined location on the stack. In addition, the registers
o0–o7 of the caller are mapped to the i0–i7 of the callee (that includes the parameter registers).
The compiler does not need to spill those registers across a call.

139

Appendix C

Hardware Environment

The experiments on AMD64 were performed on two kinds of machines, the Sun Server X3-2 and
Sun Server X5-2. The machines were running an Oracle Linux Server 6.8 operating system with
Linux Kernel version 4.1.12. For the experiments we disabled all frequency scaling modes (e.g.
scaling governors or Intel Turbo Boost).

C.1 Sun Server X3-2

The X3-2 cluster consists of 64 identical Sun Server X3-2 machines,1 equipped with two Intel
“Sandy Bridge” Xeon E5-2660 at 2.20GHz with 8 real cores per processor, and 256GB of DDR3-
1600 memory. Each core has 2 threads. The cache sizes are 32KB for L1, 265KB for L2 and 20MB
L3. Figure C.1 shows the hardware topology of the machine.

C.2 Sun Server X5-2

The X5-2 cluster consists of 36 identical Sun Server X5-2 machines,2 equipped with two Intel
“Haswell” Xeon E5-2699 v3 at 2.30GHz with 18 real cores per processor, and 384GB of main
memory. Each core features 2 threads. The cache sizes are 32KB for L1, 265KB for L2 and 45MB
L3. Figure C.2 shows the hardware topology of the machine.

1Sun Server X3-2: http://www.oracle.com/goto/x3-2/docs
2Sun Server X5-2: http://www.oracle.com/goto/x5-2/docs

http://www.oracle.com/goto/x3-2/docs
http://www.oracle.com/goto/x5-2/docs

140 Hardware Environment

Machine (252GB)

NUMANode P#0 (126GB)

Socket P#0

L3 (20MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#16

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

PU P#17

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

PU P#18

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

PU P#19

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

PU P#20

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#5

PU P#21

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#6

PU P#22

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#7

PU P#23

PCI 8086:1528

eth0

PCI 8086:1528

eth1

PCI 1000:0079

sda sdb

sdc

PCI 1a03:2000

PCI 8086:1d02

NUMANode P#1 (126GB)

Socket P#1

L3 (20MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#8

PU P#24

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#9

PU P#25

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#10

PU P#26

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#11

PU P#27

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#12

PU P#28

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#5

PU P#13

PU P#29

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#14

PU P#30

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#15

PU P#31

PCI 8086:1528

eth2

PCI 8086:1528

eth3

PCI 15b3:1011

ib0 ib1

mlx5_0

Host: bunch036

Indexes: physical

Date: Thu 03 May 2018 01:43:35 PDT

Topology of the X3-2 system collected with the lstopoa utility.

alstopo(1) — Linux man page: https://linux.die.net/man/1/lstopo

Figure C.1: Sun Server X3-2 topology

https://linux.die.net/man/1/lstopo

C.3 SPARC T7-2 Server 141

Machine (378GB)

NUMANode P#0 (189GB)

Socket P#0

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#36

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

PU P#37

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

PU P#38

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

PU P#39

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

PU P#40

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#5

PU P#41

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#6

PU P#42

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#7

PU P#43

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#8

PU P#44

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#9

PU P#45

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#10

PU P#46

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#11

PU P#47

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#19

PU P#12

PU P#48

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#13

PU P#49

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#14

PU P#50

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#15

PU P#51

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#26

PU P#16

PU P#52

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#17

PU P#53

PCI 15b3:1011

ib0 ib1

mlx5_0

PCI 1000:005d

sda

PCI 8086:1528

eth0

PCI 8086:1528

eth1

PCI 102b:0522

PCI 8086:8d02

sr0

NUMANode P#1 (189GB)

Socket P#1

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#18

PU P#54

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#19

PU P#55

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#20

PU P#56

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#21

PU P#57

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#22

PU P#58

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#23

PU P#59

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#24

PU P#60

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#25

PU P#61

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#26

PU P#62

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#27

PU P#63

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#28

PU P#64

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#29

PU P#65

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#19

PU P#30

PU P#66

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#31

PU P#67

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#32

PU P#68

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#33

PU P#69

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#26

PU P#34

PU P#70

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#35

PU P#71

PCI 8086:1528

eth2

PCI 8086:1528

eth3

Host: clutter029

Indexes: physical

Date: Thu 03 May 2018 01:27:19 PDT

Topology of the X5-2 system collected with lstopo.

Figure C.2: Sun Server X5-2 topology

C.3 SPARC T7-2 Server

For our SPARC/Solaris experiments we used a SPARC T7-2 Server3 running the Solaris 11.3 oper-
ating system.4 It is equipped with two SPARCM7 processors, which are SPARC V9 architectures
[Weaver and Germond, 1994]. A single M7 is running at 4.13 GHz and features 32 cores with 8
threads each. Consequently, the T7-2 machine has 64 cores and 512 threads, respectively. Each
core has 16KB L1 cache, 256KB of L2 per core pair, and 64MB per chip. Our system features
2×500GB of main memory, one for each processor. We use Solaris Kernel Zones5 to divide the
T7-2 into 8 isolated zones. Each zone can use 4 dedicated cores and has access to 96GB ofmemory.
The remaining cores and memory are left for the root zone.

3SPARC T7-2 Server: http://www.oracle.com/goto/t7-2/docs
4Solaris 11.3 https://www.oracle.com/solaris/oracle-solaris-11-3.html
5Solaris Kernel Zones: http://docs.oracle.com/cd/E36784_01/pdf/E36848.pdf

http://www.oracle.com/goto/t7-2/docs
https://www.oracle.com/solaris/oracle-solaris-11-3.html
http://docs.oracle.com/cd/E36784_01/pdf/E36848.pdf

142 List of Figures

List of Figures

1.1 The allocateArray() example code snippet . 2
1.2 Typical memory hierarchy of a computer . 3
1.3 Lifetime intervals and interference graph for allocateArray() 4
1.4 Chaitin’s allocator . 7
1.5 Graph coloring of allocArray using three registers 7
1.6 Graph coloring of allocArray using two registers (interference before spilling) 8
1.7 Graph coloring of allocArray using two registers (interference after spilling) . 9
1.8 Graph coloring of allocArray using two colors (simplify) 10
1.9 Graph coloring of allocArray using two colors (select) 11
1.10 Diamond-shaped interference graph diamond which is 2-colorable 12
1.11 Briggs’ optimistic allocator . 12
1.12 Poletto and Sarkar-style linear scan allocation example with two registers . . . 13
1.13 Interval-splitting linear scan allocation of allocateArray with two registers . . 14
1.14 Graph coloring vs. linear scan of allocateArray with two registers 15
1.15 Trace register allocation of allocArray() with 2 registers 18

2.1 Critical edge splitting . 25
2.2 The allocateArray() sample code snippet (without critical edges) 26
2.3 Dominator tree for allocateArray() . 27
2.4 Example for an inevitable lifetime hole . 30
2.5 Variable renaming in Static Single Assignment form 31
2.6 ϕ-function in Static Single Assignment form . 31
2.7 Parallel ϕ-copies . 32

3.1 The GraalVM ecosystem . 36
3.2 Tiered-compilation on the JVM . 37
3.3 Graal compiler pipeline . 40
3.4 Graal High-level Intermediate Representation (HIR) 41
3.5 Graal Low-level Intermediate Representation (LIR) 42

4.1 Trace register allocation overview . 44
4.2 Trace-building example for allocateArray . 46

List of Figures 143

4.3 Termination of the unidirectional trace building algorithm 48
4.4 Non-sequential forward edges are critical edge 52
4.5 Traces without global liveness information . 54
4.6 Traces with global liveness information . 55
4.7 Representation of liveness . 56
4.8 Representation of the locin/locout sets . 57
4.9 Inserted move instructions for global data-flow resolution 58

5.1 Trace-based linear scan . 62
5.2 Two-address instructions . 63
5.3 Link traces . 66
5.4 Example of a trivial trace allocation . 67
5.5 ϕ-resolution in the Bottom-Up allocator . 74
5.6 Bottom-Up allocation example . 75

6.1 Inter-trace hints example (getOffset) . 78
6.2 Spilling in side-traces of a loop . 80

7.1 Composite results for DaCapo and Scala-DaCapo on AMD64 87
7.2 Peak performance of individual benchmarks from (Scala-)DaCapo on AMD64 . 88
7.3 Composite peak performance results for DaCapo and Scala-DaCapo on SPARC 89
7.4 Peak performance results for SPECjvm2008 on AMD64 90
7.5 Peak performance results for SPECjbb2015 on AMD64 91
7.6 Register allocation time of individual benchmarks from (Scala-)DaCapo 92
7.7 Register allocation time vs. LIR instructions for DaCapo and Scala-DaCapo . . 93
7.8 Register allocation time vs. LIR instructions for (Scala-)DaCapo (small methods) 94
7.9 Share of register allocation time in the overall compile time for (Scala-)DaCapo 95
7.10 Influence of inter-trace hints and spill information sharing on peak performance 95
7.11 Peak performance impact of the stack interval optimization on DaCapo 96
7.12 Unidirectional vs. bidirectional trace builder w.r.t. peak performance of DaCapo 97

