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Abstract

In unsafe languages like C/C++, errors such as buffer overflows cause Un-

defined Behavior. Typically, compilers handle undefined behavior in some

arbitrary way, for example, they disregard it when optimizing and omit in-

serting checks that could detect it. Consequently, undefined behavior often

results in hard-to-find bugs and security vulnerabilities, for example, when

a buffer overflow corrupts memory.

Existing bug-finding tools that instrument code to detect undefined be-

havior often suffer from compilers that possibly optimize code so that errors

are no longer detected. Alternatively, unsafe code could be rewritten in a

safe language like Java, which is well defined and where such errors are de-

tected. However, this would incur an infeasible-high cost for many projects.

To tackle undefined behavior, we came up with an approach to exe-

cute unsafe languages on the Java Virtual Machine. We implemented this

approach as Safe Sulong, a system that includes an interpreter for unsafe

languages, which is written in Java. By relying on Java’s well-definedness

and its automatic run-time checks, the interpreter can detect buffer over-

flows and other errors during its execution and can terminate the program

in such cases. Safe Sulong tracks metadata such as types and object bounds,

which we provide to programmers over an introspection interface, so that

they can use this data to mitigate errors and to implement additional checks.

The interpreter also supports unstandardized elements in C code such as the

most common inline assembly and GCC builtins. To implement them, we

first studied their usage in a large number of open-source projects.

Sulong is used in GraalVM, a commercially-used multi-lingual virtual

machine. Since Sulong allows the implementation of efficient native function

interfaces, our safe execution mechanism could also make the execution of

native extensions of other languages such as Ruby, Python, and R safer.
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Kurzfassung

In unsicheren Sprachen wie C/C++ führen Fehler wie Pufferüberläufe zu

undefiniertem Verhalten, das von Compilern in der Regel auf undefinierte

Weise behandelt wird. Sie ignorieren es zum Beispiel bei Optimierungen

und führen keine Überprüfungen durch, die es erkennen könnten. Das führt

oft zu schwer lokalisierbaren Fehlern und Sicherheitslücken, beispielsweise

wenn ein Pufferüberlauf Daten im Speicher zerstört.

Vorhandene Fehlererkennungswerkzeuge, die das Programm zum Erken-

nen von undefiniertem Verhalten instrumentieren, benutzen oft Compiler,

die den Code so optimieren, dass Fehler nicht mehr erkannt werden. Al-

ternativ könnten unsichere Programme in einer sicheren Sprache wie Java

neu geschrieben werden, die vollständig definiert und sicher ist. Dies würde

jedoch für viele Projekte zu untragbar hohen Kosten führen.

Um undefiniertes Verhalten in den Griff zu bekommen, haben wir einen

Ansatz entwickelt, bei dem unsichere Sprachen auf der Java Virtual Ma-

chine ausgeführt werden. Der Ansatz wurde unter dem Namen Safe Su-

long implementiert, einem System, das auf einem in Java geschriebenen

Interpreter für unsichere Sprachen basiert. Indem der Interpreter auf die

Wohldefiniertheit und die automatischen Laufzeitprüfungen von Java ver-

traut, kann er Pufferüberläufe und andere Fehler zur Laufzeit erkennen und

das Programm in solchen Fällen abbrechen. Safe Sulong merkt sich Meta-

daten wie Typen und Objektgrenzen, die Programmierern über eine Intro-

spektionsschnittstelle zur Verfügung gestellt werden, mit denen sie Fehler

abfangen und zusätzliche Prüfungen implementieren können. Der Inter-

preter unterstützt auch unstandardisierte Elemente in C-Code wie gängige

Inline-Assembly-Codestücke und GCC-Builtins. Zu diesem Zweck haben

wir zunächst die Verwendung solcher Elemente in einer großen Anzahl von

Open-Source-Projekten untersucht.
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viii KURZFASSUNG

Sulong wird in der GraalVM verwendet, einer kommerziellen, mehrsprachi-

gen virtuellen Maschine. Sulong erlaubt die Definition von Schnittstellen

zu nativem Code, wodurch unsere Sicherheitsmechanismen auch verwendet

werden könnten um die Ausführung nativer Erweiterungen anderer Sprachen

wie Ruby, Python und R sicherer zu machen.
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Chapter 1

Introduction

1.1 Problem

In unsafe languages like C, the semantics of operations are only specified for

valid input. For example, while dereferencing a valid pointer is well specified,

the effect of dereferencing an out-of-bounds pointer, which is known as a

buffer overflow, is not specified by the C standard.1 Such an error is said to

cause Undefined Behavior. Compilers are not required to produce code that

detects undefined behavior while the program executes, so they do not, for

example, insert bounds checks to detect buffer overflows. In fact, state-of-

the-art compilers such as Clang or GCC even optimize the program based

on the assumption that undefined behavior never occurs [139].

Executing programs with undefined behavior that have been compiled by

Clang or GCC can yield various unintended or even disastrous results. For

example, out-of-bounds reads can result in sensitive data of adjacent objects

being read, even when those objects were not explicitly referenced [125]. Ex-

amples for disastrous out-of-bounds reads were Heartbleed in the OpenSSL

SSL library [35] and Cloudbleed in the online service Cloudfare [46], which

both allowed attackers to leak sensitive information on web servers, and af-

fected millions of users. Attackers might not only exploit buffer overflows to

read private data; out-of-bounds writes can be exploited to overwrite control-

flow data, allowing attackers to divert the control flow of the program and

even to take control over the process [114, 18, 9, 132]. Furthermore, a pro-

1If not further specified, we refer to the ISO/IEC 9899:2018 standard, which is infor-
mally known as C17 or C18.

3



4 CHAPTER 1. INTRODUCTION

gram fragment that causes undefined behavior can be compiled to code with

unexpected behavior or can even be removed altogether by the compiler, re-

sulting in “miscompilations” that are hard to debug [139]. Sometimes, a

program that causes undefined behavior can work correctly, for example,

when an operation is compiled so code that happens to behave as expected

by the programmer (e.g., a signed integer addition might get compiled to a

x86 add instruction, which wraps around on an overflow instead of causing

undefined behavior). However, such bugs are still “ticking timebombs” as

a compiler update might introduce an optimization that takes advantage of

the undefined behavior [140].

Implementing bug-finding tools that tackle undefined behavior in lan-

guages like C/C++ is a challenge. First, parsing C/C++ requires a high

implementation effort due to the alternative syntax options that predate

the first ANSI C standard.2 Furthermore, C projects not only rely on C

code but also use preprocessor macros [38], compiler builtins [104], inline

assembly [105], and other compiler extensions. Thus, to reduce the imple-

mentation effort, a number of bug-finding tools are based on Clang or GCC,

either by instrumenting the program under test in their intermediate repre-

sentations or by instrumenting the binary produced by them [117]. This is

somehow undesirable, since undefined behavior can be optimized away by

these compilers, and is then no longer detectable during execution.

1.2 State of the Art

Both industry and academia have been tackling undefined behavior, in par-

ticular buffer overflows, for decades; thus, a plethora of approaches exist to

tackle it in various ways [20, 135, 128, 117]. In the following, we describe

the most important categories of approaches and research trends, and high-

light their drawbacks that we want to address. Note that the summary is

necessarily incomplete.

Research trends in tackling undefined behavior can be roughly cat-

egorized into software-based and hardware-based enhancements. Impor-

tant software-based approaches are instrumentation-based bug-finding tools,

heuristic approaches, static analysis, and symbolic execution.

2ANSI C was first standardized in 1989 as ANSI X3.159-1989.
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Instrumentation-based bug-finding tools Many dynamic bug-finding

tools (sometimes called sanitizers) detect specific classes of undefined be-

havior by inserting instrumentation code into a program [117]. These tools

detect bugs while executing the program, and thus must be supplied with

concrete program inputs (e.g., program arguments or command line input).

While sanitizers detect errors in the program without false positives (i.e.,

errors indicated by the bug-finding tool are always real bugs), one of their

major drawbacks is that they only detect bugs that are triggered during

execution, and overlook those that would be triggered with different input.

Thus, they are often complemented with fuzzers [89], which mutate the

program’s input to reach a higher path coverage. Furthermore, sanitizers

typically result in a high overhead compared to an unsafe execution of the

program.

Compile-time instrumentation sanitizers [55, 112, 94, 95, 71, 124] in-

sert instrumentation on the source or compiler IR level, and are typically

expected to detect all errors of one or several error categories during execu-

tion of the program. Since our goal is to reliably detect all bugs during

the execution of a program, we implemented Safe Sulong as a compile-

time-instrumentation sanitizer. In contrast, dynamic binary instrumenta-

tion [11, 97, 85] allows the addition of checks to the executable when it is

started [12, 113]. A major advantage of such approaches is that they op-

erate solely on the executable and do not require the original source code.

However, binary code often lacks information that was present on the source

code level, so only a subset of undefined behavior can be detected.

Heuristic and attacker-mitigation approaches A number of ap-

proaches attempt to raise the bar for attackers to exploit undefined behavior

(specifically memory errors). Data Execution Prevention [134] marks data

as non-executable and was an early mechanism to restrict the injection of

code into data, which is now widely used. Address Space Layout Ran-

domization [129], which is also widely used in practice, randomly assigns

the position of stack, heap, and libraries, so that exploits cannot rely on

fixed addresses. Similar approaches also exist for finer-grained randomiza-

tion [72], to randomize instruction sets [70] and the locations of objects in

the heap [5, 98]. Pointer encryption [22] encrypts addresses stored in mem-

ory and decrypts them before an access. Similarly, Data Space Randomiza-
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tion [7] randomizes the representation of data in memory. Software-diversity

approaches [79] aim to compile identical source code to different binaries in

order to reduce the chance that an exploit runs on all systems that use

the program. Multi-variant execution systems [24, 63] combine mitigation

mechanisms by running multiple versions of a program to check for diver-

gences during executions, in which case the program is terminated. Stack

canaries [23] are inserted on the stack between the return address and local

variables; overwrites of this address caused by a stack buffer overflow can

be detected by checking if the stack canary is also overwritten. Control-flow

Integrity [1, 13] can be used to verify the control flow of a program during

its execution and can often be configured to control the granularity of the

protection.

All heuristic and mitigation approaches do not aim to reliably detect er-

rors and are prone to attacks. For example, Address Space Layout Random-

ization can be circumvented by information disclosure [125], side-channel

attacks [47], and by using brute-force attacks on 32-bit systems [115]. How-

ever, many of these approaches add another level of defense that has to be

tackled by attackers while only causing a low overhead [30].

Static software-based approaches Static approaches detect bugs by

analyzing the source code without assuming a specific program input. Thus,

they can also detect bugs that would only be rarely triggered when running

an application. Static analysis tools for unsafe languages reach from simple

rule checkers [69, 136, 21] to more advanced analyses that assume all po-

tential program states to detect undefined behavior [137, 39, 62, 154, 32].

A major disadvantage of these tools is that they either need to overapprox-

imate or underapproximate the behavior of the program. Overapproxima-

tion guarantees soundness, that is, the analyzer detects all bugs but might

also yield false positives. This is a burden for the programmer, who has

to determine which potential bugs need to be fixed [68]. Underapproxima-

tion guarantees completeness, that is, it yields no false positives but might

overlook bugs. To balance these tradeoffs, many approaches sacrifice both

soundness and completeness [39, 156, 136] and thus do not provide complete

protection against undefined behavior.
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Symbolic execution engines Symbolic execution is a hybrid approach

that combines aspects of static and dynamic approaches [73, 4]. With sym-

bolic execution, multiple paths through the program are explored simultane-

ously by assuming symbolic input values. While doing so, path constraints,

which describe which branch an execution state took, are recorded. Fi-

nally, a solver is used to check whether the executed path is feasible and

whether any bugs are triggered along the way. Modern symbolic execu-

tion engines [16, 15] typically combine symbolic execution with concrete

execution to incorporate elements that are not instrumented by symbolic

execution (e.g., system calls). While symbolic execution is an effective way

to detect bugs, scaling issues such as path explosion make it infeasible to

exhaustively explore real-world programs [17].

Safe Programming Languages Safe languages like Java or C# provide

strict language semantics [40]. A safe systems programming language that

provides memory safety by relying on ownership [131] instead of a garbage

collector is Rust3, which has recently gained much attraction. To reduce

the effort of porting programs, several safer, C-like languages have been

proposed such as Cyclone [67] and CCured [96]. However, they still require

program changes (about 8% of the code had to be adapted for Cyclone [53])

and they have not been widely adopted in practice. Besides, there have also

been proposals for assigning semantics to some instances of undefined be-

havior in C (e.g., Friendly C [25]). Due to disagreements in what the desired

semantics would be, this approach has not been adopted in practice [102].

As part of our work on Safe Sulong, we also devised a C implementation that

replaces instances of undefined behavior by a fixed semantics and is suitable

for executing C programs on the Java Virtual Machine. Failure-oblivious

computing [111] is a technique that defines semantics for out-of-bounds ac-

cesses; illegal write accesses are ignored, and illegal read accesses produce

predefined values. However, returning predefined values for out-of-bounds

reads cannot work in all contexts; to address this, we worked on making our

approach context aware as part of our introspection work.

Hardware-based approaches Recent research has proposed hardware-

based mechanisms to enable a safer execution, primarily with respect to

3https://www.rust-lang.org
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memory safety. Hardbound [31] is an approach in which fat pointers were

implemented in hardware, that is, pointers that additionally have base and

bounds information attached. Watchdog [93] also detects use-after-free er-

rors by associating each memory region and each pointer with an identifier

that can be tagged as invalid when the memory is freed. CHERI [146, 19] is a

RISC-based architecture in which pointers are treated as capabilities, which

control what can be done with the pointer, to enable fine-grained memory

safety and access control. Intel introduced security-related instruction-set

extensions such as MPX [66], which extended the x86 architecture with in-

structions for tracking, manipulation, and querying bounds information [99].

If such hardware-based approaches are widely available, they potentially

have a high impact, since they often can implement functionality more effi-

ciently than software approaches that are based on general-purpose instruc-

tions. Thus, we also evaluated our introspection work using Intel MPX.

However, a major disadvantage of hardware-based approaches is that such

extensions require the replacement of hardware, which is costly.

1.3 Remaining Challenges

Our main goal was to improve on existing sanitizers and provide complete

protection against memory errors and other categories of undefined behavior.

We identified three main issues that we tackled with our research.

Unsafe optimizations Existing sanitizers overlook errors when compiler

optimizations are turned on; if optimizations are turned off, the perfor-

mance of these approaches is prohibitively slow. Furthermore, adding run-

time checks to binaries (either by the compiler or via instrumentation) is

error-prone, since instrumentation for corner cases can be forgotten, which

compromises the bug-detection capabilities. Consequently, we believe that

a novel approach is required that provides comprehensive protection against

undefined behavior, cannot optimize undefined behavior away, but is still

fast enough to be used in practice.

Missing programming interfaces Existing sanitizers track metadata

as part of their runtimes to implement their checks. However, they do not

expose this metadata to programmers, who could use it in their programs,
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for example, to check assertions. We believe that this metadata could be

exposed as part of an interface that could be implemented by existing bug-

finding tools.

Lack of understanding for inline assembly and compiler builtins

The implementation of both static and dynamic tools for unsafe languages

like C is a major effort. C programs contain, for example, unstandardized

elements like inline assembly and compiler builtins. To the best of our

knowledge, current compile-time instrumentation approaches fail to detect

undefined behavior in them. Providing complete support for such elements

would require supporting various architectures with hundreds or thousands

of different instructions or builtins. Researching their usage would alleviate

this problem by allowing tool developers to prioritize the implementation of

error checks for such elements.

1.4 Suggested Approach

To tackle undefined behavior in C programs, we devised an approach for the

execution of unsafe languages on the Java Virtual Machine. The core idea of

this approach is that the semantics of an unsafe program can be mapped to

the safe semantics of a Java program. By mapping an unsafe operation to a

sequence of equivalent Java operations, both executions behave the same for

legal inputs. However, since Java is a safe language and fully specifies the

semantics of its operations, the Java code also behaves in a well-defined way

for inputs that would be illegal in the C code. The Java Virtual Machine

optimizes the program based on the well-defined semantics of Java. Thus,

buffer overflows and other errors are not optimized away. We implemented

this approach as a system called Safe Sulong.

Safe Sulong has two execution modes that react differently to undefined

behavior. The first execution mode detects undefined behavior and aborts

execution. It relies on the automatic run-time checks of the underlying Java

Virtual Machine. This mode allows Safe Sulong to be used as a sanitizer,

and is useful especially for programmers that can then fix their programs

during development and testing. However, it prevents software deployers

from executing programs that cause undefined behavior even when they

consider it to be benign. To allow the execution of such programs, we came
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up with a second execution mode, based on a Lenient C implementation

that assigns semantics to undefined behavior in a way that programmers

would expect. This implementation is similar to Friendly C, but has been

designed to be implemented on a managed runtime.

To reduce the implementation effort of Safe Sulong, we based our ap-

proach on the LLVM framework [80]. Our system executes LLVM IR, the

RISC-like intermediate representation of the LLVM framework. Various

LLVM frontends can parse different input languages and compile them to

LLVM IR. For example, Clang can compile C/C++ to LLVM IR. When

compiling an unsafe language to LLVM IR, we disable all optimizations

so that operations that cause undefined behavior are not optimized away.

While using Clang relieves us from dealing with preprocessor macros and

the various C syntax standards, LLVM IR still contains inline assembly and

compiler builtins. We conducted two empirical studies on the usage of these

elements to prioritize their implementation in Sulong and other tools.

Safe Sulong is an automatic approach to tackle undefined behavior. In

some cases, however, programmers would know how to better react to such

behavior; for example, by checking for an erroneous condition and recovering

from an error. However, C objects do not have metadata such as bounds

information attached to them. Since an increasing number of bug-detection

and bug-finding tools track metadata to implement additional checks, we

came up with an introspection interface to allow programmers querying this

metadata. Thus, programmers can complement Safe Sulong’s automatic

approach by implementing additional logic that queries the metadata to

avoid undefined behavior. We also propose an extension to failure-oblivious

computing to incorporate the semantics of the function in which the error

occurs to recover from the error.

1.5 Contributions

The contributions presented as part of this thesis can be divided into scien-

tific contributions, technical contributions, and publications.

1.5.1 Scientific Contributions

The scientific contributions of this thesis can be categorized in three parts:
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Safe Sulong We present a novel approach to safely executing potentially

unsafe LLVM-based languages by executing them on a Java Virtual Machine.

We present a bug-finding mode that can detect out-of-bounds accesses and

other errors, which we evaluated in terms of bug-finding effectiveness on

open-source projects and in terms of performance [109]. Furthermore, we

devised Lenient C, an implementation of C on the JVM that replaces unde-

fined behavior with commonly expected behavior [107].

Introspection We present a novel approach that enables programmers

to increase the robustness of their C libraries. This approach is based on

an introspection interface that we designed to allow programmers query-

ing metadata such as bounds or types. We evaluated this approach in a

case study of a libc implementation for Safe Sulong [108]. We showed that

introspection can also be supported in other approaches such as LLVM’s

AddressSanitizer [112], MPX-based bounds instrumentation [99], and Soft-

Bound+CETS [106]. Furthermore, we evaluated the performance overhead

and the effectiveness of introspection to prevent buffer overflows in a case

study of real-world bugs [106].

Empirical studies We present two empirical studies on the usage of un-

standardized elements in C projects, to help tool developers to prioritize

these features when implementing tools for C code. In these studies, we

analyzed the usage of x86-64 inline assembly [105] and the usage of GCC

builtins [104] in a large number of open-source projects. In the GCC builtin

study, we also analyzed the usage of builtins over the lifetime of a project.

To the best of our knowledge, these are the first studies on the usage of

inline assembly and compiler builtins.

1.5.2 Technical Contributions

The major technical contributions include the design and implementation

of Native Sulong and Safe Sulong.

Native Sulong Native Sulong is the core of Sulong, but does not provide

memory safety, since dynamically allocated objects are stored in unman-

aged memory. It is available as open-source software and is highly popular



12 CHAPTER 1. INTRODUCTION

on GitHub.4 The author contributed the initial design and is the main

contributor (out of 35 contributors) with almost 600 commits. Note that

we released the software without the commit history of the first half year,

which included only commits of the author. Other main contributors in-

clude the Oracle employees Matthias Grimmer (with almost 500 commits),

who, together with Roland Schatz (with over 200 commits), worked on turn-

ing Native Sulong into a product after the paper about Native Sulong was

published. From Johannes Kepler University Linz, Jacob Kreindl (with 440

commits) worked on rewriting the parser to improve its efficiency5 and im-

plemented source-level debugging of LLVM IR. Thomas Pointhuber (with

almost 200 commits) worked on testing Sulong, and Daniel Pekarek (about

160 commits) worked on the implementation of inline assembly and the

Linux syscall interface.6 Besides other employees of the Johannes Kepler

University Linz and Oracle, Colin Barrett and Swapnil Gaikwad from the

University of Manchester contributed code.

Safe Sulong Safe Sulong is based on Native Sulong, but uses Java objects

instead of objects in native memory. The author contributed the initial de-

sign and is the main contributor with 1012 commits out of overall 1034

commits. Safe Sulong is no longer actively maintained. Instead, a hybrid

version that is based on both Native Sulong and Safe Sulong is being devel-

oped, and is maintained by Oracle Labs.

1.5.3 Supporting Publications

The results of this thesis were published at various venues. Below, the

papers most relevant to the scientific contributions are listed, categorized by

their contribution and sorted in chronologically ascending order. Section 3

provides a full list of publications.

4https://github.com/graalvm/sulong
5The initial parser was based on the LLVM IR SDK Eclipse plugin by Alon Mishne

(see https://github.com/amishne/llvm-ir-editor). Since the plugin was designed for
usage in an Integrated Development Environment and was based on the textual format of
LLVM IR, we replaced it by a parser designed for efficiency and for the binary format of
LLVM IR.

6http://man7.org/linux/man-pages/man2/syscalls.2.html
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Sulong

Bringing Low-level Languages to the JVM: Efficient Execution of LLVM

IR on Truffle. Manuel Rigger, Matthias Grimmer, Christian Wim-

mer, Thomas Würthinger, Hanspeter Mössenböck. In Proceedings of

the 8th International Workshop on Virtual Machines and Intermedi-

ate Languages (VMIL 2016), Amsterdam, Netherlands, 2016, pp. 6–15

DOI: 10.1145/2998415.2998416

Lenient Execution of C on a Java Virtual Machine: Or: How I Learned

to Stop Worrying and Run the Code. Manuel Rigger, Roland

Schatz, Matthias Grimmer, Hanspeter Mössenböck. In Proceedings of

the 14th International Conference on Managed Languages and Run-

times (ManLang 2017), Prague, Czech Republic, 2017, pp. 35–47

DOI: 10.1145/3132190.3132204 (AR: 45%)

Sulong, and Thanks for All the Bugs: Finding Errors in C Programs by Ab-

stracting from the Native Execution Model. Manuel Rigger, Roland

Schatz, Rene Mayrhofer, Matthias Grimmer, Hanspeter Mössenböck.

