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Abstract

Meta-object protocols offer introspective capabilities to object-oriented lan-
guages and provide the programmer with a way to interfere with the design
decisions the language designer proposed. They open up the implementa-
tion, leaving the programmer with choice concerning the exact semantics of
object representation, inheritance, generic function invocation etc.

This work presents a meta-object protocol for the programming language
Scheme that offers similar power to existing meta-object protocols in other
languages, yet is designed to allow efficient implementation.

A number of sample applications was implemented and is presented with de-
tails on how the meta-object protocol allowed their implementation. They
are intended as an indication that the meta-object protocol is powerful enough
for actual applications.

The final chapters summarise the design, the implementation and the appli-
cations. The proposed meta-object protocol is compared to other existing
approaches, and its applicability to other languages is investigated.

Kurzfassung

Metaobjekt-Protokolle bieten introspektive Fähigkeiten für objektorientierte
Programmiersprachen und erlauben dem Programmierer, in verschiedener
Weise die Sprachentwurfsentscheidungen des Programmiersprachenentwick-
lers zu beeinflussen. Sie öffnen die Implementierung für den Program-
mierer und erlauben Einfluß auf die Speicherrepräsentation von Objekten,
Vererbung, Aufruf von generischen Funktionen, etc.

Diese Arbeit präsentiert ein Metaobjekt-Protokoll für die Programmierspra-
che Scheme, das den anderen existierendenMetaobjekt-Protokollen entspre-
chende Mächtigkeit besitzt, aber dafür ausgelegt ist, dass eine effiziente Im-
plementierung möglich ist.

Einige verschiedene Beispiele wurden ausimplementiert und werden vorge-
stellt, um zu zeigen, wie das Metaobjekt-Protokoll deren Implementierung
erlaubt. Sie dienen dazu zu zeigen, dass das Metaobjekt-Protokoll mächtig
genug für Anwendungen der realen Welt ist.

Die letzten Kapitel fassen das Design, die Implementierung und die An-
wendungen zusammen. Das vorgeschlagene Metaobjekt-Protokoll wird mit
anderen existierenden Herangehensweisen verglichen und dessen Anwend-
barkeit auf andere Sprachen wird untersucht.
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1. Introduction

Object-oriented systems have been around a long time. Since the 1960s, they have been
analysed and improved. Many paradigms have been offered to the research community, yet
the mainstream object-oriented languages only differ in small details from their ancestors
or from each other.
One reason for this unwillingness to change seems to be the dichotomy of power versus

efficiency. Language designers must consider the trade-off between adding additional
features to the language, yet they must also ensure that implementations of the language
retain the ability to compile to efficient code. The designer cannot know all fields of
application for the programming language, and thus some of these choices are almost
always wrong in some application the language designer never thought of.
As an example, consider the traditional memory allocation of objects: Upon allocation

of an object storage is allocated for all fields, whether they contain useful values or not. If
a programmer were to design an object with a large number of fields, of which only few
ever hold a value (a “sparse” object), a considerable amount of memory is wasted. On the
other hand, languages that allocate fields by need in a hashtable-like manner often cannot
guarantee efficient access to these fields. It would be beneficial for the programmer, if she
could choose the preferred implementation for her classes.
Kiczales and Des Rivieres [15] have suggested that the use of meta-object protocols can

open up object-oriented languages, allowing the programmer (as opposed to the language
designer) to decide certain trade-offs. A meta-object protocol allows the programmer to
intervene in the semantics of object-oriented programs, whether for reasons of succinct-
ness, power of expression or efficiency.
The original meta-object protocol proposed in [15] is a very dynamic protocol, it man-

dates costly generic function calls in many places, only few of the available commercial
compilers implement the necessary complicated optimisations for efficiently implement-
ing the full meta-object protocol.
The EuLisp object system [4] was meant to design a meta-object protocol that alleviates

these problems, however it never reached a proper degree of maturity.
This work presents a meta-object protocol that aims to fulfil the goals of maintaining the

power of the MOP presented in [15], yet provide a protocol that is simpler to implement
efficiently. The author has developed – on the basis of a common object-system, designed
by the author but based on and compatible with most of the major Lisp object systems
– a number of protocols allowing the user of the meta-object protocol to reflect upon
object-oriented programs and interfere in their operation.
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1. Introduction

The language Scheme [17] has been chosen to implement a prototype because it of-
fers a simple syntax, powerful semantics, and is amenable to syntactic extensions (which
considerable simplify the use of the object system and the meta-object protocol for the
programmer).

1.1. Overview

Chapter 2 introduces the elements of the language Scheme that are necessary to under-
stand the code examples throughout the later chapters. A short introduction is given to
basic Scheme datatypes, the control structures, and expression syntax. As Scheme con-
sistently employs prefix syntax, very little knowledge of special syntax is necessary. This
chapter also explains syntactic extensions (so-called “macros”) in Scheme, which are a
pervasive and fundamental way of expanding the language to match the problem domain.
Chapter 3 presents related work, especially the original meta-object protocol from [15]

and related concepts in other programming languages. The meta-object protocol or sim-
ilar construct of CLOS, TELOS, Smalltalk, OpenC++, Dylan and Ruby are presented.
Chapter 4 describes the proposed meta-object protocol (and the object system it is based

on). This chapter (and appendix A) is a specification for implementors of the meta-object
protocol. First the object system is described in detail, then the different protocols are
shown. The design decisions and alternatives are shown and explained.
Chapter 5 describes the prototypical implementation, which was used to validate that

the proposed meta-object system is feasible.
Chapter 6 shows how to use the meta-object protocol to achieve various effects:

• Changing the storage of class member fields from a vector-like model to a hashtable-
like model

• Automatic tracing and logging of function entry and exit

• Class-allocated (static) class member fields

• Multiple dispatch (multimethods) based on predicates, not only class membership

• Automatic object persistence

These applications are meant to demonstrate the versatility and efficiency of the pro-
posed meta-object protocol.
There are two explicit goals for the meta-object protocol proposed in this work:

• Provide a powerful conceptual framework for reflecting upon and interceding in
object-oriented programs

• Offer a framework that does not preclude efficient implementation

2



1.1. Overview

Chapter 7 recapitulates on the features and compares them to the existing approaches
mentioned in chapter 3; it also re-examines the proposed meta-object protocol with
respect to the two goals mentioned above.
Appendix A lists all the relevant generic functions in alphabetic order and explains their

use. It is meant as a reference for implementors.
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2. Scheme

Scheme[17] is a programming language in the Lisp family. Its main defining aspects in
that family are that it is lexically scoped, supports full continuations, mandates proper
tail-call-optimisation and aims to provide minimal core of orthogonal features. Scheme
has been under constant development since its beginnings in 1975, as of 2011 work is
under way on the 7th Revision of the Scheme Standard. As the core language is small,
there are many implementations, often targeted at very specific problems or new work in
programming language research (for example [12]).
Scheme has been chosen as the implementation language for this work because it offers

a simple way of adding objects to the core language and due to its uniform syntax it
allows for syntactic extensions (macros), which greatly facilitate providing syntactic sugar
for complex operations.

2.1. Syntax

Basic Scheme syntax is very simple, every expression is syntactically a function call. An
opening parenthesis is followed by the operator, then all the operands separated by whites-
pace, then a closing parenthesis:

(operator operand1 operand2 operand3)

(+ 1 2)
=> 3

(string-append "foo" "bar")
=> "foobar"

Scheme passes parameters by value, i.e. all expressions in operand positions (and the
expression in the operator position) are evaluated before the actual function call is made.
Only very few so-called Special Forms violate this rule.

2.1.1. Datatypes

Scheme supports a number of primitive datatypes, most Scheme systems also support a
large number of additional datatypes that are not mandated (or regulated) by the standard
([17]). The basic datatypes are:
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2. Scheme

• boolean

• symbol

• character

• number

• string

• vector

• pair (which extends to list)

Booleans

Boolean values in Scheme are denoted by #t for true and #f for false. In addition, any
non-false value is considered as true by if.

Characters

Characters in Scheme are denoted by the two characters #\ followed by the actual char-
acter. For non-graphic characters, the name of the character is used instead of the actual
character:

#\a
#\!
#\newline
#\space

Numbers

Scheme supports integers, floating point numbers (including scientific notation), fractions
and complex numbers:

2147483648
3.141592653589793
6.0221415e23
333/106
3+2i

6



2.1. Syntax

Strings

Scheme strings are enclosed by ", which can be escaped by a backslash if it occurs inside
strings itself (i.e. the string "\"" denotes the string consisting of a single double-quote
character). Most Scheme systems support a number of additional escape sequences for
newline, tabulator, etc.

"a␣simple␣string"
"a␣string␣containing

␣␣␣an␣implicit␣and␣an␣explicit\nnewline"

Symbols

Any identifier (sequence of characters delimited by whitespace or parentheses and exclud-
ing a few special characters like single or double quote) in Scheme is a symbol. Symbols
are used to denote bindings. The Scheme implementation ensures that two symbols that
look the same are actually the same symbol. All the following are legal symbols:

add
+
list->string
%defmacro

A number of conventions for identifiers exist:

• Symbols ending in an exclamation mark (e.g. set!) mutate their argument

• Symbols ending in a question mark are predicates that return true or false (e.g.
even?, odd?)

• Symbols enclosed in asterisks are global variables (e.g. *print-base*)

• Symbols enclosed in angle brackets are class names (e.g. <integer>, <object>)

• Symbols beginning with a percent sign are system-dependent or internal (e.g.
%fixnum:add or %write-char)

None of these conventions is enforced in any way by the Scheme system.

Vectors

Vectors in Scheme are a fixed-size datastructure that can be indexed by successive non-
negative integers (the first element has index 0) . A literal vector is written as the characters
#( followed by the elements of the vector separated by whitespace, and ends with a
matching closing parenthesis ):

7



2. Scheme

(define my-vector #(1 2 3))
(vector-ref my-vector 0)

=> 1
(vector-length my-vector)

=> 3

Pairs

Pairs in Scheme consist of a first and second element (called “car” and “cdr” for historic
reasons). The function that creates a pair is called cons. A pair is displayed as an opening
parenthesis, followed by the first element, then a dot (.), then the second element, and
ended by a closing parenthesis:

(cons 1 2)
=> (1 . 2)

(define my-pair (cons 1 2))
(car my-pair)

=> 1
(cdr my-pair)

=> 2

Lists

Lists are nested pairs, where each cdr of a pair is another pair, until – at the end of the list
– the cdr is a special value denoting the empty list, called “null” (and written as an empty
list '()):

(cons 1 (cons 2 (cons 3 '())))
=> (1 2 3)

(list 1 2 3)
=> (1 2 3)

(define my-list (list 1 2 3))
(car my-list)

=> 1
(cdr my-list)

=> (2 3)
(car (cdr my-list))

=> 2

All normal Scheme code consists of lists. Function calls, definitions, special syntactic
forms, arithmetic operators, everything has the same, uniform syntax in Scheme.

8



2.1. Syntax

2.1.2. Special Forms

Normally, all parameters to a function are evaluated before the actual function call is made
(“call-by-value”). There are only five special forms (where the evaluation order and time
of the operands is not as usual) in Scheme:

• if

• quote

• set!

• lambda

• quasiquote

In addition to these, any macro that expands to these forms may also appear to follow
special evaluation rules (e.g. let or and).

if

if is the basic conditional expression. It takes two or three parameters, the first denotes
the test, the second the consequence (if the test succeeds), the optional third the alternative
(if the test fails):

(if (> number 0) 'positive 'negative)

The expression above returns the symbol positive if number is greater than zero, oth-
erwise negative. If the alternative (the third argument) is not supplied, an unspecified
value (or no value) is returned.
The consequence is only evaluated if the test succeeds, the alternative is only evaluated

if the test fails.

quote

quote signals that an expression is a literal, not an expression to be evaluated. Only
symbols and lists need to be quoted, as all other datatypes are self-evaluating:

(define foo 3)
foo

=> 3
'foo

=> foo
(+ 1 2)

=> 3
'(+ 1 2)

=> (+ 1 2)

9



2. Scheme

Quote never evaluates its argument.

set!

set! is the basic assignment operator in Scheme. It is used to assign values to lexical and
global bindings:

(define x 3)
x

=> 3
(set! x 5)
x

=> 5

set! never evaluates its first argument (that argument denotes the binding that is to be
modified) and it always evaluates the second argument.

lambda

lambda creates anonymous functions. A lambda-expression consists of a list of parameter
names (the names of the bindings that are in effect in the body) and a function body:

(lambda (a b)
(+ a b))

When this lambda-expression is applied to parameters, the values of the parameters are
bound to the names given in the parameter list, and the body is executed with these
bindings in place:

((lambda (a b) (+ a b))
1 2)
=> 3

lambda never evaluates any of its parameters.

quasiquote

quasiquote is used to create complex list structures that are partly dynamic. All the
content of the quasiquote-expression is quoted, except for the parts that are unquoted by
the unquote operator:

(quasiquote (+ 1 2 => (unquote (+ 1 2))))
=> (+ 1 2 => 3)

There is also a splicing operator, that splices a list into place inside a quasiquoted expres-
sion:

10



2.1. Syntax

(quasiquote (+ 1 2 (unquote (list 3 4 5))))
=> (+ 1 2 (3 4 5))

(quasiquote (+ 1 2 (unquote-splicing (list 3 4 5))))
=> (+ 1 2 3 4 5)

As a convenient shorthand, Scheme systems support ` instead of quasiquote, , instead
of unquote and ,@ instead of unquote-splicing:

`(+ 1 2 ,(+ 1 2) ,@(list 4 5))
=> (+ 1 2 3 4 5)

2.1.3. Syntactic Sugar

Scheme provides predefined syntactic expressions for defining functions, binding vari-
ables, looping, etc. Most of these require no special support from the underlying im-
plementation, and could be (and often are) implemented by the mechanism described in
2.2.

define

define is used to define global bindings. An extended syntax is available to simplify
function definitions.