8.1 Peak performance and register allocation time of various allocation policies . . 104
8.2 Distribution of the allocation strategy per policy 105

9.1 Trace dependency graph for PrintStream.write() 111
9.2 Trace allocation scheduling for PrintStream.write() 111
9.3 Concurrent register allocation time . 113
9.4 Benchmark execution time for concurrent register allocation 114

10.1 Examples for chordal and non-chordal graphs . 119
10.2 Example for a program in SSI form . 128

C.1 Sun Server X3-2 topology . 140

144 List of Tables

C.2 Sun Server X5-2 topology . 141

List of Algorithms

1 Pseudocode for the Unidirectional Trace Builder 47
2 Pseudocode for the Bidirectional Trace Builder 49
3 Trivial Trace Allocation Strategy . 68
4 Bottom-up allocator: allocateTrace . 69
5 Bottom-up allocator: allocateInstruction . 70
6 Bottom-up allocator: allocFixedRegister . 70
7 Bottom-up allocator: allocRegister . 71
8 Bottom-up allocator: allocStackOrRegister . 71
9 Bottom-up allocator: findFreeRegister . 72
10 Bottom-up allocator: findRegisterToSpill . 72
11 Bottom-up allocator: evacuateRegisterAndSpill 72
12 Bottom-up allocator: resolvePhis . 72

List of Tables

8.1 Experimental results for trace register allocation policies 108

Index

HotSpot VM, 36

abstract-syntax-tree, see AST
ahead-of-time, see AOT
alive, see liveness
anti-dependency, 58
AOT, 35
assumptions, 37
AST, 35

back edge, 27
back end, 40
basic block, 24
bidirectional trace builder, 48
bytecode, 36
bytecode parser, 39

C1, see client compiler
C2, see server compiler
CISC, 87
class file, 36
client compiler, 37
coalescing, 63
compilation unit, 24
constant, 23
control-flow graph, 25
critical edge, 25

deoptimization, 37
dominance order, 27
dominator, 26

edge, 24
entry block, 25

front end, 40

general loop, 27
global data-flow resolution, 57
global liveness information, 54
GraalVM, 35

high-level intermediate representation, see
HIR

hint, 63
HIR, 39
hot method, 37

immediate dominator, 26
instruction, 24
instruction path, 28
inter-trace edge, 45
interference, 29
interference graph, 29
intra-trace edge, 45

Java programming language, 36
Java Virtual Machine, see JVM
Java-Level JVM Compiler Interface, see

JVMCI
JVM, 36
JVMCI, 38

lifetime hole, 29
lifetime interval, see liveness, 29
LIR, 40
LIR kind, 41
live range, 29
live variable, see liveness

146 INDEX

liveness, 29
location, 24
loop, 27

end, 27
entry, 28
exit, 27
header, 27

low-level intermediate representation, see
LIR

meta-circularity, 38

partial evaluation, 35
path, 25
peak performance, 38
predecessor, 24
profile, see profiling information
profile pollution, 39
profiling information, 37
program points, 24

reachability, 25
reducible graph, 27
register, 23
register allocation, 4
reverse postorder, 28
RISC, 87

server compiler, 37
SSA form, 30

dominance property, 31

ϕ-function, 30
stack slot, 23
static single assignment form, see SSA

form
steady state, 38
strict dominator, 26
Substrate VM, 35
successor, 25
SVM, see Substrate VM

temporary, see variable
tiered compilation, 37
trace, 44

entries, 45
exits, 45
greedy, 50
head, 45
length, 45
partition, 45
trivial, see trivial trace

trivial trace, 66

unidirectional trace builder, 45

value, 24
variable, 23

warmup, 38
write-after-read dependency, see

anti-dependencies

147

Publications

Eisl, Josef (2015). “Trace Register Allocation”. In: SPLASH Companion 2015. ACM. doi: 10.1145/
2814189.2814199. (SPLASH 2015 Doctoral Symposium Vision Paper)

Eisl, Josef (2018a). “Divide and Allocate: The Trace Register Allocation Framework”. In: CGO’18.
ACM. preprint: http://ssw.jku.at/General/Staff/Eisl/papers/CGO_SRC2018.pdf
(Peer Reviewed Extended Abstract, Winner CGO ACM Student Research Competition Graduate

Category)

Eisl, Josef (2018b). “Divide and Allocate: The Trace Register Allocation Framework (Extended
Grand Finals Version)”. In: SRC’18. ACM. url: https://src.acm.org/binaries/content/
assets/src/2018/josef-eisl.pdf. (Submitted to the ACM Student Research Competition

Grand Finals 2018)

Eisl, Josef, Matthias Grimmer, Doug Simon, Thomas Würthinger, and Hanspeter Mössenböck
(2016). “Trace-based Register Allocation in a JIT Compiler”. In: PPPJ’16. ACM. doi: 10.1145/
2972206.2972211.

Eisl, Josef, David Leopoldseder, and Hanspeter Mössenböck (2018). “Parallel Trace Register Allo-
cation”. In: ManLang 2018. ACM. doi: 10.1145/3237009.3237010.

Eisl, Josef, Stefan Marr, Thomas Würthinger, and Hanspeter Mössenböck (2017). “Trace Register
Allocation Policies: Compile-time vs. Performance Trade-offs”. In: ManLang 2017. ACM. doi:
10.1145/3132190.3132209.

Leopoldseder, David, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon, and Hanspeter
Mössenböck (2018). “Dominance-based Duplication Simulation (DBDS) – Code Duplication
to Enable Compiler Optimizations”. In: CGO’18. ACM. doi: 10.1145/3168811. (best paper

finalist)

https://doi.org/10.1145/2814189.2814199
https://doi.org/10.1145/2814189.2814199
http://ssw.jku.at/General/Staff/Eisl/papers/CGO_SRC2018.pdf
https://src.acm.org/binaries/content/assets/src/2018/josef-eisl.pdf
https://src.acm.org/binaries/content/assets/src/2018/josef-eisl.pdf
https://doi.org/10.1145/2972206.2972211
https://doi.org/10.1145/2972206.2972211
https://doi.org/10.1145/3237009.3237010
https://doi.org/10.1145/3132190.3132209
https://doi.org/10.1145/3168811

149

Bibliography

Aho, Alfred V., John E. Hopcroft, and Jeffrey D. Ullman (1974). The Design and Analysis of Com-

puter Algorithms. Addison-Wesley. isbn: 9780201000290.

Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman (2006). Compilers: Princi-

ples, Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc. isbn:
0321486811. url: http://dragonbook.stanford.edu/.

Ananian, C. Scott (1999). “The Static Single Information Form”. MA thesis. Princeton University.
url: http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-801.pdf.

Appel, Andrew W. (1998). SSA is Functional Programming.

Appel, AndrewW. and Jens Palsberg (2003).Modern Compiler Implementation in Java. 2nd. Cam-
bridge University Press. isbn: 052182060X.

Arnold, Matthew, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney (2000). “Adap-
tive Optimization in the Jalapeño JVM”. In: OOPSLA ’00. ACM. doi: 10.1145/353171.353175.

Bala, Vasanth, Evelyn Duesterwald, and Sanjeev Banerjia (2000). “Dynamo: A Transparent Dy-
namic Optimization System”. In: PLDI’00. ACM. doi: 10.1145/349299.349303.

Barik, Rajkishore, Jisheng Zhao, and Vivek Sarkar (2013). “A Decoupled non-SSA Global Register
Allocation Using Bipartite Liveness Graphs”. In: TACO’13. doi: 10.1145/2544101.

Barrett, Edd, Carl Friedrich Bolz-Tereick, Rebecca Killick, SarahMount, and Laurence Tratt (2017).
“Virtual Machine Warmup Blows Hot and Cold”. In: Proc. ACM Program. Lang. doi: 10.1145/
3133876.

Belady, L. A. (1966). “A study of replacement algorithms for a virtual-storage computer”. In: IBM
Systems Journal. doi: 10.1147/sj.52.0078.