In Proceedings of the Twenty-Third International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(ASPLOS 2018), Williamsburg, VA, USA, 2018, pp. 377–391 DOI:

10.1145/3173162.3173174 (AR: 18%)

Introspection

Introspection for C and its Applications to Library Robustness. Manuel

Rigger, Roland Schatz, Rene Mayrhofer, Matthias Grimmer,

Hanspeter Mössenböck. In The Art, Science, and Engineering of Pro-

gramming (Programming 2018)
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Preventing Buffer Overflows by Context-aware Failure-oblivious Comput-

ing. Manuel Rigger, Daniel Pekarek, Hanspeter Mössenböck. In

Proceedings of the 12th International Conference on Network and Sys-

tem Security (NSS 2018), Hong Kong, China, 2018 (AR: 39%)

Empirical studies

An Analysis of x86-64 Inline Assembly in C Programs. Manuel Rig-

ger, Stefan Marr, Stephen Kell, David Leopoldseder, Hanspeter

Mössenböck. In Proceedings of the 14th ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments (VEE

2018), Williamsburg, VA, USA, 2018, pp. 84–99 DOI:

10.1145/3186411.3186418 (AR: 32%)

Understanding GCC Builtins to Develop Better Tools. Manuel Rigger,

Stefan Marr, Bram Adams, Hanspeter Mössenböck.

1.6 Limitations

Our approach of safely executing LLVM IR has various limitations, of which

the most significant ones are highlighted in this section.

Side-Channel Attacks In Sulong, we did not consider side channel at-

tacks [118], which have recently received much attention due to speculative

execution vulnerabilities that have been discovered in processors [74]. Side

channels allow attackers to indirectly gain information which the system

leaks, for example, through timing differences [6]. Since Sulong is based on

dynamic compilation, it provides a higher attack surface for side channel

attacks due to profiling-based optimizations [100].

Unsupported Features Our goal for Sulong was to execute common C

applications. Sulong does not provide low-level features that are needed by
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operating systems. For example, it does not provide any means for directly

accessing memory or devices. Furthermore, Safe Sulong can only execute

programs that do not depend on binaries of which neither the source code

nor the LLVM IR is available. This requirement is not always met in practice

(e.g., through closed-source third-party libraries) [128]. We believe that a

hybrid execution approach could alleviate these issues (see Chapter 11).

Insufficient Evaluation While the performance results of Sulong are

promising, we have not evaluated it on large applications such as the SPEC

benchmarks7 or browsers. This is mainly due to libc functions missing from

Safe Sulong’s libc. This could be addressed by running an existing complete

implementation of a libc on Safe Sulong, which we have recently achieved

for Native Sulong. Another reason is that Sulong needs prohibitively long

to run these benchmarks because it spends a long time in interpreted loops

before they are compiled. As part of future work, we want to address this

with on-stack replacement, a technique that allows switching from an in-

terpreted version of a loop to a compiled version [41]. Overall, a threat to

external validity is that the performance results cannot be generalized to

such applications.

1.7 Project Context

The work described in this thesis was done at the Institute for System Soft-

ware at the Johannes Kepler University Linz, Austria (JKU). The institute

primarily researches topics in the areas of compilers, virtual machines, pro-

gramming languages, performance monitoring, and software engineering. It

maintains several collaborations with industry.

Collaboration with Oracle The project described in this thesis was

done as part of a long-running research collaboration with Oracle (formerly

Sun Microsystems). The collaboration started in 2000, when Hanspeter

Mössenböck, head of the Institute for System Software, enhanced the inter-

mediate representation of the HotSpot client compiler as part of his sab-

batical and implemented a graph-coloring register allocator [92]. As part

7https://www.spec.org/benchmarks.html
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of this collaboration, several PhD students worked on enhancements of the

Java HotSpot VM and its client and server compilers:

• Thomas Kotzmann et al. worked on escape analysis in HotSpot’s

client compiler to replace Object allocations by scalar values where

possible [76, 75]. He completed his PhD thesis on Escape Analysis in

the Context of Dynamic Compilation and Deoptimization in 2005.

• Christian Wimmer et al. worked on the inlining of objects into their

referencing objects to eliminate unnecessary field accesses [142, 143,

144, 145]. He completed his PhD thesis on Automatic Object Inlining

in a Java Virtual Machine in 2008.

• Thomas Würthinger et al. proposed a mechanism for unlimited redef-

inition of loaded classes at run time in the HotSpot VM [147, 152].

He completed his PhD thesis on Dynamic Code Evolution for Java in

2011.

• Christian Häubl et al. worked on trace-based dynamic compilation of

Java code [56, 58, 59]. This work was funded by the Austrian Science

Fund (FWF). He completed his PhD thesis on Generalization of Trace

Compilation for Java in 2015.

Furthermore, the collaboration contributed a linear-scan register allocation

in the client compiler [91, 141], an array-bounds-check-elimination algorithm

in the client compiler [149, 151], a visualization tool for the HotSpot server

compiler [150], a description of the HotSpot client compiler design [77], an

optimization of the JVM’s string representation [57, 65], and an efficient

implementation of Java continuations [121] and Java coroutines [123].

Collaboration with Oracle Labs After Oracle Labs opened a research

lab at JKU, the focus of the collaboration shifted towards the Truffle and

Graal projects [148]. Truffle is a language implementation framework on

which also Sulong is based. The Graal compiler is used by Truffle to compile

frequently-executed functions to machine code at run time. Besides the work

described in this thesis, the following PhD students have been working in

this collaboration or completed their degree:

• Lukas Stadler et al. worked on the core design of Graal [119, 120] and

on partial-escape analysis to enable scalar replacement [122] to increase
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the performance of the generated code. He completed his PhD thesis

on Partial Escape Analysis and Scalar Replacement for Java in 2014.

• Matthias Grimmer et al. devised a language interoperability mech-

anism for Truffle [51] and showed how it can be used to implement

native function interfaces [52]. He completed his PhD thesis on Cross-

Language Interoperability in a Multi-Language Runtime in 2015.

• Gilles Duboscq et al. worked on Graal’s core design [34], on the re-

duction of deoptimization metadata [33], and on loop unrolling in the

Graal compiler. He completed his PhD thesis on Aggressive Loop Op-

timizations in a JIT Compiler in 2016.

• Benoit Daloze et al. came up with thread-safe and efficient data rep-

resentations in dynamically-typed languages that he implemented for

TruffleRuby [28, 27, 29].

• Josef Eisl et al. has been working on a new register allocation approach

(trace register allocation) in the Graal compiler to balance register

allocation time and the performance of the generated code [36, 37].

• David Leopoldseder et al. has been working on code duplication and

loop unrolling optimizations in the Graal compiler to increase the per-

formance of the generated code [83, 82].

Role in the Collaboration The author of this thesis joined the collabo-

ration with Oracle Labs as a Bachelor student in 2011, when he implemented

a Truffle Python interpreter. Between 2012 and 2014, he worked on a Truf-

fle implementation for C together with Matthias Grimmer. The author

described his part of the work in his Master’s thesis Truffle/C Interpreter,

and Matthias Grimmer described his part in his Master’s thesis Truffle/C

Runtime Environment. The work on Truffle/C resulted in two conference

papers [49, 48]. Grimmer extended the C interpreter by memory safety as

an interpreter called ManagedC and published promising early results in

a workshop paper [50], which later motivated the implementation of Safe

Sulong.

ManagedC ManagedC was an important step towards execution of unsafe

languages on the JVM, and Safe Sulong is based on its initial architecture.
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However, ManagedC could execute only C code since it was not based on

an IR, while Safe Sulong can execute also other languages for which an

LLVM front end exists. Like Safe Sulong, ManagedC provided two execu-

tion modes, a strict and a relaxed one. Safe Sulong’s bug-detection mode is

similar to ManagedC’s strict mode. However, ManagedC could detect also

accesses to uninitialized memory, but, unlike Safe Sulong, could not detect

invalid free errors (e.g., calling free() on a stack allocation) and illegal ac-

cesses to variadic arguments. ManagedC’s relaxed execution mode allowed

reading uninitialized memory and reading objects assuming an incorrect

type. In contrast, our Lenient C execution mode is more comprehensive and

also assigns a lenient semantics for various other operations. Finally, we

evaluated Safe Sulong on larger programs, which we obtained from GitHub,

which required a higher level of completeness. Unlike ManagedC, we imple-

mented our libc in C (and not in Java), added support also for libc functions

that are difficult to implement (e.g., for signal handling), and implemented

inline assembly instructions and GCC compiler builtins.

Impact in the Collaboration In September 2015, the author of this

thesis started as a PhD student, funded by Oracle Labs, to work on the ex-

ecution of LLVM IR on Truffle. After the author of this thesis implemented

a prototype of Sulong and published the results, both Oracle and student

researchers continued on its implementation; Sulong is now in a mature state

and is distributed as part of GraalVM.8 GraalVM is a multi-lingual VM, and

contains several language implementations including JavaScript, Ruby, R,

and Python. GraalVM’s language interoperability mechanism allows these

language implementations to use Sulong as a native function interface [52].

Sulong has also been used in other projects within Oracle. For example,

Iraklis et al. developed a smart array data structure [101] in which Sulong

is used.

1.8 Research Context

The research presented in this thesis is interdisciplinary and intersects with

various computer science disciplines as outlined below and as indicated by

the diverse venues of the publications.

8http://www.graalvm.org/
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Virtual Machine Construction Virtual Machine Construction is con-

cerned with the design, implementation, and evaluation of virtual machines.

Virtual machines typically execute a virtual instruction set and provide ser-

vices such as garbage collection and dynamic compilation for the language

implemented. Many of the concepts which are used in today’s virtual ma-

chines (e.g., the Hotspot JVM [77]), such as dynamic deoptimizations [61]

and polymorphic inline caches [60], were pioneered in VMs for the Self lan-

guage. Sulong is part of the GraalVM and exploits these VM concepts

while executing LLVM-based languages. Challenges in the design of Sulong

included how to exploit dynamic compilation for optimal run-time perfor-

mance [103, 109], and how to represent unmanaged memory as managed

objects [107, 109]. Production VMs such as the HotSpot VM have been

actively developed for decades. Thus, for a thesis like this, a major practical

challenge was to keep the implementation effort manageable by combining

existing components such as LLVM, Truffle, and Graal [103] while being

competitive with existing VMs and compilers.

Information Security Information Security is concerned with the pro-

tection of data. Buffer overflows are among the primary threats, as attackers

can exploit them to read private data or corrupt it; both academia and in-

dustry have been tackling buffer overflows for decades [20]. As part of this

effort, we have been working on Safe Sulong to safely execute LLVM-based

languages and automatically detect buffer overflows and other errors [109].

Additionally, our work on introspection aims to provide programmers with

library functions that, for example, compute buffer sizes, which can be used

to prevent buffer overflows [106].

Programming Languages Programming language research is about

defining and understanding programming languages. In Safe Sulong, we

explored how an unsafe language can be efficiently implemented based on

the semantics of a safe language. Furthermore, we proposed a modification

to the C11 standard to assign fixed semantics to undefined behavior [107].

Our introspection work [108, 106] explored how programmers could use ad-

ditional builtin functions to tackle buffer overflows and other errors.
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Empirical Software Engineering Software engineering is concerned

with all aspects of software production to improve the building and main-

tenance of software [116]. Empirical Software Engineering achieves this by

determining the usage of software in practice. We conducted two empirical

studies in which we analyzed the usage of inline assembly [105] and GCC

builtins [104] in open-source C projects in order to help tool developers to

prioritize the implementation of such features. Specifically, we relied on

techniques from Software Repository Mining [54], a subdomain that aims to

answer empirical questions by analyzing projects hosted on GitHub or other

open-source repositories. Additionally, we analyzed the frequency of various

memory-safety error categories to determine the relevance of different error

classes [109].

1.9 Outline

This thesis is structured into three parts. Part I puts the dissertation into

context and explains how the published papers relate to each other. It

also contains a full list of the published papers. Part II includes selected

publications, which are outlined in the next chapter. Part III describes

future work, summarizes the thesis, and draws some conclusions.



Chapter 2

Overview

This chapter gives an overview of the thesis’ contents and describes how

the papers in Part II relate to each other. All papers contribute directly

or indirectly (i.e., through empirical studies) towards the goal of tackling

undefined behavior in unsafe languages. As Figure 2.1 shows, the publica-

tions can be grouped into three research areas that they support: the safe

and efficient execution of LLVM IR on the Java Virtual Machine (Sulong),

a mechanism that allows programmers to use metadata tracked by existing

tools to manually tackle undefined behavior (Introspection), and studies on

the usage of inline assembly and GCC compiler builtins that support the

development of tools (Empirical Studies).

2.1 Sulong

Sulong is a system that executes LLVM IR on the Java Virtual Machine. Its

components are displayed in Figure 2.1, which are detailed in the remainder

of this section. Sulong relies on existing LLVM front ends, such as Clang

for C/C++, to compile programs to an intermediate program representation

called LLVM IR. We implemented a Truffle-based LLVM IR interpreter that

executes this LLVM IR on the GraalVM. The interpreter can be configured

to use various execution modes that differ in how they handle undefined

behavior.

Unsafe Languages Sulong executes C and other unsafe languages, in

which the semantics of operations with illegal input is not defined. For ex-

21
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Figure 2.1: Relationship between the papers presented in this thesis; paper
venues are displayed using a red and bold font.

ample, Listing 2.1 shows a C function that allocates an array with size ele-

ments and initializes them with random values obtained by calling rand().

In this example, the caller of create random arr() can cause undefined be-

havior depending on the size value that is passed. For example, if compiled

on AMD64 and if LONG MIN is passed, which corresponds to the value −263,

then the signed multiplication sizeof(long) * size causes an integer un-

derflow, the semantics of which are undefined. Generally, the C standard

“imposes no requirements” on the behavior of programs with undefined be-

havior. However, the standard gives examples for possible outcomes:

“Possible undefined behavior ranges from ignoring the situ-

ation completely with unpredictable results, to behaving during

translation or program execution in a documented manner char-

acteristic of the environment (with or without the issuance of a

diagnostic message), to terminating a translation or execution

(with the issuance of a diagnostic message).”

In practice, compilers attempt to detect undefined behavior statically to

print warnings [126, 127]. However, this is not always possible; for the

example in Listing 2.1, Clang fails to print an error message. Instead, it
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Listing 2.1: A C function that produces a random array of long values

long* create_random_arr(long size) {

long* numbers = malloc(sizeof(long) * size);

for (size_t i = 0; i < size; ++i) {

numbers[i] = rand();

}

return numbers;

}

compiles the multiplication to a left shift, which produces 0 for LONG MIN,

causing malloc() to not allocate any memory. Since size is promoted to an

unsigned integer in the loop condition, the loop is erroneously executed 263

times. Thus, the out-of-bounds writes to number[i] are likely to corrupt

the heap and/or crash the program. Sulong’s LLVM IR interpreter does not

directly execute such source code programs; they first need to be compiled

to LLVM IR using an LLVM front end.

LLVM Frontends Sulong can execute various programming languages

by relying on existing LLVM front ends for parsing these languages [80].

This includes unsafe languages such as C, C++, and Fortran, but also safe

languages such as Rust and Haskell. The Clang LLVM front end1 can parse

C and C++, while Flang2 and DragonEgg3 can parse Fortran. We evaluated

Sulong mainly on C, as it is the most popular unsafe language according to

the TIOBE index [130].

In theory, most other languages should also run on Sulong as they are

all compiled to LLVM IR instructions. We evaluated Native Sulong also

on Fortran (see Section 4). Although not systematically evaluated, Native

Sulong is also able to run C++ programs.4

Safe Sulong currently only supports C programs. Supporting additional

languages would require also running their standard libraries as LLVM IR

code. Typically, such standard libraries rely on system calls [133], which

Safe Sulong does not yet implement. To support C programs in Safe Sulong,

1https://clang.llvm.org/
2https://github.com/flang-compiler/flang
3https://dragonegg.llvm.org/
4To support C++, LLVM IR instructions for exception handling were implemented as

part of the productizing effort.
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we thus implemented libc functions in a custom libc that does not rely on

system calls.

LLVM IR LLVM IR is the intermediate program representation in the

LLVM framework [80]. By executing LLVM IR, Sulong can execute pro-

grams written in various programming languages with a moderate imple-

mentation effort. Listing 2.2 shows the code produced by compiling the

previous C function to LLVM IR. It comprises three basic blocks that con-

sist of sequential instructions and end with a control-flow instruction that

determines which basic block to execute next. The first and the third basic

block end with a br instruction which branches to one of two labels depend-

ing on a condition value; the second block ends with a ret instruction that

returns a value from the function. Local variables, also called virtual regis-

ters, are preceded by a %. These variables are in Static Single Assignment

form [26], which means that there is just a single instruction in which a

value is assigned to them. To represent conditional assignments, phi func-

tions are used that merge variants of the same variable [26]. LLVM IR does

not provide instructions to allocate heap memory; the call to malloc() is

resolved by dynamically linking it to a precompiled function that is part of

libc. Since LLVM IR has been originally designed for C/C++, its operations

can also cause undefined behavior [81]. For example, the nuw keyword in the

add operation stands for “No Unsigned Wrap” and means that the result

of the addition is undefined for integer overflows. The store instruction is,

like in C/C++, undefined if the target address is invalid. In Sulong, we

implemented these and other instructions as part of the Truffle LLVM IR

interpreter.

Truffle and Graal Truffle is a language implementation framework writ-

ten in Java, on which Sulong’s LLVM IR interpreter is based. Truffle re-

duces the implementation effort of language implementations, by providing

a dynamic compilation mechanism for languages implemented on top of

it [148]. Language implementers in Truffle write annotated abstract syntax

tree (AST) interpreters, in which each operation is implemented in an exe-

cutable node [153]. Each node computes its result in an execute() method

by executing its operands, processing their results, and returning it to the

parent node. A node typically has to support operations for various data
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Listing 2.2: LLVM IR function for Listing 2.1 compiled by Clang and sim-
plified slightly for readability

1 define i64* @create_random_arr(i64) {

2 %2 = shl i64 %0, 3

3 %3 = call i8* @malloc(i64 %2)

4 %4 = bitcast i8* %3 to i64*

5 %5 = icmp eq i64 %0, 0

6 br i1 %5, label %6, label %7

7

8 ; <label>:6: ; preds = %7, %1

9 ret i64* %4

10

11 ; <label>:7: ; preds = %1, %7

12 %8 = phi i64 [ %12, %7 ], [ 0, %1 ]

13 %9 = call i32 @rand()

14 %10 = sext i32 %9 to i64

15 %11 = getelementptr inbounds i64, i64* %4, i64 %8

16 store i64 %10, i64* %11

17 %12 = add nuw i64 %8, 1

18 %13 = icmp eq i64 %12, %0

19 br i1 %13, label %6, label %7

20 }
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types and must thus implement several execute() methods. To dispatch

to the execute() method that corresponds to the inputs’ data types, the

Truffle framework provides a Domain Specific Language based on Java an-

notations that automatically generates Java code for the dispatch logic [64].

Note that an AST interpreter can only represent high-level control flow; to

support the dispatch between the basic blocks of the LLVM IR, we had to

come up with a hybrid interpretation approach. (see Chapter 4).

If a function, that is, its AST, has been executed often enough, Truffle

compiles it to machine code. In doing so, all the execute() methods of

the AST are inlined, effectively eliminating the overhead of using an AST

interpreter by performing a Futamura Projection [42], and then further op-

timizing the code using Graal. Graal is a dynamic compiler that takes Java

bytecode and profiling information as its input, and generates optimized

machine code [119, 34, 33, 120, 122]. To support Sulong and other bytecode

interpreters (see Chapter 4), the partial evaluation mechanism had to be

extended, which was primarily done by Christian Wimmer.

Truffle nodes can implement speculative optimizations by replacing a

node with some other node that implements this optimization. For ex-

ample, we use this technique to speculate on constant function pointers at

indirect call sites [103]. If a speculation turns out to be wrong later, the code

generated by Graal is discarded, and execution falls back to the interpreter

(a mechanism which is known as deoptimization [61, 41]). Truffle is similar

to the PyPy [110] language implementation framework [86]; however, com-

pilation in Truffle is method-based while PyPy uses a tracing compiler [10],

and Truffle language implementations are implemented in Java while PyPy

implementations are written in RPython [2].

Sulong’s execution modes We built Sulong incrementally by adding

various execution modes. The execution modes are implemented as strate-

gies [44] that can be exchanged for each other in Sulong (see Figure 2.1).

The strategies differ in the kind of Truffle nodes that are created to imple-

ment the semantics of LLVM IR operations. We first implemented Native

Sulong, which represents user allocations in unmanaged memory, and is thus

not safe with respect to memory accesses. Native Sulong was an interme-

diate step to a safe execution engine, which allowed us to concentrate on

efficiency aspects of the implementation. Next, we implemented Safe Sulong,
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which represents user allocations as Java objects and provides safe seman-

tics also for accessing them. First, we implemented a bug-finding mode that

aborts the program when an invalid memory access occurs. As a second safe

execution mode, we devised the Lenient C strategy that defines undefined

behavior in such a way that illegal operations are executed with a defined

semantics according to common expectations of programmers. This allows

programs with undefined behavior to keep running.

Native Sulong (Chapter 4) Native Sulong allocates user objects in un-

managed memory. For example, when Native Sulong executes the call to

malloc() in create random arr(), it uses a foreign function interface to

call the underlying malloc() implementation [48], which allocates the object

on the native heap. Thus, buffer overflows and other memory errors are not

prevented and cause similar effects as in executables that were compiled by

static compilers such as Clang or GCC. On the positive side, Native Sulong

can use precompiled libraries without restrictions; for example, it can pass

objects allocated by Sulong to these libraries because their memory layout

conforms to the underlying machine’s application binary interface [87]. The

operations in Native Sulong were optimized to be efficient for legal input.

As a consequence of using Java as an implementation language, however,

Native Sulong treats other kinds of undefined behavior in a consistent way,

similarly to the Lenient C strategy; for example, both Native Sulong and

Lenient C use a Java addition to implement a signed integer addition in

C, which provides wraparound semantics on integer overflow. The paper

describing Native Sulong (see Chapter 4), was published in the Workshop

on Virtual Machines and Intermediate Languages 2016 [103].