(define x 5)
x

=> 5
(define add (lambda (a b) (+ a b)))
(add 1 2)

=> 3
(define (add a b) (+ a b))
(add 1 2)

=> 3

begin

begin denotes serial execution. All expressions inside begin are executed one after an-
other, then the result of the last expression is returned:

(begin (- 1 2) 'done)
=> done

11



2. Scheme

let

let is used to bind lexical variables. The first parameter must be a list of pairs of names
and values for the bindings, which are in effect in the body of the let-expression:

(let ((a 3)
(b 5))

(+ a b))
=> 8

These bindings can be mutated by set!.

and and or

and and or are Scheme’s version of the short-circuiting boolean operators:

(and #t #f (/ 1 0))
=> #f

(or #f #t (/ 1 0))
=> #t

(or #f #f (/ 1 0))
=> division by zero signalled by /

Scheme supports many more predefined syntactic expressions, and any programmer can
transparently extend this list by defining custom Syntactic Extensions.

2.2. Syntactic Extensions

Due to the uniform syntax of Scheme expressions, it is simple to create different kinds
of macro-systems that allow automatic transformations of source code. A macro is code
that is given code as input, and generates code as output. Because all code in Scheme
has the same list structure, this approach does not suffer from some of the difficulties
and drawbacks that for example C or C++ macros face. It is not possible to generate
unbalanced parentheses or illegal syntax with Scheme macros.
Macros are expanded before the compiler gets to see the code, thus they can be used not

only for syntactic sugar, but also for all kinds of optimisations [16, 14]. The macro-writer
can create macros that expand into different code depending on the specifics of the actual
macro use, similar to user-specified custom compiler optimisations.
Macro systems are divided into Hygienic Macro Systems and Non-Hygienic Macro

Systems. “Hygienic” means that certain precautions are taken to limit the power of the
macro system and avoid the most common problems (for example multiple evaluation or
identifier injection).
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2.2. Syntactic Extensions

2.2.1. Hygienic macros

The Scheme Standard R5RS ([17]) defines hygienic macros based on syntax rules. This
form of syntactic extension allows the definition of special syntax keywords that transform
code before it is compiled. Rules consist of a pattern, and an expansion (or template).
Each use of the rule is matched against the pattern, and the template is expanded accord-
ingly.

(define-syntax push!
(syntax-rules ()

((push! el lst)
(set! lst (cons el lst)))))

In the example above, (push! el lst) is the pattern (the syntactic keyword push! fol-
lowed by two parameters, el and lst). Whenever the macro-expander sees an expression
that matches this pattern, it replaces this expression by the expanded form, in this case
(set! lst (cons el lst)).
This example is a macro that prepends a value to a list (i.e. it assigns the old value

of a variable with the element prepended to the variable). The macro push! cannot be
written as a function, as it needs to mutate the original variable, and all normal functions
in Scheme follow call-by-value semantics.

Pattern language

The pattern language of syntax-rules is rather simple, the following section gives a brief
overview, for a detailed explanation see [17]. The pattern can be an arbitrary list structure,
the identifier ... is treated specially in the pattern (and expansion). An identifier followed
by ... will match zero or more expressions in the expression that the pattern is matched
against. In the expansion, ... is used similarly. Each identifier that does not appear in
the pattern, but only in the expansion is assumed to denote the binding that is in effect
at the time of the definition of the macro.

(define-syntax unless
(syntax-rules ()

((unless condition body0 body1+ ...)
(if (not condition) (begin body0 body1+ ...)))))

The example above defines a macro that expands to code which executes the body
expressions if the condition is not true (i.e. unless the condition is true). At least a condi-
tion and one body expression must be specified (though more than one body expression
is allowed), otherwise the macro does not match (and an error is raised).

(define-syntax unzip
(syntax-rules ()

((unzip (a b) ...)

13



2. Scheme

(list (list 'a ...) (list 'b ...)))))

The example above defines a macro that “unzips” all lists it is given, by building a list
of all the first expressions and another list of all the second expressions in the parameters.

(unzip (at austria) (de germany) (ie ireland) (in india))
=> ((at de ie in) (austria germany ireland india))

Literal keywords in syntax-rules

The parameter right after syntax-rules (in all examples above an empty list ()) may
contain a list of “keywords” that must appear exactly as given in the pattern.

(define-syntax for
(syntax-rules (in)

((for element in list body0 body1+ ...)
(for-each (lambda (element)

body0 body1+ ...)
list))))

(for i in (list 1 2 3 4 5 6 7 8 9 10)
(display (* i i))
(display "␣"))
=> 1 4 9 16 25 36 49 64 81 100

The example above defines a simple for-loop. Like this example, all of the traditional
looping constructs can be built in Scheme with syntactic extensions; it is for this reason
that R5RS only includes a single iterative looping construct (do).

Limitations of and problems with syntax-rules

There are limitations to the macros that can be written with syntax-rules. The most
severe of these limitations is probably the fact that no new identifiers (i.e. identifiers
that do not appear in the pattern) can be introduced in the expansion. As an example,
anaphoric if [14], a macro that behaves like the normal if special form, but automatically
binds the identifier it to the result of evaluating the condition, cannot be written hygien-
ically (because it introduces the new binding it that is not mentioned in the parameters
of the macro).
A general problem with macros can be inadvertent multiple evaluation of parameters.

If any of the parameters is repeated multiple times in the expansion, the expression will
be evaluated multiple times. If this expression includes side effects, this behaviour can
be observed. This is not generally an error, as it can be correct behaviour (as in looping
constructs, where multiple evaluation is what is actually sought).
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Sometimes an approach on a lower level than the one that syntax-rules provides is
needed. Traditionally, Lisp systems have supported a very basic form of macro definitions:
a macro is a function that is passed an expression (as a list structure), and that returns
another expression, which is used instead of the one that was passed. This is a very
powerful approach, as it allows arbitrary code transformations, but it can lead to subtle
problems due to inadvertent capturing of identifiers. This happens if a macro introduces
an implicit binding that shadows a name which the user wanted to permeate the macro.
Ways of dealing with the complexity that this approach raises are Syntactic Closures [2]
or Explicit Renaming [7].
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Several decades of research have gone into Meta-Object Protocols (MOPs) in the Lisp
family. Many different approaches have been explored. In other programming language
families, research and results have been more limited. For this reason, most of the related
work in this chapter is related to the Lisp family.
Probably the best-known example of a Meta-Object Protocol is the CLOS Meta-

Object Protocol (described in [15]). Related to this is the TELOS MOP [4, 22]. The
language Dylan (which is heavily based on Lisp) also includes a MOP with several dis-
tinctive features [8]. Smalltalk includes a reflective MOP [11].

3.1. Definition of Terms

The term Meta-Object Protocol consists of three parts: Meta, Object, and Protocol. We
will now define what these terms mean in this work:

Meta

μετά
with Accus. II. of Place, after, next after, behind

Greek-English Lexicon, Liddell and Scott

meta-
1. a prefix appearing in loanwords from Greek, with the meanings “after”,

“along with”, “beyond”, “among”, “behind”.
dictionary.com

Terms that start with meta- often describe concepts that are in some way behind others,
or that others are based on. In this sense, meta-class is a class that is behind a normal class.
Meta-Objects are objects that describe how objects are created and used. They are part
of the meta-language that describes the actually implemented language (Scheme with our
meta-object protocol).

Object

object

17
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From Medieval Latin objectum: something thrown down or presented (to
the mind).

dictionary.com

An object in this work is a region of memory that is assigned meaning depending on
the class it belongs to. An object has an identity, a class, and a number of slots (fields)
which can contain other objects.

Protocol

πρωτόκολλον
a leaf or tag attached to a rolled papyrus manuscript and containing notes

as to the contents
dictionary.com

A Protocol describes the correct interplay and co-operation of different parts of a system.

3.1.1. Classes

The object systems we look at are Class-based. This means that each object is an instance
of a class, which defines its behaviour and structure. A class defines the following for each
of its objects:

• How an object is created

• What the structure of an object looks like

• How slots in an object are accessed

• Which slots an object has

• Which superclasses an object has

• Which generic functions are applicable to an object

Classes are typically defined by specifying a list of superclasses (if multiple inheritance
is supported, otherwise only a single superclass is allowed) and a list of fields, commonly
called “Slots” in Lisp object systems.

(define-class <point> (<object>)
(x (reader point-x) (writer set-point-x!))
(y (reader point-y) (writer set-point-y!)))

(define my-point (make <point>))

18
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(set-point-x! my-point 3)

(point-x my-point)
=> 3

This code sequence defines a new class <point> that inherits from another class <object>
and has two slots, one called x which has a slot reader (an existing generic function of one
parameter) called point-x and a writer (an existing generic function of two parameters)
called set-point-x!; similarly for y. As seen in this example, new instances of a class
can be created by calling the generic function make.

3.1.2. Generic Functions and Methods

Most of the MOPs in this chapter support Multiple Dispatch by providing multi-methods
[3] (i.e. methods that dispatch based on the dynamic type of all parameters, not only a
special “self ” or “this” parameter). Methods are de-coupled from classes, they belong to
a Generic Function. The generic function itself is like an interface or abstract definition,
its methods provide the actual implementations for different types.
As an example consider a method draw which has two parameters: the shape that is

to be drawn, and the medium that this shape should be drawn onto. In a traditional
single-dispatch object system, the method draw has to be either a method in the class
Shape or in the class Medium. If there are many subclasses of Shape and many subclasses
of Media, there is no easy way to define special methods for those combinations (this is
especially notable if only a few of these many possible methods are actually needed). One
traditional solution to this is “double dispatch”:

abstract class Medium {
public abstract void draw(Shape s);

}

class Paper extends Medium {
public void draw(Shape s) {

s.drawOnPaper(this);
}

}

class Screen extends Medium {
public void draw(Shape s) {

s.drawOnScreen(this);
}

}
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abstract class Shape {
public abstract void drawOnPaper(Paper p);
public abstract void drawOnScreen(Screen s);

}

class Circle {
public void drawOnPaper(Paper p) { ... }
public void drawOnScreen(Screen s) { ... }

}

class Square {
public void drawOnPaper(Paper p) { ... }
public void drawOnScreen(Screen s) { ... }

}

If extensibility is not an issue, a switch statement dispatching on the type can also be
used. Both of these solutions are unsatisfactory.
A generic function with multiple dispatch could be defined as follows:

(define-generic-function (draw medium shape))

(define-method (draw (p <paper>) (c <circle>)) ...)

(define-method (draw (p <screen>) (c <circle>)) ...)

(define-method (draw (p <paper>) (s <square>)) ...)

(define-method (draw (p <screen>) (s <square>)) ...)

This defines all four necessary methods for the generic function draw. It is extensible
by defining further methods for additional classes. Only the necessary methods must be
defined, there is no need to define all possible combinations.
Dynamic dispatch of the methods of a generic function takes into account the dynamic

type of each parameter. First, all methods that are not applicable to the combination of
parameters are eliminated. Then, the resulting methods are sorted according to specificity
(the method with the “closest” parameter type in the type hierarchy is most specific).
Many ways of dealing with the ambiguities resulting from several methods being most
specific for different parameters exist; the most common is to define that the method that
is most specific for the left-most parameter is the most specific method overall.

; (define-class <real> ...)
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; (define-class <integer> (<real>) ...)

(define-generic-function (add a b))

(define-method (add (a <integer>) (b <real>))
'integer-first)

(define-method (add (a <real>) (b <integer>))
'real-first)

(add 1 2)
=> integer-first

(add 1 1.2)
=> integer-first

(add 1.2 1)
=> real-first

In this example, <integer> is a subclass of <real>. Any generic function that is applied
to an integer will choose methods that are specialised on <integer> before methods that
are specialised on <real> (because <integer> is “closer” in the inheritance hierarchy).
Comparable to the call of the implementation of a method in a base class (“super-call”),

each method has an extra parameter (customarily called next-method), which is bound
to the next-most-specific method. This can be called during execution of the method.
Thus it is simple to extend an existing method in a subclass.
Figure 3.1 shows how these types of objects are interconnected. Objects are instances

of classes, classes are objects themselves. Generic functions are special objects that can be
called as functions. Each generic function contains any number of methods. The figure
shows the relationships for an object of type <point> and for the generic function add
as shown in the example above.

3.2. Meta-Object Protocols

The Meta-Object Protocol describes which parts of the Scheme system are concerned
with creating objects, defining classes, calling generic functions, etc. It is an informal
specification of the interfaces and classes that the implementor of extensions can count
on.
Historically, these decisions have been made by the language designer, with no way to

change them when using the language. The rules for object creation, dynamic dispatch,
multiple inheritance conflict resolution etc. were decided on by the language creator, and
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.. point.
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<method>
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instance of

.
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.

an object

.

a class

Figure 3.1.: Basic object relations

the user of the language was unable to adapt the object system to his or her own needs.
Meta-Object Protocols have the goal of opening up the implementation, so that the

object systems we design do not occupy a single point in the space of possible systems, but
actually describe a region of adjacent possible object systems. If the default spot chosen
by the designer does not fit the user, she can adapt the object system (by modifying it via
the meta-object protocol). Figure 3.2 shows a chart with several programming languages,
where the meta-object protocol that is described in this work is shown as a region, not a
single point.
Here are a few examples of the operations and adaptations that meta-object protocols

allow

• Find out which slots a class has

• Find out which superclasses and subclasses a class has

• Find out which generic functions are specialised on a class

• Change the structure of objects to deal with objects that have a large number of
slots of which only a few are ever used (“sparse” objects)

• Intercede in function calls to log the parameters and the return values

• Intercede in slot getters and setters to persist slot values in a database
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Figure 3.2.: Programming Language Design Space

• Change the way dynamic dispatch works by adding the possibility to specialise
methods not only on classes but also on objects

These applications can be roughly divided into two fields of operation (according to
[15]):

• Introspective: This part of the meta-object protocol allows to inspect the state of
the program, the connections between objects, the applicability of functions, etc.
Introspective protocols provide ways of acquiring information about the program.
The first three items above are covered by introspective protocols.

• Intercessory: Intercessory protocols allow the programmer to change the way the
default language works. The semantics of the object system can be changed and
adapted at need (within certain bounds). The last four items above can be achieved
by using intercessory protocols.