Bergner, Peter, Peter Dahl, David Engebretsen, and Matthew O’Keefe (1997). “Spill Code Mini-
mization via Interference Region Spilling”. In: PLDI’97. ACM. doi: 10.1145/258915.258941.

http://dragonbook.stanford.edu/
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-801.pdf
https://doi.org/10.1145/353171.353175
https://doi.org/10.1145/349299.349303
https://doi.org/10.1145/2544101
https://doi.org/10.1145/3133876
https://doi.org/10.1145/3133876
https://doi.org/10.1147/sj.52.0078
https://doi.org/10.1145/258915.258941

150 Bibliography

Blackburn, S. M., R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan, D.
Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A.
Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann (2006). “The
DaCapo Benchmarks: Java Benchmarking Development and Analysis”. In: OOPSLA’06. ACM
Press. doi: 10.1145/1167473.1167488.

Boissinot, Benoit, Philip Brisk, Alain Darte, and Fabrice Rastello (2012). “SSI Properties Revisited”.
In: ACM Trans. Embed. Comput. Syst. doi: 10.1145/2180887.2180898.

Bolz, Carl Friedrich, Antonio Cuni,Maciej Fijalkowski, andArmin Rigo (2009). “Tracing themeta-
level”. In: ICOOOLPS’09. doi: 10.1145/1565824.1565827.

Bouchez, Florent (2009). “A Study of Spilling and Coalescing in Register Allocation as Two Sep-
arate Phases”. Theses. Ecole normale supérieure de lyon - ENS LYON. url: https://tel.
archives-ouvertes.fr/tel-00403504.

Bouchez, Florent, Alain Darte, Christophe Guillon, and Fabrice Rastello (2005). Register allocation
and spill complexity under SSA. Tech. rep. École Normale Supérieure de Lyon.

Brandis, Marc M. and Hanspeter Mössenböck (1994). “Single-pass Generation of Static Single-
assignment Form for Structured Languages”. In: TOPLAS’94. doi: 10.1145/197320.197331.

Braun, Matthias, Sebastian Buchwald, Sebastian Hack, Roland Leißa, Christoph Mallon, and An-
dreas Zwinkau (2013). “Simple and Efficient Construction of Static Single Assignment Form”.
In: CC 2013. Springer-Verlag. doi: 10.1007/978-3-642-37051-9_6.

Braun, Matthias and Sebastian Hack (2009). “Register Spilling and Live-Range Splitting for SSA-
Form Programs”. In: CC 2009. Springer-Verlag. doi: 10.1007/978-3-642-00722-4_13.

Briggs, Preston (1992). “Register Allocation via Graph Coloring”. PhD thesis. Rice University.

Briggs, Preston, Keith D. Cooper, and Linda Torczon (1994). “Improvements to graph coloring
register allocation”. In: TOPLAS’94. doi: 10.1145/177492.177575.

Brisk, Philip (2006). “Advances in Static Single Assignment Form and Register Allocation”. PhD
thesis.

Brisk, Philip, Foad Dabiri, Jamie Macbeth, and Majid Sarrafzadeh (2005). “Polynomial time graph
coloring register allocation”. In:

Brisk, Philip and Majid Sarrafzadeh (2007). “Interference graphs for procedures in static single
information form are interval graphs”. In: SCOPES’07. ACM. doi: 10.1145/1269843.1269858.

Buchwald, Sebastian, Manuel Mohr, and Ignaz Rutter (2015). “Optimal Shuffle Code with Permu-
tation Instructions”. In: Springer International Publishing. doi: 10.1007/978-3-319-21840-
3_44.

https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/2180887.2180898
https://doi.org/10.1145/1565824.1565827
https://tel.archives-ouvertes.fr/tel-00403504
https://tel.archives-ouvertes.fr/tel-00403504
https://doi.org/10.1145/197320.197331
https://doi.org/10.1007/978-3-642-37051-9_6
https://doi.org/10.1007/978-3-642-00722-4_13
https://doi.org/10.1145/177492.177575
https://doi.org/10.1145/1269843.1269858
https://doi.org/10.1007/978-3-319-21840-3_44
https://doi.org/10.1007/978-3-319-21840-3_44

Bibliography 151

Callahan, David and Brian Koblenz (1991). “Register Allocation via Hierarchical Graph Coloring”.
In: SIGPLAN Not. doi: 10.1145/113446.113462.

Cavazos, John, J. Eliot B. Moss, and Michael F. P. O’Boyle (2006). “Hybrid Optimizations: Which
Optimization Algorithm to Use?” In: CC 2000. Springer Berlin Heidelberg. doi: 10 . 1007 /
11688839_12.

Chaitin, Gregory J. (1982). “Register Allocation & Spilling via Graph Coloring”. In: SIGPLAN Not.

doi: 10.1145/872726.806984.

Chaitin, Gregory J., Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins, and
Peter W. Markstein (1981). “Register Allocation via Coloring”. In: Computer languages. doi:
10.1016/0096-0551(81)90048-5.

Chen, Wei-Yu, Guei-Yuan Lueh, Pratik Ashar, Kaiyu Chen, and Buqi Cheng (2018). “Register Al-
location for Intel Processor Graphics”. In: CGO’18. ACM. doi: 10.1145/3168806.

Chow, Fred C. and John L. Hennessy (1990). “The priority-based coloring approach to register
allocation”. In: ACM Trans. Program. Lang. Syst. doi: 10.1145/88616.88621.

Clang (2018). clang: a C language family frontend for LLVM. url: https://clang.llvm.org/
(visited on 01/12/2018).

Click, Cliff and Michael Paleczny (1995). “A simple graph-based intermediate representation”. In:
IR’95. ACM. doi: 10.1145/202529.202534.

Click, Clifford Noel (1995). “Combining Analyses, Combining Optimizations”. PhD thesis. Rice
University.

Cook, Stephen A. (1971). “The complexity of theorem-proving procedures”. In: STOC’71. ACM.
doi: 10.1145/800157.805047.

Cooper, Keith and Linda Torczon (2011). Engineering a compiler. 2nd ed. Elsevier. isbn:
9780120884780.

Cytron, Ron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck (1991).
“Efficiently Computing Static Single Assignment Form and the Control Dependence Graph”.
In: TOPLAS’91. doi: 10.1145/115372.115320.

Deutsch, L. Peter and Allan M. Schiffman (1984). “Efficient Implementation of the Smalltalk-80
System”. In: POPL ’84. ACM. doi: 10.1145/800017.800542.

Duboscq, Gilles (2016). “Combining Speculative Optimizations with Flexible Scheduling of Side-
effects”. PhD thesis. Johannes Kepler University Linz. url: http://resolver.obvsg.at/urn:
nbn:at:at-ubl:1-9708.

Duboscq, Gilles, Thomas Würthinger, and Hanspeter Mössenböck (2014). “Speculation without
regret”. In: PPPJ’14. doi: 10.1145/2647508.2647521.

https://doi.org/10.1145/113446.113462
https://doi.org/10.1007/11688839_12
https://doi.org/10.1007/11688839_12
https://doi.org/10.1145/872726.806984
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1145/3168806
https://doi.org/10.1145/88616.88621
https://clang.llvm.org/
https://doi.org/10.1145/202529.202534
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/800017.800542
http://resolver.obvsg.at/urn:nbn:at:at-ubl:1-9708
http://resolver.obvsg.at/urn:nbn:at:at-ubl:1-9708
https://doi.org/10.1145/2647508.2647521

152 Bibliography

Duboscq, Gilles, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and
HanspeterMössenböck (2013). “An Intermediate Representation for Speculative Optimizations
in a Dynamic Compiler”. In: VMIL’13. doi: 10.1145/2542142.2542143.

Ebner, Dietmar, Bernhard Scholz, and Andreas Krall (2009). “Progressive Spill Code Placement”.
In: CASES ’09. ACM. doi: 10.1145/1629395.1629408.

Eisl, Josef (2015). “Trace Register Allocation”. In: SPLASH Companion 2015. ACM. doi: 10.1145/
2814189.2814199. (SPLASH 2015 Doctoral Symposium Vision Paper)

Eisl, Josef (2018a). “Divide and Allocate: The Trace Register Allocation Framework”. In: CGO’18.
ACM. preprint: http://ssw.jku.at/General/Staff/Eisl/papers/CGO_SRC2018.pdf
(Peer Reviewed Extended Abstract, Winner CGO ACM Student Research Competition Graduate

Category)

Eisl, Josef (2018b). “Divide and Allocate: The Trace Register Allocation Framework (Extended
Grand Finals Version)”. In: SRC’18. ACM. url: https://src.acm.org/binaries/content/
assets/src/2018/josef-eisl.pdf. (Submitted to the ACM Student Research Competition

Grand Finals 2018)

Eisl, Josef, Matthias Grimmer, Doug Simon, Thomas Würthinger, and Hanspeter Mössenböck
(2016). “Trace-based Register Allocation in a JIT Compiler”. In: PPPJ’16. ACM. doi: 10.1145/
2972206.2972211.