Safe Sulong (Chapter 5) Safe Sulong allocates user objects on the

Java heap (i.e., in managed memory). By using managed memory, Safe

Sulong detects errors such as buffer overflows relying on automatic run-

time checks of the underlying JVM. For example, if an out-of-bounds ac-

cess occurs when accessing the array in create random arr(), the access

is mapped to an out-of-bounds access to a Java array, where it causes an

ArrayIndexOutOfBoundsException. The main paper on Safe Sulong (see

Chapter 5) was published at the International Conference on Architectural

Support for Programming Languages and Operating Systems 2018 [103].
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Listing 2.3: Truffle node that throws an exception on an integer overflow by
using Math.addExact()

class StrictMulNode {

@Specialization

long execute(long left, long right) {

return Math.multiplyExact(left, right);

}

}

This paper constitutes the core contribution of this thesis; it describes a

model to safely execute and optimize unsafe languages by executing them

on a Java Virtual Machine. Note that we evaluated only memory errors in

this paper; however, we also implemented checks for other kinds of un-

defined behavior. For example, a signed multiplication is implemented

in Safe Sulong by a call to Math.multiplyExact(). In case of an inte-

ger overflow, an ArithmeticException would be thrown. When execut-

ing create random arr() passing LONG MIN as a parameter, the multiplica-

tion node would already throw an ArithmeticException before the out-of-

bounds access is executed.

Lenient C (Chapter 6) Safe Sulong fails to execute many programs be-

cause they cause undefined behavior and thus violate the rules set by the C

standard, which has also been observed by other studies [19, 88]. To support

common incorrect program patterns, we devised a Lenient C standard that

defines operations for input that is illegal in the C11 standard. For example,

Lenient C specifies that addition must overflow with wrap-around semantics,

which we implemented by reusing Native Sulong’s signed addition node. As

another example, Lenient C specifies that free() has no effect in order to

allow freed memory to be still accessed, which is another frequent program-

ming error; instead, Lenient C assumes that a garbage collector reclaims

unused memory. For buffer overflows and NULL pointer dereferences, we as-

sumed that the errors were too critical to continue execution and adopted

the behavior of Safe Sulong (i.e., to terminate execution). The paper on

Lenient C (see Chapter 6) was published in the International Conference on
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Listing 2.4: The size right() introspection allows programmers querying
the remaining size of the object from the given pointer

int *arr = malloc(sizeof(int) * 10);

int *ptr = &(arr[4]);

printf("%ld\n", _size_right(ptr)); // prints 24

Managed Languages & Runtimes 2017 [107].

2.2 Introspection

Current run-time bug-finding tools track metadata such as bounds or types

in order to detect bugs. We found that it might be useful to provide this

metadata also to programmers, so that they can implement additional logic,

for example, to implement assertions, validate input parameters, or handle

errors that would otherwise cause undefined behavior. We explored this idea

in two papers that are included in this thesis.

Introspection (Chapter 7) Based on Safe Sulong, we initially investi-

gated which metadata could be useful for programmers, and then devised

an introspection interface that allowed programmers querying it. For exam-

ple, Listing 2.4 shows how the size right() introspection function can be

used to obtain the remaining size of an object from the given pointer. Other

introspection functions allow querying the type and memory location of an

object as well as the number and types of variadic arguments. We imple-

mented the introspection interface in Safe Sulong and evaluated possible use

cases in a libc implementation. The paper, which is included in Chapter 7,

was published in the The Art, Science, and Engineering of Programming

2018 journal [108].

Context-aware failure-oblivious Computing (Chapter 8) While us-

ing our introspection interface, we informally came to the conclusion that

the introspection function to query the size of an object would likely be the

most useful introspection function since it is straightforward to use and can

be used to prevent buffer overflows [20], which are the most common errors

in unsafe languages. Thus, based on our introspection work, we devised
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Listing 2.5: A strlen() implementation that avoids buffer overflows for strings
that are not terminated by ‘\0’ by querying the underlying buffer size and
using the safer strnlen() function

size_t strlen(const char *s) {

return strnlen(s, _size_right(s));

}

context-aware failure-oblivious computing, which is a specialized use case

of introspection to maintain availability in the presence of buffer overflows.

It achieves this by mitigating such errors in libc functions and continu-

ing execution. Listing 2.5 shows how this concept is applied to strlen().

strlen() queries the end of the memory area allocated for string s using

size right() to then compute the length of the string using strnlen(),

which traverses the string at most until reaching the end of the object, which

is specified by the second argument; if a string is passed that is not properly

terminated by a ‘\0’ character, the function nevertheless stays in bounds

and returns the length of the unterminated string.

We demonstrated that our approach mitigates real-world bugs that we

found in the Common Vulnerabilities and Exposures (CVE) database.5 Fur-

thermore, we showed that introspection is applicable also to tools other than

Sulong; we implemented the size right() function for SoftBound+CETS

(a bounds checker with a temporal memory error detection tool), GCC’s

MPX-based bounds checker instrumentation, and in LLVM’s AddressSan-

itizer. The paper, which is included in Chapter 8, was published at the

International Conference on Network and System Security 2018 [106].

2.3 Empirical Studies

We conducted two empirical studies to prioritize the implementation of as-

sembly instructions in inline assembly statements and compiler builtins in

Sulong. Neither inline assembly, nor compiler builtins are specified as part

of an official C standard; they are compiler extensions. While executing

programs “from the wild”, we found that a number of programs relied on

them. We started to implement them in an ad-hoc fashion, but later decided

5https://cve.mitre.org/
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to investigate their usage in open-source projects to systemize and prioritize

their implementation and help other tool developers.

Usage of Inline Assembly (Chapter 9) Inline assembly statements

embed assembly into C code. The syntax of such statements is specific to

a compiler (e.g., Clang and GCC use a different syntax than the MSVC

compiler), and the included instructions are specific to an architecture (e.g.,

x86). Listing 2.6 shows a C function that uses an inline assembly frag-

ment in Clang/GCC syntax to include the rdtsc instruction, which the x86

architecture provides to query the elapsed clock cycles.

Clang parses inline assembly and partially resolves it, which freed us

from implementing support for different compiler syntaxes in Sulong. For

example, Listing 2.7 shows how LLVM IR represents the inline assembly

fragment as a call to the rdtsc function, along with a string that encodes

constraints (e.g., which registers are used). The example demonstrates that

the inline assembly instructions are not mapped to LLVM IR, but are re-

tained as textual statements.

For Sulong, we implemented support only for x86-64 instructions, since

we assumed this architecture to be the most common one. On other archi-

tectures, projects can be cross-compiled to x86-64 and executed by Sulong;

since the assembly instructions are mapped to Java code, they can be ex-

ecuted nevertheless. To support inline assembly, we implemented a parser

that reads inline assembly statements from LLVM IR programs to map the

individual instructions to Truffle nodes. For rdtsc, Listing 2.8 shows how

we implemented a Truffle node that reads the elapsed time in milliseconds.6

This only approximates the expected behavior, since no direct equivalent

exists in Java that could be used to read the elapsed clock cycles.

In the study described in Chapter 9, we investigated over 1000 GitHub

C projects in their usage of inline assembly. This allowed us to prioritize

their implementation, and also to decide how to approximate the behavior

of instructions in Java when no equivalent exists there. The paper, which

is included in Chapter 9, was published at the International Conference on

Virtual Execution Environments 2018 [105].

6The full implementation is available at https://github.com/graalvm/sulong/blob/
master/projects/com.oracle.truffle.llvm.nodes/src/com/oracle/truffle/llvm/

nodes/asm/LLVMAMD64RdtscNode.java
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Listing 2.6: Function with an in-
line assembly fragment to read
the elapsed clock cycles on x86-86;
rdtsc stores the cycles into two 32-
bit registers that need to be concate-
nated.

uint64_t rdtsc() {

uint32_t hi, lo;

asm("rdtsc" : "=a"(lo), "=d"(hi));

return lo | ((uint64_t) hi) << 32;

}

Listing 2.7: Inline assembly frag-
ment from Listing 2.6 when com-
piled to LLVM IR.

call { i32, i32 } asm "rdtsc",

"={ax},={dx},~{dirflag},

~{fpsr},~{flags}"()

Listing 2.8: Truffle node that implements the rdtsc instruction

class LLVMAMD64RdtscReadNode extends LLVMExpressionNode {

long doRdtsc() {

return System.currentTimeMillis();

}

}

Usage of GCC Builtins (Chapter 10) Compiler builtins are specific

to a certain compiler and provide functionality that is implemented as part

of this compiler. On Linux, GCC builtins are used most frequently and are

also supported by compilers such as Clang. In their usage, they are similar

to functions provided by libraries (e.g., libc). Listing 2.9 shows an exam-

ple of the usage of the builtin expect(), which allows communicating

branch probability information to the compiler. The code in the example

speculates that error = 0, so that the compiler optimizes the code assum-

ing that common case() is called. Clang parses such GCC builtins and

typically generates equivalent LLVM intrinsics for them. For example, List-

ing 2.10 shows the @llvm.expect.i64 intrinsic call that is generated for

builtin expect().

In Sulong, we implemented common LLVM intrinsics as specialized

nodes. Listing 2.11 shows the node that implements the expect builtin.

We incorporate the expected branch probability by creating a Truffle

ConditionProfile. The profile checks for the expected value, and—if

the check holds—code is generated that assumes that the value is always
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expected, which profits subsequent compiler optimizations. However, if

the check once fails, the code deoptimizes [155] (i.e., the optimized code

is discarded) and the assumption is invalidated until the program termi-

nates; if the code is recompiled, the compiler no longer assumes the value of

expected.

Listing 2.9: GCC builtin that com-
municates branch probability infor-
mation to the compiler.

if (__builtin_expect(error, 0)) {

exceptional_case();

} else {

common_case();

}

Listing 2.10: LLVM intrinsic
@llvm.expect.i64() that cor-
responds to the GCC builtin
builtin expect().

call i64 @llvm.expect.i64(

i64 %3, i64 0)

Based on the inline assembly study, we decided to investigate the usage

of GCC builtins, which are also frequently used by C projects. We improved

the study design by automating the builtin extraction, which was partially

done manually in the inline assembly study, and used a larger amount of

projects. Furthermore, we also analyzed the usage of GCC builtins over

time to find out if their usage was increasing, decreasing, or constant in

these projects to predict whether builtins will be important also in programs

yet to be written. The paper, which is included in Chapter 10, is currently

under review [104].
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Listing 2.11: Truffle node that implements the @llvm.expect.i64() intrin-
sic

class LLVMExpectI64 extends LLVMBuiltin {

final ConditionProfile expectProfile =

ConditionProfile.createBinaryProfile();�→

final long expected;

public LLVMExpectI64(long expected) {

this.expected = expected;

}

@Specialization

boolean doI64(long val) {

if (expectProfile.profile(val == expected)) {

return expected;

} else {

return val;

}

}

}
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Below is the full list of publications, classified by paper categories and sorted
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highlighted with a � below.
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On-Stack Replacement in Truffle Interpreters for Non-structured Lan-

guages. Raphael Mosaner, Manuel Rigger, David Leopoldseder, Roland

Schatz, Hanspeter Mössenböck.
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Hanspeter Mössenböck. TruffleC: Dynamic Execution of C on a Java

Virtual Machine. In Proceedings of the 2014 International Conference

on Principles and Practices of Programming on the Java Platform:



46 BIBLIOGRAPHY

Virtual Machines, Languages, and Tools, PPPJ 2014, pages 17–26,

New York, NY, USA, 2014. ACM.

[49] Matthias Grimmer, Manuel Rigger, Lukas Stadler, Roland Schatz, and
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Trace Transitioning and Exception Handling in a Trace-based JIT

Compiler for Java. ACM Trans. Archit. Code Optim., 11(1):6:1–6:26,

February 2014.

[60] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing

Dynamically-Typed Object-Oriented Languages With Polymorphic

Inline Caches. In Proceedings of the European Conference on Object-

Oriented Programming, ECOOP ’91, pages 21–38, London, UK, UK,

1991. Springer-Verlag.

[61] Urs Hölzle, Craig Chambers, and David Ungar. Debugging Optimized

Code with Dynamic Deoptimization. In Proceedings of the ACM SIG-

PLAN 1992 Conference on Programming Language Design and Imple-

mentation, PLDI ’92, pages 32–43, New York, NY, USA, 1992. ACM.

[62] Gerard J. Holzmann. UNO: Static Source Code Checking for UserDe-

fined Properties. In In 6th World Conf. on Integrated Design and

Process Technology, IDPT ’02, 2002.

[63] Petr Hosek and Cristian Cadar. VARAN the Unbelievable: An Effi-

cient N-version Execution Framework. In Proceedings of the Twentieth

International Conference on Architectural Support for Programming



48 BIBLIOGRAPHY

Languages and Operating Systems, ASPLOS ’15, pages 339–353, New

York, NY, USA, 2015. ACM.

[64] Christian Humer, Christian Wimmer, Christian Wirth, Andreas Wöß,

and Thomas Würthinger. A Domain-specific Language for Building

Self-optimizing AST Interpreters. In Proceedings of the 2014 Inter-

national Conference on Generative Programming: Concepts and Ex-

periences, GPCE 2014, pages 123–132, New York, NY, USA, 2014.

ACM.
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Abstract
Although the Java platform has been used as a multi-
language platform, most of the low-level languages (such as
C, Fortran, and C++) cannot be executed efficiently on the
JVM. We propose Sulong, a system that can execute LLVM-
based languages on the JVM. By targeting LLVM IR, Sulong
is able to execute C, Fortran, and other languages that can
be compiled to LLVM IR. Sulong combines LLVM’s static
optimizations with dynamic compilation to reach a peak
performance that is near to the performance achievable with
static compilers. For C benchmarks, Sulong’s peak runtime
performance is on average 1.39× slower (0.79× to 2.45×)
compared to the performance of executables compiled by
Clang O3. For Fortran benchmarks, Sulong is 2.63× slower
(1.43× to 4.96×) than the performance of executables com-
piled by GCC O3. This low overhead makes Sulong an alter-
native to Java’s native function interfaces. More importantly,
it also allows other JVM language implementations to use
Sulong for implementing their native interfaces.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors - Run-time environments, Code
generation, Interpreters, Compilers, Optimization

Keywords LLVM, JVM, Sulong, dynamic compilation

1. Introduction
The Java Virtual Machine (JVM) has been recently used as
a platform for not only Java and Scala, but also for dynamic

[Copyright notice will appear here once ’preprint’ option is removed.]

languages including Ruby, Python, and JavaScript (Rose
2009). Having the JVM as a common platform enables
cross-language interoperability so that Java code can call
functions or methods written in other languages. Language
implementation frameworks such as Truffle (Würthinger
et al. 2013) feature a mechanism for cross-language inter-
operability, which allows writing efficient multi-language
applications (Grimmer et al. 2015b). However, except from
a C implementation (Grimmer et al. 2014, 2015a), there
are no efficient Truffle implementations of lower-level lan-
guages, e.g., Fortran, C++, and others. To call functions
written in such languages, developers have to resort to the
Java Native Interface (JNI, Liang 1999) or other native func-
tion interfaces. These native function interfaces add run-
time overhead since data structures have to be converted or
(un)marshalled when transferring data between Java and the
target language. Also, language boundaries are compilation
boundaries, so a compiler cannot, for example, apply func-
tion inlining across languages.1

In this paper we present Sulong, a system that enriches
the JVM with a variety of new languages by executing
LLVM IR on the JVM. Sulong includes a new LLVM IR in-
terpreter, which allows it to execute all languages that have
an LLVM IR front end, including C/C++, Fortran, Ada, and
Haskell. Developers can use the interpreter as a Java library
to execute these languages on the JVM. We implemented
the LLVM IR interpreter in Java on top of the Truffle frame-
work (Würthinger et al. 2013), so that Sulong does not only
interface with Java but also provides seamless interoperabil-
ity with other Truffle language implementations (Grimmer
et al. 2015b) such as R (Stadler et al. 2016), Ruby (Seaton
2015), and JavaScript (Würthinger et al. 2013). This in-

1 Stepanian et al. (Stepanian et al. 2005) show that inlining native C code
into Java is important and improves performance significantly. However,
they convert the native code to the same intermediate language as the JIT
compiler uses while we want to directly run low-level code on the JVM.
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Figure 1. System overview.

teroperability mechanism allows optimizations across lan-
guage boundaries such as cross-language function inlin-
ing. Furthermore, by having Truffle as a common base,
other language implementations can use Sulong to imple-
ment their Native Function Interfaces (NFIs). For example,
JRuby+Truffle (a Truffle implementation of Ruby, Seaton
2015) already uses Sulong to implement C extension sup-
port and FastR (a Truffle implementation of R, Stadler et al.
2016) experiments implementing support for native exten-
sions with it.

Efficiency is very important to make Sulong an alterna-
tive to NFIs for both Java developers and Truffle language
implementers. To achieve the necessary performance, Su-
long combines LLVM’s static optimizations at compile-time
with a dynamic compiler at run-time. We use the Graal dy-
namic compiler (Duboscq et al. 2013; Stadler et al. 2014) to
compile frequently executed LLVM IR functions to native
code. This allows Sulong to reach peak performance that
is near to the performance of code produced by industrial-
strength compilers such as Clang.

In summary, this paper contributes the following:

• We describe how we bring a variety of languages to the
JVM by using LLVM front ends and implementing a self-
optimizing LLVM IR interpreter.

• We present a novel compilation approach to dynamically
compile LLVM IR.

• We describe how we use static optimizations in combina-
tion with dynamic compilation to generate efficient ma-
chine code and demonstrate its peak performance on a
range of C and Fortran benchmarks.

2. System Overview
Sulong is a modularized system that uses parts of LLVM and
the JVM (see Figure 1). In this section we describe LLVM
and Truffle + Graal, which are the basis of Sulong.

void processRequests () {
int i = 0;
do {

processPacket ();
i++;

} while (i < 10000);
}

Figure 2. A small C program containing a loop.

2.1 LLVM
LLVM (Lattner and Adve 2004) is a modular static compi-
lation framework that consists of a standardized IR (called
LLVM IR or bitcode) and a set of libraries. LLVM front
ends translate a source program to an LLVM IR program.
LLVM’s official front-end is Clang which can compile C,
C++, Objective C, and Objective C++. To enable GCC to
compile its supported languages including Ada, Fortran, and
Go to LLVM IR, one can use the DragonEgg plugin.2 After
compilation, a user can decide to further process the LLVM
IR file, e.g., by using the LLVM static optimization tool
opt to optimize the program. To get an executable from the
LLVM IR file one can use the LLVM linker and assembler
to link the LLVM IR files and to compile them to machine
code. Sulong consists of a Truffle interpreter that we use to
execute this IR on the JVM (see Section 3).

Figure 2 shows a C program, and Figure 3 the correspond-
ing LLVM IR program in textual form. In LLVM IR, as in
most IRs, a function comprises basic blocks that consist of
sequential instructions and end with a terminator instruction
that transfers control to the next basic block. For example,
br label %1 is an unconditional branch to the basic block
labeled %1, br i1 %3, label %1, label %4 is a condi-
tional branch (depending on the boolean value %3) to the ba-
sic blocks labelled %1 or %4, and ret void is a return from
the function. These branches transfer control between basic
blocks, similar as in non-structured programming languages
that use goto. The biggest challenge for Sulong’s LLVM IR
interpreter is to efficiently interpret and dynamically compile
the dispatch between basic blocks.

LLVM IR is in Static Single Assignment form (SSA,
Cytron et al. 1991), i.e., each variable is only assigned once.
In LLVM IR, these variables are called virtual registers and
are prefixed with %. To merge assignments to the same vari-
able after branches, LLVM IR uses phi functions. For exam-
ple, in %i.0 = phi i32 [ 0, %0 ], [ %2, %1 ], the
value assigned to %i.0 is 0 when the predecessor block is
%0 and %2 if the predecessor block is %1. Sulong’s LLVM
IR interpreter needs to implement these virtual registers of
LLVM IR as well as the native memory access that low-level
languages use.

2 http://dragonegg.llvm.org/
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define void @processRequests () #0 {
; (basic block 0)

br label %1

; <label >:1 (basic block 1)
%i.0 = phi i32 [ 0, %0 ], [ %2 , %1 ]
call void @processPacket ()
%2 = add nsw i32 %i.0, 1
%3 = icmp slt i32 %2 , 10000
br i1 %3 , label %1 , label %4

; <label >:4 (basic block 2)
ret void

}

Figure 3. LLVM IR of the C program in Figure 2.

2.2 Truffle
Truffle (Würthinger et al. 2013) is a language implementa-
tion framework to build high-performance Abstract Syntax
Tree (AST) interpreters on the JVM. Each node in a Truffle
AST has an execute method in which it executes its children
and returns its own result. Truffle AST interpreters are self-
optimizing (Würthinger et al. 2012) in the sense that AST
nodes can speculatively rewrite themselves with specialized
variants at run time, e.g., based on profile information ob-
tained during execution such as type information. For exam-
ple, our LLVM IR interpreter can optimize indirect function
calls by rewriting the indirect call node to a specialized node
that speculates on a constant call target and can thus build
polymorphic inline caches (Hölzle et al. 1991). In turn, this
optimization enables speculative function inlining of indirect
calls.

If these speculative assumptions turn out to be wrong,
the specialized tree can be reverted to a more generic ver-
sion that provides functionality for all possible cases. Truf-
fle guest languages use self-optimization via tree rewriting
as a general mechanism for dynamically optimizing code at
run-time. For example, if an indirect function call is highly
polymorphic, Truffle languages rewrite the polymorphic in-
line cache to a node that performs the lookup and calls the
function.

2.3 Graal
When the execution count of a Truffle AST reaches a pre-
defined threshold, Truffle uses the dynamic Graal com-
piler (Duboscq et al. 2013; Stadler et al. 2014) to compile the
AST to machine code. The compiler assumes that the AST
is stable and inlines node execution methods of a hot AST
into a single method (known as partial evaluation, Futamura
1999) and performs aggressive optimizations over the whole
tree. Graal inserts deoptimization points (Hölzle et al. 1992)
in the machine code where the speculative assumptions are
checked. If they turn out to be wrong, control is transferred
back from compiled code to the interpreted AST, where spe-
cialized nodes can be reverted to a more generic version.

Blockbci=0 Blockbci=1 Blockbci=2

Basic Block Dispatch Node

1 2 -11 Successor basic 
block bcis

Figure 4. Basic block dispatch node for Figure 3

2.4 Sulong
Sulong uses LLVM front ends to compile source languages
such as C/C++ or Fortran to LLVM IR and interprets it on
the JVM. To simplify and optimize an LLVM IR program
prior to interpretation, Sulong uses LLVM’s static optimiz-
ers. Sulong then executes the LLVM IR on the JVM using
a new Truffle interpreter. This Truffle language implemen-
tation brings all LLVM languages to the JVM, and makes
them accessible to other Truffle language implementations.

Sulong’s interpreter optimizes the AST based on the pro-
file feedback that it observes at run time. Eventually, Truffle
uses Graal as a dynamic compiler to compile the program to
machine code, from which execution continues with native
speeds. This architecture allows Sulong to profit from both
static optimizations by LLVM, and dynamic optimizations
by Truffle and Graal.