3.3. CLOS

The Common Lisp Object System (CLOS) [26] was developed to unify and expand
the existing Lisp object systems (Flavors, New Flavors, Loops, CommonLoops, etc.). It
consists of classes, generic functions, methods and many macros for defining and using
these. Several compatible implementations of CLOS exist and all major Lisp systems
support CLOS.
The fundamental and seminal work on meta-object protocols has been done in CLOS

[15]. The protocol we describe here is the most wide-spread, detailed in [15].
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The CLOS MOP provides a basic meta-object class for each program element. These
classes are:

• class

• slot-descriptor

• generic-function

• method

• method-combination.

The following section details the information these classes contain. Figure 3.3 shows a
diagram of the conceptual slots of the relevant classes (class method-combination is not
shown as the meta-object protocol proposed later does not contain method-combinations
in the same way as CLOS).

..
class
.

name
superclasses
subclasses
slots
class-precedence-list
documentation
generic-functions
methods

..
slot-descriptor

.

name
allocation-type
type
init-form
init-args
documentation
readers
writers

..

generic-function

.

name
methods
method-class
param-list
method-combination
documentation

..

method

.

generic-function
qualifiers
parameters
specializers
primitive-function
documentation

.

Figure 3.3.: CLOS basic meta-object classes
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class

Each class meta-object defines the behaviour and structure of objects that are instances of
this class. For reflection, the class meta-object may offer:

• The name of the class.

• All direct superclasses, direct subclasses, and the class precedence list (all direct and
indirect superclasses).

• The direct slots and the effective slots (all direct and indirect slots that are actually
accessible).

• Documentation for the class.

• All generic functions which have at least one method specialising on this class.

• All methods which specialise on this class.

slot-descriptor

A slot descriptor meta-object contains details about a single slot of a class. A class meta-
object contains one slot descriptor for each direct and inherited slot. A slot descriptor
meta-object may contain:

• The name of the slot.

• The allocation type of the slot (per instance, per class, ...).

• The type of the slot.

• The initialisation form (to automatically calculate a default value for the slot).

• Initialisation arguments (to automatically set the slot value based on parameters
passed to the make-instance function).

• Documentation for the slot.

• The generic function names of reader and writer methods used for accessing the
slot value.

25



3. Related Work

generic-function

Generic functionmeta-objects contain information about a generic function (e.g. method
dispatch), but not about the actual methods. This information includes:

• The name of the generic function.

• All methods of this generic function.

• The default class for the generic function’s methods’ meta-objects (i.e. the class
which all methods of this generic function have).

• The list of parameters (to ensure that all methods have compatible parameter lists).

• The method combination of the generic function (this is a Common-Lisp specialty,
explained in the section below).

• Documentation for the generic function.

method

Method meta-objects contain information about a single method:

• The generic function this method is a part of (either exactly one or none, no
method can belong to multiple generic functions).

• The qualifiers for this method (relating to the method-combination).

• The list of parameters.

• The list of types this method is specialised on.

• The primitive function (an actual executable function, not a generic function).

• Documentation for the method.

method-combination

The CLOS MOP supports “method combinations”, which are a means of applying not
just a single method of a generic function, but multiple.
As an example, the predefined standard method combination allows the definition of

multiple before, after and around methods (these keywords are the qualifiers in the method
meta-objects), which are automatically executed before, after, or instead of the primary
method.
The predefined list method combination automatically applies all applicable methods in

order of specificity and returns a list of all the results. Other available predefined method

26



3.3. CLOS

combinations are + (add all results), and (only apply later methods if all earlier methods
returned a true value), or (only apply later methods if all earlier methods returned a false
value), and a few more [26].
The structure of method combination meta-objects is left undefined by the CLOS

MOP.

3.3.1. CLOS Protocols

A number of protocols are specified on different layers, for achieving different goals. The
lowermost is the instance structure protocol, which influences the way class instances
are built. The object initialisation protocol builds on this lower layer, providing ways to
customise the initialisation of objects of any class. Upon these two the class finalisation
protocol, which governs the creation of new classes, and the generic function invocation
protocol, which deals with calling generic functions and selecting the correct methods to
execute, are built. On top of all the others, a layer of syntactic extensions provides more
convenient access to the functionality provided by lower levels:

• the instance structure protocol

• the object initialisation protocol

• the class finalisation protocol

• the generic function invocation protocol

• the syntactic extension layer

These protocols specify in detail how the specific generic functions and classes are related,
when they are called, and – if additional methods are added – which restrictions these
methods are subjected to.
The CLOS MOP differentiates between functional and procedural protocols: A generic

function in a Functional Protocol is called for its result, which may be cached. The
programmer cannot rely on a generic function of a functional protocol being called every
time the value is needed. In contrast to this, a Procedural Protocol specifies that the
implementor (and any programmer extending the generic methods) must ensure that the
generic function is called each and every time as specified.
As an example, the list of superclasses of a class is calculated according to a functional

protocol only once by the generic function compute-class-precedence-list. If it
is requested multiple times by the user, compute-class-precedence-list may not be
called again (depending on the implementation).
But in a procedural protocol, like the protocol for calling generic functions, the related

generic functions must be called each and every time. For example, the generic function
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apply-method must be called each time a method of a generic function is applied to
arguments.
According to the specification the user of the Meta-Object Protocol can decide which

generic functions to extend or override in which way.

3.3.2. Example protocol: Generic function invocation

As a representative of the protocols mentioned above, we will describe in more de-
tail the generic function invocation protocol in CLOS MOP. As shown in figure 3.4,

apply-generic-function gf args procedural
compute-applicable-methods-using-classes gf classes functional
method-more-specific-p gf method1 method2 classes functional

apply-methods gf args methods procedural
apply-method method args next-methods procedural
extra-function-bindings method args next-methods functional

Figure 3.4.: Generic function invocation protocol in CLOS MOP

this protocol consists of nested calls to 6 different generic functions. The entry point
is apply-generic-function, which must be called each time any generic function is
called.
This generic function in turn calls compute-applicable-methods-using-classes,

which computes all methods that are applicable to the list of classes that is given as a
parameter. The result of this computation may be cached, so if the same list of methods
and the same list of classes is used later on, it is possible (and allowed by the protocol)
that the generic function compute-applicable-methods-using-classes is not called
again.
The generic function method-more-specific-p (-p in Common Lisp has the same

semantic denotations as ? in Scheme) is called according to a functional protocol by
compute-applicable-methods-using-classes in order to sort all applicable methods
by specificity. Again, the results of calling it for two specific methods and a list of classes
may be cached by the system.
Once the actually applicable methods of the generic function are calculated by the

generic function compute-applicable-methods-using-classes and sorted (accord-
ing to method-more-specific-p), the list of applicable methods is passed to the generic
function apply-methods. This generic function decides on the exact order in which
these methods are called. For the “standard” method combination, the order is all before
methods, then the primary method, then all after methods.
For actually applying a method to the given arguments, apply-methods calls the

generic function apply-method. This function in turn calls extra-function-bindings
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in order to introduce any extra bindings that should be in effect during execution of the
function.

3.4. TELOS

TELOS (or ΤΕΛΟΣ) is the object system of the EuLisp [21] dialect of Lisp . EuLisp was
intended as a rival of Common Lisp, and was influenced by Common Lisp [26], InterLISP
[27], Scheme [17] and T [23]. The basic objects of the meta-object protocol are the same
as the ones in CLOS.
The Meta-Object Protocol of TELOS was explicitly meant to find a balance between

efficiency, simplicity and extensibility [4]. TELOS consists of several layers, the lowest
of which provides the building blocks for all the ones above it. For example this lowest
level, called level-0, only implements single inheritance, but provides the mechanisms for
multiple inheritance in higher levels.
As an example of the TELOS meta-object protocols, we will look at the slot access

protocol. The TELOS slot access protocol works at class definition time, all slot accessors
are set up when the class is defined.
For readers, the protocol is as follows:

(compute-slot-reader class
slot-descriptor
slot-descriptors)

(ensure-slot-reader class
slot-descriptor
slot-descriptors reader)

(compute-primitive-reader-using-slot-descriptor
slot-descriptor
class
slot-descriptors)

The function compute-slot-reader typically returns a generic function for the reader
(calculated based on the slot descriptor) without adding any methods to it. To make sure
that this generic function contains the correct method, ensure-slot-reader must be
called on it. This method checks whether an appropriate reader is already defined, oth-
erwise calls compute-primitive-reader-using-slot-descriptor to compute one.
A new slot descriptor type <predicate-slot-descriptor>, which checks a predicate

before allowing write access, would be implemented as follows:

(defmethod compute-primitive-writer-using-slot-descriptor
((slot <predicate-slot-descriptor>)
(class <class>)
slotds)
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(let ((prev-writer (call-next-method))
(predicate (slot-descriptor-predicate slot)))

(lambda (object new-value)
(assert (predicate object))
(prev-writer object new-value))))

This defines a new method that returns a primitive writer function on the generic func-
tion compute-primitive-writer-using-slot-descriptor which checks the predi-
cate before actually writing the value (by calling the next method) (see [4] for details).
Unfortunately, TELOS was never completed, the class initialisation protocol and the

generic function invocation protocol were never fully specified according to the original
design goals. Development stagnated around the year 1993, when funding ran out.

3.5. Smalltalk

Smalltalk [13, 19] is one of the oldest object-oriented languages. It is dynamically typed
(like Scheme) and fully object-oriented: everything is an object, there are no primitive
types (like in Java) that are different from other objects. Smalltalk has a rather minimalistic
syntax, only six reserved “keywords”, and a large collection of standard library classes.
Smalltalk includes reflective facilities via meta-classes by default. Each class that is de-

fined in Smalltalk automatically includes the definition of a meta-class. This meta-class
has only one instance, the class object for the class that was originally defined. All meta-
classes are instances of the class Meta-class, itself an instance of class Class (this resolves
the metacircularity). Figure 3.5 shows the relationship between these objects. Meta-
classes in Smalltalk are – rather unimaginatively – named <classname> class (e.g. the
meta-class of class Point is named Point class). The following transcript shows the
relationships also shown in figure 3.5. The square denotes a simple instance, the circles
are class objects (either of classes or meta-classes). Arrows symbolise sub-classing, they
point from the sub- to the super-class. Sending the message class to an object returns
the class that this object is an instance of.

st> Point class
Point class
st> Point class class
Metaclass
st> Point class allInstances
(Point )
st> Point class class allInstances
(Class class Object class ObjectMemory class
Message class ...)
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Figure 3.5.: Smalltalk Metaclasses (based on [19])

The class object Point is an instance of class Point class. That class, Point class is
itself an instance of Metaclass. There is only one instance of Point class, namely the
class Point. The class Metaclass has exactly one instance for each class defined in the
entire Smalltalk system (in GNU Smalltalk Point class class allInstances size
returns 246).
One application of these meta-classes is implementing class methods. A class method

on a Smalltalk class is really an instance method on the meta-class.
Introspective facilities in Smalltalk reside mostly in the class Behavior, which is the

common superclass of all class-like objects (mainly instances of Class and Metaclass).
It contains – among many others – the following useful messages:

• allSubclasses: returns a list of all subclasses of this class

• allSuperclasses: returns a list of all superclasses of this class

• instVarNames: returns a list of all instance variable names

• methodDictionary: returns a dictionary of all messages this object directly re-
sponds to

• inheritsFrom:: returns true if this class inherits from the class passed as an argu-
ment

• allInstances: returns all direct and indirect instances of this class
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Smalltalk lacks full intercessory protocols. Experiments in adding this ([11]) mostly
involve changing the compiler to provide additional methods that are called during class
creation etc.
Certain cases of intercession can be emulated by creating proxy objects that implement

the message doesNotUnderstand:. This message is a special message that the Smalltalk
VM generates when an object is sent a message that it normally doesn’t implement. The
single parameter is the reified message. This message can be inspected, and acted upon.
This mechanism is for example used to implement proxies for distributed objects.

3.6. OpenC++

OpenC++ [6] is a compile-time Meta-Object Protocol for C++. It was developed with
efficiency in mind, resulting in a pure compile-time protocol. The extended C++ code is
compiled by an OpenC++ pre-compiler, then the resulting C++ code can be compiled
by any normal C++ compiler. Any user of the MOP can generate custom code for the
specified entry points into the MOP (e.g. getters and setters, function calls or variable
declarations).
Meta-objects in OpenC++ only affect the compilation behaviour. There is (by default)

no runtime representation of meta-objects. The OpenC++ compiler reads all relevant
files into memory as an abstract syntax tree, builds an internal representation of the meta-
objects, then applies the meta-objects at all necessary points in the code (e.g. getters and
setters, function calls, memory allocation), which may result in a modified abstract syntax
tree, and finally writes the resulting tree to C++ files for the normal compiler to work
on.
The following behaviour in a C++ program can be influenced by meta-objects in

OpenC++:

• member function calls

• data member readers

• data member writers

• variable declarations (of a class type)

• memory allocation (of a class type)

• class declaration

The meta-objects contain functions to deal with each of the constructs mentioned
above. As an example, a meta-object that adds logging on data member readers is shown:
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metaclass Point : ReaderLoggingClass;
class Point { public: int x, y; }

class ReaderLoggingClass : public Class {
public:
Expression

CompileReadDataMember(Environment env,
String member_name,
String variable_name) {

return
MakeParseTree("cout␣<<␣\"Read␣%s.%s\"␣<<␣endl;%e",

variable_name,
member_name,
Class::CompileReadDataMember(...));

}
}

In this example, the code sequence cout << "Read␣...."<< endl; is inserted right
before the actual data member reader (which is compiled via a call to the superclass).
The first line declares that ReaderLoggingClass is the meta-class of Point, telling the
compiler to use the custom functions in that class to compile the class and all instances of
Point.