Eisl, Josef, David Leopoldseder, and Hanspeter Mössenböck (2018). “Parallel Trace Register Allo-
cation”. In: ManLang 2018. ACM. doi: 10.1145/3237009.3237010.

Eisl, Josef, Stefan Marr, Thomas Würthinger, and Hanspeter Mössenböck (2017). “Trace Register
Allocation Policies: Compile-time vs. Performance Trade-offs”. In: ManLang 2017. ACM. doi:
10.1145/3132190.3132209.

Ellis, John R. (1985). “Bulldog: A Compiler for VLIW Architectures”. PhD thesis. Yale University.

Ertl, M. Anton and David Gregg (2003). “The Structure and Performance of Efficient Interpreters”.
In: The Journal of Instruction-Level Parallelism. url: http://www.complang.tuwien.ac.at/
papers/ertl%26gregg03jilp.ps.gz.

Farach-Colton,Martin andVincenzo Liberatore (2000). “On Local Register Allocation”. In: Journal
of Algorithms. doi: 10.1006/jagm.2000.1095.

Fisher, Joseph Allen (1981). “Trace Scheduling: A Technique for Global Microcode Compaction”.
In: Computers, IEEE Transactions on Computers. doi: 10.1109/TC.1981.1675827.

Flajolet, Philippe and Robert Sedgewick (2009). Analytic Combinatorics. Cambridge University
Press.

https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1145/1629395.1629408
https://doi.org/10.1145/2814189.2814199
https://doi.org/10.1145/2814189.2814199
http://ssw.jku.at/General/Staff/Eisl/papers/CGO_SRC2018.pdf
https://src.acm.org/binaries/content/assets/src/2018/josef-eisl.pdf
https://src.acm.org/binaries/content/assets/src/2018/josef-eisl.pdf
https://doi.org/10.1145/2972206.2972211
https://doi.org/10.1145/2972206.2972211
https://doi.org/10.1145/3237009.3237010
https://doi.org/10.1145/3132190.3132209
http://www.complang.tuwien.ac.at/papers/ertl%26gregg03jilp.ps.gz
http://www.complang.tuwien.ac.at/papers/ertl%26gregg03jilp.ps.gz
https://doi.org/10.1006/jagm.2000.1095
https://doi.org/10.1109/TC.1981.1675827

Bibliography 153

Freudenberger, Stefan M. and John C. Ruttenberg (1992). “Phase Ordering of Register Allocation
and Instruction Scheduling”. In: Workshops in Computing. Springer London. doi: 10.1007/
978-1-4471-3501-2_9.

Gal, Andreas, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R.
Haghighat, Blake Kaplan, Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruderman,
Edwin W. Smith, Rick Reitmaier, Michael Bebenita, Mason Chang, and Michael Franz (2009).
“Trace-based Just-in-Time Type Specialization for Dynamic Languages”. In: PLDI’09. ACM.
doi: 10.1145/1542476.1542528.

Gal, Andreas, ChristianW. Probst, andMichael Franz (2006). “HotpathVM: An Effective JIT Com-
piler for Resource-constrained Devices”. In: VEE’06. ACM. doi: 10.1145/1134760.1134780.

Gantt, Henry Laurence (1913). Work, Wages, and Profits. Second Edition. The Engineering Maga-
zine Co.

Garret, Charles D, Jeffrey Dean, David Grove, and Craig Chambers (1994). Measurement and Ap-

plication of Dynamic Receiver Class Distributions. University of Washington.

Gavril, Fǎnicǎ (1974). “The intersection graphs of subtrees in trees are exactly the chordal graphs”.
In: Journal of Combinatorial Theory, Series B. doi: 10.1016/0095-8956(74)90094-X.

GCC (2017). Integrated Register Allocator in GCC. url: https://github.com/gcc-mirror/gcc/
blob/216fc1bb7d9184/gcc/ira.c.

George, Lal and Andrew W. Appel (1996). “Iterated register coalescing”. In: TOPLAS’96. doi: 10.
1145/229542.229546.

Goodwin, David W. and Kent D. Wilken (1996). “Optimal and Near-optimal Global Register Allo-
cation Using 0–1 Integer Programming”. In: Software: Practice and Experience. doi: 10.1002/
(SICI)1097-024X(199608)26:8<929::AID-SPE40>3.0.CO;2-T.

Gosling, James, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley (2015). The Java Language

Specification: Java SE 8 Edition. url: https://docs.oracle.com/javase/specs/jls/se8/
html/.

Guo, Jia, Maria Jesus Garzaran, and David Padua (2003). “The Power of Belady’s Algorithm in
Register Allocation for Long Basic Blocks”. In: LCPC’03. doi: 10.1007/978-3-540-24644-
2_24.

Hack, Sebastian (2005). Interference Graphs of Programs in SSA-form. Tech. rep. Universität Karl-
sruhe. url: http://compilers.cs.uni-saarland.de/papers/ifg_ssa.pdf.

Hack, Sebastian (2007). “Register Allocation for Programs in SSA Form”. PhD thesis. Univer-
sität Karlsruhe. isbn: 978-3-86644-180-4. url: http://digbib.ubka.uni-karlsruhe.de/
volltexte/documents/6532.

https://doi.org/10.1007/978-1-4471-3501-2_9
https://doi.org/10.1007/978-1-4471-3501-2_9
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1145/1134760.1134780
https://doi.org/10.1016/0095-8956(74)90094-X
https://github.com/gcc-mirror/gcc/blob/216fc1bb7d9184/gcc/ira.c
https://github.com/gcc-mirror/gcc/blob/216fc1bb7d9184/gcc/ira.c
https://doi.org/10.1145/229542.229546
https://doi.org/10.1145/229542.229546
https://doi.org/10.1002/(SICI)1097-024X(199608)26:8<929::AID-SPE40>3.0.CO;2-T
https://doi.org/10.1002/(SICI)1097-024X(199608)26:8<929::AID-SPE40>3.0.CO;2-T
https://docs.oracle.com/javase/specs/jls/se8/html/
https://docs.oracle.com/javase/specs/jls/se8/html/
https://doi.org/10.1007/978-3-540-24644-2_24
https://doi.org/10.1007/978-3-540-24644-2_24
http://compilers.cs.uni-saarland.de/papers/ifg_ssa.pdf
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/6532
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/6532

154 Bibliography

Hack, Sebastian, Daniel Grund, and Gerhard Goos (2006). “Register Allocation for Programs in
SSA-Form”. In: CC’06. Springer Berlin Heidelberg. doi: 10.1007/11688839_20.

Hames, Lang and Bernhard Scholz (2006). “Nearly Optimal Register Allocation with PBQP”. In:
Springer Berlin Heidelberg. doi: 10.1007/11860990_21.

Hank, R.E., W.W. Hwu, and B.R. Rau (1995). “Region-based compilation: an introduction and
motivation”. In: MICRO’95. IEEE Comput. Soc. Press. doi: 10.1109/micro.1995.476823.

Häubl, Christian and Hanspeter Mössenböck (2011). “Trace-based compilation for the Java
HotSpot virtual machine”. In: PPPJ’11. doi: 10.1145/2093157.2093176.

Hennessy, John L. andDavid A. Patterson (2003).Computer Architecture: AQuantitative Approach.
3rd ed. Morgan Kaufmann Publishers Inc. isbn: 1558607242.

Hölzle, Urs, Craig Chambers, and David Ungar (1992). “Debugging Optimized Code with Dy-
namic Deoptimization”. In: SIGPLAN Not. doi: 10.1145/143103.143114.

Horwitz, L. P., R. M. Karp, R. E. Miller, and S. Winograd (1966). “Index Register Allocation”. In: J.
ACM. doi: 10.1145/321312.321317.

Hwu,Wen -MeiW., Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J. Warter, Roger A.
Bringmann, Roland G. Ouellette, Richard E. Hank, Tokuzo Kiyohara, Grant E. Haab, and et al.
(1993). “The superblock: An effective technique for VLIW and superscalar compilation”. In:The

Journal of Supercomputing. doi: 10.1007/bf01205185.

Intel (2013a). Intel® 64 and IA-32 Architectures Software Developer’s Manual — Volume 1 Ba-

sic Architecture. url: http : / / www . intel . com / content / www / us / en / processors /
architectures-software-developer-manuals.html.

Intel (2013b). Intel® 64 and IA-32 Architectures Software Developer’s Manual — Volume 2 Instruc-

tion Set Reference. url: http : / / www . intel . com / content / www / us / en / processors /
architectures-software-developer-manuals.html.