3. Execution of Unstructured Control Flow
The LLVM IR interpreter is different from previous lan-
guage implementations on top of Truffle since it has to deal
with unstructured control flow that cannot easily be handled
in an AST interpreter. Support for unstructured control flow
is the key for enabling the execution of LLVM IR, both in
the interpreter and in the dynamically compiled code.

3.1 Interpreter
To support unstructured control flow in the interpreter we
follow a mixed AST execution and bytecode interpretation
approach. Basic blocks only contain sequential instructions,
hence, we build ASTs for them. We do not build ASTs to im-
plement transferring control between the basic blocks, since
unstructured control flow cannot be directly modeled using
ASTs. We could convert the unstructured LLVM IR pro-
grams to structured programs (Erosa and Hendren 1994),
at the expense of making the implementation more com-
plicated and removing the direct correspondence between
LLVM IR instructions and Truffle nodes. Instead, we use
a basic block dispatch node to transfer control between the
basic blocks (and also add support for its compilation, see
Section 3.2). Each function has such a basic block dispatch
node. In the loop of the basic block dispatch node (see Fig-
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int bci = 0;
while (bci != -1)

bci = blocks[bci]. execute ();

Figure 5. Sulong’s basic block dispatch node.

ure 5), we execute a basic block in each iteration, starting
from a bitcode index of zero (bci = 0). Each node that rep-
resents a basic block contains an int[] array with the bcis
of its successor blocks, which allows the compiler to see all
possible successors of a block, i.e., the successor bcis are
compile-time constants. The compiler needs this information
to compile the basic block dispatch node (see Section 3.2).
When executing a basic block, the basic block computes an
index into this successor array, which it uses to return the
next bci. Execution of basic blocks continues until bci = -1
which signals a return statement.

For the program in Figure 3, the basic block dispatch
node transfers execution between three basic blocks that
have consecutive indices from 0 to 2. Figure 4 shows the ba-
sic block dispatch node for this program and illustrates the
control flow between the basic blocks with red arrows. Exe-
cution starts with the first basic block blockbci=0. Blockbci=0

has only one possible successor (blockbci=1), therefore its
successor array contains only one element, namely bci =
1. The basic block dispatch node executes blockbci=0, and
reads the next bci = 1 from its successor array. Blockbci=1

has two possible successors (blockbci=1, the loop body; and
blockbci=2, the loop exit), therefore the successor array con-
tains two elements, namely bci = 1 and bci = 2. Again, the
basic block dispatch node executes blockbci=1, and returns
either bci = 1 or bci = 2 from its successor array. The suc-
cessor of blockbci=2 is bci = -1, which signals a return from
the function.

3.2 Compilation
When compiling an AST, the Graal compiler has to recur-
sively inline the execution methods of all AST nodes. While
this is trivial for a regular AST, Graal has to treat the ba-
sic block dispatch node differently. For the basic block dis-
patch node, the compiler unrolls the loop (while (bci !=

-1), see Figure 5) until all paths through the program are
expanded. With respect to the program in Figure 3, the com-
piler starts with a bci = 0 and determines all successors of
blockbci=0. The successor of blockbci=0 is blockbci=1. The
compiler can peel the first iteration, and thus moves the exe-
cution of blockbci=0 out of the loop. Figure 6 illustrates this
first step of the loop expansion in pseudo code; note that the
first loop iteration (the execution of blockbci=0) is peeled.
Next, the compiler determines the successors of blockbci=1,
which are blockbci=1 (i.e., the loop body) and blockbci=2

(i.e., the loop exit). The compiler detects when a path has
already been expanded and merges it with the existing path,
which guarantees that the loop expansion terminates. In our

blocks [0]. execute (); // bci = 1
bci = blocks [1]. execute (); // to be expanded

Figure 6. Step 1: Unrolling the loop of the basic block
dispatch node.

blocks [0]. execute (); // bci = 1
merge1:

bci = blocks [1]. execute (); // bci = 1 or 2
if (bci == 1)

goto merge1;
else

bci = blocks [2]. execute (); // to be expanded

Figure 7. Step 2: Unrolling the loop of the basic block
dispatch node.

blocks [0]. execute (); // bci = 1
merge1:

bci = blocks [1]. execute (); // bci = 1 or 2
if (bci == 1)

goto merge1;
else

blocks [2]. execute (); // bci = -1
return;

Figure 8. Final state: Unrolled loop of the basic block dis-
patch node.

example, the compiler sees that it has already expanded
blockbci=1, and inserts a backjump (blockbci=1 has itself as
a successor, so the compiler detected a loop). The second
successor of blockbci=1 is blockbci=2, which the compiler
expands. Figure 7 shows how the successors of blockbci=1

are expanded; note that the compiler inserts a jump (goto
merge1) if it detects a path that has already been expanded
(blockbci=1 has itself as a successor). Finally, the compiler
expands the successors of blockbci=2, of which there are
none (indicated by bci = -1). The bci = -1 terminates the loop
and the compiler has finished loop unrolling. Figure 8 shows
how the successors of blockbci=2 are expanded; note that the
compiler inserts code to return from the function (return)
if it detects a path that lets the basic block dispatch loop ter-
minate. The Graal compiler then further optimizes the graph
obtained by this partial evaluation.

4. Native Calls and Memory Management
One concern for Sulong is seamless and efficient interop-
erability with native shared libraries such as the C standard
library. Reusing existing code in low-level languages such as
C/C++ is commonly done by linking user programs against a
shared native library that is present as a machine code binary
but not available as source code (e.g. the C standard library).
Sulong uses the Graal Native Function Interface (Graal NFI,
Grimmer et al. 2013) to call native functions of such a li-
brary. When Graal compiles the AST to machine code, the
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compiled Java code directly (i.e., without overhead) calls the
native function.

To be interoperable with native functions, the Graal NFI
expects its caller to either pass primitive values (by value) or
unmanaged objects such as structs or arrays (by reference).
Sulong aligns LLVM IR objects (structs, arrays, and vec-
tors) using the same layout as in executables produced by
static compilers. It reads this layout information from the
bitcode file. When Sulong calls a native function, this na-
tive function can directly operate on allocations provided by
Sulong, since they match the platform’s Application Binary
Interface. Thus, Sulong does not need to marshal or convert
objects when calling shared library functions, and can call
native functions with zero overhead when compared to na-
tive to native calls in executables. Following the object lay-
out of static compilers also allows programmers to not only
rely on standard C, but even to run programs that rely on un-
defined aspects of the memory layout when accessing native
memory. This is useful in practice, since many programmers
rely on what today’s compilers do and not what ISO C spec-
ifies (Memarian et al. 2016). Sulong allocates, deallocates,
and accesses unmanaged memory using the JDK internal
sun.misc.Unsafe API.

To execute LLVM IR, Sulong has to support two types of
unmanaged memory:

Stack: LLVM IR has an alloca instruction to allocate stack
memory. To implement stack memory, Sulong allocates a
block of memory at the start of the program and assigns
its address to a stack pointer. The implementation of the
alloca instruction then increments this stack pointer to
allocate memory on the stack.

Heap: LLVM IR can allocate heap memory using external
calls to a library function such as malloc from the C
standard library. Heap memory allocation is transparent
for Sulong and is handled like any other external call to a
shared library.

5. Static and Dynamic Optimizations
By default, LLVM front ends such as Clang compile local
variables in C/C++ to LLVM IR instructions that allocate the
variables on the stack. Once a local variable is needed, it is
loaded from memory and assigned to a virtual register. Thus,
unoptimized LLVM IR programs have many stack alloca-
tions and memory accesses that could be avoided by keep-
ing variables in virtual registers as long as their addresses are
not needed and the variables have a primitive type. Storing
local variables in memory is especially a problem for Su-
long: The Graal compiler does not optimize allocations and
accesses to unmanaged memory since Java programs mostly
use managed memory. To overcome this shortfall, Sulong
uses static LLVM optimizations to reduce the number of al-
locations and accesses to unmanaged memory. LLVM offers
the mem2reg optimization which attempts to lift such stack

allocations to virtual registers or constants. Sulong applies
this optimization to reduce native memory accesses which
enables the Graal compiler to produce more efficient ma-
chine code. Sulong’s LLVM IR interpreter efficiently repre-
sents virtual registers (see Section 2.1) as Java objects that
Graal can optimize well. In compiled code, virtual registers
map to machine registers, or are allocated on the stack.

Besides mem2reg, LLVM provides other optimizations
that reduce memory accesses such as dead store elimination,
promote “by reference” arguments to scalars, and handle
loop invariant code motion.

In addition to the static optimizations by LLVM Sulong
performs several dynamic optimizations that cannot be per-
formed by classic static compilers. On the Truffle level Su-
long performs the following optimizations:

Runtime Inlining: Truffle performs profiling-based inlin-
ing during run-time. While we could use LLVM to per-
form static inlining we defer inlining to the run time since
Truffle can exploit profiling feedback such as function
call counts that can lead to better inlining decisions.

Dynamic Dead Code Elimination: We profile the prob-
ability of basic block successors in our basic block dis-
patch node. Graal will not compile a basic block that
has never been executed and instead inserts a deopti-
mization point. This effectively results in a dynamic
dead-instruction elimination (Butts and Sohi 2002), since
Graal only considers those nodes for compilation that
have been executed by the Sulong interpreter. Addition-
ally, the successor probability profiling helps Graal dur-
ing optimization and enables re-ordering of basic blocks
based on the frequency of their execution.

Value profiling: We identify run-time-invariant memory
values (Calder et al. 1997) by observing if a loaded mem-
ory value does not change, and replace such a load node
by a node that checks if the value is still the same and
returns the cached constant. When Graal compiles the
node, it can propagate the profiled constant through con-
stant folding and other optimizations. This optimization
is especially beneficial for global variables that are set at
the beginning of a program (e.g., configuration values)
and do not change afterwards.

Polymorphic inline caches: We construct polymorphic in-
line caches (Hölzle et al. 1991) for function pointer calls.
The first time we indirectly call a function the call site
caches the target function up to a certain cache size.
Subsequent calls then first check if the current function
pointer is one of the cached target functions, and if so,
perform a direct call to the function. Guarded direct call-
ing enables Truffle to inline function pointer calls which
eliminates the call overhead and enables optimizations
on a larger range of code. If the number of cached func-
tions exceeds a predefined threshold, we perform a nor-
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Figure 10. Polyhedron benchmark suite; peak performance
(lower is better, relative to GCC O3)

mal indirect call since the inlining benefits are not likely
to amortize the additional checks.

6. Evaluation
To evaluate Sulong, we choose C and Fortran as two LLVM
languages. We do not evaluate C++ since we do not yet sup-
port LLVM IR exception handling. We use LLVM’s official
front end Clang to compile C to LLVM IR. Since Clang can-
not compile Fortran, we use GCC with the DragonEgg plu-
gin to compile Fortran to LLVM IR.

6.1 Benchmarks
To evaluate Sulong, we use all single-threaded C bench-
marks from the Computer Language Benchmark game
(shootouts)3. The shootouts are small benchmarks (66-453
LOC4) designed to compare the performance of different
languages. They are useful as a base for the comparison
of language implementations, since language implementers
commonly use them as an optimization target (Barrett et al.
2016; Marr et al. 2016). We also include the whetstone5,
deltablue6, and richards7 benchmarks (239 to 839 LOC)
since they are similarly popular small benchmarks for C.

Sulong is still a prototype and in an early stage. It can-
not yet execute all SPEC CPU benchmarks. However, we
want to also present performance numbers on real world
applications. Sulong can already execute an application for
compression using bzip2 (5k LOC) and gzip (5K LOC),
and an application that converts an audio file using oggenc
(48K LOC). These benchmarks are part of the Large scale
compilation-unit C programs 8.

The same is true when executing Fortan on top of Sulong.
Sulong can run 10 benchmarks from the Polyhedron Bench-

3 http://benchmarksgame.alioth.debian.org/
4 We used cloc to get the lines of code (LOC) without blank lines and
comments.
5 http://www.netlib.org/benchmark/whetstone.c
6 https://github.com/xxgreg/deltablue/blob/master/

deltablue.c
7 http://www.cl.cam.ac.uk/~mr10/Bench.html
8 http://people.csail.mit.edu/smcc/projects/

single-file-programs/

mark Suite9, which in total consists of 17 mixed-size (161
LOC - 27K LOC) benchmarks to evaluate Fortran compiler
implementations.

The benchmarks from SPEC CPU and the Polyhedron
Benchmark Suite that are not part of our evaluation can-
not be executed by Sulong. Sulong either fails parsing their
LLVM IR, crashes because of implementation bugs, or re-
ports an unimplemented feature. We are convinced that the
implementation of missing features and resolving the known
issues is possible with reasonable effort in the future.

6.2 Experimental Setup
To account for the adaptive compilation techniques of Truf-
fle and Graal, we set up a harness that warms up the
benchmarks. After the warm-up iterations, every benchmark
reaches a steady state such that subsequent iterations are
identically and independently distributed. We execute each
C benchmark 100 times and use the last 50 iterations to
compute the runtime. Since the Fortran benchmarks warm
up faster and run longer, we execute them 20 times and use
the last 10 iterations to compute the runtime.

We measure the peak performance of C and Fortran code
on top of Sulong and then compare it with the performance
of executables generated by the static compilers Clang (for
C), and GCC (for Fortran). We focus this evaluation on
peak performance of long-running applications where the
startup performance plays a minor role. Hence, we neglect
the startup time and present performance numbers after an
initial warm-up.

We executed the benchmarks on a quad-core Intel Core
i7-6700HQ CPU at 2.60GHz on Ubuntu version 14.04
(4.3.0-040300rc3-generic) with 16 GB of memory. We use
Sulong revision ad56c6f, which is publicly available at
https://github.com/graalvm/sulong, that uses LLVM
3.3 (we currently cannot use a newer version due to parser
limitations), and the Graal version that will be contained in
the GraalVM 0.17 release. When compiling Fortran files to
LLVM IR, Sulong uses GCC 4.6, the version that is expected
to work best with the DragonEgg plugin. When compiling
C or Fortran benchmarks for Sulong we use the following
static optimization parameters to opt: -mem2reg -globalopt
-simplifycfg -constprop -instcombine -dse -loop-simplify -
reassociate -licm -gvn. We consider a systematic evaluation
of combinations of static and dynamic optimizations on Su-
long as future work.

We use Clang O3 (-O3 LLVM optimizations) for C, and
GCC O3 (-O3 GCC optimizations) for Fortran to get a static
compilation upper performance boundary. For comparabil-
ity, Clang O3 and GCC O3 use the same LLVM and GCC
versions as Sulong. We visualize the peak performance run-
time of the benchmarks using box plots. The y-axis shows
Sulong’s run-time (lower is better) relative to Clang O3’s
and GCC O3’s runtime which is normalized to 1.

9 http://www.polyhedron.com
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Figure 9. C benchmarks; peak performance (lower is better, relative to Clang O3).

6.3 Result
On the C benchmarks (see Figure 9), Sulong’s peak perfor-
mance ranges from being 0.79× faster than Clang (nbody),
and being 2.45× slower (binarytrees). On average (geomet-
ric mean (Fleming and Wallace 1986)), Sulong is 1.39×
slower than Clang. On nbody, Sulong is faster since it can
use the SSE sqrt instruction instead of a call to the stan-
dard library, and since it can unroll a loop whose num-
ber of loop iterations depends on an input parameter to
the function. On many benchmarks, Sulong achieves simi-
lar performance as Clang O3 (fannkuchredux, fasta, fastare-
dux, knucleotide, pidigits, regexdna, and whetstone). For
most of these benchmarks, Sulong produces similarly effi-
cient code as Clang. However, pidigits and regexdna spend
most work in calls to (and in) third-party libraries. Having
no overhead on these benchmarks demonstrates that Sulong
can efficiently interface with native code. On the remaining
C benchmarks (binarytrees, bzip2, deltablue, gzip, meteor,
oggenc, revcomp, richards, and spectralnorm), Sulongs per-
formance is between 1.5× and 2.45× slower than Clang O3.

On the Fortran benchmarks (see Figure 10), Sulong’s
peak performance is between 1.43× (nf) and 4.96× (doduc)
slower than the performance of GCC O3 executables. On
average, Sulong is 2.63× slower compared to GCC O3. So
far, we mainly optimized Sulong for executing C programs,
and have not yet looked into optimizing Fortran programs,
which explains the larger gap between Sulong and GCC.

Besides missing various micro optimizations, there are
three main reasons for the overheads on the C and Fortran
benchmarks:

Needless interpreter-level object allocations: Graal im-
plements a partial escape analysis with scalar replace-
ment to optimize or remove object allocations where pos-
sible (Stadler et al. 2014). It is critical for performance,
that all Java allocations that the LLVM IR interpreter uses
in its runtime (i.e., interpreter-level allocations as op-
posed to user-level allocations) are optimized or removed
in compiled code. Unfortunately, we still have situations
where this is not the case, and where we either have to
adapt data structures in the interpreter or fix problems in
Graal’s escape analysis.

Truffle’s calling convention: Truffle passes function argu-
ments in an Object array and returns the function return
value as an Object, so parameters and return values have
to be boxed and unboxed. Function inlining usually re-
moves this overhead. However, in benchmarks that stress
recursive calls (which can only be inlined up to a certain
level) such as binarytrees and richards, the overhead is
still significant.

Missing vectorization: Graal cannot produce vectorized
code for Sulong, since it does not provide sufficient anal-
yses for accesses to unmanaged memory.

7. Limitations
Sulong can currently execute most small and middle-sized
single-threaded C and Fortran programs. We did not concen-
trate on other languages so far and thus did not implement,
for example, LLVM IR exception handling, which is needed
to execute C++ programs that use exceptions. Although we
did not find any essential problems when executing LLVM
IR on the JVM, our current implementations has several lim-
itations:

Unsupported library functions: To achieve better perfor-
mance and faster startup times, we still use the native
(i.e., machine code) standard libraries instead of their bit-
code versions. When Sulong is complete and fast enough,
we will execute the LLVM IR of the standard libraries
with Sulong for which we will only have to substitute
system calls. Currently, Sulong does not support creating
new processes with fork, since a call to fork would cre-
ate a copy of the JVM. Similarly, we currently also do not
support setjmp/longjmp, signal handling, and POSIX
pthreads for multithreading.

Callbacks from native functions: In terms of native inter-
operability, our foreign function interface does not sup-
port native callbacks yet (Grimmer et al. 2013). For ex-
ample, we cannot call a native function to which we pass
a Truffle AST (e.g., qsort) that could be called from the
native side. To prevent this case for the standard libraries,
we substitute these functions with Java or bitcode equiv-
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alents (see above). For third-party libraries we compile
such functions to a shared library which we then link.

Manipulation of function return addresses: In Sulong,
the memory layout matches that of executables produced
by static compilers. One exception is the function re-
turn address that executables store in the same stack as
data passed to other functions. The Sulong interpreter
implicitly uses the Java execution stack when execut-
ing functions. This execution stack is different from our
data stack that uses unmanaged allocated memory. Thus,
we cannot provide support for reading and manipulating
function return addresses. However, this also restricts re-
turn oriented programming (a security exploit technique,
Shacham 2007) since buffer overflows cannot overwrite
the return address.

80 bit floats: Most primitive data types in LLVM IR di-
rectly map to Java data types. An exception is LLVM IR’s
80 bit float type that Clang uses for C’s long double data
type on the AMD64 architecture. We do not completely
support this data type so far due to the implementation
effort required to correctly and efficiently implement it
using Java primitives.

Inline assembler: Sulong only partially supports inline
assembler by constructing a Truffle AST from it and
representing the machine registers as Java objects. Still,
Sulong cannot execute generated code (such as produced
by JITs), for which Sulong would need to interpret the
generated machine instructions.

8. Related Work
8.1 Java’s Foreign Function Interfaces
Java’s standard NFI is JNI (Liang 1999). JNI is a platform in-
dependent interface that not only allows calling native func-
tions, but also enables programmers to interact with Java ob-
jects and the JVM. However, JNI requires the declaration
of native Java methods and the implementation of native
functions that match a generated header file, which makes
JNI complicated to use, especially when a programmer only
wants to call native functions. Due to the abstraction over-
heads, JNI is also slow (Kurzyniec and Sunderam 2001).
Previous work showed that the overheads can greatly be re-
duced by inlining native function calls and by using the same
intermediate language for Java and the target low-level lan-
guage (Stepanian et al. 2005).

An alternative to JNI is Java Native Access10 (JNA)
which is built on top of JNI and provides access to shared
native libraries that it dynamically links. Dynamic linking
frees the programmer from the burden of writing boilerplate
code, but makes calls slower. Efforts to reduce this overhead
by generating call stubs using LLVM as a JIT compiler (but
still using JNI) can improve performance by 7.84% (Tsai

10 https://github.com/java-native-access/jna

et al. 2013). Besides JNA, also the Java Native Runtime
(JNR) is built on top of JNI and provides a user-oriented
API to call native functions11. Based on the experiences with
JNR, a JDK Enhancement Proposal (JEP 191) was drafted
that tackles JNI’s drawbacks and aims at providing better
usability and optimizing calls to native functions (Nutter
and Rose 2014). Project Panama, an OpenJDK subproject,
works on improving interoperability between the JVM and
native functions based on this JEP with the eventual goal to
include the changes in the JDK12.

In our previous work, we introduced the Graal NFI (Grim-
mer et al. 2013) to call native functions that are dynamically
linked. The Graal NFI is fast, since it compiles a call stub
to the native function before invoking it the first time, and
inlines the call stub when the surrounding Java code is com-
piled. However, in contrast to JNA and JNR the programmer
is responsible for data alignment and handling of unsafe
memory, which makes it error-prone and difficult to use (it
was designed for native language implementations on top
of Truffle). Also, it is only available in the Graal compiler.
Jeannie (Hirzel and Grimm 2007) is a language design that
allows nesting Java and C code in the same file, which is
then compiled down to JNI. Through static checks on syntax
and semantics of both languages, it is easy to use and also
eliminates writing boilerplate code.

Sulong is an alternative to traditional native function in-
terfaces since it can execute low-level languages directly on
the JVM. Sulong does not require writing boilerplate code,
and programmers can use Sulong as a Java library to ex-
ecute native functions. Additionally, Sulong is fast and sup-
ports execution of all LLVM languages. However, Sulong re-
quires that the source code of the native function to be called
is available. Also, it requires the Graal compiler in order to
reach peak performance that is near to the performance of
statically compiled code, and to call native functions.