3.7. Dylan

The dynamic language Dylan [24] was developed by Apple as an application-development
language. It was designed as a purely object-oriented language from the ground up,
different from Java or C++, which contain non-object primitives. The influence of
Lisp (and especially CLOS) on Dylan is undeniable, in fact early Dylan interpreters and
compilers were implemented in Lisp. The syntax was originally Lisp-like, but was changed
to an ALGOL-like syntax in hope of wider acceptance.
The Dylan object system is based on the same primitives as CLOS, namely classes,

generic functions and methods. For the sake of efficiency, a number of additions were
made, the most important of which are sealed classes, which cannot be extended outside
their original module (thus allowing efficient compilation).
The following shows how to define a generic function and two methods on it in Dylan:

define generic add (first :: <object>, second :: <object>)
=> (result :: <object>);

define method add (first :: <number>, second :: <number>)
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=> (result :: <number>)
first + second;

end method add;

define method add (first :: <string>, second :: <string>)
=> result :: <string>
concatenate(first, second);

end method add;

The generic function add now has twomethods, one that is applicable to two <number>s,
and one that is applicable to two <string>s.

3.8. Ruby

The dynamic language Ruby [10] was developed primarily by Yukihiro Matsumoto. The
most influential languages on its design were Perl, Smalltalk, Eiffel and Lisp. It is an
exceedingly dynamic language, allowing modification of class structure and behaviour at
runtime.
Due to its dynamic nature, the same effects that other languages achieve with meta-

object protocols can be reached via reflection in Ruby. The main problem of this approach
is its inefficiency, as the system cannot knowwhich parts of a program are static, and which
can change at any time.
As an example, we show how to override the new method in the built-in class Class,

which is called when instantiating new objects:

class Class
alias oldNew new
def new(*args)

print "Creating␣new␣", self.name, "\n"
oldNew(*args)

end
end

This code segment re-opens the class Class for defining and overwriting methods,
it defines oldNew as an alias to the original new method. Then a the method new is
overwritten with a new method, which first prints the string shown and then calls the
old method. This method is now applicable for all classes, pre-existing and new. As an
example, calling the method new on the class String, we get the following result:

String.new
=> Creating new String
=> ""
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Ruby allows this sort of interference and redefinition in any place in a program, thus
rendering optimisation very complex, because even the behaviour of built-in classes and
methods can be modified easily.

3.9. Comparison

The preceding sections show that none of the investigated systems provide powerful and
simultaneously efficient abstractions that achieve the goals mentioned in chapter 1. Fig-
ure 3.6 shows at which criteria the sample systems excel, and where there is still room for
improvement. The criteria are:

• Slot accessors: Whether the language allows defining custom slot accessor code.

• Object layout: Whether the language allows changing object layout.

• Static optimisation: Whether the language provides the meta-object protocol in
a way that still allows static optimisation.

• Runtime component: Whether the meta-object protocol is also available (in
parts) at runtime.

Language Slot Object Static Runtime
accessors layout optimisation component

CLOS . . . .

TELOS . . . .

Smalltalk . . . .

OpenC++ . . . .

Dylan . . . .

Ruby . . . .

Figure 3.6.: Comparison of Languages

This comparison shows that TELOS meets all the criteria, but unfortunately work on
TELOS was discontinued around 1993. The following chapter shows how to conceptu-
ally finish the work that TELOS began (though the choice of implementation language
is Scheme instead of a custom Lisp).
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This chapter describes the object system this work is based on, and gives a detailed de-
scription of the proposed meta-object protocol.
For the meta-object protocol, a suitable object system has been built, mainly based on

the CLOS and Dylan object systems. The basic building blocks and their interconnections
are described in the next section. The following three sections describe in detail the
three meta-object protocols for object instantiation, class creation and generic function
invocation.
The meta-object protocol is designed to allow for efficient implementation, minimising

the number of generic functions that are called at runtime, yet allowing for extensive
customisation.

4.1. Components of the Object System

The object system that is used in this work consists of the following parts:

• Objects (or instances)

• Slots

• Classes

• Generic functions

• Methods

This section gives a detailed discussion of the exact semantics these parts have, and is an
extension of section 3.1. The object system described here is based on CLOS, TELOS
and Dylan, and is very similar to that of Smalltalk, Ruby and OpenC++, except for
the use of multiple dispatch and generic functions, instead of class functions and single
dispatch. There is nothing special about the object system, it is used as a medium of
showing the applicability of the proposed meta-object system.
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4.1.1. Objects

Objects are the basic entities of the object system. Each object is a direct instance of
exactly one class (the class of the object). Each object has an identity, the programmer can
distinguish two non-identical objects with the same layout and contents. An object is an
abstraction that provides ways to access its class (class-of), compare its identity (eq?), and
that can contain data in so-called “slots” (or fields). This data cannot be accessed directly
(except via implementation-dependent functions), but the reader and writer functions for
the slots can be found via reflection. This enables the user of the object system to redefine
and optimise the actual memory layout of specific objects. Figure 4.1 shows the abstract
layout.

.. class. data.

class

.

data

.

class object

..

slot storage

.

· · ·

Figure 4.1.: Object layout

An object’s class defines its layout (and more, as is described in later sections).

4.1.2. Slots

Slots are abstractions for fields or data members of an object. Each slot has a name, and
optionally associated reader and writer functions. The normal way to access the slot value
is via these functions. Slots are an abstraction; by default, a slot generates an actual data
field that holds a value, but the meta-object protocol allows extensions where a slot value is
e.g. calculated upon read, read from a database, transported over a network or distributed
into other slots fields upon writing.
Each class has direct slots (the slots that are defined directly for this class) and indirect

slots (all slots that are purely inherited, with no changes). The combination of these are
the effective slots of the class.
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4.1.3. Classes

Classes describe the layout and behaviour of objects. Classes are first-class objects, so
they exist as objects at runtime, and can be used like any other object. Class objects are
used for reflection (they contain objects that describe the instances of the class) and for
intercession in the meta-object protocol (they contain information and functions that are
used for e.g. constructing objects).
The default class objects (the extensible core) contain the following information:

• The name of the class

• The class this class is an instance of (the meta-class)

• The direct superclasses

• The direct slots

• The direct subclasses

The meta-class describes the layout of the class object. This leads to a conceptionally
infinite Meta-Recursion (as the meta-class in turn needs a meta-meta-class that describes
its layout, ad infinitum), that is resolved by the class <class>, which is its own meta-class
(see figure 4.2). Because the class <class> describes the default behaviour and layout,
which is clearly defined, no infinite recursion arises. Upon need, new meta-classes can
be introduced, leading to new types of classes (for example classes that log all accesses to
their slots or classes that automatically persistent their slot values). By default, all class
objects are instances of <class>, the default meta-class object.
The direct superclasses specify this class’s place in the inheritance hierarchy. By default,

<class> only supports a single superclass (multiple inheritance can be implemented via
the meta-object protocol as an extension).
The direct slots describe the slots that all instances of this class contain. This list only

contains the slots that are new or redefined in this class (compared to its superclasses).
The list of direct subclasses is automatically kept up-to-date whenever new subclasses are
defined.
All these slots can be read via generic functions, forming a part of the reflective protocol.

For example, accessing the slot descriptors and extracting the names and reader functions
allows building a generic object inspection function that can print the slot names and slot
values of any object.
Classes do not have specially associated functions (like in C++ or Java), but instead all

generic functions that specialise any parameter on a class can be asked. This is conceptually
similar to all methods of this class in C++ or Java.
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..

instance of

.

subclass of

.

<class>

.

<object>

.

<generic-function>

.

<method>

Figure 4.2.: Meta-Class Connections

4.1.4. Generic functions

Generic functions provide multi-methods (multiple dispatch). A generic function can
have multiple methods, each of which is specialised on a certain list of parameter types.
When the generic function is applied to a list of arguments, the best-fitting method is
selected, and called.
Generic functions have the following slots:

• The name of the generic function

• The list of registered methods

• The common signature of all methods of this generic function

• A discriminating function, that selects and orders the methods upon function ap-
plication

The signature describes the valid parameter lists, to ensure that all methods are com-
patible (for example, they must have the same number of required parameters). The
discriminating function does the work of deciding which methods of the generic func-
tion actually apply, and in which order (see next-method in section 4.1.5) they will be
called.
The default discriminating function works as follows: method specialisers can only be

classes (i.e. the method applies if the parameter is an instance of the given class). All
methods of a generic function where at least one specialiser does not match a parameter
are discarded, the rest is sorted by specificity, where more specific means: From first to
last parameter, if a method specialises on a hierarchically lower class, it is more specific.
This algorithm is arbitrary (the sum of actual distances for all parameters could be used,
or an entirely different approach), but has been used in many other Lisp object systems
(among others [26],[21],[24]), and is simple to understand.
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4.1.5. Methods

Methods encapsulate the actual code, that is executed when a generic function is called.
Each method specialises on a certain set of parameters. It is guaranteed (by the discrim-
inating function of the generic function that the method belongs to) that each method
is only ever called with matching parameters (i.e. a type mismatch cannot happen when
calling a method).
A method contains the following slots:

• The generic function this method is registered with (if any)

• The specialisers

• The method lambda (the actual function code)

By default, the specialisers can only be classes, i.e. dynamic dispatch compares the class
of a parameter to the specialiser. This can be changed via the meta-object protocol (e.g.
dispatch could be based on predicates or on singletons, see 6.4).
The method lambda is a primitive Scheme function, that does the actual calculations of

the method. This function takes the same parameters as the method, but additionally has
a parameter prepended that is called next-method. This parameter is used to implement
inheritance-based super-calls. The discriminating function of a generic function orders
all applicable methods. The first one is called, and the parameter next-method is set to
the next-most specific method. Thus, the most specific method can call the next-most
specific method, and so on. The passing of the correct next method to each invocation
is handled behind the scenes. This is similar in spirit to a super-call in Java or C++. A
more specific method can call a less specific method to extend upon its work.

4.1.6. Syntactic extensions for defining classes, generic functions
and methods

To simplify the use of the object system, a number of syntactic extensions (“macros”) is
defined here, which allows easy definition of classes, generic functions and methods. It
is important to note that these macros are not strictly necessary, they are only syntactic
sugar around more verbose forms, however they make understanding what’s going on
much simpler. These are based on and similar to the corresponding macros in related
Lisp object systems.

define-generic-function

To define a new generic function, a programmer would write code like the following:

(define-generic-function (binary-add a b))
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This macro expands to the following definition:

(define binary-add (make <generic-function>
'binary-add
'(a b)
'()))

Here the first parameter to make is the class we wish to instantiate (in this example that
is the class <generic-function>), the second argument is the name of the newly in-
stantiated generic function (in this case the symbol 'binary-add), the third parameter is
the list of parameters that the newly created generic function will accept (in this case two
parameters, name a and b).
The full form of the macro is:

(define-generic-function (<function-name>
<parameters> ...)

<generic-function-option> ...)

The last parameter is a list of generic function options. The only option that is recog-
nized by default is instance-of, which declares the class of the generic function (if it is
different than <generic-function>). These options can be extended by the user of the
meta-object protocol, new options can be added or old ones can be treated differently.
For example, an option could be which of several competing dispatch mechanisms to use.

define-method

To add a new method to an existing generic function, the define-method macro is
provided:

(define-method (binary-add (a <number>)
(b <number>))

(+ a b))

This expands to the code that instantiates a new method and adds it to the generic func-
tion. If a method with the exact same specifiers already exists, it is overwritten.
The full form of the macro is:

(define-method (<generic-function-name>
(<parameter-name> <parameter-type>)
...)

<body-expression> ...)

define-class

The macro define-class supports the definition of new classes. An example of a use
of define-class is:
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(define-class <point-2d> (<object>)
((x

(reader point-x)
(writer set-point-x!))

(y
(reader point-y)
(writer set-point-y!)))

(predicate point-2d?))

This code segment defines a new class <point-2d>, which is a subclass of <object>. It
has two direct slots (x and y), plus any further slots it inherits from its base class (in this
case none, as the class <object> defines no slots). Both slots have an associated reader
and writer generic function, appropriate methods for reading and writing x and y are
automatically added; the generic functions must be defined beforehand. The predicate
class option specifies that predicate methods should automatically be generated for the
specified generic function (returning true for all general instances of the defined class,
and false else).
The predicate class option is one of two predefined class options. The other one is

instance-of, which is used to specify the meta-class of the newly defined class. Nor-
mally, class objects are instances of the class <class>, but if another class is specified, that
one is used. As with generic functions, class options can be extended and added by the
user of the MOP.
The full form of the macro is:

(define-class <class-name> (<superclass> ...)
((<slot-name> <slot-option> ...) ...)
<class-option> ...)

4.2. Design considerations and concepts

This section explores the criteria that were shown at the end of chapter 3, motivating the
design decisions that were taken when creating the proposed meta-object protocol and
showing different choices.
There are many criteria for evaluating object systems, the ones chosen here are those

deemed most important by the author (and corroborated in [15] and [4]) for creating an
object system and meta-object protocol that are applicable to a wide range of problems
and nonetheless retain enough power and expressivity to enable efficient and effective
implementations.
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4.2.1. Customising slot accessors

A very common operation in all object systems is access to “fields” or “members” (what
we call “slots”) of an object. In all investigated systems this is a major building block
for abstractions. Several systems intermingle slot access with visibility and data hiding
concerns (often making the situation even more complex due to the connections between
visibility and inheritance).

A definite design goal is the ability to change the semantics of slot access. Consider a
new “type” of objects, where all slot accesses are logged (in order to reconstruct later when
slot values were accessed or modified). In order to implement this new class of objects
in pure Smalltalk or Dylan, one would have to write the corresponding functionality by
hand in each slot accessor for each class that uses it. There is no way to specify that –
instead of the usual “normal” accessor – an extended version should be used. In Ruby,
this is easily done, however the costs are prohibitive in cases where efficiency is needed.

CLOS allows interceding in slot access in arbitrary ways, which precludes efficient im-
plementation. As there is one generic function (slot-value) in CLOS which governs
the access to any slots of any class – with potentially hundreds of methods – static opti-
misation is very hard.

TELOS and OpenC++ both provide this functionality, by overriding the way slot
accessors are created in a way that only relates to the class (and potentially a specific
generic function).

4.2.2. Customising object layout

Connected to the previous criterion is the ability to change the actual memory layout of
objects. If a specific slot value is always calculated, read from a database or transferred via
a network, there is often no need to reserve space for it in the object instance. When
creating such an object, memory should only be reserved for the slots for which this
is necessary, as denoted by implicit rules or by the programmer. As for the previous
criterion, neither pure Smalltalk nor Dylan provide means of achieving this. Ruby again
makes it easy, at great runtime cost.