JVMCI (2014). JEP 243: Java-Level JVM Compiler Interface. url: http://openjdk.java.net/
jeps/243 (visited on 05/06/2016).

Karp, Richard M (1972). Reducibility among Combinatorial Problems. Springer.

Koes, David Ryan and Seth Copen Goldstein (2006a). A better global progressive register allocator.
url: http://www.cs.cmu.edu/~dkoes/research/lctes06_tracealloc.pdf. (Poster at

LCTES 2006)

Koes, David Ryan and Seth Copen Goldstein (2006b). “A global progressive register allocator”.
In: PLDI’06. doi: 10.1145/1133981.1134006.

Koes, David and Seth Copen Goldstein (2005). “A Progressive Register Allocator for Irregular
Architectures”. In: CGO ’05. IEEE Computer Society. doi: 10.1109/CGO.2005.4.

https://doi.org/10.1007/11688839_20
https://doi.org/10.1007/11860990_21
https://doi.org/10.1109/micro.1995.476823
https://doi.org/10.1145/2093157.2093176
https://doi.org/10.1145/143103.143114
https://doi.org/10.1145/321312.321317
https://doi.org/10.1007/bf01205185
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://openjdk.java.net/jeps/243
http://openjdk.java.net/jeps/243
http://www.cs.cmu.edu/~dkoes/research/lctes06_tracealloc.pdf
https://doi.org/10.1145/1133981.1134006
https://doi.org/10.1109/CGO.2005.4

Bibliography 155

Kotzmann, Thomas, Christian Wimmer, Hanspeter Mössenböck, Thomas Rodriguez, Kenneth
Russell, and David Cox (2008). “Design of the Java HotSpot™ client compiler for Java 6”. In:
TACO’08. doi: 10.1145/1369396.1370017.

Krall, Andreas (1998). “Efficient JavaVM Just-in-Time Compilation”. In: PACT’98. IEEE Computer
Society. doi: 10.1109/PACT.1998.727250.

Krintz, Chandra J., David Grove, Vivek Sarkar, and Brad Calder (2001). “Reducing the overhead
of dynamic compilation”. In: Software: Practice and Experience. doi: 10.1002/spe.384.

Lattner, Chris and Vikram Adve (2004). “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation”. In: CGO’04. IEEE Computer Society. doi: 10.1109/CGO.2004.
1281665.

Lee, Jonathan K., Jens Palsberg, and Fernando Magno Quintão Pereira (2007). “Aliased Register
Allocation for Straight-Line Programs Is NP-Complete”. In: doi: 10.1007/978-3-540-73420-
8_59.

Lekkeikerker, C. and J. Boland (1962). “Representation of a finite graph by a set of intervals on
the real line”. In: Fundamenta Mathematicae. url: http://eudml.org/doc/213681.

Lengauer, Philipp, Verena Bitto, Stefan Fitzek, Markus Weninger, and Hanspeter Mössenböck
(2016). “Efficient Memory Traces with Full Pointer Information”. In: PPPJ ’16. ACM. doi: 10.
1145/2972206.2972220.

Leopoldseder, David, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon, and Hanspeter
Mössenböck (2018). “Dominance-based Duplication Simulation (DBDS) – Code Duplication
to Enable Compiler Optimizations”. In: CGO’18. ACM. doi: 10.1145/3168811. (best paper

finalist)

Lindholm, T., F. Yellin, G. Bracha, and A. Buckley (2015). The Java Virtual Machine Specification:

Java SE 8 Edition. url: http://docs.oracle.com/javase/specs/jvms/se8/html/.

Lowney, P. Geoffrey, Stefan M. Freudenberger, Thomas J. Karzes, W. D. Lichtenstein, Robert P.
Nix, John S. O’donnell, and John C. Ruttenberg (1993). “The Multiflow Trace Scheduling Com-
piler”. In: Journal of Supercomputing. doi: 10.1007/BF01205182.

Lozano, Roberto Castañeda, Mats Carlsson, Frej Drejhammar, and Christian Schulte (2012).
“Constraint-Based Register Allocation and Instruction Scheduling”. In: Principles and Practice

of Constraint Programming. doi: 10.1007/978-3-642-33558-7_54.

Lozano, Roberto Castañeda, Mats Carlsson, Gabriel Hjort Blindell, and Christian Schulte (2014).
“Combinatorial spill code optimization and ultimate coalescing”. In: LCTES’14. ACM. doi: 10.
1145/2597809.2597815.

https://doi.org/10.1145/1369396.1370017
https://doi.org/10.1109/PACT.1998.727250
https://doi.org/10.1002/spe.384
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/978-3-540-73420-8_59
https://doi.org/10.1007/978-3-540-73420-8_59
http://eudml.org/doc/213681
https://doi.org/10.1145/2972206.2972220
https://doi.org/10.1145/2972206.2972220
https://doi.org/10.1145/3168811
http://docs.oracle.com/javase/specs/jvms/se8/html/
https://doi.org/10.1007/BF01205182
https://doi.org/10.1007/978-3-642-33558-7_54
https://doi.org/10.1145/2597809.2597815
https://doi.org/10.1145/2597809.2597815

156 Bibliography

Lueh, Guei-Yuan, Thomas Gross, and Ali-Reza Adl-Tabatabai (1997). “Global register allocation
based on graph fusion”. In: Lecture Notes in Computer Science. Springer Berlin Heidelberg. doi:
10.1007/BFb0017257.

Mayoh, B., E. Tyugu, and J. Penjam (2013).Constraint Programming.Nato ASI Subseries F: Springer
Berlin Heidelberg. isbn: 9783642859830.

McIlroy, Ross (2018). V8 JavaScript Engine: Background compilation. url: https://v8project.
blogspot.co.at/2018/03/background-compilation.html (visited on 03/28/2018).

Mohr, M., A. Grudnitsky, T. Modschiedler, L. Bauer, S. Hack, and J. Henkel (2013). “Hardware
acceleration for programs in SSA form”. In: doi: 10.1109/CASES.2013.6662518.

OpenJDK (2017a). Chaitin Allocator in C2. url: http://hg.openjdk.java.net/jdk/hs/file/
5caa1d5f74c1/src/hotspot/share/opto/chaitin.hpp.

OpenJDK (2017b). Linear Scan Register Allocator in C1. url: http://hg.openjdk.java.net/
jdk/hs/file/5caa1d5f74c1/src/hotspot/share/c1/c1_LinearScan.hpp.

OpenJDK (2018). OpenJDK: Project Metropolis. url: http://openjdk.java.net/projects/
metropolis/ (visited on 05/28/2018).

Oracle Corporation (2016). Java SE HotSpot at a Glance. url: http : / / www . oracle . com /
technetwork/articles/javase/index-jsp-136373.html (visited on 05/06/2016).

Oracle Corporation (2012). Oracle SPARC Architecture 2011. Draft D0.9.5d.

Oracle Corporation (2014). Introduction to Oracle Solaris Zones. url: http://docs.oracle.com/
cd/E36784_01/pdf/E36848.pdf (visited on 05/26/2016).

Oracle Corporation (2015). JRockit to HotSpot Migration Guide: Compilation Optimization. url:
https://docs.oracle.com/javacomponents/jrockit-hotspot/migration-guide/

comp-opt.htm (visited on 03/28/2018).

Oracle Corporation (2017). Java HotSpot™ Virtual Machine Performance Enhancements. url:
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-

enhancements-7.html (visited on 01/09/2018).

Oracle Corporation (2018). Java Platform, Standard Edition Tools Reference – java. url: https:
//docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html (visited on
05/28/2018).

Paleczny, Michael, Christopher Vick, and Cliff Click (2001). “The Java HotSpot™ Server Com-
piler”. In: JVM’01. USENIX Association. url: https://www.usenix.org/events/jvm01/
full_papers/paleczny/paleczny.pdf.