8.2 PyPy
PyPy (Rigo and Pedroni 2006) and its virtual machine con-
struction approach is an alternative to Truffle/Graal’s meta-
compilation approach (Marr and Ducasse 2015). Both ap-
proaches strive to provide a reusable base for dynamic lan-
guage implementations and also provide language interop-
erability mechanisms (Barrett et al. 2013, 2015; Grimmer
et al. 2015b). In both cases, a language implementer can use
high-level languages with automatic memory management
for implementing a language. While PyPy uses RPython (a
semantic subset of Python, Ancona et al. 2007) for the im-
plementation of its interpreters, Truffle uses Java. PyPy lan-
guage implementations can be any kind of interpreters, while
Truffle implementations are implemented as self-optimizing
AST interpreters. With Sulong, we showed how a hybrid
bytecode/AST interpreter can be implemented in Truffle.

11 https://github.com/jnr/jnr-ffi
12 http://openjdk.java.net/projects/panama/
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For an efficient implementation, PyPy uses a translation
process to transform the RPython interpreter to low-level
code for a target environment (Rigo and Pedroni 2006). This
translation process first analyzes the interpreter, annotates it
with types, and then consecutively transforms it to lower-
level operations. For optimal performance, the translation
target is a C interpreter that contains a tracing JIT com-
piler (Bolz et al. 2009). The tracing JIT is not applied to
the user program, but to the interpreter running the user pro-
gram. Similarly, Truffle compiles ASTs (and not traces) that
represent the user program to machine code by using Graal
as a dynamic compiler. With Sulong’s approach, Graal also
supports the compilation of bytecode interpreters and hybrid
AST/bytecode interpreters.

8.3 Hybrid Compilation Approaches
Dynamo (Bala et al. 2000) is a dynamic optimization sys-
tem that re-optimizes an already compiled native instruc-
tion stream to exploit dynamic optimizations. Like Sulong,
Dynamo profits from static optimizations at compile time
and profiling information at run time. In contrast to Sulong,
Dynamo supports any kind of native instruction stream and
not only those languages supported by LLVM. However,
due to the low-level information on the machine code level,
Dynamo’s approach is limited in the optimizations that it
can apply. Finally, Dynamo re-compiles traces while Sulong
uses Truffle and Graal to compile function ASTs to machine
code.

Previous work also includes a fat binary approach (Nuz-
man et al. 2013), where a program is distributed as an exe-
cutable that comprises both the native code and the IR of that
program. The program starts execution with the native code,
which incurs only low start-up and warm-up costs. A run-
time manager samples the execution count of the functions
and when exceeding a certain threshold, it adds instrumen-
tation to it. Finally, a repurposed Java compiler compiles the
IR of that function to optimized machine code, for which it
also uses the profiling feedback of the instrumented func-
tion. While Sulong has higher start-up and warm-up costs, it
does not require a modified toolchain that is needed to pro-
duce fat binaries. Sulong can execute unmodified LLVM IR
that is produced by language front ends for many languages.

8.4 Other Truffle Implementations
We previously worked on Truffle/C (Grimmer et al. 2014)
and ManagedC (Grimmer et al. 2015a) which are Truffle in-
terpreters for C. Similarly to Sulong, Truffle/C uses unman-
aged memory for its allocations. ManagedC uses Java allo-
cations instead of unmanaged memory. The C interpreters
provide the same dynamic optimizations that Sulong does.
In contrast to the C interpreters, Sulong also uses static op-
timizations by LLVM to optimize the program before exe-
cuting it with its LLVM IR interpreter. Unlike the C inter-
preters, Sulong is not restricted to C but can execute a range
of different languages by targeting LLVM IR. Also, the C

interpreters do not have to efficiently support unstructured
control flow since it is only used in exceptional situations,
e.g., in exception handling using goto. To efficiently execute
LLVM IR (which contains no high-level loop constructs), we
use a hybrid bytecode/AST interpreter approach.

9. Conclusion and Future Work
In this paper we presented Sulong, a system to execute
low-level languages such as C and Fortran on the JVM.
By providing a Truffle LLVM IR interpreter, Sulong can
execute all languages that can be translated to LLVM IR. By
combining static optimizations with dynamic compilation
Sulong can achieve peak performance that is near to the
performance of code that is produced by industrial-strength
compilers such as GCC and Clang. We demonstrated that
Sulong currently runs C code with a peak performance that
is in average 1.39× slower than code compiled by Clang O3
and Fortran code 2.63× slower compared to code compiled
by GCC O3.

Other Truffle implementations can profit by using Sulong
to implement their native function interfaces. JRuby+Truffle
(a Truffle implementation of Ruby) already uses Sulong for
its C extension support, and FastR (a Truffle implementation
of R) provides an option to use Sulong instead of JNI for
calling native routines. Due to Sulong’s low overhead and
Truffle’s language interoperability mechanism that supports
inlining across language boundaries, we expect that we can
improve the performance of these languages when calling
native code. In future work, we want to demonstrate this on
case studies, and also provide a version of Sulong that only
uses managed Java memory to guarantee memory safety for
the programs it executes (Rigger et al. 2016).
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Abstract
In C, memory errors, such as buffer overflows, are among the
most dangerous software errors; as we show, they are still on
the rise. Current dynamic bug-finding tools that try to detect
such errors are based on the low-level execution model of the
underlying machine. They insert additional checks in an ad-
hoc fashion, which makes them prone to omitting checks for
corner cases. To address this, we devised a novel approach
to finding bugs during the execution of a program. At the
core of this approach is an interpreter written in a high-level
language that performs automatic checks (such as bounds,
NULL, and type checks). By mapping data structures in C to
those of the high-level language, accesses are automatically
checked and bugs discovered. We have implemented this
approach and show that our tool (called Safe Sulong) can
find bugs that state-of-the-art tools overlook, such as out-of-
bounds accesses to the main function arguments.
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1 Introduction
C programs are plagued by bugs. In particular, memory er-
rors such as buffer overflows, NULL pointer dereferences, and
use-after-free errors cause critical bugs. Unlike higher-level
languages, the C standard does not define any checks that
could detect such erroneous accesses and then abort the pro-
gram. If not prevented in the application logic, errors induce
undefined behavior ; in practice, they can corrupt memory,
leak sensitive data, change the control flow, or crash the
program. In some cases, errors remain undetected because
they can cause delayed failures or do not exhibit any visi-
ble symptoms. Memory errors in C therefore often result in
hard-to-find bugs or enable exploitation by attackers.

To tackle this issue, industry and academia have come up
with a plethora of static and dynamic tools for finding bugs
in C programs [62, 63, 73]. Static tools perform analyses of
source code to detect errors of specific types; they typically
rely on necessarily incomplete heuristics and give rise to both
false positives and false negatives [11, 17, 27]. In contrast,
dynamic tools insert additional checks either as part of the
compilation process or at run time, and find errors during
program execution. Although they only find errors that occur
during a specific run of the program, they are expected to find
all errors and not to produce false positives. Both static and
dynamic bug-finding tools have been widely successful and
have detected numerous bugs in commonly used libraries.
In this paper, we concentrate on dynamic bug-finding

tools and demonstrate that state-of-the-art approaches such
as LLVM’s AddressSanitizer (ASan) [55] and Valgrind [42]
miss real-world errors that programmers would expect to
be found. We argue that this is due to current approaches
not abstracting from the underlying machine’s low-level
execution model; the lack of source information makes it
difficult to find all bugs, and a check can easily be forgotten.
Furthermore, the checks are implemented using inexact tech-
niques, which inherently causes these tools to miss errors.
Dynamic bug-finding tools are either based on static compil-
ers or employed after compilation. It is known that compiler
optimizations at higher optimization levels interfere with



bug-finding tools [64]; we show that compilers can also op-
timize away memory errors even when explicitly compiling
without optimizations (i.e., with the -O0 flag). Finally, bug-
finding tools that support interoperability with native code
usually provide restricted bug-finding coverage, which gives
users a false sense of security. For example, both ASan and
Valgrind cannot detect out-of-bounds accesses to the main()
function’s arguments.

In this paper, we present a novel approach to finding bugs
at run time and to addressing these issues. We implemented
this approach in a tool called Safe Sulong, which can detect
out-of-bounds accesses, use-after-free errors, invalid free
errors, double free errors, NULL dereferences, and accesses
to non-existent variadic arguments. Our approach abstracts
from the underlying machine’s execution model, using an
execution environment for C that is written in a high-level
language. By abstracting pointers and other C data struc-
tures and representing them in the high-level language, we
can rely on well-defined automatic checks of the high-level
language to detect bugs in a C program. While we used
Java for our implementation, the approach also works for
other languages that check and disallow buffer overflows
and NULL pointer dereferences. Our approach is exact (i.e.,
non-heuristic) and can find all errors of a specific category.
To reach native speeds, it uses a dynamic compiler that com-
piles frequently executed functions to machine code. This
compiler does not optimize away bugs, since it optimizes
code based on safe semantics in the sense of Felleisen &
Krishnamurthi [18], where run-time errors in the program
must cause run-time exceptions. We do not provide interop-
erability with pre-compiled native code, because it would
undermine our bug-finding capabilities. We assume that all
C code (including libraries) is executed with our tool, which
makes our approach impractical for programs that use li-
braries for which no source code is available.
In our evaluation we tried to find bugs in small open-

source projects. We detected and fixed 68 errors, 8 of which
were not found by ASan and Valgrind. We argue that these
bugs are due to the lack of abstraction of current-bug finding
tools. Additionally, we conducted a preliminary performance
evaluation; our prototype lacks functionality to execute large
benchmarks such as the ones of SPEC [23] and browsers. The
evaluation demonstrates that Safe Sulong has a higher warm-
up cost than current approaches, but a peak performance
that is better than of other bug-finding tools.

Overall, this paper provides the following contributions:

• We present an alternative approach to bug-finding that
abstracts from the underlying machine.

• We implemented our approach and evaluated its start-
up costs, warm-up costs, and peak performance.

2 Background
2.1 Errors in C
To determine which memory errors are relevant in practice
and should therefore be detected by bug-finding tools, we
performed keyword searches of the Common Vulnerabilities
and Exposures (CVE)1 and the ExploitDB2 databases. Unlike
a previous study of memory errors (up to 2012) [63], we
grouped the errors into different bug categories. Note that
we concentrated only on memory errors (i.e., dereferencing
invalid pointers) and thus did not consider memory leaks,
reading from uninitialized memory, and other C errors.3
Figures 1 and 2 show the results for the period from 2012
to 2017. Note that bug categories with a high number of
vulnerabilities were also exploited more often.
Out-of-bounds accesses. The most common and danger-
ous bug category (as previously shown [9, 54, 63]) consists
of out-of-bounds accesses to objects, which are also known
as spatial memory safety errors. Not only do such bugs con-
tinue to be relevant, they are currently on an all-time high.
We define an out-of-bounds access as a buffer overflow when
it attempts to access memory past the end of an object, and
as a buffer underflow when it accesses memory before the
beginning of an object.4 Bug-finding tools typically differ in
whether they can detect out-of-bounds accesses to the stack,
heap, or global (static) data and whether they detect read
and/or write accesses. For example, Valgrind can only find
heap buffer out-of-bounds accesses.
Use-after-free errors. The second-most common bug cat-
egory comprises use-after-free errors (known as temporal
memory errors), where an object allocated by malloc(),
calloc(), or realloc() is freed, but then accessed again.
Such an access is also known as an invalid access to a stale
or dangling pointer.
NULL dereferences. The third-most important bug cate-
gory is a NULL dereference. Note that this error can be de-
tected during normal execution of a program, where derefer-
encing a NULL pointer results in a trap on most architectures.
Other errors. Since the remaining memory errors are less
common, we classified invalid free errors, double free errors,
and accesses to non-existent variadic arguments as łother
errorsž. An invalid free error is caused when a pointer to a
stack object or to a global object is passed to free(), or when
the pointer passed points into the middle of an object. Double
free errors occur when a heap object is freed twice. Accesses
to non-existent variadic arguments happenwhen the number
of passed variadic arguments is smaller than that expected

1https://cve.mitre.org/
2https://www.exploit-db.com/
3We are currently adding support for finding such bugs in Safe Sulong (see
Section 6) and will describe them in a future paper.
4We do not consider out-of-bound accesses in sub objects (e.g., from one
array field member to another), as they are deliberately used in memcpy-like
patterns.
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Figure 1. Number of reported vulnerabilities in the CVE data-
base (2012-03 to 2017-09).
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Figure 2. Number of available exploits in the ExploitDB (2012-
03 to 2017-09).

by the function. One subclass of this error type are format-
string vulnerabilities, where the format string specifies how
many arguments on the stack should be accessed.

2.2 State of the Art
Shadow memory. Most practical bug-finding tools such
as ASan [55], Mudflap [16], Valgrind [42], Dr. Memory [4],
SoftBound+CETS [39, 40], and Purify [22] base their bug-
finding capabilities on the concept of shadow memory: They
maintain metadata about application memory in a separate
memory area referred to as shadow memory, which is used
to verify specific actions; for example, read accesses validate
that a memory cell is accessible (i.e., allocated memory).
Shadow-memory tools are typically combined with red-zone
approaches: when a program allocates memory, the runtime
of the tool marks the shadow-memory area associated with
the program memory as accessible and a region around it as
inaccessible (called a redzone). Most shadow-memory-based
bug-finding tools use this technique to detect out-of-bounds
accesses, use-after-free errors, double free errors, invalid
free errors and NULL dereferences. Some tools also detect
reads of uninitialized memory, use-after-scope errors, and
memory leaks. We further discriminate between shadow-
memory tools based onwhether the instrumentation is added
at compile or run time.
Compile-time instrumentation. Compile-time instru-
mentation involves inserting code for tracking allocations
and inserting additional checks when (or before) the program
is compiled. The most widely used compile-time instrumen-
tation approach is LLVM’s AddressSanitizer, which initially
detected out-of-bounds accesses, use-after-free errors, and
NULL dereferences [55] and has been extended to detect in-
valid free, double free, and use-after-scope (including use-
after-return as a special case) errors as well as memory leaks.
Another state-of-the-art tool that is less used in practice is
SoftBound+CETS [39, 40], a bounds checker with a tempo-
ral memory safety tool. Mudflap [16] was used by the GCC
project until GCC 4.9, when it was superseded by Address-
Sanitizer. It was known to have several shortcomings, such as
reporting false positives and not detecting buffer overflows
for neighboring objects in the memory [67]. Commercial

tools include Purify [22], which is not strictly a compile-
time approach, since it inserts code into object files, and
Insure++ [44].
Dynamic instrumentation. Dynamic instrumentation in-
volves inserting checks at the binary level during program
execution. The advantages of dynamic instrumentation are
that it works for any language that is compiled to machine
code, that all code is checked even if the source code and
meta information (such as debug information) are not avail-
able, and that it does not require recompilation [56]. The
most widely used run-time instrumentation approach is Val-
grind. Other dynamic instrumentation approaches include
Dr. Memory [4] and Intel Inspector [28]. Note that binary
instrumentation approaches cannot detect out-of-bounds
accesses to the stack (unless the top of the stack is exceeded).
Other approaches. A plethora of other approaches tackle
memory errors [62, 63, 73]. For example, Polymorphic C [59],
Cyclone [29], and CCured [41] are well-known approaches
that provide guarantees against memory errors. However,
they require modification of the source code, and are thus
not widely used. Canary-based approaches [35] inserts spe-
cial values (called canaries) next to allocated memory to
detect overflows, and inside freed objects to detect writes to
freed memory. However, canary approaches can detect only
invalid writes, as long as the canary value is not reset again.

2.3 Limitations of Current Approaches
Our main focus is on finding all memory errors in a C pro-
gram. Current approaches to this have several limitations.
We will provide examples for these limitations in our evalu-
ation (see Section 4.1).

Problem 1 (P1): Lack of abstraction from the machine.
Current bug-finding tools do not abstract from the low-level
execution model of the underlying machine: instead of defin-
ing errors at the source level, they define them on the ma-
chine level. They insert additional checks either as part of
a separate phase in an existing compiler (e.g., ASan or Soft-
Bound) or directly into existing native code (e.g., Valgrind).
On this level, the loss of source information makes it concep-
tually challenging (or impossible) to find all bugs that existed



on the source level. Additionally, some approaches need to
instrument all read and write operations, all allocations and
deallocations, and all system calls [42]. The additional com-
plexity when compared to source-level approaches makes
it easy to overlook bugs. A forgotten check cannot easily
be found, since in many cases the program behaves as in-
tended, with the only exception that specific errors have
gone undetected.
Problem 2 (P2): Compiler optimizations. Current bug-
finding tools are built on top of an optimizing compiler such
as Clang or GCC. As previously noted [64], this is an issue
for bug-finding tools, since they implement C semantics that
differ from those of the compiler’s optimizer. For example,
while bug-finding tools report errors for invalid accesses and
abort the program, compilers assume undefined semantics
for errors and sometimes optimize them away. It has been
shown that compilers are increasingly taking advantage of
undefined semantics to optimize code, which leads to more
vulnerabilities [14, 65].
Compiler optimizations can lead to false positives. For exam-
ple, a false positive that was found in an ASan-instrumented
Firefox build was caused by load-widening [55] where a se-
ries of loads is transformed into a single load of several mem-
ory values at once while potentially exceeding the bounds of
an object. Due to platform-specific alignment requirements,
such an optimization can be correct at the system level; how-
ever, ASan classified it as a bug because the access would
be out of bounds in C. While this issue has been fixed by
disabling load-widening [55], such compiler optimizations
can still cause false positives in dynamic-instrumentation
bug-finding tools (such as Valgrind [56]).
A more serious problem is that compiler optimization can
lead to missed errors, that is, false negatives. It is widely
known that at high optimization levels (e.g., with the -O2
flag), compilers optimize the code based on the fact that error
semantics are undefined [33, 45]. For example, consider the
(contrived) function in Figure 3. The function initializes ele-
ments of an array without using it further. The array accesses
have no visible side effects, so the compiler optimizes the
function to immediately return 0. The compiler can exploit
the fact that an out-of-bounds access (when lenдth ≥ 10)
has undefined error semantics. Consequently, out-of-bounds
accesses that would have occurred in the original code might
stay undetected at the binary level, and current bug-finding
approaches are unable to find them. It has also been shown
that compilers can remove redundant null-pointer checks,
even at -O0 [65]. Further, we have found that Clang can
optimize away memory safety errors at -O0.
Since the compiler can optimize away bugs (or cause false
positives), many projects decide to disable optimizations
altogether (with the -O0 flag) when testing and accept per-
formance degradations. However, as we will demonstrate,
explicitly disabling optimizations does not stop compilers
from optimizing away bugs.

int test(size_t length) {

int arr [10] = {0};

for (size_t i = 0; i < length; i++) {

arr[i] = i;

}

return 0;

}

Figure 3.AC programwith a potential out-of-bounds access
is reduced to return 0 by optimizing compilers.

Problem3 (P3): Inexact approaches. Tools based on shadow-
memory red-zone approaches typically cannot detect all bugs
of a particular category. First, they cannot detect all out-
of-bounds accesses. An access to an object running out of
bounds and landing inside a different object is not detected
as a bug, because the check does not access the redzones next
to the original object. Second, shadow-memory approaches
cannot reliably detect use-after-free errors. When freeing an
object, these approaches mark its shadow memory as unal-
located. If the block is quickly reallocated, subsequent uses
of the dangling pointer stay undetected, since the memory
is again marked as valid. ASan [55] and Purify [22] rely on
heuristics to avoid rapid reallocation of freed memory. Note
that SoftBound+CETS [39, 40] is not susceptible to such false
negatives.
Problem 4 (P4): Finding invalid accesses in libc. Sup-
porting external libraries is a challenge for bug-finding tools.
Run-time instrumentation approaches inherently support ex-
isting machine code. In contrast, compile-time instrumenta-
tion approaches that support native interoperability require
heuristics or special treatment of native functions in order
to maintain a correct state of the shadow memory.
To achieve higher coverage, compile-time instrumentation
approaches recommend creating special instrumented builds
for external libraries [55]. This is a challenge in relation to
libc, where most production-quality implementations con-
tain non-standard C code (or hand-written assembly) that
causes most bug-finding tools (both run-time and compile-
time instrumentation approaches) to report errors. Examples
are optimized versions of strlen() that compute the length
of a string by word-wise comparison [66], which canÐlike
the load-widening optimizationÐlead to out-of-bounds ac-
cesses. Current compile-time instrumentation tools disable
instrumentation or checks for such functions, or replace
them altogether.
The pragmatic alternative that compile-time instrumentation
approaches such as ASan and Mudflap provide are so-called
interceptors that wrap the system library functions and call
them only after performing validity checks on the arguments.
This approach is dangerous when users expect these inter-
ceptors to be comprehensive. As we show in Section 4.1, we
found bugs in real-world programs that were not detected
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by ASan due to a missing interceptor. Valgrind and Dr. Mem-
ory also provide replacements for these functions, which,
however, do not work when these calls have already been
inlined at compile time. Thus, Valgrind detects magic con-
stants that point towards a strlen() implementation and
disables checks for that code block [56].

3 Implementation
We developed Safe Sulong to address the four problems men-
tioned in Section 2.3. We designed our tool with a focus on
bug-finding capabilities. Unlike state-of-the-art approaches
that plug into compilers or into native code (see P1), Safe
Sulong abstracts from the underlying machine and imple-
ments a simple execution model; it executes C programs
using an interpreter written in Java that relies on automatic
checks of the language. The interpreter uses an exact ap-
proach (to address P3), so no errors are missed. We do not
provide interoperability with native code, since this could
undermine the bug-finding capabilities (see P3). However,
we provide our own libc that is written in standard C and is
optimized for safety instead of performance (see P4). Unlike
state-of-the-art approaches that rely on compilers that ex-
ploit undefined behavior for compiler optimizations (see P2),
we use a dynamic compiler that optimizes the code based on
safe semantics and cannot optimize away invalid accesses.
In summary, our approach allows us to find errors in C pro-
grams reliably while still reaching a good peak performance.