OpenC++ and CLOS both provide full customisability of object layout. OpenC++
does so by allowing the programmer to define the transformations of new object def-
initions (so that an object could be “unrolled” by allocating all fields as local variables
instead of allocating it on the heap, for example). CLOS (and TELOS) provide generic
functions that are called on each class instantiation, thus allowing arbitrary object layout
in connection with custom slot accessors. However, the need to always call a generic
function (with full multiple dispatch) is a potential problem if many objects are allocated.
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4.2.3. Enabling static optimisation

Even though computers have become faster and faster, there are still many applications
for which runtime matters. The meta-object protocol itself should not preclude efficient
implementation (even though the default implementation may not implement all possible
optimisations).
Dylan, OpenC++, Smalltalk and TELOS all fulfil this criterion, two due to the sim-

plicity of their MOP (Dylan, Smalltalk), the other two (OpenC++ and TELOS) due to
design decisions. OpenC++ was designed from the start to be a compile-time MOP,
thus allowing as much optimisation as possible at compile-time. TELOS too was based
on CLOS, but with the additional goal of making optimisation easier than it is in CLOS.
The main criterion for enabling static optimisation is providing the phases before run-

time with as much information as possible on function calls. CLOS uses generic functions
in many key places, which are hard for the compiler to analyse completely. By reduc-
ing the amount of generic functions that must be called in a program, runtime costs are
diminished.

4.2.4. Meta-information accessible at runtime

The above three points dealt with intercessory abilities of the meta-object protocol. In
addition to interfering in the execution of object-oriented programs, one very important
characteristic of meta-object protocols is the ability to reflect upon programs. All the
investigated languages except OpenC++ offer full reflective capabilities, e.g. inspecting
the available classes, the slots of objects, the inheritance hierarchy, etc.
OpenC++ allows the programmer to add this information where needed by imple-

menting the proper mechanisms herself, but provides no additional support for reflection.

4.3. Object Instantiation Protocol

The object instantiation protocol governs the creation of all objects, i.e. “normal” objects
and meta-objects. The following steps are taken when instantiating a class:

1. The generic function make is called to instantiate an object of a class

2. Storage is allocated for the object (including storage for all necessary slots)

3. The generic function initialize is called on the uninitialised object, in order to
correctly initialise the object according to any parameters passed to make

Note that there is only one generic function call (the call to initialize) after the initial
call to make. This is by design, object instantiation should be as efficient as possible. A
detailed description of the steps follows:
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(make <class> <parameters>)
;; call slot storage allocator
;; allocate object
(initialize <object> <parameters>)

Figure 4.3.: Object Instantiation Protocol

make

The generic function make is the common object instantiation function. Objects of all
classes are created by calling this generic function. The first parameter must be an object
of type <class> (defining the class that is instantiated). Any further parameters are passed
along to initialize.
The default behaviour of the generic function make is to allocate slot storage and return

a new object with the given class and the newly allocated slot storage. Overriding make
is useful in cases where this method should not actually allocate a new object (but return
an existing one).

Allocating storage

Storage is allocated in a two-step process:

1. Storage for slots is allocated

2. The object is allocated

Conceptually, an object consists of a pointer to the class and a slot storage (the actual
object format is an implementation detail and cannot be changed). The user of the
meta-object protocol can change the slot storage. This is done by adding a method to
the generic function calculate-slot-storage-allocator. This method takes one
parameter (the class to calculate the slot storage allocator for) and returns a function of
zero parameters, that allocates the actual slot storage. The default behaviour is to return
a function that allocates a vector of the same size as the number of effective slots.
Overriding the slot storage can be used to implement different slot allocations (like

class-allocated slots, or hash-table-based slots). The generic function for calculating the
slot storage allocator, calculate-slot-storage-allocator, is only called once, when
the class object is instantiated, so it can only be used in the proper way in meta-classes.

initialize

After the object and slot storage is allocated, make calls initialize with the newly
allocated object as the first parameter, and any parameters left from the original call to
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.. class. data.

class
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set by make

.

allocated by slot storage allocator

Figure 4.4.: Object instantiation protocol

make. The methods of initialize must finish any initialisation that is needed beyond
pure allocation. The default behaviour is to do nothing for normal objects. For subclasses
of <class>, the default behaviour is to correctly initialise the new class object.
New methods on initialize can be used to e.g. support automatic initialisation of

slots via parameters to make, count the number of objects created, run custom initialisation
code, etc. The generic function initialize is the equivalent of a constructor in Java or
C++.

4.3.1. Design Decisions and Rationale

Creating new objects is a very common operation in all systems. If intercession is wanted,
it should be as cheap as possible in terms of runtime overhead. This means that there
should not be a generic function call on each object instantiation. For this reason, the
proposed object instantiation protocol does not define a generic function to be called on
each instantiation, but instead defines a generic function that is called upon class creation,
which should return an allocator function. This is normally a standard Scheme function,
which just returns a new object, guaranteeing no additional overhead beyond a normal
Scheme function call. If needed, the user of the meta-object protocol can use a generic
function here.
The object instantiation protocol controls the creation of new objects. It deals with

allocating storage and initialising the object. These two steps can both be influenced,
the first statically via a functional protocol – calculate-slot-storage-allocator is
called once, when the class object is created; it returns an allocator function, which is
then called to allocate actual objects – the latter via a procedural protocol – the generic
function initialize is called for each object that is initialised. The main instantiation
function (make) also follows a procedural protocol.
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The decision to keep make and initialize procedural (as opposed to making them
both functional) is based on the fact that, for a functional protocol to work, a new meta-
class needs to be introduced, because functional protocols may be executed only once.
The functional protocol then applies to all instances of instances of this meta-class. This is a
noticeable design overhead for the common operation of customising object initialisation,
in these cases the cost of a generic function call seems justified.
Customising slot storage allocation is a much less common operation, in this case in-

troducing a new meta-class seems a sound design decision, as this constitutes a new class
of objects.
In total, two generic function calls are necessary for each object instantiation. If multiple

objects of the same class are instantiated in a row, caching in the generic function dispatch
can amortise the costs.

4.4. Class Creation Protocol

The class creation protocol specifies all necessary detail for creating new classes. Bymaking
use of the class creation protocol, the user of the MOP can influence the way classes (and
in turn instances of these classes) are generated.
The class creation protocol is the most complex of the protocols, it governs the follow-

ing:

• The generic function make is called to instantiate an object of a class type

• The normal object instantiation protocol is followed, but the generic function
initialize additionally does the following steps:

• Calculate and correctly order the superclasses

• Calculate a slot storage allocator function to use with instances of this class

• Calculate the effective slots

• Apply class options to the newly created class object

• Ensure that valid accessors for the effective slots are generated

Each of these steps is to be implemented by a generic function, and can be influenced by
the user of the MOP by adding additional methods to them. A detailed explanation of
each step is given in the next section. The entire class creation protocol is a functional
protocol, all generic functions mentioned here are called for their results when the class
is generated; they are not called again after class instantiation is finalized.

48



4.4. Class Creation Protocol

(initialize <class> <parameters>)
(calculate-and-order-superclasses <class>

<superclasses>)
(calculate-slot-storage-allocator <class>)
(apply-class-options <class> <options>)
(ensure-slots-accessors <class> <slots>)

;; details in the Slot Accessor Protocol

Figure 4.5.: Class creation protocol

Calculation and ordering of superclasses

When creating a new class, the programmer passes a list of superclasses. This list may
be empty, or may contain one or more classes. Based on this list, the generic function
calculate-and-order-superclasses calculates a list of effective superclasses, and or-
ders them according to their precedence. The default method keeps the list as it is given;
if the list is empty, the single class <object> is inserted as the base class. This generic
function is called once when the class object is created, and should return a list of super-
classes.
The user of the MOP may wish to override this method to achieve specific effects in

combination with multiple inheritance or e.g. to enforce of mixin-semantics.

Calculation of the slot storage allocator function

When creating the class object, a custom slot storage allocator is calculated by calling
the generic function calculate-slot-storage-allocator. This allocator is called
whenever a new instance of the class is allocated, it should return the appropriate slot
storage for this instance.
As mentioned in 4.3, this is useful for classes that have special storage allocation, where

the default (a vector with one field per slot) is not sufficient.

Calculation of effective slots

The effective slots of a class are a combination of the direct slots defined explicitly for
this class, and all slots that are inherited from superclasses. The slot descriptors for these
slots must be combined (and maybe merged, if a superclass contains a slot with the same
name as the subclass). The generic function effective-slot-descriptors is called
to calculate this list. The default method for instances of <class> just concatenates the
direct slots of the newly generated class and the effective slots of all superclasses.
Overriding this method allows special effects in slot inheritance, the user of the MOP

can decide which slot options to inherit, and how to merge them. This method also
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influences calculation of slots if multiple inheritance is used and more than one base class
has a given slot.

Application of class options

The options that are given when defining the class are processed by this function. Each
option consists of a key (a symbol) and a list of arbitrary values. If a programmer wants
to support a new class option, she should add another method to the generic function
apply-class-options that tests for this key in the list of options, and takes appropriate
action. Normally, the next method should then be called (to process class options that
are handled higher up in the inheritance hierarchy).

Ensuring of accessors for effective slots

When a class is generated, each effective slot must be checked for the existence of proper
accessor methods (if specified). For each effective slot in a class, if there is a reader or writer
generic function specified, a method is added to that generic function that correctly
accesses the slot in question. If the access method has not changed compared to the
superclass, no new method is necessary. For example, by default for the single-inheritance
case, all new slots are added at the end of the slots list, so the position of a slot never moves.
There is no support for removing existing slots in sub-classes (as this would violate the
interface contracts). The Accessors of the superclass can be used on all subclasses.

(ensure-slots-accessors <class> <slots>)
(ensure-slot-accessors <class> <slot> <slots>)

(ensure-slot-reader <class> <slot> <slots> <reader>)
(ensure-slot-writer <class> <slot> <slots> <reader>)

Figure 4.6.: Slot Accessor Protocol

The generic function ensure-slots-accessors is called, which in turn calls the
generic function ensure-slot-accessors for each slot. The methods of this generic
function must ensure that a proper accessor method is registered with the generic reader
or writer function. It does this by calling in turn ensure-slot-reader and (if neces-
sary) ensure-slot-writer. These methods register the actual reader and writer method
respectively with the generic reader and writer functions.
Overriding the appropriate methods of these generic functions allows the programmer

to intercede when a slot is accessed for reading or writing. This enables efficient yet
simple implementation of e.g. tracing accesses, controlling accesses, providing persistent
slots, etc.
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4.4.1. Design Decisions and Rationale

All investigated systems offer numerous ways to intercede in class definition and creation.
The common pattern in all of them is the ability to customise which code is generated
for slot accessors. The user must be able to generate custom slot accessors, that are not
significantly slower than hand-written accessors would be.
As the creation of class objects is usually not a frequent operation, many generic func-

tions are involved in order to provide a maximum of customisability. Care has been taken
to eliminate generic functions from the actual productive code in instances of the classes
(e.g. no generic functions are involved in slot access beyond the actual accessor function
call). The protocol allows the programmer to adapt all the main characteristics of classes
– inheritance, slots, slot accesses, and general class options – to his or her needs.

4.5. Generic Function Invocation Protocol

Probably the most central point of the entire object system is generic function invocation.
Dynamic dispatch is the main means of extending existing objects, thus needs to be as
efficient as possible. The generic function invocation protocol specifies many entrance
points where customisation can occur:

• When a generic function is applied to any arguments, a primitive function is in-
voked, that directly calls the generic function’s discriminating function with the
arguments.

• The discriminating function by default calls apply-generic-function.

• apply-generic-function first filters and sorts the applicable-methods by call-
ing sort-applicable-methods, then calls the first applicable method with the
given parameters, and a function that – if called – invokes the next-most applicable
method of the remaining applicable methods.

• sort-applicable-methods first calls the generic function applicable-methods
to get a list of methods that are applicable to the given arguments, then sorts them
according to the generic function method-more-specific?.

• The generic function method-more-specific? in turn invokes the generic func-
tion specializer-more-specific? to find out which of two methods is more
specific.

All of these generic functions can be overridden or extended by the user of the MOP
for new meta-classes. As generic function invocation plays a central rôle in the object
system, the user cannot override the default behaviour (which is optimised for speed) for
the existing meta-classes (but it can be arbitrarily extended for new meta-classes).
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(apply-generic-function <generic-function> <arguments>)
(sort-applicable-methods <generic-function>

<arguments>)
(applicable-methods <generic-function> <arguments>)
(method-more-specific? <method-1> <method-2>)

(specializer-more-specific? <method-1>
<method-2>
<specializer-1>
<specializer-2>)

;; apply the methods in order of specificity

Figure 4.7.: Generic Function Invocation Protocol

A programmer using the MOP can influence the generic dispatch on multiple levels,
from the most general – overriding the discriminating function, which decides on which
methods to apply in which order – to the most specific, e.g. influencing the exact ordering
of methods depending on specialisers.
Figure 4.8 to 4.10 show the three most important steps in executing a call to a generic

function:

• Select only the applicable methods from the set of all methods of this generic func-
tion (figure 4.8).

...

applicable method

..

non-applicable method

.

generic function

.method 1.
method 2

. method 3. method 4.
method 5

Figure 4.8.: Generic Function Invocation – Filter methods

• Sort all applicable methods (by the generic function method-more-specific?),
to find the correct order for applying the applicable methods (figure 4.9).

• Call the most specific methodwith the parameters, including the next-most-specific
method (which, if it is called in turn, will be passed the next-most-specific method,
etc.) (figure 4.10).
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..method 1 .

method 3

.

method 5

.

method-more-specific?