Pereira, Fernando Magno Quintão (2008). “Register Allocation by Puzzle Solving”. PhD thesis.
University of California Los Angeles.

https://doi.org/10.1007/BFb0017257
https://v8project.blogspot.co.at/2018/03/background-compilation.html
https://v8project.blogspot.co.at/2018/03/background-compilation.html
https://doi.org/10.1109/CASES.2013.6662518
http://hg.openjdk.java.net/jdk/hs/file/5caa1d5f74c1/src/hotspot/share/opto/chaitin.hpp
http://hg.openjdk.java.net/jdk/hs/file/5caa1d5f74c1/src/hotspot/share/opto/chaitin.hpp
http://hg.openjdk.java.net/jdk/hs/file/5caa1d5f74c1/src/hotspot/share/c1/c1_LinearScan.hpp
http://hg.openjdk.java.net/jdk/hs/file/5caa1d5f74c1/src/hotspot/share/c1/c1_LinearScan.hpp
http://openjdk.java.net/projects/metropolis/
http://openjdk.java.net/projects/metropolis/
http://www.oracle.com/technetwork/articles/javase/index-jsp-136373.html
http://www.oracle.com/technetwork/articles/javase/index-jsp-136373.html
http://docs.oracle.com/cd/E36784_01/pdf/E36848.pdf
http://docs.oracle.com/cd/E36784_01/pdf/E36848.pdf
https://docs.oracle.com/javacomponents/jrockit-hotspot/migration-guide/comp-opt.htm
https://docs.oracle.com/javacomponents/jrockit-hotspot/migration-guide/comp-opt.htm
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-enhancements-7.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/performance-enhancements-7.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
https://www.usenix.org/events/jvm01/full_papers/paleczny/paleczny.pdf
https://www.usenix.org/events/jvm01/full_papers/paleczny/paleczny.pdf

Bibliography 157

Pereira, Fernando Magno Quintão and Jens Palsberg (2005). “Register allocation via coloring of
chordal graphs”. In:

Pereira, Fernando Magno Quintão and Jens Palsberg (2008). “Register allocation by puzzle solv-
ing”. In: PLDI’08. doi: 10.1145/1375581.1375609.

Pinedo, Michael L. (2016). Scheduling: Theory, Algorithms, and Systems. 5th ed. Springer Interna-
tional Publishing. doi: 10.1007/978-3-319-26580-3.

Poletto, Massimiliano, Dawson R. Engler, and M. Frans Kaashoek (1997). “tcc: A System for Fast,
Flexible, and High-level Dynamic Code Generation”. In: PLDI’97. ACM. doi: 10.1145/258915.
258926.

Poletto, Massimiliano and Vivek Sarkar (1999). “Linear Scan Register Allocation”. In: TOPLAS’99.
doi: 10.1145/330249.330250.

Prokopec, Aleksandar, David Leopoldseder, Gilles Duboscq, and Thomas Würthinger (2017).
“Making Collection Operations Optimal with Aggressive JIT Compilation”. In: SCALA 2017.
ACM. doi: 10.1145/3136000.3136002.

Rastello, Fabrice, ed. (2013). SSA-based Compiler Design. Springer. url: ssabook.gforge.inria.
fr/latest/book.pdf. (Not Yet Published)

Rong, Hongbo (2009). “Tree Register Allocation”. In: MICRO 42. ACM. doi: 10.1145/1669112.
1669123.

Sarkar, Vivek and Rajkishore Barik (2007). “Extended Linear Scan: An Alternate Foundation for
Global Register Allocation”. In: CC’07. Springer-Verlag. doi: 1759937.1759950.

Schatz, R. and H. Prähofer (2013). “Trace-Guided Synthesis of Reactive Behavior Models of Pro-
grammable Logic Controllers”. In: doi: 10.1109/SEAA.2013.37.

Scholz, Bernhard and Erik Eckstein (2002). “Register Allocation for Irregular Architectures”. In:
SIGPLAN Not. doi: 10.1145/566225.513854.

Sewe, Andreas, Mira Mezini, Aibek Sarimbekov, and Walter Binder (2011). “Da capo con scala”.
In: OOPSLA’11. doi: 10.1145/2048066.2048118.

Singer, Jeremy (2006). Static program analysis based on virtual register renaming. Tech. rep. Uni-
versity of Cambridge. url: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-
660.pdf.

SPEC (2017). SPECjbb2015 Benchmark Design Document. url: https://www.spec.org/jbb2015/
docs/designdocument.pdf.

SPECjbb2015: Java Server Benchmark (2016). url: https://www.spec.org/jbb2015/ (visited on
05/25/2016).

https://doi.org/10.1145/1375581.1375609
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1145/258915.258926
https://doi.org/10.1145/258915.258926
https://doi.org/10.1145/330249.330250
https://doi.org/10.1145/3136000.3136002
ssabook.gforge.inria.fr/latest/book.pdf
ssabook.gforge.inria.fr/latest/book.pdf
https://doi.org/10.1145/1669112.1669123
https://doi.org/10.1145/1669112.1669123
https://doi.org/1759937.1759950
https://doi.org/10.1109/SEAA.2013.37
https://doi.org/10.1145/566225.513854
https://doi.org/10.1145/2048066.2048118
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-660.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-660.pdf
https://www.spec.org/jbb2015/docs/designdocument.pdf
https://www.spec.org/jbb2015/docs/designdocument.pdf
https://www.spec.org/jbb2015/

158 Bibliography

SPECjvm2008: Java Virtual Machine Benchmark (2015). url: https://www.spec.org/jvm2008/
(visited on 06/15/2015).

Sreedhar, Vugranam C., Roy Dz-Ching Ju, David M. Gillies, and Vatsa Santhanam (1999). “Trans-
lating Out of Static Single Assignment Form”. In: Lecture Notes in Computer Science. Springer
Berlin Heidelberg. doi: 10.1007/3-540-48294-6_13.

Stadler, Lukas, Gilles Duboscq, Hanspeter Mössenböck, Thomas Würthinger, and Doug Simon
(2013). “An Experimental Study of the Influence of Dynamic Compiler Optimizations on Scala
Performance”. In: SCALA’13. ACM. doi: 10.1145/2489837.2489846.

Stadler, Lukas, Thomas Würthinger, and Hanspeter Mössenböck (2014). “Partial Escape Analysis
and Scalar Replacement for Java”. In: CGO ’14. ACM. doi: 10.1145/2544137.2544157.

Steiner, Edwin (2007). “Adaptive Inlining and On-Stack Replacement in a Java Virtual Machine”.
MA thesis. Vienna University of Technology.

Steiner, Edwin, Andreas Krall, and Christian Thalinger (2007). “Adaptive Inlining and On-Stack
Replacement in the CACAO Virtual Machine”. In: PPPJ’07. ACM. doi: 10.1145/1294325.
1294356.

Tavares, André L. C., Quentin Colombet, Mariza A. S. Bigonha, Christophe Guillon, Fernando
M. Q. Pereira, and Fabrice Rastello (2011). “Decoupled graph-coloring register allocation with
hierarchical aliasing”. In: Proceedings of the 14th International Workshop on Software and Com-

pilers for Embedded Systems - SCOPES ’11. doi: 10.1145/1988932.1988934.

Traub, Omri, Glenn Holloway, and Michael D. Smith (1998). “Quality and Speed in Linear-scan
Register Allocation”. In: PLDI’98. ACM. doi: 10.1145/277650.277714.

Tukey, John W. (1977). Exploratory data analysis. Reading, Mass.

V8 (2017). Linear Scan Register Allocator in V8. url: https://github.com/v8/v8/blob/
d16b45ebf8bf/src/compiler/register-allocator.h.

Weaver, David L. and Tom Germond (1994). The SPARC Architecture Manual – Version 9. Version
9. Prentice Hall. isbn: 0-13-825001-4.

WebKit (2017a). Graph Coloring Register Allocator in WebKit. url: https : / / github .

com / WebKit / webkit / blob / 5277f6fb92b0 / Source / JavaScriptCore / b3 / air /

AirAllocateRegistersByGraphColoring.h.

WebKit (2017b). Linear Scan Register Allcoator in WebKit. url: https : / / github . com /

WebKit / webkit / blob / 5277f6fb92b0 / Source / JavaScriptCore / b3 / air /

AirAllocateRegistersAndStackByLinearScan.h.

Wimmer, Christian (2007). C1visualizer. url: https://java.net/projects/c1visualizer
(visited on 01/06/2015).

https://www.spec.org/jvm2008/
https://doi.org/10.1007/3-540-48294-6_13
https://doi.org/10.1145/2489837.2489846
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1145/1294325.1294356
https://doi.org/10.1145/1294325.1294356
https://doi.org/10.1145/1988932.1988934
https://doi.org/10.1145/277650.277714
https://github.com/v8/v8/blob/d16b45ebf8bf/src/compiler/register-allocator.h
https://github.com/v8/v8/blob/d16b45ebf8bf/src/compiler/register-allocator.h
https://github.com/WebKit/webkit/blob/5277f6fb92b0/Source/JavaScriptCore/b3/air/AirAllocateRegistersByGraphColoring.h
https://github.com/WebKit/webkit/blob/5277f6fb92b0/Source/JavaScriptCore/b3/air/AirAllocateRegistersByGraphColoring.h
https://github.com/WebKit/webkit/blob/5277f6fb92b0/Source/JavaScriptCore/b3/air/AirAllocateRegistersByGraphColoring.h
https://github.com/WebKit/webkit/blob/5277f6fb92b0/Source/JavaScriptCore/b3/air/AirAllocateRegistersAndStackByLinearScan.h
https://github.com/WebKit/webkit/blob/5277f6fb92b0/Source/JavaScriptCore/b3/air/AirAllocateRegistersAndStackByLinearScan.h
https://github.com/WebKit/webkit/blob/5277f6fb92b0/Source/JavaScriptCore/b3/air/AirAllocateRegistersAndStackByLinearScan.h
https://java.net/projects/c1visualizer

Bibliography 159

Wimmer, Christian and Michael Franz (2010). “Linear Scan Register Allocation on SSA Form”. In:
CGO’10. ACM. doi: 10.1145/1772954.1772979.