3.1 System Overview
Figure 4 shows the architecture of Safe Sulong. It comprises
the following components:
Libc. We argued that current libc implementations (which
are optimized primarily for performance) are detrimental
to bug-finding tools. To address this issue, we implemented
a libc that is written in standard C and does not rely on
any GNU extensions. It performs additional checks based on
run-time information [52]. To implement libc, Safe Sulong
exposes functions that are implemented in Java and serve the
same purpose as system calls. For example, when printing

a pointer value using printf("%p"), the printf() imple-
mentation calls a function implemented in Java to retrieve a
textual representation of the pointer. Currently, we support
126 common libc functions, which is sufficient to execute a
large body of programs. However, we still lack support for
threads and synchronization, interprocess communication,
many low-level operations (mmap(), mprotect(), setjmp()
and longjmp()), and less commonly used functions. As part
of future work, we intend to support running an existing
libc that chooses standards-conformance and safety over
performance (e.g., the musl libc) on Safe Sulong. This will
require us, for example, to add support for the safe execution
of inline assembly that libcs use to implement functionality
such as system calls, atomics, and busy-waiting processor
hints.
Clang and LLVM IR. Safe Sulong executes LLVM Interme-
diate Representation (IR), which represents C functions in a
simpler, lower-level format. LLVM is a flexible compilation
infrastructure [34], and we use LLVM’s front end Clang to
compile the source code (our libc and the user application) to
the IR. Note that we do not enable any of Clang’s optimiza-
tions to lower the risk that bugs are optimized away. As part
of future work, we will replace Clang with a non-optimizing
front end, to eliminate this risk completely (see Section 6).
Since LLVM IR retains all C characteristics that are impor-
tant in our context, for simplicity we hereafter refer to LLVM
IR objects as C objects. By executing LLVM IR, Safe Sulong
could execute languages other than C that can be compiled
to this IR, including C++ and Fortran.
Truffle. We used Truffle [68] to implement our LLVM IR
interpreter. Truffle is a language implementation framework
written in Java. To implement a language, a programmer
writes an Abstract Syntax Tree (AST) interpreter in which
each operation is implemented as an executable node. Nodes
can have children that parent nodes can execute to compute
their results.
Graal. Truffle uses Graal [72], a dynamic compiler, to com-
pile frequently executed Truffle ASTs to machine code. Graal
applies optimistic optimizations based on assumptions that
are later checked in the machine code [15, 60, 61]. If an as-
sumption no longer holds, the compiled code deoptimizes [25],
that is, control is transferred back to the interpreter, and the
machine code of the AST is discarded. Graal optimizes based
on safe semantics and cannot introduce false positives or
false negatives with respect to the bugs that Safe Sulong
finds.
LLVM IR Interpreter. The LLVM IR interpreter (approx.
60k lines of Java code) is at the core of Safe Sulong; it ex-
ecutes both the user application and the enhanced libc. It
performs checks while executing the LLVM IR and aborts ex-
ecution with an error when it detects a bug. First, a front end
parses the LLVM IR and constructs a Truffle AST for each
LLVM IR function. The interpreter then starts executing the



main() function’s AST, which can invoke other ASTs. Dur-
ing execution, Graal compiles frequently executed functions
to machine code.
JVM. Safe Sulong’s interpreter can run on any JVM, since
it is written in Java. However, to reach native speeds, it re-
quires a JVM that implements the Java-based JVM compiler
interface (JVMCI [53]). JVMCI will be included in OpenJDK 9
by default and enables Graal as a compiler. Note that our tool
is platform-independent and provides the same bug-finding
capabilities on all platforms. Additionally, Safe Sulong run-
ning on a Windows JVM can execute code that was written
for libc under Linux.

3.2 Managed Objects and Type Safety
We base the executionmodel of Safe Sulong on an abstraction
of the underlying machine. Our basic idea is to implement
our interpreter in Java (i.e., in a high-level language) and
represent C data structures as Java data structures. Since Java
provides well-specified automatic bounds and type checks,
the interpreter automatically checks and detects invalid ac-
cesses, such as out-of-bounds accesses, use-after-free errors,
and NULL pointer dereferences. As C programs sometimes de-
liberately contain patterns that violate the C standard [6, 38],
we relaxed our type rules (see below). Note that the inter-
preter could also have been implemented in another high-
level language that provides these capabilities.

Figure 5 shows a simplified version of our class hierarchy,
which is based on a previous Truffle implementation of C [21].
The base class for all objects is ManagedObject, from which
subclasses for all primitives, pointers, functions, arrays, and
structs inherit. To represent primitive types, we implemented
classes that wrap a Java primitive. For example, to represent
an LLVM IR I32 object (which corresponds to a C int on
AMD64), we use a Java int, since both have the same bit
width. For some data types, no equivalent Java primitive
exists; for example, Clang produces LLVM IR code that can
contain integers with uncommon bit widths such as I48.
We implemented such types using a Java byte array. To
represent function pointers, we use a function ID to look up
the AST for a function at a function call site. Note that we
use inline caches to make function pointer calls efficient [24],
and even enable speculative inlining [51]. For arrays, we use
Java arrays. For structs, we employ an array-based map-like
data structure that is provided by the Truffle framework [21,
69], and contains ManagedObjects. To represent pointers,
we implemented an Address class that contains a reference
to its pointee and an integer field offset used for pointer
arithmetic.

Figure 6 shows an example where malloc() allocates an
int array with three elements. Our interpreter maps this
allocation to an Address that points to an I32HeapArray
which holds a reference to a primitive Java int array (Sec-
tion 3.3 explains on how we determine the allocation type).

The offset in Address is initially 0; when pointer arith-
metics compute an address in the middle of an object, the
offset is updated. For example, execution of the expression
arr[2] first sets the offset to 8, which is computed by mul-
tiplying the size of arr’s type by 2. When the interpreter
executes the load, it takes the offset from Address, divides
it by 4 (since the dereferenced object is an int array), and
uses the value 2 obtained to index the Java array.

In contrast to approaches that represent C objects as raw
bytes that are stored in a large array [36] (e.g., LLJVM5),
the presented type hierarchy guarantees type safety and
restricts invalid pointer casts [10] when the cast pointer is
used to read or write from the object. For example, in our
architecture an integer array can only hold integer values
and no Addresses; storing an Address would require con-
verting it to an int that could be stored in the array. While
strict type safety is beneficial to improve program quality
and finding bugs, it can prevent real-world programs from
executing [6, 31, 38]; for example, we found that many pro-
grams rely on invalid type casts to deliberately violate C’s
type rules. To provide a pragmatic solution, we relaxed the
type safety rules to accommodate common patterns that we
observed in real-world programs. For example, when the
program stores a double in a long array, we simply take the
bit representation of the double, convert it to a long, and
store it in the array. As part of future work, we plan to fur-
ther investigate the trade-offs between executing real-world
programs and finding bugs.

3.3 Memory allocation
Every allocated object is either a stack object, a heap object,
or a global object, that is, automatic, dynamic, or static mem-
ory, respectively. We know the type for stack allocations, and
can thus directly allocate memory of the specified type in the
function prologue. For heap objects (allocated by malloc(),
calloc(), or realloc()) we do not know the type of object
that will be stored in it. Thus, we allocate the corresponding
Java object only on the first cast, read, or write access (i.e.,
when the type of the object becomes known) and propagate
the type back to the allocation site (similar to allocation me-
mentos in V8 [7]). The next time the allocation function is
called, we directly allocate an object of the observed type.
For global objects, the parser allocates objects at the start of
the program.
We have subclasses of each data structure for each stor-

age location. For example, an I32Array has the subclasses
I32AutomaticArray, I32HeapArray, and I32StaticArray.
Each heap object implements the HeapObject interface,
which is used to free objects (see Figure 7). The free()
method sets an object’s data to null so that the garbage
collector can reclaim the memory. Having different classes

5https://github.com/davidar/lljvm



ManagedObjectManagedObject

AddressAddress

pointee: ManagedObject
offset: int

I32ArrayI32Array

arr: int[]

FunctionAddressFunctionAddress

id: int

I32I32

value: int

I48I48

bytes: byte[]

StructStruct

data: TruffleObject

AddressArrayAddressArray

arr: Address[]

Figure 5. Simplified Class Hierachy of ManagedObject.

arr: Addressarr: Address

offset = 0
pointee

pointee: I32HeapArraypointee: I32HeapArray

arr = 

int *arr = malloc(sizeof(int) * 3)

Figure 6. Example of pointer arithmetics and memory allo-
cation (I32HeapArray is a subclass of I32Array).

HeapObjectHeapObject

free()
isFreed()

I32HeapArrayI32HeapArray

arr: int[] 
free() { arr = null; }
isFreed() { return arr == null; }

Figure 7. The HeapObject interface is used to free heap
objects.

HeapObject obj =

(HeapObject) pointer.pointee;

if (pointer.offset != 0) {

throw new InvalidFreeException ();

}

if (obj.isFreed ()) {

throw new DoubleFreeException ();

}

obj.free();

Figure 8. Implementation of the free method.

for different storage locations also allows us to print mean-
ingful error messages, since we can include the memory type
of an object that is illegally accessed or freed.

3.4 Finding bugs
We implemented our bug-finding capabilities by relying on
the JVM’s automatic checks. In contrast to C, the Java lan-
guage semantics require that illegal loads, stores, and casts
result in an exception. Thus, a JVM cannot simply optimize
invalid accesses away.
Out-of-bounds accesses. We translate load and store ac-
cesses to arrays in C to array accesses in Java. When the
JVM executes the load, it first checks whether the index is
in bounds; an out-of-bounds index access results in a Java

ArrayIndexOutOfBoundsException. Note that such checks
reduce the performance of Java programs. To address this,
Java compilers such as Graal eliminate checks when they
can prove that the index will always be in bounds [71]. As
structs do not exist in Java, we represent them using a cus-
tom data structure [21, 69], for which we have to perform
explicit bounds checks.
Use-after-free accesses. We map C objects that are allo-
cated on the heap to Java objects that have references to
the data objects via the data field. If an object is freed, the
reference to its data is set to null. A subsequent access will
result in a NullPointerException, since Java checks and
prevents dereferences of null.
Double free errors. As shown in Figure 8, we explic-
itly check for double free errors in the AST node of the
free() function using the isFreed() method specified
by HeapObject. This method is implemented by checking
whether the data field has already been set to null.
Invalid free errors. To detect invalid free errors, Safe Su-
long first casts the object to be freed to the HeapObject
interface. If the object was not allocated on the heap, a
ClassCastException is thrown, since Java checks every
type cast. Therefore, invalid free errors with a wrong pointee
are detected. The code verifies next that the pointer offset is
zero, that is, an exception is thrown if the pointer does not
point to the start of the pointee. Only if the checks succeed
is the pointee freed.
Variadic argument errors. Figure 9 shows how we imple-
mented variadic arguments. A call to va_start() sets up
the processing of variadic arguments by allocating space
for a struct that holds a counter and an array of pointers
to the variadic arguments. va_start() can also initialize
this array, since the interpreter exposes the number of vari-
adic arguments via the count_varargs() function, which
can determine this number because the interpreter passes
function arguments as a Java Object array that has a field
for the array length. We do not require the user to specify
the types of the variadic arguments, since we can obtain
pointers to them via the get_vararg() function. When the
user accesses a variadic argument via va_arg(), the current
variadic argument index is used to access the pointer array.
The result is then dereferenced using the user-specified type,
which results in a type error for type violations. We can also
detect an access to a non-existent variadic argument, as it



struct varargs {

int counter;

void **args;

};

#define va_list struct varargs *

#define va_start(ap, last)

ap = (va_list)malloc(sizeof(struct varargs));

ap->args = (void **)

malloc(sizeof(void *) * count_varargs ());

for (ap->counter = count_varargs () - 1;

ap->counter != -1;

ap->counter --) {

ap->args[ap->counter] =

get_vararg(ap->counter);

}

ap->counter = 0;

#define va_arg(ap, type) *(( type *)

(ap->args[ap->counter ++]))

Figure 9. Implementation of variadic arguments.

would cause an out-of-bounds read of the malloced array.
This allows our interpreter to detect the classic format-string
problems [8].

4 Evaluation
In our evaluation, we primarily seek to demonstrate the ef-
fectiveness of Safe Sulong as a bug-finding tool (Section 4.1).
We also show the resource costs of our implementation to
argue that our approach is efficient enough to be used in
practice. Safe Sulong’s run-time performance varies during
execution: at the beginning it is poorer than that of other
tools (Section 4.2) but it improves when warmed up (Sec-
tion 4.3). We performed all measurements on a quad-core
Intel Core i7-6700HQ CPU at 2.60GHz on Ubuntu version
14.04 (with kernel 4.3.0-040300rc3-generic) with 16 GB of
memory.

4.1 Effectiveness
We claimed that Safe Sulong is an effective bug-finding tool.
To test this claim, we selected C projects from Github (see
below) and executed them with Safe Sulong to find errors in
them. We also sought to demonstrate that state-of-the-art ap-
proaches fail to detect common real-world bugs that Safe Su-
long can detect. To this end, we executed each of the known
faulty programs under the same conditions with ASan and
Valgrind, that is, with the most popular compile-time and
run-time instrumentation approaches, to check whether they
could also find the error. Note that SoftBound+CETS [39, 40]

was another candidate in the evaluation; however, it is not
actively maintained and the version of SoftBound+CETS that
is based on a recent LLVM version is still experimental.6 Con-
sequently, we restricted our evaluation to ASan and Valgrind.
Although SoftBound+CETS was formally proven to find all
memory-safety violations, we still expect false negatives
because it detects memory errors that exist on the machine-
level and not on the source-level as it applies LLVM’s opti-
mizations both before and after its passes [39, 40]; bugs that
exist on the source-level could be removed by the compiler
(P2).

We primarily selected small programs, ranging from 25
to 4792 (on average 289) lines of code (LOC)7 because we
observed that they were more likely to contain errors than
larger projects, as they were often personal łhobby projectsž
that had not been tested with bug-finding tools. In some
cases, this enabled us to find bugs simply by using Safe
Sulong to execute the test suite of the project. When the
project lacked a test suite, we executed the program, provid-
ing both expected input and corner cases. Finding bugs in
larger programs would have required us to use automated
testing strategies such as fuzzing [20]. Additionally, small
programs were unlikely to use library functions that were
not yet supported by Safe Sulong (see Section 6). Finally,
many small projects relied only on the C standard library
and were otherwise self-contained, so we did not have to
compile additional dependencies.
In total, we found 68 errors in 63 projects and provided

bug fixes for them, many of which were accepted by the
project maintainers. Table 1 shows the distribution of the
bugs, which roughly follows the distribution of the vulnera-
bility and exploits databases (see Section 2.1). As expected,
the majority of bugs were out-of-bounds accesses caused
by strings not being NUL-terminated, not allocating enough
space for a string to hold the NUL terminator, missing checks,
integer overflows, incorrect hard-coded sizes, performing a
check after an invalid access has already happened (see [65]),
off-by-one errors in comparisons, and other errors. Table 2
shows that the out-of-bounds accesses included both reads
and writes (with almost equal distribution) as well as buffer
underflows and overflows. Most out-of-bounds accesses oc-
curred to stack objects, but we also identified several to heap
objects, global objects, and to the main() function’s argu-
ments. A smaller number of bugs were NULL dereferences
that could also have been found without a bug-finding tool.
We found only 1 use-after-free error and 1 variadic argument
error (where arguments did not match the format string).

We compiled the programs with Clang using no optimiza-
tions (-O0), since we aimed to find as many errors as possible.
In order to show that compiling with optimizations results

6See https://github.com/santoshn/SoftBoundCETS-3.9.
7To calculate the LOC, we used cloc, which omits comments and empty
lines.



Buffer overflows 61
NULL dereferences 5
Use-after-free 1
Varargs 1

Table 1. Error distribution of the detected bugs.

Read 32
Write 29

Underflow 8
Overflow 53

Stack 32
Heap 17
Global 9
Main args 3

Table 2. Distribution of out-of-bounds accesses according
to reads/writes, overflows/underflows, and memory kind.

in the failure to detect specific errors, we also compiled the
programs at optimization level -O3 for ASan and Valgrind.
We used standard options to execute Valgrind, but after find-
ing out that ASan does not check zero-initialized global data
by default, we had to enable the -fno-common compiler flag
for ASan.

Valgrind -O0 and -O3 found slightly more than half of the
errors because Valgrind reliably detects only out-of-bounds
accesses to the heap and misses many of the out-of-bounds
accesses to the stack and to global variables. Note that Val-
grind detects reads of uninitialized values, so it could ar-
guably be used to indirectly identify out-of-bounds reads to
the stack (14 out of 31 stack accesses). However, we found
that this feature is not reliable, and that compiling with either
-O0 or -O3 reveals different but overlapping sets of bugs.

ASan -O0 detected 60 of the 68 errors that Safe Sulong
found. Only 56 errors (a subset of those found with -O0)
were also found with -O3, since in the other cases Clang
optimized away bugs. From the 68 errors that Safe Sulong
detected, 8 could neither be found by Valgrind nor by ASan
at either optimization level (-O0 and -O3).
1. Uninstrumentedmain arguments array (P4, P1). We
argued that to tools that are based on low-level approaches
it is not always obvious whether the programs analyzed
contain uninstrumented native code or data. We found that
neither ASan [49] nor Valgrind detects out-of-bounds ac-
cesses to the main() function’s argumentsÐa bug that we
discovered in three applications. Figure 10 shows an exam-
ple: the buffer for argv is created before the program (and
libc) is invoked and is therefore not instrumented. Note that
the main() function can have an additional argument for a
pointer to an array of environment variables (declared as
int main(int argc, char *argv[], char *envp[])); this
array is initialized irrespective of the main() function’s sig-
nature [37]. A missing or incorrect check might allow an
attacker to exploit an out-of-bounds access to leak secrets
contained in an environment variable.

#include <stdio.h>

int main(int argc , char** argv) {

printf("%d %s\n", argc , argv [5]);

}

Figure 10. ASan does not detect out-of-bounds accesses to
the main function.

const char t[2] = " \n";

token = strtok(buf , t);

Figure 11. The delimiter passed to strtok() is not NUL-
terminated.

int counter;

// ...

printf("counter: %ld\n", counter);

Figure 12. A wrong format specifier is used, which causes
an out-of-bounds read.

2.Missing interceptors (P1). Two bugs could not be found
by ASan due to missing or incomplete interceptors; Valgrind
did not find them, because the out-of-bounds accesses did
not occur in heap-allocated objects. The first bug was caused
by an unterminated string that the program passed to the
strtok() libc function (see Figure 11). ASan failed to detect
this bug, as it lacked an interceptor for strtok(), which we
consequently implemented [47, 48]. We also found one error
in which the program passed an integer to printf("%ld"),
where the format string specified a long (see Figure 12).
Note that Clang detected the bug statically and printed a
warning; however, ASan did not detect the error, because the
interceptor for printf() checks only pointer arguments.
3. Backend compiler optimizations (P2). In one case, a
bug was eliminated by the compiler when compiling with
-O0, namely a global array out-of-bounds access similar to
that shown in Figure 13. Clang statically detected the out-
of-bounds access and printed a warning. However, Clang’s
front end had not yet optimized away the bug, so Safe Sulong
was able to detect it while executing the LLVM IR; not until
LLVM’s back end was it optimized away. Thus, ASan was
unable to detect the bug. Valgrind would not have detected
the bug in either case, since the array was not allocated on
the heap. Arguably, a user could have found the bug given the
compiler warning. However, we found cases were Clang -O0
optimized bugs away even without emitting a warning [50].
4. Overflowing the redzone (P3). As previously shown,
shadow-memory red-zone approaches are inexact and can-
not find all errors of a particular category. Safe Sulong found
such a case in a program that reads a number and converts



int count [7] = {0, 0, 0, 0, 0, 0, 0};

int main(int argc , char** args) {

return count [7];

}

Figure 13. The out-of-bounds error in this program is opti-
mized away, even with optimizations disabled (-O0 flag).

const char * strings [] = {"zero","one","two","←֓

three","four","five","six" /* ... */ };

void convert(FILE *input , FILE *output) {

int number;

fscanf(input , "%d", &number);

// ...

fprintf(output , "%s\n", strings[number ]);

}

Figure 14. A large number as user input causes a buffer
overflow that can exceed ASan’s redzone.

it to a string; Figure 14 shows a simplified version of the
program. In this example, the user input is used to index
a global array; if the input number is too large, it causes a
buffer overflow. ASan can only find the buffer overflow if
the index is close to the object, that is, if it does not exceed
the redzone; for our random inputs the access exceeded the
redzone and the program either printed (null) or crashed.
Valgrind could not find the error, since strings is a global
buffer.
5. Missing variadic arguments (P1). In the projects we
evaluated, we found only a few implementations of variadic
functions. However, we identified a missing argument to
the variadic printf() libc function. As in Figure 10, Clang
detected the bug statically, since printf() is a well-known
libc function. However, the bug could also have occurred in
an application-specific function, where Clangwould not have
been able to detect it; similar format string vulnerabilities
have recently been identified in libxml2 (CVE-2016-4448), in
Dropbear SSH (CVE-2016-7406), and PHP (CVE-2016-4071).
ASan and Valgrind cannot detect such errors at run time.
Discussion. Safe Sulong detected bugs that Valgrind and
ASan missed. On the one hand, they missed bugs due to
fundamental limitations of their approaches that cannot be
addressed without significant enhancements. These stem
from the limitations of shadow memory and redzones (4) as
well as from their reliance on compilers that optimize based
on unsafe semantics (3). On the other hand, they missed
bugs due to implementation issues that could be addressed
by implementation enhancements or fixes. The uninstru-
mented main() arguments (1) could be addressed by adding
the missing instrumentation. Variadic arguments (5) could
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Figure 15. Warm-up time on the meteor benchmark. The
x-axis shows the time in seconds and the y-axis the number
of iterations an approach could run in the last second. The
dots indicate the numbers of ASTs that Graal compiled up
to that point.

also be instrumented, passing the argument types supplied
at the call site and verifying them in the callee [3]. Missing
or incomprehensive interceptors (2) could be addressed by
comprehensive implementations or by instrumenting a libc
implementation.
We argue that also implementation issues highlight the con-
ceptual advantage of Safe Sulong’s abstraction from the
native execution model; in Safe Sulong, all accesses are
checked automatically, so instrumentation for corner cases
cannot be forgotten. Note that state-of-the-art static check-
ers can detect some of the bugs that were missed by Val-
grind and ASan but detected by Safe Sulong; however, they
suffer from false positives and other issues [30]. More pre-
cise tools such as SoftBound+CETS do not suffer from the
limitations of shadow memory and redzones (4); however,
SoftBound+CETS applies an unsound optimization where
instrumentation for copied memory is omitted [39], which
could result in missed bugs.

4.2 Start-up and Warm-up Costs
Safe Sulong uses a dynamic compilation approach and has
therefore some additional run-time performance costs.
First, the LLVM IR interpreter has a noticeable start-up

cost, which is the time between the user starting the pro-
gram and the program beginning to run. We measured the
start-up time by executing a "Hello, World!" program 100
times for each tool and measuring the execution time us-
ing /usr/bin/time. Safe Sulong needs slightly more than
600 ms to start up, during which the JVM initializes and
starts Safe Sulong, which must then parse libc before calling
the main function. Note that we could improve the start-up
performance by lazily parsing libc and by improving the
performance of our parser, but this was not the focus of our
research. The start-up time of Safe Sulong for this program
is longer than that of Valgrind, which needs around 500 ms
to instrument and execute the program. With less than 10
ms, ASan starts up the fastest.