Figure 4.9.: Generic Function Invocation – Sort methods

..

parameters

.method 1.

method applied to parameters

. method 3. method 5.

most specific method

.

next method link

.

least specific method

Figure 4.10.: Generic Function Invocation – Apply methods

4.5.1. Design Decisions and Rationale

The most complex part of the entire proposed meta-object protocol is generic function
invocation. This is potentially the most important bottleneck in terms of runtime speed,
as all other parts of the system depend on it. Special care has been taken to ensure that
the user can tweak and optimise in many places.
It seems like the generic function invocation protocol contains many generic functions

in turn, thus rendering it slow. However, the restriction that it cannot be overridden
for the default classes (<generic-function>, etc.) means that these cases can be imple-
mented efficiently. The possibility to override the discriminating function gives the user
a handle to implement other efficient dispatchers as well.
The most efficient dispatcher is a (non-generic) function that just checks whether the

correct number and type of arguments has been provided. This implementation incurs
no overhead beyond the checking (as basic Scheme offers no typing of functions, this
must be implemented anyway). More complex implementations could cache the most
recently used method (thus speeding up dispatches to that exact method), or apply ad-
vanced heuristics when eliminating non-applicable methods.
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The design described in the above sections was implemented in MIT/GNU Scheme [20]
by the author. This implementation is described in the following section.
The implementation consists of several layers (from bottom to top):

• The basic object layer

• The implementation of generic function invocation

• The implementation of the various meta-object protocols

• The syntactic extensions

Only the lowermost two layers (basic objects and generic function invocation) are
implementation-specific, the others are portable across Scheme implementations.

..

Basic Objects

.

Generic Function
Invocation

.

Meta-Object Protocols

.

Syntactic Extensions

Figure 5.1.: Implementation layers

5.1. The basic object layer

Objects are implemented as a record type, consisting of two fields:
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• The class of the object (i.e. a pointer to the class)

• The slot data of the object (i.e. a pointer to the slot data)

.. class. data.

class

.

data

.

class object

.
instance object

..

vector slot storage

.

· · ·

Figure 5.2.: Basic Object Layout

In addition to objects, several primitive data types (numbers, lists, symbols, etc.) are also
supported transparently. This representation of objects was chosen because it allows the
object identity to stay the same even when the slot data changes (this is needed to support
operations like changing the class of an object). Figure 5.2 shows that the instance object
only contains two pointers, one to a class object, one to the slot storage (which may be
an object in the strict sense of the object system, but could also be a simple hashmap or
vector – as it is in the default implementation).
This layer defines accessors for the class and data of objects, which are only used in the

implementation of the meta-object protocols, they should not be used by the user of the
meta-object protocol.
The object system defines the classes and slots shown in figure 5.3.

5.2. Generic Function Invocation

Generic function invocation is a special case, because a generic function is a new type
of object that can be applied to parameters, but must be distinct from normal functions.
MIT/GNU Scheme offers the concept of apply hooks here, which allows arbitrary data
to be linked to functions. Thus the additional data needed for generic functions is stored
in a generic function object which is bound to a simple trampoline function (which just
accesses the generic function object and calls the discriminating function). This layer
implements transparent conversion between generic functions and their data objects.
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..
class
.

name
superclasses
subclasses
slots
class-precedence-list
generic-functions
methods

..
slot-descriptor

.

name
allocation-type
readers
writers

..

generic-function

.

name
methods
method-class
param-list

..

method

.

generic-function
parameters
specializers
primitive-function

.

Figure 5.3.: Object system classes

5.3. The meta-object protocols

This is the main part of the implementation. All the generic functions and classes de-
scribed in the sections above are implemented here. Mostly this is a direct application of
the specification, the implementation-specific parts are:

• The default mechanism for instance slots (the object data) are fixed-size vectors,
with one field per slot

• The function lambda of a method always receives a first parameter next-method
in addition to any other parameters

• The generic dispatch functions for Direct Instances of various classes have been
hardcoded (for efficiency and to eliminate infinite recursion). The specification
forbids modification of the default methods for these classes, so this is not a problem.

The problems related to bootstrapping the system have been solved – as is usual – by
defining the necessary structures by hand (i.e. without the use of convenient syntactic
extensions) before using them.
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5.4. Syntactic Extensions

The topmost layer of the implementation contains the following macros:

• define-class

• define-generic-function

• define-method

These are only for convenience, they do not offer any additional functionality, yet render
the abstractions more convenient to use.
As an example, the macro define-generic-function is implemented as follows:

(define-syntax define-generic-function
(rsc-macro-transformer

(lambda (form environment)
(define (make-argument argument)

`(list ',(car argument) ,@(cdr argument)))
(define (find-metaclass options)

(let ((metaclass (assq 'instance-of options)))
(if metaclass

(cadr metaclass)
'<generic-function>)))

(define (make-option option)
(make-argument option))

(let* ((name (caadr form))
(params (cdadr form))
(options (cddr form))
(metaclass (find-metaclass options)))

`(,(close-syntax 'define environment)
,name
(,(close-syntax 'make environment)

,metaclass
',name
'(,@params)
(list ,@(map make-option options))))))))

It is defined as a macro transformer that transforms the input code to a definition using
define and make. Its main task is to find the appropriate meta-class and to correctly
transform generic function options.
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5.5. Recapitulation of the additions to plain Scheme

This section shows in detail which concepts are provided by the Scheme language, and
which are added to that by the proposed object system and meta-object protocol.
Basic Scheme ([17] extended by MIT/GNU Scheme) includes the following elements

relevant to our implementation:

• Record type definitions (includes defining new predicates, constructors and acces-
sors for a record type, but does not support inheritance)

• Function definitions (untyped and non-overloaded first-order functions)

• Basic datatypes (numbers, strings, etc. and operations on them)

In our implementation, all objects are instances of one basic record type (called object
internally). Class types do not map onto distinct record types, instead each object includes
a pointer to its class.
Generic functions are untyped functions that accept any number and type of parameters.

When called, they check whether the correct number of parameters was supplied, and
look for a method to call. Each method is again an untyped method that accepts a certain
number of parameters. In addition, each method contains information on which type
of parameters it is applicable to. This implementation (one generic function contains
multiple methods) adds overloading and typing to generic functions (which doesn’t exist
in plain Scheme).
The entire class hierarchy and operations on it hinge on generic functions. All reflective

operations and intercessory meta-object protocols build on generic functions.
There are no changes on the compiler level, the entire meta-object protocol and object

system is an addition to plain Scheme, there was no need to modify the existing compiler
or runtime (showing the extent to which Scheme can be customised). This also means
that any programmer can use both plain Scheme and our extended meta-object protocol
in the same program without performance hits on non-meta-object protocol parts. If the
extensions are not used, they do not cost anything in terms of runtime.
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This chapter describes sample applications that were developed using the meta-object
protocol specified in chapter 4. They range from simple to more complex, mostly the
applications do not depend on external libraries (with the exception of section 6.5).
The prototypical applications are:

• Classes that have a hashtable-like slot storage (i.e. they only allocate space for slots
that actually contain values)

• Generic functions that print a trace of their execution (the arguments when the
function is entered, the results when it exits)

• Classes that have “common” slots, which share a value for all instances (also known
as “static” fields in other languages)

• Generic functions that can dispatch not only based on which class they belong
to, but also based on general predicates. As an extension, methods can even be
specialised on single objects.

• Classes that automatically store their slots in a database upon each change. This
can be used as a persistent storage, that is automatically initialised from the database
upon program startup.

The section on each application first describes the wanted effects, then proceeds to
describe how these can be achieved by means of the meta-object protocol.

6.1. Hashtable-Storage Classes

Traditionally, the slots of objects are stored in a vector-like fashion. Internally, all objects
of a class are the same size, regardless of how many slots actually contain values. If an
object has a great number of slots, yet only uses a few of them, much space is wasted. On
the other hand, the vector representation is efficient, as all accesses are in constant time.
We would like a way of changing the slot storage model from vector-like to a slot hash

table, where only the slots that actually have values take up space.
Most programming languages do not let the programmer decide which of these two

models is better suited for her problems, but instead incorporate one or the other in their
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design. By making use of the object-instantiation protocol (see 4.3), we can create a new
meta-class, which changes the slot storage model for all its class instances.
This is achieved in two steps:

• Instead of allocating a vector for slot storage, allocate a hash table.

• Instead of defining readers and writers that access a vector, define readers and writers
that access a hash table.

.. class. data.

class

.

data

.

class object

.
instance object

..

hashtable slot storage

.

··
·

Figure 6.1.: Hashtable-storage Instance Layout

6.1.1. Implementation

First, a new class is defined, that serves as the meta-class for all classes that have hash table
slots:

(define-class <hashing-class> (<class>)
())

Then – to change allocation from a vector to a hash table – the slot storage allocator
function is overridden, according to 4.3:

(define-method (calculate-slot-storage-allocator
(class <hashing-class>))

(lambda () (make-strong-eq-hash-table)))
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Note that this allocator does not use the actual slots of the class for deciding what to
allocate (as opposed to the vector allocator, which must inspect the class to find out the
size of the vector).
At last, the reader and writer generator functions are overridden (only the reader is

shown here, the writer is similar):

(define-method
(ensure-slot-reader (class <hashing-class>)

(slot <slot-descriptor>)
slots
(reader <generic-function>))

(let ((reader-method
(make-method
reader
(list class)
(lambda (next-method obj)
(hash-table/get (object-data obj)

(slot-descriptor-name
slot)

#f)))))
(add-method! reader reader-method)
reader-method))

Here, a reader method is created, which accesses the hash table (with hash-table/get).
It is subsequently added to the reader generic function, and returned.
These simple steps have given us a new meta-class <hashing-class>, which we can

use as the meta-class for any new class and which modifies the slot storage behaviour of
all instances of these classes.
The following code sequence shows that instances of these classes work as expected:

(define-class <hash-slots> (<object>)
((a (reader a) (writer a!))
(b (reader b) (writer b!))
(c (reader c) (writer c!)))

(instance-of <hashing-class>))

(define-class <vector-slots> (<object>)
((a (reader a) (writer a!))
(b (reader b) (writer b!))
(c (reader c) (writer c!))))

(define hash-instance (make <hash-slots>))
(define vector-instance (make <vector-slots>))
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(hash-table? (object-data hash-instance))
=> #t

(vector? (object-data hash-instance))
=> #f

(vector? (object-data vector-instance))
=> #t

We define two classes here, one that uses the normal vector slot storage (which is called
<vector-slots> and one that uses the hash table slot storage (<hash-slots>). For
testing purposes, we use the undocumented internal primitive object-data to access
the slot storage and see that the expected results emerge. For the user of these classes,
there is no discernible difference, the slot accessors and the instance generator hide the
fact that the internal slot storage is different:

(a! hash-instance 4)
(a hash-instance)
=> 4

(a! vector-instance 5)
(a vector-instance)
=> 5

6.2. Tracing Function Calls

When developing or debugging a software system, we often want to trace function entry
and exit. We want to see which parameters were passed to a function, and which results it
returned. One way to achieve this is to add some form of output statements right after the
function start and before every return point. However, this is error-prone, and tedious.
The following section shows how to achieve this effect by defining a new meta-class for
traced generic functions.
In order to trace every function entry and exit, we need to intercept a generic function

right at the point of its call. For this, we can override the discriminating function with
a custom function, which prints the parameters, then calls the original discriminating
function, prints the results, and then returns the original results.

6.2.1. Implementation

The following code section shows how to achieve this. We assume here the existence
of two functions enter-function and exit-function which deal with nicely printing
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and indenting the function parameters and return values.

(define-class <tracing-generic-function>
(<generic-function>)

())

(define-method (compute-discriminating-function
(gf <tracing-generic-function>) . args)

(let ((dp (next-method)))
(lambda args

(enter-function gf args)
(let ((res (apply dp args)))

(exit-function gf (list res))
res))))

It now suffices to declare a generic function (via the instance-of option) as an in-
stance of the meta-class <tracing-generic-function> (instead of the default meta-class
<generic-function>) to get this tracing behaviour for all methods. As an example,
we trace the execution of the Ackermann function (appropriately named [1]) by adding
(instance-of <tracing-generic-function>) as a generic function option specify-
ing the class that ackermann should be an instance of:

(define-generic-function (ackermann m n)
(instance-of <tracing-generic-function>))

(define-method (ackermann (m <integer>) (n <integer>))
(if (= m 0)

(+ n 1)
(if (and (> m 0)

(= n 0))
(ackermann (- m 1) 1)
(ackermann (- m 1) (ackermann m (- n 1))))))

(ackermann 2 2)
=>
[Enter (ackermann 2 2)\n [Enter (ackermann 2 1)

[Enter (ackermann 2 0)
[Enter (ackermann 1 1)

[Enter (ackermann 1 0)
[Enter (ackermann 0 1)
Leave ackermann 2]

Leave ackermann 2]
[Enter (ackermann 0 2)
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Leave ackermann 3]
Leave ackermann 3]

Leave ackermann 3]
[Enter (ackermann 1 3)

[Enter (ackermann 1 2)
[Enter (ackermann 1 1)

[Enter (ackermann 1 0)
[Enter (ackermann 0 1)
Leave ackermann 2]

Leave ackermann 2]
[Enter (ackermann 0 2)
Leave ackermann 3]

Leave ackermann 3]
[Enter (ackermann 0 3)
Leave ackermann 4]

Leave ackermann 4]
[Enter (ackermann 0 4)
Leave ackermann 5]

Leave ackermann 5]
Leave ackermann 5]

[Enter (ackermann 1 5)
[Enter (ackermann 1 4)

[Enter (ackermann 1 3)
[Enter (ackermann 1 2)

[Enter (ackermann 1 1)
[Enter (ackermann 1 0)

[Enter (ackermann 0 1)
Leave ackermann 2]

Leave ackermann 2]
[Enter (ackermann 0 2)
Leave ackermann 3]

Leave ackermann 3]
[Enter (ackermann 0 3)
Leave ackermann 4]

Leave ackermann 4]
[Enter (ackermann 0 4)
Leave ackermann 5]

Leave ackermann 5]
[Enter (ackermann 0 5)
Leave ackermann 6]
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Leave ackermann 6]
[Enter (ackermann 0 6)
Leave ackermann 7]

Leave ackermann 7]
Leave ackermann 7]

6.3. Class-allocated Slots

Many object-oriented programming languages discern per-instance (or dynamic) fields
from per-class (or static) fields. By default, all slots in our object system are allocated
per instance, i.e. each instance storage location for each slot is distinct from the storage
locations of the same slot in other instances. If class-allocated slots are necessary, we can
achieve this as follows:

• Define a new class for slot descriptors that support an allocation type

• Extend instance initialisation to support slots of the new class correctly (by not
allocating storage in each instance)

• Extend class initialisation to support slots of the new class correctly (by allocating
storage for each class-allocated slot)

• Override reader and writer generation to automatically define accessor functions
that access the class object, not the instance, when accessing class-allocated slots

Note that it would be possible to create other types of allocation (not just per-instance
and per-class).
We will store all class-allocated slots in a vector, which is a member of the class object.