Wimmer, Christian, Vojin Jovanovic, Erik Eckstein, and Thomas Würthinger (2017). “One Com-
piler: Deoptimization to Optimized Code”. In:CC 2017. ACM. doi: 10.1145/3033019.3033025.

Wimmer, Christian and Hanspeter Mössenböck (2005). “Optimized Interval Splitting in a Linear
Scan Register Allocator”. In: VEE’05. ACM. doi: 10.1145/1064979.1064998.

Würthinger, Thomas, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas Stadler, Chris
Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer (2017). “Practical Partial Evalua-
tion for High-performance Dynamic Language Runtimes”. In: PLDI 2017. ACM. doi: 10.1145/
3062341.3062381.

Würthinger, Thomas, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon, and Christian
Wimmer (2012). “Self-optimizing AST interpreters”. In:DLS’12. ACM. doi: 10.1145/2384577.
2384587.

Yang, Byung-Sun, Soo-Mook Moon, Seongbae Park, Junpyo Lee, SeungIl Lee, Jinpyo Park, Y.C.
Chung, Suhyun Kim, K. Ebcioglu, and E. Altman (1999). “LaTTe: a Java VM just-in-time com-
piler with fast and efficient register allocation”. In: PACT’99. doi: 10.1109/pact.1999.807503.

Yannakakis, Mihalis and Fanica Gavril (1987). “The Maximum K-colorable Subgraph Problem for
Chordal Graphs”. In: Inf. Process. Lett. doi: 10.1016/0020-0190(87)90107-4.

https://doi.org/10.1145/1772954.1772979
https://doi.org/10.1145/3033019.3033025
https://doi.org/10.1145/1064979.1064998
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1109/pact.1999.807503
https://doi.org/10.1016/0020-0190(87)90107-4

Josef Eisl
Compilers and Virtual Machines

CONTACT

 zapster@zapster.cc (mailto:zapster@zapster.cc)

 zapster.cc (https://zapster.cc)

 linkedin.com/in/zapster (https://linkedin.com/in/zapster)

 github.com/zapster (https://github.com/zapster)

 @zapstercc (https://twitter.com/zapstercc)

LANGUAGES

German (Native) , English (Professional)

INTERESTS

Crafting , Traveling , Cycling , Bass and Trombone , Cooking

Hi, I am Josef. I am doing research at Oracle Labs (https://labs.oracle.com/pls/apex/f?p=labs:bio:0:2667). My main interests include

programming languages, compilers, register allocation, and virtual machines. Since 2014, I am working on GraalVM (https://www.graalvm.org/), a

high-performance polyglot virtual machine. At Oracle Labs, my current focus is on Sulong (https://github.com/graalvm/sulong), the LLVM bitcode

interpreter of GraalVM.

I am about to finish my PhD at the Johannes Kepler University Linz (http://jku.at), Austria. My research topic is on register allocation for just-in-

time compilers. More precisely, I proposed a novel approach called Trace Register Allocation (#publications). The allocator was implemented in

the Graal compiler (https://github.com/oracle/graal/blob/master/compiler) within the GraalVM project. My research was carried out as part of a

collaboration between the Institute for System Software (http://ssw.jku.at) at the Johannes Kepler University and Oracle Labs.

Oracle Labs, Austria

I am a researcher at Oracle Labs (https://labs.oracle.com/) working on GraalVM (https://www.graalvm.org/). My current focus is on Sulong

(https://github.com/graalvm/sulong), the LLVM bitcode interpreter.

Johannes Kepler University Linz, Austria

Until 2018 I was a university and research assistant at the Institute for System Software (http://ssw.jku.at) of the Johannes Kepler University Linz

(https://www.jku.at).

As part of my university assistant duties, I helt the practical classes in compiler construction and data structures. In addition, I supervised term

projects, Bachelor's and Master's theses.

My research work was done in course of a collaboration with Oracle Labs (http://ssw.jku.at/Research/Projects/JVM/). The collaboration covers

around 12 PhD, Master and Bachelor students who work in close ties with Oracle Labs employees in Linz and around the globe. The research

focus is on compilers and virtual machines, more specifically the GraalVM (https://www.graalvm.org). See the Projects (#projects) section for

more details.

TU Wien, Austria

During my Bachelor's and Master's studies at the TU Wien (https://tuwien.ac.at), I worked as a student teaching assistant (tutor).

At the Algorithms and Data Structures Group, I was a tutor for the course algorithms and data structures. The duties include giving exercise

lectures and organizing the programming assignments.

For the Compilers and Languages Group, I offered tutorial lessons to support students solving the compiler construction programming exercise.

CAREER PROFILE

EXPERIENCES

Senior Researcher 2018–Present

University and Research Assistant 2014–2018

Student Teaching Assistant 2008–2012

Curriculum Vitae 161

Sony DADC, Salzburg/Austria

At the beginning of my studies, I worked remotely as a part-time technical support employee for Sony DADC (https://www.sonydadc.com/) in

Salzburg, Austria. The employment followed three years of summer internship as outlined below.

Sony DADC, Salzburg/Austria

During my senior classes at school, I repeatedly worked as a summer intern at Sony DADC (https://www.sonydadc.com/). I mainly worked on

technical end-user support for copy control solutions. Other tasks included assembling of optical disc encryption control hardware as well as

hardware compatibility testing.

SKIDATA, Salzburg/Austria

During the internship at SKIDATA (https://www.skidata.com), I serviced components of parking management solutions, including disassembling,

repairing and reassembling of mechanical and electronic devices.

Johannes Kepler University Linz, Austria

I am about to finish my PhD in computer science at the Johannes Kepler University Linz (https://www.jku.at). My research focus is on improving

compilation in virtual machines. More precisely, most of my work is about Trace Register Allocation, a novel register allocation approach for just-

in-time compilation. The idea was awarded with the first place (https://src.acm.org/winners/2018) in the graduate category of the ACM Student

Research Competition (https://src.acm.org/) at the International Symposium on Code Generation and Optimization (CGO) 2018 (http://cgo.org/

cgo2018/). The thesis is supervised by Prof. Hanspeter Mössenböck (http://ssw.jku.at/General/Staff/HM/).

TU Wien, Austria

I received a Master's degree in Computational Intelligence from the TU Wien (https://tuwien.ac.at) in January 2014. The core fields of the program

were algorithms and complexity, knowledge representation and artificial intelligence, logic, mathematics and theoretical computer science, and

programming languages and verification. My personal focus was on the last topic, specifically on compilation and virtual machines. I wrote my

Master's thesis about an "Optimization Framework for the CACAO VM (#publications)", a virtual machine for Java Bytecode. The thesis was

supervised by Prof. Andreas Krall (http://www.complang.tuwien.ac.at/andi/).

TU Wien, Austria

In 2010 I got my Bachelor's degree in Computer Engineering from the TU Wien (https://tuwien.ac.at). In addition to the fundamental topics in

computer science, the program focused on computer architecture, embedded systems engineering as well as physics and compiler construction.

I wrote a Bachelor's thesis discussing "RFID-based Event Tracking".

HTBLA Salzburg, Austria

I attended the HTBLA Salzburg (http://www.htl-salzburg.ac.at) (secondary technical collage) at the department of Electronics and Computer

Engineering with a focus on electronics, embedded systems and programming.

GraalVM is an Oracle Labs (https://labs.oracle.com) project developing a new just-in-time compiler and polyglot runtime for the Java Virtual

Machine. The project, led by Thomas Würthinger (https://labs.oracle.com/pls/apex/f?p=labs:bio:0:137), mainly consists of the Graal (https://

github.com/oracle/graal/blob/master/compiler) just-in-time compiler, the Truffle (https://github.com/oracle/graal/blob/master/truffle) language

implementation framework and Substrate VM (https://github.com/oracle/graal/blob/master/substratevm), an ahead-of-time compilation system.

Most parts of the system are open source and available on GitHub (https://github.com/oracle/graal).