Second, the LLVM IR interpreter has a high warm-up cost,
which is the time after start-up until the application reaches



peak performance. Figure 15 illustrates the warm-up times of
ASan, Valgrind, and Safe Sulong on the meteor benchmark.
To approximate how Safe Sulong would behave for larger
programs (which Safe Sulong currently fails to execute), we
continuously executed the benchmark and plotted howmany
iterations per second the respective approach could execute
over time. Safe Sulong’s warm-up costs can be attributed
mostly to the time the program spends in the interpreter;
not until the interpreter has identified hot functions does
Graal compile them to machine code. The curve shows a
typical VM warm-up [2]. Not until second 6 did Safe Sulong
complete its first execution of the benchmark. During this
time, Graal had compiled the 15 most important functions
to machine code. Afterwards, it soon sped up and executed
more iterations per second than Valgrind (in second 7), and
ASan (in second 11).

Note that the benchmark contains a call to printf() and
to other libc functions, which Safe Sulong also interprets and
compiles to machine code during execution. Even after com-
pilation, the program fails to immediately reach peak perfor-
mance, since we currently lack on-stack replacement [1, 19],
which is used by production VMs to reduce the warm-up
costs by switching from an interpreted method to a compiled
method while executing in a loop [19, 26, 32]. However, our
peak performance is higher than that of other tools as we
demonstrate in Section 4.3. For ASan, we see that compile-
time instrumentation approaches incur almost no warm-up
costs, because checks are inserted during compilation and the
runtime is initialized during start-up. Run-time approaches
can insert checks either during start-up or on demand while
executing the program. Valgrind inserts them while execut-
ing the program; nonetheless, the warm-up costs are not vis-
ible and likely overshadowed by the execution time needed
for one iteration.

To address start-up and warm-up costs, the Graal project
currently explores ahead-of-time compilation for the inter-
preter and the compiler [70, 72]. Applying this approach to
Safe Sulong would allow us to create a standalone tool which
would no longer require a JVM, and would have a smaller
memory footprint and lower warm-up costs, since the parser
and other components would have been compiled before
starting the program.

4.3 Peak Performance
In this section we evaluate the peak performance that Safe
Sulong can reach on long-running programs. Safe Sulong
is a prototype and currently cannot execute large programs
such as the SPEC benchmarks. Thus, we decided to evalu-
ate benchmarks from the Computer Language Benchmark
game [58], which contains smaller benchmarks for compar-
ing the performance of different programming languages.
When we executed this suite’s fastaredux benchmark with
Safe Sulong, we discovered that a loop ran out of bounds
because, due to a rounding error, probabilities did not add

up to the value 1.00. We reported and fixed the bug [46],
and used the fixed version in our evaluation. Additionally,
we included the whetstone benchmark [43].

We measured the performance of executables compiled
by Clang with disabled optimizations (-O0) and enabled op-
timizations (-O3) as baselines. Since our aim was to find as
many errors as possible, we compiled the benchmarks using
Clang -O0 for all bug-finding tools, although Safe Sulong
would also profit from compiler optimizations. In addition to
assessing the performance of Safe Sulong, we also measured
the performance of executables compiled by Clang 3.9 using
ASan based on LLVM version 3.9 and Valgrind version 3.12.
A direct comparison of run-time performance between dif-
ferent tools is not fair, since they provide different features.
Our measurements are therefore intended to demonstrate
that the peak performance of programs under Safe Sulong is
sufficient to make our approach viable in practice. To approx-
imate the performance of larger programs, we had to account
for the adaptive compilation techniques of Truffle and Graal
by setting up a harness that warmed up the benchmarks. By
executing 50 in-process warm-up iterations, we ensured that
every benchmark reached a steady state. We executed each
benchmark 10 times and used the last iteration of each run
as a sample for computing the peak performance. We also
used the same benchmark harness for the other tools, even
though their warm-up costs are minimal.

Figure 16 shows box plots for the peak performance rela-
tive to that of Clang -O0. We excluded Valgrind from the
plots because it was 10× to 58× slower than Clang -O0 on
5 benchmarks. Its slowdown was lowest on spectralnorm,
fasta, and fannkuchredux (2.3, 3.6 and 5.1, respectively).
We did not plot the results for the binarytrees benchmark,
since ASan was 14× slower and Valgrind 58× slower than
Clang -O0. This slowdown was due to binarytrees being
allocation-intensive, which suggests that current bug-finding
approaches cannot deal well with allocation-intensive bench-
marks. On this benchmark, Safe Sulong was only 1.7×
slower than Clang -O0. In almost all benchmarks, Safe
Sulong was faster than ASan -O0; they were on a par
only on fastaredux. Safe Sulong was faster than Clang
-O0, except on the fastaredux and nbody benchmarks. On
fannkuchredux and mandelbrot, Safe Sulong was even on
a par with Clang -O3. Safe Sulong exhibited the poorest per-
formance on fastaredux, where it was 2.5× slower than
Clang -O0. As part of future work, we plan to further reduce
Safe Sulong’s overhead.

5 Limitations
Native interoperability. Interoperability with pre-
compiled binaries is a double-edged sword. It is necessary
to execute closed-source libraries [62] and convenient for
users, but it results in overlooked bugs, as our findings
have demonstrated. What sets Safe Sulong apart from
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ABSTRACT
Most C programs do not conform strictly to the C standard, and
often show undefined behaviors, for instance, in the case of signed
integer overflow. When compiled by non-optimizing compilers,
such programs often behave as the programmer intended. However,
optimizing compilers may exploit undefined semantics to achieve
more aggressive optimizations, possibly breaking the code in the
process. Analysis tools can help to find and fix such issues. Alter-
natively, a C dialect could be defined in which clear semantics are
specified for frequently occurring program patterns with otherwise
undefined behaviors. In this paper, we present Lenient C, a C dialect
that specifies semantics for behaviors left open for interpretation in
the standard. Specifying additional semantics enables programmers
to make safe use of otherwise undefined patterns. We demonstrate
how we implemented the dialect in Safe Sulong, a C interpreter
with a dynamic compiler that runs on the JVM.
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C is a language that leaves many semantic details open. For ex-
ample, it does not define what should happen in the case of an
out-of-bounds access to an array, when a signed integer overflow
occurs, or when a type rule is violated. In such cases, not only does
the invalid operation yield an undefined result, but — according
to the C standard — the whole program is rendered invalid. As
compilers become more powerful, an increasing number of pro-
grams break because undefined behavior allows more aggressive
ManLang 2017, September 27–29, 2017, Prague, Czech Republic
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
ManLang 2017, September 27–29, 2017 , https://doi.org/10.1145/3132190.3132204.

optimization and may lead to machine code that does not behave as
expected. Consequently, programs that rely on undefined behavior
may introduce bugs that are hard to find, can result in security
vulnerabilities, or remain as time bombs in the code that explode
after compiler updates [34, 51, 52].

While bug-finding tools help programmers to find and eliminate
undefined behavior in C programs, the majority of C programs
will still contain at least some non-portable code. This includes
unspecified and implementation-defined patterns, which do not
render the whole program invalid, but can cause unexpected results.
Specifying a more lenient C dialect that better suits programmers’
needs and addresses common programming mistakes has been
suggested to remedy this [2, 8, 13]. Such a dialect would extend the C
standard and assign semantics to otherwise non-portable behavior;
it would make C safe in the sense of Felleisen & Krishnamurthi [15].
We devised Lenient C, a C dialect which, for example,

• assumes allocated memory to be initialized,
• assumes automatic memory management,
• allows dereferencing pointers using an incorrect type,
• defines corner cases of arithmetic operators,
• and allows pointers to different objects to be compared.

Every C program is also a Lenient C program. However, although
Lenient C programs are source-compatible with C programs, they
are not guaranteed to work correctly when compiled by C compil-
ers.

We implemented Lenient C in Safe Sulong [37], an interpreter
with a dynamic compiler that executes C code on the JVM. Per
default, Safe Sulong aborts execution when it detects undefined
behavior. As part of this work, we added an option to assume the
Lenient C dialect when executing a program to support execution
of incompliant C programs. Implementing Lenient C in Safe Sulong
allowed us to validate the approach without having to change
a static compiler. Although a managed runtime is not a typical
environment for running C, it is a good experimentation platform
because such runtimes typically execute memory-safe high-level
languages that provide many features that we also want for C, for
example, automatic garbage collection and zero-initialized memory.
In this context, Lenient C is a dialect that is suited to execution on
the JVM, .NET, or a VM written in RPython [39]. If Lenient C turns
out to be useful in managed runtimes, a subset of its rules might
also be incorporated into static compilers.

We assume that implementations of Lenient C in managed run-
times represent C objects (primitives, structs, arrays, etc.) using
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an object hierarchy, and that pointers to other objects are imple-
mented using managed references. This approach enables use of a
GC, which would not be possible if a large byte array were used
to represent C allocations [25]. In terms of language semantics, we
focused on implementing operations in a way most programmers
would expect. Undefined corner cases in arithmetic operations be-
have similarly to Java’s arithmetic operations, which also resemble
the behavior of AMD64. This paper makes the following contribu-
tions:
• a relaxed C dialect called Lenient C that gives semantics to

undefined behavior and is suitable for execution on a JVM and
other managed runtimes;

• an implementation of this dialect in Safe Sulong— an interpreter
written in Java;

• a comparison of Lenient C with the Friendly C proposal and
the anti-patterns listed in the SEI CERT C Coding Standard.

1 BACKGROUND
1.1 Looseness in the C Standard
The main focus of C is on performance, so the C standard defines
only the language’s core functionality while leaving many cor-
ner cases undefined (to different degrees, see below). For example,
unlike higher-level-languages, such as Java and C#, C does not
require local variables to be initialized, and reading from uninitial-
ized variables can yield undefined behavior [43].1 Avoiding storage
initialization results in speed-ups of a few percent [27]. As another
example, 32-bit shifts are implemented differently across CPUs; the
shift amount is truncated to 5 bits and 6 bits on X86 and PowerPC
architectures, respectively [22]. In C, shifting an integer by a shift
amount greater than the bit width of the integer type is undefined,
which allows the CPU’s shift instructions to be used directly on
both platforms.

The C standard provides different degrees of looseness, as illus-
trated by the pyramid of “undefinedness” in Figure 1. Programmers
usually want their programs to be strictly conforming; that is, they
only rely on defined semantics. Strictly-conforming programs ex-
hibit identical behavior across platforms and compilers (C11 4 §5).
Layers above “defined” incrementally provide freedom to compilers,
which limits program portability and results in compiled code that

1Note that reading an uninitialized variable produces an indeterminate value, which —
depending on the type — can be a trap representation or an unspecified value.

often does not behave as the user expected [51, 52]. Implementation-
defined behavior allows free implementation of a specific behavior
that needs to be documented. Examples of implementation-defined
behavior are casts between pointers that underlie different align-
ment requirements across platforms. Unspecified behavior, unlike
implementation-defined behavior, does not require the behavior to
be documented. Since it is allowed to vary per instance, unspecified
behavior typically includes cases in which compilers do not enforce
a specific behavior. An example is using an unspecified value, which
can, for example, be produced by reading padding bytes of a struct
(C11 6.2.6.1 §6). Another example is the order of argument evalua-
tion in function calls (C11 6.5.2.2 §10). Undefined behavior provides
the weakest guarantees; the compiler is not bound to implement
any specific behavior. A single occurrence of undefined behavior
renders the whole program invalid. The tacit agreement between
compiler writers seems to be that no meaningful code needs to
be produced for undefined behavior, and that compiler optimiza-
tions can ignore it to produce efficient code [13]. Consequently,
the current consensus among researchers and industry is that C
programs should avoid undefined behavior in all instances, and a
plethora of tools detect undefined behavior so that the programmer
can eliminate it [e.g., 4, 5, 14, 17, 20, 31, 44, 46, 50]. Examples of
undefined behavior are NULL dereferences, out-of-bounds accesses,
integer overflows, and overflows in the shift amount.

1.2 Problems with Undefined Behavior
While implementing Safe Sulong, we found that most C programs
exhibit undefined behavior and other portability issues. This is
consistent with previous findings. For example, six out of nine
SPEC CINT 2006 benchmarks induce undefined behavior in integer
operations alone [11].

It is not surprising that themajority of C programs is not portable.
On the surface, the limited number of language constructs makes it
easy to approach the language; its proximity to the underlying ma-
chine allows examining and understanding how it is compiled. How-
ever, C’s semantics are intricate; the informative Annex J on porta-
bility issues alone comprises more than twenty pages. As stated by
Ertl, “[p]rogrammers are usually not language lawyers” [13] and
rarely have a thorough understanding of the C standard. This is
even true for experts, as confirmed by the Cerberus survey, which
showed that C experts rely, for example, on being able to compare
pointers to different objects using relational operators, which is
clearly forbidden by the C standard [26].

Furthermore, much effort is required to write C code that cannot
induce undefined behavior. For example, Figure 2 shows an addition
that cannot overflow (which would induce undefined behavior).
Such safe code is awkward to program and defeats C’s original goal
of defining its semantics such that efficient code can be produced
across platforms.

In general, code that induces undefined behavior cannot always
be detected at compile time. For example, adding two numbers
is defined as long as no integer overflows happen. It is also sel-
dom a problem when the program is compiled with optimizations
turned off (e.g., with flag -O0). However, it is widely known that
compilers perform optimizations at higher optimization levels that
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signed int sum(signed int si_a , signed int si_b) {

if ((( si_b > 0) && (si_a > (INT_MAX - si_b))) ||

((si_b < 0) && (si_a < (INT_MIN - si_b)))) {

/* Handle error */

} else {

return si_a + si_b;

}

}

Figure 2: Avoiding overflows in addition [42]

cause programs to behave incorrectly if they induce undefined be-
havior [22, 34]. For instance, about 40% of the Debian packages
contain unstable code that compilers optimize away at higher opti-
mization levels, often changing the semantics because compilers
exploit incorrect checks or undefined behavior in the proximity of
checks [52]. This is worrisome, since optimizing away checks that
the user deliberately inserted is likely to create vulnerabilities in
the code [2, 12, 52]. Finally, code can be seen as a time bomb [34].
Increasingly powerful compiler optimization can cause programs
to break with compiler updates; if code that induces undefined
behavior does not break now, it might do so in the future [22].

1.3 Calls for a Lenient C
One strategy to tackle portability issues is to detect them and to fix
the relevant code. To this end, a host of static and dynamic tools
enable programmers to detect memory problems [4, 31, 44, 46],
integer overflows [5, 50], type problems [20], and other portability
issues in programs [14, 17]. Another approach is to educate pro-
grammers and inform them about common portability pitfalls in C.
The most comprehensive guide to avoiding portability issues is the
SEI CERT C Coding Standard [42], which documents best practices
for C.

Due to the portability issues described, a more lenient dialect of
C has been called for (see below). Rather than consider common pat-
terns that are in conflict with the C standard as portability problems,
it would explicitly support them by assigning semantics to them in
a way that programmers would expect from the current C standard.
Most code that would execute correctly at -O0, even if it induces
undefined behavior, would also correctly execute with this dialect.
For unrecoverable errors, it would require implementations to trap
(i.e., abort the program). This dialect would be source-compatible
with standard C: every program that compiles according to the C
standard would also compile with this dialect. Consequently, such
an effort would be different from safer, C-like languages such as
Polymorphic C [45], Cyclone [18], and CCured [30], which require
porting or annotating C programs.

Three notable proposals for such a safer C dialect can be found.
Bernstein called for a “boring C compiler” [2] that would priori-
tize predictability over performance and could be used for cryp-
tographic libraries. Such a compiler would commit to a specified
behavior for undefined, implementation-defined, and unspecified
semantics. The proposal did not contain concrete suggestions, ex-
cept that uninitialized variables should be initialized to zero. A
second proposal, a “Friendly Dialect of C”, was formulated by Cuoq,
Flatt, and Regehr [8]. The Friendly C dialect is similar to C, except
that it replaces occurrences of undefined behavior in the standard

either with defined behavior or with unspecified results (which
do not render the whole program or execution invalid). Friendly
C specifies 14 changes to the language, addressing some of the
most important issues, but was meant to trigger discussion and
not to cover all the deficiencies of the language comprehensively.
Eventually, Regehr [35] abandoned the proposal and concluded that
too many variations to a Friendly C standard would be possible to
have experts reach a consensus. Instead, he proposed that reaching
a consensus should be skipped in favor of developing a friendly
C dialect, which could be adopted by more compilers if used by a
broader community. A third proposal, for a “C*” dialect in which
operations at the language level directly correspond to machine
level operations, was outlined by Ertl [13]. Ertl observed that the
C standard gave leeway to implementations to efficiently map C
constructs to the hardware. However, he noted that compiler main-
tainers diverge from this philosophy and implement optimizations
that go against the programmer’s intent, by deriving facts from
undefined behavior that enable more aggressive optimizations. Ertl
believes that C programmers unknowingly write programs that
target the C* dialect because they are not sufficiently familiar with
the C rules. According to him, the effort needed to convert C* to
C programs, however, would have a poor cost-benefit ratio, given
that programmers could hand-tune the C code.

2 LENIENT C
We present Lenient C, a C dialect that assigns semantics to behavior
in the C11 standard that is otherwise undefined, unspecified, or
implementation-defined. Table 1 presents the rules that supersede
those of the C11 standard and specify Lenient C.

A previous study categorized undefined behavior according to
whether it involved the core language, preprocessing phases, or
library functions [17]. We restrict Lenient C to the core language,
and will consider extensions to it as part of future work, memory
management functions being the only exception.Wewere primarily
interested in undefined behavior that compilers cannot statically
detect in all instances. Consequently, we disregarded problematic
idioms such as writing-through consts [14], where an object with
a const-qualified type is modified by casting it to a non-const-
qualified type (C11 6.7.3 §6). We believe that increased research
into compiler warnings and errors enables elimination of such
bugs [47]. We also excluded undefined behavior caused by multiple
modifications between sequence points [21] – which guarantee
that all previous side effects have been performed – which includes
expressions such as i++ * i++ (C11 6.5 §2).

We created this dialect while working on the execution of C
code on the JVM, using Safe Sulong, a C interpreter with a dynamic
compiler. Per default, Safe Sulong aborts execution when it detects
undefined behavior. However, we found that most programs in-
duce undefined behavior or exhibit other portability issues. As an
alternative to fixing such programs, we added an option to execute
programs assuming the less strict Lenient C dialect.

Lenient C was inspired by Friendly C; additionally, we sought
to support many anti-patterns that are described in the SEI CERT
C Coding Standard, as they reflect non-portable idioms on which
programmers rely. While the dialect can be implemented by static
compilers, Lenient C programs are best suited to execution in a
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ID Lenient C SEI CERT Friendly C
General
G1 Writes to global variables, traps, I/O, and program termination are considered to be side effects. 6, 13
G2 Externally visible side effects must not be reordered or removed. 6, 13
G3 Signed numbers must be represented in two’s complement. INT16-C
G4 Variable-length arrays that are initialized to a length smaller or equal to zero must produce a trap. ARR32-C
Memory Management
M1 Dead dynamic memory must eventually be reclaimed, even if it is not manually freed. MEM31-C
M2 Objects can be used as long as they are referenced by pointers. MEM30-C 1
M3 Calling free() on invalid pointers must have no effect. MEM34-C
Accesses to Memory
A1 Reading uninitialized memory must behave as if the memory were initialized with zeroes. EXP33-C 8
A2 Reading struct padding must behave as if it were initialized with zeroes. EXP42-C
A3 Dereferences of NULL pointers must abort the program. EXP34-C 4
A4 Out-of-bounds accesses must cause the program to abort. MEM35-C 4
A5 A pointer must be dereferenceable using any type. EXP39-C 10
Pointer Arithmetic
P1 Computing pointers that do not point to an object must be permitted. ARR30-C,

ARR38-C,
ARR39-C

9

P2 Overflows on pointers must have wraparound semantics. 9
P3 Comparisons of pointers to different objects must give consistent results based on an ordering of

objects.
ARR36-C

P4 Pointer arithmetic must work not only for pointers to arrays, but also for pointers to any type. ARR37-C
Conversions
C1 Arbitrary pointer casts must be permitted while maintaining a valid pointer to the object. MEM36-C,

EXP36-C
10, 13

C2 Converting a pointer to an integer must produce an integer that, when compared with another
pointer-derived integer, yields the same result as if the comparison operation were performed on
the pointers.

INT36-C,
ARR39-C

C3 When casting a floating-point number to a floating point-number, or when casting between integers
and floating-point numbers, a value not representable in the target type yields an unspecified value.

FLP34-C

Functions
F1 Non-void functions that do not return a result implicitly return zero. MSC37-C 14
F3 A function call must trap when the actual number of arguments does not match the number of

arguments in the function declaration.
EXP37-C,
DCL40-C

Integer Operations
I1 Signed integer overflow must have wraparound semantics. INT32-C 2
I2 The second argument of left- and right-shifts must be reduced to the value modulo the size of the

type and must be treated as an unsigned value.
INT34-C 3

I3 Signed right-shift must maintain the signedness of the value; that is, it must implement an arithmetic
shift.

I4 If the second operand of a modulo or division operation is 0, the operation must trap. INT33-C 5
I5 Like signed right-shifts, bit operations on signed integers must produce the same bit representation

as if the value were cast to an unsigned integer.
7

Table 1: The rules of Lenient C compared to those of the SEI CERT C Coding Standard and Friendly C

managed environment. In other words, Lenient C makes some
assumptions that hold for managed runtimes such as the JVM or
.NET, but typically not for static compilers, such as LLVM and
GCC, that compile C code to an executable. For example, Lenient
C assumes automatic memory management. Although garbage
collectors (GCs) exist that can be compiled into applications [3, 33],
they are not commonly used. Nonetheless, we believe that many of

Lenient C’s rules might also inspire their implementation in static
compilers.

In the following sections, we describe how we implemented the
Lenient C dialect in Safe Sulong, and expand on its design decisions.
Section 3 describes an object hierarchy suitable for implementing
Lenient C in object-oriented languages. Section 4 addresses mem-
ory management and expands on Lenient C’s memory management
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and memory error handling requirements. Section 5 examines oper-
ations on pointers, and Section 6 discusses how Lenient C envisages
the implementation of arithmetic operations.

3 REPRESENTING C OBJECTS
All our C objects are represented using classes that inherit from a
ManagedObject base class.2 We found such an approach to be more
idiomatic than using a single array of bytes to represent memory.
Subclasses comprise integer, floating point, struct, union, array,
pointer, and function pointer types. For example, we represent the
C float type as a Float subclass. To denote values, we use Haskell-
style type constructors. A float value 3.0 is thus expressed as
Float(3.0).

The ManagedObject class specifies methods for reading from
and writing to objects that the subclasses need to implement.
The read operation is expressed as a method object.read(type,
offset) that reads a specific type from an object at a given off-
set. Note that the offset is always measured in bytes. For exam-
ple, reading a float at byte offset 4 from an object is expressed
as object.read(Float, 4). The write method is expressed as a
method object.write(type, offset, value). The C standard
requires that every object can
• be treated as a sequence of unsigned chars, so every subclass

must implement at least one method that can read and write
the char type (C11 6.2.6.1 §4),

• and can be read using the type of an object, so, for example, an
int object must implement read and write methods for int.