6.3.1. Implementation

The following code shows how to implement these requirements. First we define a new
meta-class that serves as a base class for all classes which should support class-allocated
slots. This class also includes a slot for the values of all class-allocated slots:

(define-class <class-slots-class> (<class>)
((slots (reader class-allocated-slots)

(writer class-allocated-slots!))))

We override the slot storage allocator, so that our instances only allocate slots with a
slot allocation of type instance:
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(define-method (calculate-slot-storage-allocator
(class <class-slots-class>))

(lambda ()
(let ((nr-slots

(length (filter
(lambda (slot)

(eq? (slot-allocation slot)
'instance))

(effective-slot-descriptors class)))))
(make-vector nr-slots #f))))

We define a new class <allocated-slot> to describe slots with an allocation type
(either instance or class) and set this class as the class to use for slot descriptors used in class
<class-slots-class>:

(define-class <allocated-slot> (<slot-descriptor>)
((allocation (reader class-slot-allocation)

(writer class-slot-allocation!)))
(predicate allocated-slot?))

(class-slot-descriptor-class! <class-slots-class>
<allocated-slot>)

Thenwe override the initialisation function of instances of class <class-slots-class>,
in order to correctly initialise the slot storage for class-allocated slots by creating a new
vector of the correct size:

(define-method (initialize (class <class-slots-class>)
params)

(let* ((obj (next-method))
(class-slots (filter-class-allocated-slots class))
(class-slot-storage (make-vector

(length class-slots)
#f)))

(class-allocated-slots! obj class-slot-storage)
obj))

We also override the generation of reader and writer functions (only readers are shown
here, writers work similarly) to access the class object if the slot allocation of a given slot
is class:

(define-method
(ensure-slot-reader (class <class-slots-class>)

(slot <allocated-slot>)
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slots
(reader <generic-function>))

(if (eq? (slot-allocation slot) 'class)
(let* ((slot-index (position

slot
(filter-class-allocated-slots

class)))
(reader-method
(make-method reader

(list class)
(lambda (next-method obj)

(vector-ref
(class-allocated-slots

(class-of obj))
slot-index)))))

(add-method! reader reader-method)
reader-method)

(next-method)))

We can now define new classes (with meta-class <class-slots-class>) which have
an explicit allocation type:

(define-class <static> (<object>)
((private (reader private) (writer private!))
(shared (reader shared)

(writer shared!)
(allocation 'class)))

(instance-of <class-slots-class>))

..

<static>

.

shared: 4

..

shared-1

.

private: 3

..

shared-2

.

private: 5

..

class object

.

instance object

.

instance of

Figure 6.2.: Class-allocated slots example
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This class has two slots, one with no explicit allocation type (slot private, defaulting
to instance), and one with allocation type class (slot shared). All objects of this class share
a single slot shared, but have their own versions of slot private:

(define static-1 (make <static>))
(define static-2 (make <static>))

(private! static-1 3)
(private! static-2 5)
(private static-1)
=> 3
(private static-2)
=> 5
(shared! static-1 4)
(shared static-2)
=> 4
(shared! static-2 7)
(shared static-1)
=> 7

6.4. Predicate- and Singleton-based dispatch

The normal dispatch mechanism of methods of generic functions takes the classes of the
parameters into account. This is only one view onto the object hierarchy, defined by
static considerations. The meta-object protocol shown in chapter 4 offers extensibility,
many other schemes can be implemented. An example shown here is predicate dispatch:
The specialisers of methods can be predicates, if the predicate matches, this is seen as
more specific than a class type match. If multiple methods match in the same predicates, a
runtime error is raised. This scheme can be used to implement primitive pattern matching
for separating recursive base cases from the generic case.
A further extension of this mechanism is singleton-based dispatch, i.e. a method is

applicable if and only if an exact object is passed as a parameter. This enables us to write
methods that are only applicable to the object <class>, for example, or to write recursive
base cases more easily (by specialising on the object 0 or the empty list etc.).
To implement predicate-based dispatch as an extension to the normal class-based dis-

patch mechanism, we need to do the following:

• Override the applicability check for methods to take into account predicates

• Override the check for method specificity, so that predicate-specialiser methods are
more specific than class-based methods
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For singleton-based dispatch, the changes in the same places are necessary. Singleton-
based dispatch is always the most specific (as there is only exactly one element that
matches).

6.4.1. Implementation

The following code section shows how this can be achieved:
First, we define new meta-classes for predicate-specialiser methods and generic func-

tions:

(define-class <predicate-specializer-method> (<method>)
())

(define-class <predicate-specializer-generic-function>
(<generic-function>)
())

Then we override the generic function specializer-more-specific? for predicate-
specialiser methods. Whether a specialiser is a predicate can be checked with procedure?:

(define-method (specializer-more-specific?
(method-1 <predicate-specializer-method>)
(method-2 <predicate-specializer-method>)
(s1 <object>)
(s2 <object>))

(if (and (procedure? s1)
(procedure? s2))

(error "ambiguous␣predicate␣specializers")
(if (or (procedure? s1)

(procedure? s2))
(procedure? s1)
(next-method))))

This implements the error check that there cannot be multiple predicates on the same
parameter for different methods. Methods with a predicate-specialiser are more specific
than those with other specialisers.
Lastly, we need to override method-applicable?, to take into account predicate

matches:

(define-method (method-applicable?
(method <predicate-specializer-method>)
arguments)

(let loop ((remaining-arguments arguments)
(remaining-specializers

(method-specializers method)))
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(if (pair? remaining-specializers)
(if (not (pair? remaining-arguments))

(error "too␣few␣arguments␣"
method
arguments)

(if (or (and (procedure?
(car remaining-specializers))

((car remaining-specializers)
(car remaining-arguments)))

(instance?
(car remaining-arguments)
(car remaining-specializers)))

(loop (cdr remaining-arguments)
(cdr remaining-specializers))

#f))
#t)))

We can now define generic functions which allow predicate specialisers:

(define-generic-function (factorial n)
(instance-of <predicate-specializer-generic-function>))

(define-method (factorial (n zero?))
1)

(define-method (factorial (n <integer>))
(* n (factorial (- n 1))))

Here the base case of the recursion is defined as a separate method, specialising via the
predicate zero?. The recursive case is defined for all (other) integers.

6.5. Persistence

Many applications need a way to store data between runs. In object-oriented programs,
there is already a structure to the data, namely the objects. It would be nice if we could
just tell our system to store this structure as it is, without explicitly writing storage and
retrieval code by hand, which is error-prone and easily forgotten.
The meta-object protocol can be used to define a new class <persistent>, which can

be used as the superclass of new classes. This class takes care of automatically persisting
data in a database. The programmer need only load a root object (which automatically
loads all other referenced objects) upon startup, every modification of slots of persistent
classes is automatically persisted to the database.
The following functionality is automatically generated for all subclasses of <persistent>:
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• Overridden writers that write to the database in addition to memory

• Automatic and transparent handling of unique object ids

• Correct storing and loading of objects referred from a persistent object

• Code to serialise and deserialise instances to a binary format

• Code to read objects from and write them to the database

In this example, we use a key-value database (Kyoto Cabinet [18]). Each object is
stored under a unique id (the key) in a serialised form (the value), which contains the
object id, the class and all slot values. The serialisation mechanism is independent of the
persistence mechanism, it would not be complicated to exchange this for another database
(e.g. SQLite). For reasons of simplicity, we assume that a single global database is used
for all persistent objects.

6.5.1. Implementation

To implement this, we proceed as follows:

• Create a meta-class <persistent-class> which overrides slot access (in order to
save to the database) and overrides class initialisation (in order to generate automatic
serialisation and deserialisation methods)

• Create a class <persistent> (with meta-class <persistent-class>which has an
object id slot. This is the base class for all persistent objects.

First we define the class <persistence-class>:

(define-class <persistent-class> (<class>)
())

Then we override the slot writer generator, in order to first call the actual writer, but
then to also persist the object:

(define-method
(ensure-slot-writer (class <persistent-class>)

(slot <slot-descriptor>)
slots
(writer <generic-function>))

(let* ((old-writer-method (next-method))
(old-writer-lambda (method-lambda

old-writer-method)))
(let ((writer-method
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(make-method writer
(list class <object>)
(lambda (next-method obj value)

(old-writer-lambda
next-method
obj
value)

(persist-object! obj)))))
(add-method! writer writer-method)
writer-method)))

Finally, we also create appropriate serialisation methods when a new subclass is initialised
(the code for serialisation deals with internals and is not shown here):

(define-method (initialize (class <persistent-class>)
params)

(add-persistence-methods class)
(next-method))

We can now define an instance class of <persistent-class> as a base class for all
persistent objects:

(define-class <persistent> (<object>)
((object-id (reader object-id) (writer object-id!)))
(instance-of <persistent-class>))

When a new object of class <persistent> is initialised, it is given a new object id:

(define-method (initialize (obj <persistent>)
params)

(let ((obj (next-method)))
(object-id! obj (next-object-id))
obj))

The database also defines two methods database-root and database-root! to store
an object under a special key that signifies that this is the root object that references all
other objects. We can now use our persistence layer:

(define-class <person> (<persistent>)
((name

(reader person-name)
(writer person-name!))

(age
(reader person-age)
(writer person-age!))

(friends
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(reader person-friends)
(writer person-friends!))))

(define-class <rolodex> (<persistent>)
((contacts

(reader rolodex-contacts)
(writer rolodex-contacts!))))

(database-root! (make <rolodex>
(list (make <person> "Peter" 15)

(make <person> "Suzy" 19)
(make <person> "Chuck"))))

The database now contains a root object (a rolodex), which contains three people. We
can read this root object from the database (using database-root) which automatically
loads all objects that are referenced from the database root, edit all these objects and our
overridden slot writer ensures that each modification is instantly stored in the database.
The default implementation persists basic Scheme datatypes (such as strings, numbers and
lists), however changing a list (not storing a new or modified list in a slot of an object) is
not persisted. A custom class re-implementing a linked list would rectify this problem.
The serialisation is independent of word size or byte order, this database can be moved

to another machine and will work there just as well.

..

<persistent-class>

...

<persistent>

.

object-id

..
<person>

.

name
age
friends

..

meta-class

.

class

.

instance of

.
subclass of

Figure 6.3.: Persistence class hierarchy

Figure 6.3 shows the class relationship defined above. Themeta-class <persistent-class>
is the hinge for all the meta-object protocol methods. The class <persistent> is the su-
perclass of all classes that are supposed to be persistent. It adds the slot object-id, which
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is needed to ensure object identity. One of its subclasses is <person>, which adds several
slots for use by the programmer. All slots (including the ones defined in <persistent>)
of <person> are persisted to the database.
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Chapter 4 of this thesis presents an object system and based upon that a meta-object
protocol for reflecting upon the structure of object-oriented programs and interceding in
the operation in certain restricted ways. The meta-object protocol allows the programmer
to challenge certain design decisions and adapt the program to his or her needs more easily
than in traditional object systems which allow no adaptations.

7.1. Comparison to Existing Approaches

The meta-object protocol specified in chapter 4 is deemed more efficient than the other
existing meta-object protocols by the author based on the measurements shown later
in this chapter. This claim is mainly based on the reduced number of (costly) generic
function calls in the resulting code. Whereas the CLOS MOP often employs generic
functions directly in the call path of often-used functions, the design of the new meta-
object protocol for Scheme has sought to avoid this as much as possible, instead relying
on functional protocols that are called upon class or generic function creation, moving
the calculation effort to compile- or load-time.
In the following sections, a closer comparison to the two main existing approaches –

CLOS and TELOS – is made.

7.1.1. Comparison to the CLOS MOP and TELOS

Both the CLOS MOP and TELOS are semantically and syntactically similar to the meta-
object protocol specified in this work. Both were developed for languages in the Lisp
family, and thus share many traits with each other. The underlying object system is similar,
though there are differences in detail (e.g. TELOS consists of several layers, which build
upon each other).

CLOS

The Common Lisp Object System (detailed in section 3.3) was the first that received a
meta-object protocol (see [15]). This protocol allows the user to intercede in many places,
however it is often procedural, i.e. it mandates that generic functions be called in places
where this costly call is detrimental to performance.
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As an example, the default CLOS instance slot reader protocol specifies three generic
functions that must be called nestedly:

<reader>
slot-value
slot-value-using-class

This means that every slot access must call at runtime two or three (depending on
the exact implementation) generic functions (each entailing at least a minimal form of
multiple dispatch). As the generic function slot-value-using-class contains multiple
methods, this results in dispatch overhead.
In contrast, the protocol described in section 4.4 specifies that only a single generic

function is invoked: the actual reader (even this can be avoided if the reader is made a
primitive function, not a generic function).
Similarly instance allocation in CLOS requires a generic function call (of the generic

function allocate-instance), whereas the protocol described in section 4.4 requires
none.
Table 7.1 shows these differences.

Case CLOS Proposed MOP

Slot access 3 1
Instance allocation 1 0
Generic function invocation 3 1-3

Table 7.1.: Number of Generic Function calls

TELOS

TELOS has only specified the slot accessor protocol, which is similar to the one described
in section 4.4. As TELOS remained unfinished, the other protocols were just taken from
CLOS unchanged.
Comparison with the slot access protocol (detailed in section 3.4) shows that the pro-

tocol is similar to the one specified in figure 4.6:

• Both are functional protocols that are executed once upon class definition

• Both can be used to compute arbitrary readers and writers, which need not be
generic functions

TELOS is an ancestor to the proposed meta-object protocol in spirit, focusing on efficient
and powerful protocols.
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7.1.2. Other languages

The other languages have less in common with the proposed meta-object protocol, yet
have offered unique influences on the design.