I am currently working on Sulong (https://github.com/graalvm/sulong), the LLVM bitcode interpreter.

During my PhD, I worked on the Graal compiler where my key area coincided with my research topic, namely register allocation. I implemented the

novel Trace Register Allocation (#publications) approach on top of Graal where it has proven production quality as it is tested and benchmarked

as part of Graal continuous integration pipeline since 2015. All parts of the implementation are in Graal and publicly available (https://

github.com/oracle/graal).

Technical Support (part-time) 2007–2009

Technical Support (internship) Summer 2004, 2005, 2006

Technical Support (internship) Summer 2002

EDUCATION

PhD in Computer Science 2014–2018 (expected)

MSc in Computer Science 2010–2014

BSc in Computer Science 2006–2010

Matura (A-level) 1999–2005

PROJECTS

GraalVM (https://www.graalvm.org) — Just-in-time compiler and polyglot runtime. 2014–Present

162 Curriculum Vitae

I also participate in the development of GraalVMs build system mx (https://github.com/graalvm/mx), as well as the benchmarking and

continuous integration systems, which are used throughout the project.

During my involvement, Graal has grown from a research project into a production quality system. Many core artifacts of the project are now part

of mainstream Java, such as Java-level Compiler Interface (JDK9) (http://openjdk.java.net/jeps/243), the Graal Compiler (JDK10) (http://

openjdk.java.net/jeps/317), and more are about to come (http://openjdk.java.net/projects/metropolis/).

CACAO was among the first Java virtual machines that followed a compile-only approach. That means all code is compiled to native code prior

execution. Therefore, CACAO features a baseline compiler for fast compilation.

In course of my Master's thesis, I implemented a second stage compilation framework, to improve the performance of the VM by adaptively

compiling important methods with a higher degree of optimizations, compared to the baseline compiler. The work laid the foundation for further

improvements (https://doi.org/10.1145/3178372.3179501) of CACAO.

While working on the project, I established a continuous integration infrastructure, organized the transition from a legacy code hosting model to

Bitbucket (https://bitbucket.org/cacaovm/cacao-staging), and implemented code quality measures such as coverage reports, unit testing and

source code documentation.

JorthVM was implemented as a term project for the course stack-based languages, together with two colleagues. The motivation was to map the

execution of the stack-based Java Bytecodes to Forth (https://www.gnu.org/software/gforth/), a stack-based programming language. Although

JorthVM was at the end only able to execute the most basic snippets of Bytecodes, we learned a lot about JVM internals and the Classfile

formats, as well as about untyped stack-based languages. The project sparked my interest in virtual machine design and implementation.

Since Graal (https://github.com/oracle/graal) is written in Java, this was my main programming language over the last years, although writing a

compiler for Java in Java is not the most idiomatic use of the language. The build tool mx (https://github.com/graalvm/mx) and a lot of the

benchmarking infrastructure is written in Python, so this is a close second.

In the course of publishing my research results, I learned to master R for data preparation and LaTeX as a scientific typesetting system.

When I was working on CACAO VM (http://www.cacaojvm.org), I gained profound experience with C and C++. However, the C++ language

underwent drastic improvements since then so my know-how might be a bit dated.

I am a happy GNU/Linux user for 15+ years.

I am a member of a brass band where I play the trombone. In the past, I played bass in several bands. I was a mentor at JugendHackt.at (https://

jugendhackt.org/), a youth hackathon for 12-18 year olds. In 2006, I completed my mandatory military service. I hold a driving license for the

categories A, B, and C.

CACAO VM (http://www.cacaojvm.org) — JIT-only Java virtual machine. 2012–2014

JorthVM (https://github.com/JorthVM/JorthVM) — A (minimal) Java virtual machine written in Forth. 2011–2012

SKILLS & PROFICIENCY

Compiler Construction, Java, Linux & Unix, Bash, LaTeX, Python, R & Tidyverse, C & C++, HTML & CSS, JavaScript

ADDITIONAL INFORMATION

Curriculum Vitae 163

Eidesstattliche Erklärung 165

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne fremde
Hilfe verfasst, andere als die angegebenenQuellen undHilfsmittel nicht benutzt bzw. die wörtlich
oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Die vorliegende Dissertation ist mit dem elektronisch übermittelten Textdokument identisch.

Statutory Declaration

I hereby declare that the thesis submitted ismy own unaidedwork, that I have not used other than
the sources indicated, and that all direct and indirect sources are acknowledged as references.

This printed thesis is identical with the electronic version submitted.

Linz, October 16, 2018

Josef Eisl

	1 Introduction
	1.1 Background on Register Allocation
	1.2 Graph Coloring
	1.2.1 Chaitin's Allocator
	1.2.2 Other Graph Coloring Approaches

	1.3 Linear Scan
	1.3.1 Lifetime Holes and Interval Splitting

	1.4 Problems of Existing Register Allocation Approaches
	1.5 Our Approach
	1.6 Contributions
	1.7 Outline

	2 Terminology
	2.1 Instructions, Values, Locations
	2.2 Control-flow Graphs
	2.2.1 Dominance
	2.2.2 Loops

	2.3 Liveness and Lifetime Intervals
	2.4 Static Single Assignment Form
	2.4.1 φ-notation
	2.4.2 SSA destruction

	3 The Graal Virtual Machine
	3.1 The Java Virtual Machine
	3.2 The HotSpotVM
	3.2.1 Graal on the HotSpotVM

	3.3 The Graal Compiler

	4 Trace Register Allocation
	4.1 Trace Building
	4.1.1 Unidirectional Trace Building
	4.1.2 Bidirectional Trace Building

	4.2 Trace Properties
	4.2.1 Greedy Trace Properties
	4.2.2 Dominance Properties of Traces

	4.3 Global Liveness Analysis
	4.3.1 Liveness Analysis
	4.3.2 Representation of Global Liveness

	4.4 Allocating Registers
	4.5 Global Data-flow Resolution

	5 Register Allocation Strategies
	5.1 Linear Scan Allocator
	5.1.1 Interval Building
	5.1.2 Register Allocation on Intervals
	5.1.3 Local Data-flow Resolution
	5.1.4 Register Assignment on LIR

	5.2 Trivial Trace Allocator
	5.3 Bottom-Up Allocator
	5.3.1 Tracking Liveness Information
	5.3.2 Register Allocation
	5.3.3 Phi-resolution
	5.3.4 Loop Back-Edge
	5.3.5 Example
	5.3.6 Ideas that did not Work Out

	6 Inter-trace Optimizations
	6.1 Inter-trace Hints
	6.2 Spill Information Sharing
	6.3 Known Issue: Spilling in Loop Side-Traces
	6.4 Stack Intervals

	7 Evaluation
	7.1 Benchmarks
	7.1.1 SPECjvm2008
	7.1.2 SPECjbb2015
	7.1.3 DaCapo
	7.1.4 Scala-DaCapo

	7.2 Configurations
	7.3 Peak Performance/Allocation Quality
	7.3.1 DaCapo and Scala-DaCapo
	7.3.2 SPECjvm2008
	7.3.3 SPECjbb2015
	7.3.4 Answering RQ1

	7.4 Compile Time
	7.4.1 Compile Time per Method
	7.4.2 Overall Compile Time
	7.4.3 Answering RQ2

	7.5 Inter-trace Optimizations
	7.6 Trace Builder Evaluation

	8 Trace Register Allocation Policies
	8.1 Properties
	8.1.1 Block Properties
	8.1.2 Trace Properties
	8.1.3 Compilation Unit Properties
	8.1.4 Aggregation of Properties

	8.2 Policies
	8.3 Evaluation
	8.3.1 Discussion
	8.3.2 Answering RQ3

	9 Parallel Trace Register Allocation
	9.1 Concurrency Potential
	9.1.1 Example

	9.2 Evaluation
	9.2.1 Answering RQ4

	9.3 Future Directions

	10 Related Work
	10.1 Register Allocation
	10.1.1 Local Register Allocation
	10.1.2 Non-Global Register Allocation
	10.1.3 Decoupled Register Allocation
	10.1.4 Mathematical Programming Register Allocation Approaches
	10.1.5 Register Allocation in Virtual Machines

	10.2 Non-global Code Units
	10.3 Trace Compilation
	10.4 Liveness and Intermediate Representations
	10.5 Compile-time Trade-offs and Concurrent Compilation

	11 Conclusion and Future Work
	A Additional Sources
	B Graal Backends
	B.1 AMD64 on HotSpot
	B.2 SPARC on HotSpot

	C Hardware Environment
	C.1 Sun Server X3-2
	C.2 Sun Server X5-2
	C.3 SPARC T7-2 Server

	Index
	Publications
	Bibliography