Smalltalk and Dylan

Both Smalltalk and Dylan in their standard versions only include a reflective meta-object
protocol. These protocols are at the same level of power as the one proposed in chapter 4.
All three offer a way to inspect classes, find out about slots, their accessors, sub- and
superclass relationships, etc. Generic functions do not exist in Smalltalk, so instead of
retrieving the methods of a generic function Smalltalk allows access to a classes defined
methods. Dylan is interesting, because it used to have a more powerful meta-object
protocol, which was withdrawn in later versions of the language due to concerns about
implementation speed. This meta-object protocol was very similar to the one in CLOS.

OpenC++

As figure 3.6 shows, OpenC++ fulfils all the criteria except for a Runtime Component.
OpenC++ offers limited customisation (due to its need to deal with the very complex
semantics of C++), yet seems to work well in practice. It integrates well with C++ (hav-
ing a slightly extended syntax, that meshes well with “normal” C++). However, as it
excludes all runtime components, it does not directly support any reflexion or modifica-
tion of intercedence at runtime. It is not possible to modify the meta-objects’ behaviour
after compile-time.

Ruby

Ruby is the most dynamic of all the investigated languages, offering ways to override
all behaviour and intercede at any point. It also has full reflexive capabilities. However,
precisely due to this dynamism, it does not support pre-runtime optimisations or code
analysis (as the resulting code could potentially be modified at runtime in any way).

7.2. Applicability to Other Languages

In principle, the meta-object system specified in chapter 4 could be modified and adapted
for other languages and object systems, however it relies on a few specific concepts:

• First-order functions

Many of the protocols depend on the ability to create functions and pass them as
parameters or return values. Languages which do not support this directly need to
find appropriate abstractions.
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• Full object-orientation

The protocols depend on the fact that everything is an object. If primitive data types
exist which cannot be used in the same way as all other objects, special care needs
to be taken to ensure that this doesn’t break the implementation (e.g. multiple
dispatch).

• Syntactic abstraction

The lower-level mechanisms for defining classes, generic functions and methods are
perfectly usable, but more verbose than the higher-level macros (define-class,
define-generic-function and define-method). If a language does not offer a
powerful enough macro system, it might be difficult to ensure simple usability of the
newly added concepts, though this can be alleviated by providing a pre-processor.

7.3. Prototypical implementation

The prototypical implementation described in chapter 5 is meant to demonstrate the
feasibility of the proposed meta-object protocol. It consists of an implementation of the
core protocols, and several applications (described in chapter 6).

Application Object Instantiation Class Creation Generic Function
Invocation

Hashtable-Storage • •
Tracing Generic Functions •
Class-allocated Slots •
Predicate Dispatch • •
Persistence • •

Table 7.2.: Protocols used by the applications

These sample applications were implemented to show the usability and power of the
proposed meta-object protocol in practise. Table 7.2 shows which applications use which
protocols in their implementation.
Table 7.3 shows in detail the lines-of-code count (generated using David A. Wheeler’s

SLOCCount) for the various implementation artifacts. These counts include several test
cases, apart from the Persistence application, all take less than 70 lines of actual code,
showing the succinctness of Scheme as a language and the power of the meta-object
protocol.
The core implementation consists of general bootstrapping code (241 lines), the imple-

mentation of generic functions (140 lines), the implementation of classes (179 lines) and
the macro layer (108 lines).
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Program Lines of Code

Core implementation 668
Hashtable-Storage 55
Tracing Generic Functions 53
Class-allocated Slots 97
Predicate Dispatch 112
Persistence 210

Sum 1195

Table 7.3.: Lines of Code Count

The implementation was not optimised for speed in any way (see section 7.4 for ideas).
Table 7.4 shows the running time of loops calling generic functions with one, two and
three methods registered. It is expected that proper optimisation of generic function
invocation would greatly improve these numbers.
Each loop was run 1.000,000 times, doing nothing but calling the generic function.

The first entry (Apply-Hook only) shows the time for a loop that a loop which does noth-
ing except call an apply-hook that forwards to the primitive + function. This is the fastest
possible implementation that MIT GNU/Scheme offers, and is used as the baseline for
the other comparisons. The optimised dispatch is a special case of <generic-function>,
which optimises dispatch for generic functions with only one method. The other three
methods use the default (entirely unoptimised) mechanism. No memoization or caching
was implemented (which would speed up the dispatch mechanism).

Methods registered Runtime Factor

Apply-Hook only 0.077s 1.0
Optimised dispatch 0.376s 4.88
One method 3.344s 43.43
Two methods 5.309s 68.95
Three methods 7.425s 96.43

Table 7.4.: Generic Function Invocation Runtime

7.4. Future Work

The implementation of the prototype has focused on completeness, not on efficiency.
Thus optimisation of generic dispatch (especially the multi-method case) would be one
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point to focus on ([5], [9]).
The implementation of the applications detailed in chapter 6 has shown that the gen-

eral design of the meta-object protocols is apt for the varying demands of very different
problems, however more and larger applications should be developed to substantiate this
claim.
Especially the language Dylan (see 3.7) offers a couple of efficiency-oriented extensions

over traditional Lisp object systems, which it would be worthwhile to integrate:

• Sealed generic functions and classes, enabling specific optimisation

• Optimisation due to visibility of generic functions, methods and classes across mod-
ules

Concerning the implementation, many of the dynamic-compilation concepts from
SELF [25] could be applied to further increase performance. These would however need
some support from the actual Scheme implementation. The prototypical implementation
of the object system and the meta-object protocol is portable at the moment, customisa-
tions involving dynamic compilation can probably not be implemented portably.
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applicable-methods
Calculates which methods of a generic function are applicable to the arguments.

Full form: (applicable-methods <generic-function> <arguments>)

Parameters

• <generic-function>: the generic function of which the methods should be
checked.

• <arguments>: the actual arguments for which the applicable methods should be
found.

This generic function should return a list of all methods which are applicable to the
arguments, and return it. The order is not important (they will be sorted later by the
generic function sort-applicable-methods).

Called by: sort-applicable-methods

Calls:

apply-class-options

Apply the effects of the given class options to the class instance.

Full form: (apply-class-options <class> <options>)

Parameters

• <class>: The class to apply the options to.

• <options>: The list of options

This generic function should be used to implement custom class options. Its second
parameter is a list of options. Each option is a list, where the first element is the symbol
naming the option, and the rest of the list is option-dependent.
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Called by: initialize

Calls:

apply-generic-function

Apply the correct methods of the generic function in the correct order to the given arguments.

Full form: (apply-generic-function <generic-function> <arguments>)

Parameters

• <generic-function>: The generic function to apply.

• <arguments>: The actual arguments this generic function is called with.

This is the main function that decides on how to apply a generic function to its arguments.
It should calculate a list of sorted applicable methods, then invoke them on the arguments
(calling the next method in line if necessary).

Called by:

Calls: sort-applicable-methods

calculate-and-order-superclasses

Calculate all effective superclasses of the class and sort them correctly.

Full form: (calculate-and-order-superclasses <class> <superclasses>)

Parameters

• <class>: The class to calculate the superclasses for.

• <superclasses>: The list of superclasses that the programmer passed when cre-
ating the class.

This function should return a list of classes which are all superclasses of the class passed as
the first argument. They should be sorted according to their precedence.

Called by: initialize

Calls:
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calculate-slot-storage-allocator

Calculate the allocator function for slot storage for instances of this class.

Full form: (calculate-slot-storage-allocator <class>)

Parameters

• <class>: The class for which the slot allocator for instances should be calculated.

This function should return a primitive or generic function that allocates slot storage for
an instance of the class passed as the first parameter. The allocator has no parameters, and
should return the slot storage.

Called by: initialize

Calls:

ensure-slot-accessors

Ensure that the slot accessors for one slot are correctly defined.

Full form: (ensure-slot-accessors <class> <slot> <slots>)

Parameters

• <class>: The class to which the slot belongs.

• <slot>: The slot for which the accessors are checked.

• <slots>: All slots of the class.

This function should ensure that correct slot accessors are present and defined for the slot
passed as the second argument.

Called by: ensure-slots-accessors

Calls: ensure-slot-reader, ensure-slot-writer

ensure-slot-reader

Ensure that a correct reader for one slot is defined.

Full form: (ensure-slot-reader <class> <slot> <slots> <reader>)
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Parameters

• <class>: The class to which the slot belongs.

• <slot>: The slot which is checked for a reader.

• <slots>: All slots of the class.

• <reader>: The reader primitive or generic function.

This function should ensure that a correct reader for the slot value is present. This can
be a primitive function or a generic function, in which case a correct method must be
present.

Called by: ensure-slot-accessors

Calls:

ensure-slot-writer

Ensure that a correct writer for one slot is defined.

Full form: (ensure-slot-writer <class> <slot> <slots> <writer>)

Parameters

• <class>: The class to which the slot belongs.

• <slot>: The slot which is checked for a writer.

• <slots>: All slots of the class.

• <writer>: The writer primitive or generic function.

This function should ensure that a correct writer for the slot value is present. This can
be a primitive function or a generic function, in which case a correct method must be
present.

Called by: ensure-slot-accessors

Calls:
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ensure-slots-accessors

Ensure that correct accessors for all slots are present.

Full form: (ensure-slots-accessors <class> <slots>)

Parameters

• <class>: The class which is checked.

• <slots>: All slots of the class.

This function should ensure that correct accessors are present for all slots.

Called by: initialize

Calls: ensure-slot-accessors

initialize

Initialise a new class instance.

Full form: (initialize <object> <parameters>)

Parameters

• <object>: The new object to be initialised.

• <parameters>: Any parameters passed to make.

This function must correctly call all initialisation code to calculate necessary functions and
data.

Called by: make

Calls: calculate-and-order-superclasses, calculate-slot-storage-allocator,
apply-class-options, ensure-slots-accessors

make

Create a new class instance.

Full form: (make <class> <parameters>)

Parameters
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• <class>: The class of which an instance is created.

• <parameters>: Any parameters for initialisation.

This function must allocate storage for the object, the object’s slots and perform any
initialisation necessary.

Called by:

Calls: initialize

method-more-specific?

Check whether one method is more specific than another method.

Full form: (method-more-specific? <method-1> <method-2>)

Parameters

• <method-1>: First method

• <method-2>: Second method

This function returns true if the first method is more specific than the second method.
The definition of specificity depends on the application, the default definition is that a
method is more specific than another if a parameter specialises on a subclass of the other
method’s specialiser for that parameter (checked from first to last specialiser).

Called by: method-more-specific?

Calls: specializer-more-specific?

sort-applicable-methods

Sort all applicable methods in order of their specificity.

Full form: (sort-applicable-methods <generic-function> <arguments>)

Parameters

• <generic-function>: The generic function for which the applicable methods
should be sorted.
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• <arguments>: The actual arguments for which the applicable methods should be
sorted.

This function should calculate the applicable methods, then sort them in order of their
specificity.

Called by: apply-generic-function

Calls: applicable-methods, method-more-specific?

specializer-more-specific?

Check whether a specialiser of one method is more specific than a specialiser of another method

Full form: (specializer-more-specific? <m-1> <m-2> <s-1> <s-2>)

Parameters

• <m-1>: First method

• <m-2>: Second method

• <s-1>: First specialiser, belonging to the first method

• <s-2>: Second specialiser, belonging to the second method.

Return true if the first specialiser is more specific than the second specialiser. The defi-
nition of specificity depends on the application, the default definition is that a method is
more specific than another if a parameter specialises on a subclass of the other method’s
specialiser for that parameter (checked from first to last specialiser).

Called by: method-more-specific?

Calls:
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Glossary

Class is an abstract type that describes the behaviour and structure of its instances.. 18

Direct Instance An instance of a class X which is not an instance of any subclass of X..
57

Functional Protocol is a protocol where a generic function is not invoked for its effect
but for its result. The generic function may be invoked multiple times, but it may
also only be invoked once, and the result cached.. 27

Generic Function is an abstraction of a function, which can contain multiple meth-
ods applicable to different types of parameters. At runtime, the correct method is
chosen from all available methods of a generic function.. 19

Hygienic Macro System is a macro system where it is not possible to introduce new
identifiers that inadvertently capture the user’s identifiers.. 12

Meta-Object is an object that describes how other objects are created and used.. 17

Meta-Object Protocol is a combination of generic functions and meta-classes that
allows the user to interfere with the operation of object-oriented programs in well-
defined ways.. 21

Meta-Recursion The problem that generic functions are implemented in terms of
generic functions, thus leading to a potentially infinite recursion.. 39

Method is a concrete implementation of a generic function for a fixed set of argument
types.. 19

Multiple Dispatch describes a function dispatch system where the method that is ap-
plied does not depend only on a single parameter (single-dispatch, as in Java or
C++), but depends on all parameters’ type.. 19

Non-Hygienic Macro System is a macro system where it is possible to introduce new
identifiers that inadvertently capture the user’s identifiers.. 12
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Glossary

Procedural Protocol is a protocol where a generic function must always be invoked
for its effect. A result must not be cached.. 27

Protocol describes conventions about how classes and generic functions are to be used,
overloaded and overridden to achieve specific effects.. 18

Slot is a field in an object that can be read from or written to.. 18

Special Form is a form that does not follow the usual rules for evaluation of parameters.
Examples are if and lambda.. 5

Syntactic Extension is a source code transformation which is not based purely on re-
placing text, but which interacts correctly with and honours the the defined syntax
of the language.. 12
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2004-2005 Erasmus Student Exchange
University of Edinburgh, Scotland

2003 CEEPUS Student Exchange
Eötvös Loránd Tudományegyetem (ELTE) in Budapest, Hungary

2000-2011 Numerous Travels
India, Poland, Portugal, France, Ireland…

1998-1999 Student Exchange
若柳高校 宮城県日本
Wakayanagi Koukou, Miyagi-ken, Japan

Interests

Interests Reading, Hiking, Typography, Languages
Hobbies Boardgames, Computers, Guitar
Projects GNU/MIT-Scheme, Lightfeather 3D Engine, GNU Emacs, LATEX