Additionally, we allow objects to be treated using other types, by
concatenating their byte representations (see Section 5.4).

3.1 Integer and Floating-Point Types
Safe Sulong represents primitive types as Java wrapper classes.
In subsequent examples, we assume an LP64 model in which an
int has 32 bits, a long 64 bits, and a pointer 64 bits. However,
our architecture also works for other 64-bit and 32-bit models; we
will point out differences that influence the implementation at the
corresponding places in the text.

For the C types bool, char, short, int, and long we use
wrapped Java primitive types. For example, an int in C corre-
sponds to a 32-bit integer in LP64, and we map it to a Java class I32
that holds a Java int. Note that we do not need separate types for
signed and unsigned integers; for example, we represent both int
and unsigned int using a Java int. However, we need to provide
both signed and unsigned operations (see Section 6).

We also represent float and double types using wrapped Java
equivalents. C has a long double data type that is represented
as an 80-bit floating-point type on AMD64. Since this data type
does not exist in Java, we provide a custom implementation that
emulates the behavior of 80-bit floats.3

2Safe Sulong interprets LLVM IR [23], which is a RISC-like intermediate representation,
and not C code. LLVM IR also contains other integer types (e.g., I33 and I48) that we
map to a wrapped byte array.
3Emulating 80-bit floats is inefficient and error-prone. As part of future work, we plan
to provide a more efficient implementation of this type. However, we found that only
few C programs rely on long doubles.

int main() {

int val , arr [3];

int *ptr1 = &val; // (val , 0)

int *ptr2 = &arr [2]; // (arr , 8)

int *ptr4 = 0; // (NULL , 0)

}

Figure 3: Various pointer tuples

3.2 Pointers and Function Pointers
We implement pointers using a class Address. Address has two
fields: a ManagedObject field pointee that refers to its pointee,
and an integer offset that denotes the offset within the object.
The offset must be large enough to hold an integer with the same
bit width as a pointer; assuming LP64, it is 64 bits wide. We denote
a pointer-tuple by (pointee, offset). The idea of representing
pointers as a tuple is not new; for example, formal C models [19, 24]
and also previous implementations of C on the JVM used such a
representation [10, 16]. Figure 3 shows tuples for three different
pointers. ptr1 points to the start of an int; the offset is 0. ptr2
points to the second element of an integer array; the offset is 8 (2
* sizeof(int)). ptr3 is a NULL pointer, which is obtainable by an
integer constant 0. The C standard specifies that NULL is guaranteed
to be unequal to any pointer that points to a function or object
(C11 6.3.2.3). We implement the NULL constant by an Address that
has a null pointee and an offset of 0. Note that Section 5.1 gives
a detailed account of pointer arithmetic.

To represent function pointers, we use a class that comprises
a wrapped long that represents a function ID. For every parsed
function, a unique ID starting from 1 is assigned. An ID of 0 rep-
resents a NULL function pointer. For calls, this ID is used to locate
the executable representation of the function. Note that forgotten
return statements in non-void functions induce undefined behavior
(C11 6.9.1 §12). To address this, Safe Sulong implicitly returns a
zero value of the return type when control reaches the end of the
function. Note that another error class is when a function call sup-
plies a wrong number of arguments, for which Lenient C requires
the function call to trap.

3.3 Arrays
We represent C arrays by means of Java classes that wrap Java
arrays. Primitive C arrays are represented by primitive Java ar-
rays. For example, the type int[] is represented as a Java int
array. We represent other C arrays using Java arrays that have a
ManagedObject subtype as their element type. For example, we
represent C pointer arrays as Java Address arrays. In our type hi-
erarchy, arrays and structs are nested objects, which the read and
write operations must take into account. Consequently, a given
offset value must be decomposed to select the array element and
then the offset within that element. For example, to read a byte
from an I32Array, the I8 read operation computes the value as
the right-most byte taken from values[offset / 4] >> (8 *
(offset % 4)). The division selects the array member, and the
modulo the byte inside the integer.
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struct {

int a;

long b;

} t;

char* val = (char*) &t;

val[9] = 1;

Figure 4: Writing a char into a struct member

3.4 Structs and Unions
Java lacks a struct type. We represent structs using a map [55] that
contains ManagedObjects. A struct member can be accessed us-
ing an operation getfield(offset) that returns a tuple (object,
offset′).4 The object denotes the member stored at the byte po-
sition offset, and offset′ denotes the offset relative to the start of
this member. Figure 4 shows an example. Note that the struct has a
size of 16 bytes, where the stored int takes up 4 bytes, the padding
values after the int 4 bytes, and the long 8 bytes. To write a byte at
offset 9, Safe Sulong first selects the member using getfield(9);
the tuple returned is (I64(0), 1). It then writes the value to the
selected member object using object.write(I8, 1). The read
operation looks similar.

Safe Sulong also takes into account padding bytes, whose val-
ues are not specified by the standard (C11 6.2.6.1 §6). It initializes
such bytes with a sequence of I8(0). This allows programmers,
for example, to compare structs using byte-by-byte comparison.
Note that an alternative way of representing structs would be to
use classes that represent struct members by fields. In a source-to-
source transformation approach, these classes could be generated
when compiling the program [25]. In interpreters, this would be
more complicated because they would have to generate Java byte-
code at run time.

In this object hierarchy, unions are structs with only one field.
Unions allow programmers to view amemory region under different
types. When reading a value from a union using a type that is
different from the type that was last used when storing to this union,
the standard requires that the union be represented in the new
type (C11 6.5.2.3 §3). To account for this, we allocate a union with a
sub-type that reflects the most general member type: when aliasing
primitive values and pointers, we select Addresses or arrays of
Addresses, since integers and floating-point numbers can be stored
in the offset field of an address. As an alternative to using a single
type, a map operation writefield(offset, object) could be
introduced that replaces an existing object at the given offset to
store a member with a different type. Such an approach would
resemble tagged unions, which are, for example, used by precise
GCs for C [33].

4 MEMORY MANAGEMENT
Two of our main concerns are how to implement memory man-
agement for C and how to handle memory errors. Allocating stack
objects and global objects is straightforward, since their type is

4Read operations typically always access the same struct field through its name in the
source code. Consequently, we mitigate the map-lookup costs by caching the lookup
result. Note that an index for a struct member is the same across struct objects, so
reading the same struct field from different objects is also efficient.

known. We map such allocations to one of the types presented in
Section 3. Variable-length array declarations that have a negative
or zero size induce undefined behavior (C11 6.7.6.2 §5). We trap
in such cases, which corresponds to Java’s default behavior when
the size is negative (we still have to explicitly check for zero). For
heap objects (allocated by malloc(), calloc(), or realloc()) we
do not know the type of object that will be stored in it. Thus, we
allocate the corresponding Java object only on the first cast, read, or
write operation (i.e., when the type of the object becomes known).5
Another approach to addressing untyped heap allocations would
be to determine a type using static analysis [20].

4.1 Uninitialized Memory
There is no clear guidance on how a program should behave when
it reads from uninitialized storage, an action which can induce
undefined behavior [43]. There are two contradictory use cases,
one of which we must support in our lenient execution model.

The first use case is that some programs purposefully read from
uninitialized memory to create entropy. The entropy originates
from previously allocated memory; uninitialized stack reads can
read previous activation frames, while uninitialized heap reads can
read malloced and freed heap memory. This pattern is problematic,
and commonly used bug-finding tools such as Valgrind [31] and
MSan [46] report it as a program error. Another issue is that reads to
uninitialized memory make applications prone to information-leak
attacks [27]. While allowing a program to read stale values could
be dangerous, initializing all data structures with random values
(to create entropy) would be overkill.

The second scenario is that programmers read uninitialized stor-
age by accident. When executing programs with Safe Sulong, we
found a number of programs that forgot to initialize memory or as-
sumed that it was zero-initialized. Those programsworked correctly
when uninitialized reads returned zero, which was suggested by
Bernstein [2]. Zero-initialization is also supported by SafeInit [27],
a protection system for C/C++ programs. Like SafeInit, we decided
to support the second scenario, as it does not obviously jeopardize
system security. Our implementation initializes all values to zero
(recursively for nested objects); primitives are initialized to zero val-
ues, while pointers are initialized to NULL. Note that this approach
is close to Java’s default behavior, which initializes fields with an
Object type to zero values if they are not initialized explicitly.

4.2 Memory Leaks and Dangling Pointers
C requires programmers to manually manage heap memory: mem-
ory allocated by malloc() must be freed using free(). Forgetting
to free an object causes a memory leak, which can impact perfor-
mance and can lead to the application running out of memory. Since
Safe Sulong runs on a JVM, the JVM’s GC reclaims objects after they
are no longer needed. Note that automatic memory management
cannot easily be implemented for static compilers; hence, it is also
not covered by Friendly C.

5For efficiency, we propagate the type back to the allocation site, similarly to allocation
mementos in V8 [7]. Subsequent calls to the allocation function directly allocate an
object of the observed type.
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A dangling pointer is a pointer whose pointee has exceeded
its lifetime. Accessing such a pointer induces undefined behavior.
There are two situations in which a dangling pointer can be created:

• A heap object is freed using free() (C11 7.22.3.3).
• AC object with automatic storage duration (i.e., a stack variable)

exceeds its lifetime (C11 6.2.4 §2).

There is no use case for accessing dangling pointers; they are caused
by errors in manual memory management. In our type hierarchy,
we could detect such errors by setting automatic objects to null
after leaving a function scope, and by letting free() calls set the
data of a pointee to null [37]. However, since we strive for lenient
execution, we do not set them to null and retain references to
objects whose lifetimes are exceeded. Consequently, programs can
access dangling pointers as if they were still alive. This is useful to
execute programs which, for example, access a dangling pointer
shortly after a free() call under the assumption that the memory
has not yet been reallocated. Only when the program loses all
references to a pointee does the GC reclaim the pointee’s memory.

Not aborting execution on use-after-free errors is Lenient C’s
most controversial design decision, as many tools strive to find such
errors [29, 49, 58]. Safe Sulong can be used to find such errors, when
executing programs using its default mode (instead of assuming
the Lenient C dialect).

4.3 Buffer Overflows and NULL Dereferences
Besides use-after-free errors and invalid free errors, also buffer
overflows and NULL dereferences are of concern, as they induce un-
defined behavior. For buffer overflows, an out-of-bounds read could
produce a predefined zero value. This would work well when a non-
delimited string was passed to a function operating on it; when
reading zero, the function would assume that it had reached the
end of the string. However, we also found that some programs with
out-of-bounds reads did not terminate when producing a zero value
upon out-of-bounds reads. For example, the fasta-redux benchmark
ran out of bounds while adding up floating-point values. Due to a
rounding error, the number did not add up to 1.00, and the program
only terminated when reading positive garbage values [36]. In gen-
eral, this approach is known as failure-oblivious computing [40],
which ignores out-of-bound writes and produces a sequence of
predefined values to accommodate various scenarios. As there is
no value sequence that works for all programs, we decided to trap
on buffer overflows. This also corresponds to Java’s default seman-
tics. Since we represent C arrays and structs using Java arrays,
Java automatically performs bounds checks on accesses. On most
architectures, NULL dereferences produce traps and usually cause
unrecoverable program errors. Consequently, Lenient C also traps
on NULL dereferences.

5 POINTER OPERATIONS
Pointers and pointer arithmetic are the main difference between C
and other higher-level languages such as Java and C#, which use
managed references instead. Consequently, this section explains
how Safe Sulong implements operations that involve pointers.

int main() {

int arr[3] = {1, 2, 3};

ptrdiff_t diff1 = &arr[3] - &arr [0];

size_t diff2 = (size_t) &arr[3] - (size_t) &arr [0];

printf("%td %ld\n", diff1 , diff2); // prints 3 12

}

Figure 5: Computing the pointer difference

5.1 Pointer Arithmetic
Addition or subtraction of integers. The standard defines ad-
ditions and subtractions where one operand is a pointer P and the
other an integer N (C11 6.5.6). Such an operation yields a pointer
with the same type as P which points N elements forward or back-
ward, depending on whether the operation is an addition or sub-
traction. For example, arr + 5 computes an address by taking the
address of arr and incrementing it by five elements. In our hierar-
chy, such an address computation creates a new pointer based on
the old pointee and an updated offset. We compute the pointer as
a new tuple (pointee, oldPointer.offset + sizeof(type) *
N). For example, if arrwas an int, we would compute the offset by
sizeof(int) * N. Note that the standard defines these operators
only for pointers to arrays (C11 6.5.6 §8), while Lenient C allows
pointer arithmetic for pointers to any type.
Subtraction of two pointers. The standard defines that sub-
tracting two pointers yields the difference of the subscripts of the
two array elements (C11 6.5.6 §9). Figure 5 shows a code snippet that
subtracts two pointers, where one points to the start and one to the
end of an array; note that the standard requires a common pointee
(or a pointer one beyond the last array element). We implement
pointer subtraction by subtracting the two integer representations
of the pointers (see Section 5.3). Note that it would be sufficient to
subtract the two pointer offsets; however, this could lead to unex-
pected results for different pointees (which is undefined behavior)
with the same offset since the difference would suggest a common
pointee.
Pointer overflow. The C standard allows pointers to point only
to an object or to one element after it (C11 6.5.6 §8). The latter
is useful when iterating over an array in a loop using a pointer.
Lenient C abolishes these restrictions: in Safe Sulong a pointer
is, through the offset field, handled like an integer and is, for
example, allowed to overflow. However, we prohibit dereferencing
out-of-bounds pointers (see Section 4.3).
Pointer comparisons. Two pointers a and b can be compared
using the same comparison operators as integers and floating-point
numbers.
Implementing the equality operators (== and !=) is straightfor-
ward. For example, to determine equality for two pointers, we
check whether they refer to the same pointee and have the same
pointer offset. In Java, we implement the pointee comparison using
a.pointee == b.pointee, which checks for object equality. If the
expression yields true, we also compare the offset using a.offset
== b.offset.
Implementing the relation operators (<, >, <=, and >=) is more diffi-
cult. The C standard defines these operators only for pointers to the
same object or its subobjects (for structs and arrays); comparing
two different objects yields undefined behavior (C11 6.5.8 §5). To
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void *memmove(void *dest , void const *src , size_t n) {

char *dp = dest;

char const *sp = src;

if (dp < sp) {

while (n-- > 0) *dp++ = *sp++;

} else {

dp += n; sp += n;

while (n-- > 0) *--dp = *--sp;

}

return dest;

}

Figure 6: Non-portable implementation of memmove (adapted
from [48])

implement standard-compliant behavior, comparing the pointer
offset would be sufficient; for example, to implement <, we could
compare a.offset < b.offset. However, we found that programs
often compare pointers to different objects. For example, Figure 6
shows a naive implementation of memmove that potentially com-
pares two pointers to different objects, which is undefined behavior.
For such patterns, comparing only the pointer offsets would give
unexpected results, since it does not order objects. Instead, we es-
tablish an ordering using the integer representations of the pointers
(see Section 5.3).

5.2 Pointer-to-Pointer Casts
In general, casts between pointers are implementation-defined
(C11 6.3.2.3 §7). At the platform level, they are undefined if the
converted pointer is not correctly aligned for the referenced type.
Safe Sulong’s abstracted architecture does not require any pointer
alignments, so we support casts between different pointer types, as
required by Lenient C. Since in our architecture, pointer-to-pointer
casts do not change the underlying object representation, we can
simply achieve the desired behavior by not performing any action.

5.3 Conversions between Pointers and Integers
We found that many applications assume pointers to be regular
integer types. Consequently, some programs arbitrarily convert
pointers to integers, perform computations on the integers, convert
them back and dereference them. Additionally, programmers some-
times craft pointers from integers that are not obviously related.
For example, the Cerberus survey showed that programmers rely
on being able to compute the difference between two pointers, and
using the pointer difference to refer from one object to another [26].
Another example are compressed oops in the Hotspot VM, where
on 64-bit architectures addresses are compacted to 32 bits [41]. Fi-
nally, some popular C applications store information in unused bits
of an address [6].

Such patterns are implementation-defined and discouraged
(C11 6.3.2.3 §5); for example, they often cause vulnerabilities when
upgrading to a platform on which data types have a different bit
width [56]. Approaches that represent C memory as an array can
easily support them, but they cannot rely on the GC to reclaim dead
C objects. When programmers can construct pointers arbitrarily, a
GC cannot securely reclaim any objects. Consequently, GCs for C
must compromise. For example, the Boehm GC assumes all values
to be pointers that, if treated as pointers, refer to a valid memory

region. The Magpie GC assumes only those values to be reachable
that have a pointer type [33]. Given the tradeoffs, we present two
strategies for converting integers to pointers: the first prohibits
converting integers to pointers, and the second must — like the
Boehm GC and Magpie — rely on heuristics for garbage collection.

The first strategy converts an address to a 64-bit integer value by
concatening the 32-bit hash of the pointee with the offset ((long)
System.identityHashCode(pointee) << 32 | offset). Once
an address has been converted to an integer, it loses its reference
to its pointee. When converted back to a pointer, we assign the
integer value to offset, and NULL to the pointee. The pointer can
no longer be dereferenced. This can be a problem if a pointer is
copied byte-wise (e.g., in functions similar to memmove or memcpy),
since only its integer representation is copied. If two pointers re-
ferring to the same object are converted to integers, the ordering
is maintained if the offset does not exceed 32 bits. For pointers
with a NULL pointee we use the 64-bit pointer offset as an integer
representation to maintain the order relation between pointers that
were converted back and forth to integers. Note that this approach
is unsound for pointers to different pointees, because it can yield
identical or overlapping values for different pointees. This repre-
sentation allows the relation operators to be total and transitive.
However, it violates antisymmetry; that is, two pointers can have
the same integer representation when they refer to different objects.
That is, (long) p == (long) q for two pointers p and q can yield
true, even if the pointers refer to different objects. Nevertheless,
we have not yet found a program that relies on the antisymmetry
property; programs typically use the equality operators on pointers
to determine equality.

The second strategy is to assign a unique ID to every object
when it is converted to an integer. The first strategy could also use
unique IDs if an application requires antisymmetry. This ID is to
be incremented by the size of the object. To support dereferencable
pointers that were obtained by integers, we store “escaping” objects
(i.e., objects whose pointers are converted to integers) in a tree data
structure that associates the range of addressable bytes with an
object. When an integer is converted to a pointer, the conversion
operation looks up the object in this tree. Using the integer repre-
sentation of the first strategy here would be dangerous, since an
application could gain access to another object if they share the
same hash code. Note that escaped objects stored in the tree would
never be collected by the GC. To address this, the GC is allowed to
collect such pointers when the application runs low on memory
(by using a SoftReference). An alternative strategy would involve
using a least-recently-used technique [32] to keep only those map-
pings alive that are used by the application. The drawback is that
object graphs could be collected even though the application still
wants to use them, specifically when the integer value is the only
reference to the object graph, and when the application runs low
on memory.

5.4 Reading from Memory
Two pointers can alias, which means that they can point to the
samememory location. A frequent source of errors is that compilers
assume that pointers cannot alias when programmers intend them
to do [9]. The best known aliasing restriction is the strict-aliasing
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int func(int *a, long *b) {

*a = 5;

*b = 8;

return *a;

}

Figure 7: Example demonstrating strict aliasing

rule: the C11 standard specifies that two pointers of different types
(if neither is a char pointer) cannot alias (C11 6.5 §7). Figure 7 shows
an example that can yield unexpected results for programmers that
are not familiar with this rule. Note that, without optimization,
passing two identical pointers will likely yield a value of 8, since
a and b alias. However, C’s type rules do not allow them to alias,
and when compiler optimizations are enabled, the return value is
typically optimized to always be 5. Consequently, large projects
often disable strict aliasing through the -fno-strict-aliasing
compiler flag in GCC and LLVM [9, 26]. In Lenient C, we explicitly
allow two pointers of different types to alias. Moreover, we allow
that an incompatible type can be used to read from — or write a
value to — the pointee. In Safe Sulong, storing a value or reading a
value maps to a call of the read or write operation on the pointee.

6 ARITHMETIC OPERATIONS
C programmers often do not anticipate the semantics of corner cases
in arithmetic operations. Many approaches try to find program
errors related to arithmetic operations, especially integer-based
errors [5, 11]. Our goal is to define the semantics of integer opera-
tions as programmers would currently expect from the C standard.
To this end, Lenient C largely follows the way how corner cases
are handled in Java, which also corresponds closely to the AMD64
operations. Note that unsigned operations can be implemented with
operations on signed types. For example, we implement unsigned
division on integers using Integer.divideUnsigned provided by
the Java Class Library. Below, we explain howwe address the corner
cases in the arithmetic operations.
Data Model. C does not commit to a specific data model (e.g.,
LP64) that assigns sizes to all data types, and neither does Lenient
C. However, in contrast to the C standard, we assume that signed
integers are represented in two’s complement, as is the case in most
programming languages and hardware architectures. Consequently,
we can assign useful semantics to implementation-defined corner
cases in arithmetic operations. We define that right-shifting a neg-
ative value (of a signed type), which is implementation-defined
(C11 6.5.7 §5), behaves like an arithmetic shift; that is, the sign bit
of the value is extended to preserve the signedness of the number.
Signed integer overflow. While integer overflow is defined for
unsigned types, it is undefined for signed integers. Many signed
operations can overflow (+, -, *, /, %, and ≪ (C11 6.5.7 §4)), specif-
ically when the result of the operation cannot be represented in
the data type of the operation. Programs commonly rely on both
signed and unsigned integer overflow, for example, for hashing,
overflow checking, bit manipulation, and random-number gener-
ation [11]. Since in two’s complement the range of representable
positive and negative numbers is asymmetric, overflows can also
occur for division and modulo.

On architectures that support two’s complement, integer overflow
typically wraps around, as most programmers would expect. GCC
and Clang provide the -fwrapv flag, which enforces this behavior.
For example, the SPEC 2000 197.parser benchmark requires this
flag, since today’s compilers would otherwise optimize the code
in a way that lets the benchmark go into an infinite loop [11].
Safe Sulong provides wraparound semantics per default, which we
implemented using the standard Java arithmetic operators.
Division by zero. If the second operand of a division or modulo
operation is zero, the result is undefined (C11 6.5.5 §5). In most
languages and on most architectures, division by zero traps.6 Since
it is unclear what value a division by zero should return, Lenient C
always traps in such cases, which also corresponds to Java’s default
behavior.
Invalid shift amount. If the shift amount of a left- or right-shift
is negative or greater or equal to the width of the shifted operand,
the result is undefined. As initially demonstrated, architectures
handle negative shift amounts and excessively large shift amounts
differently. We decided to implement the semantics of Java, which
also correspond to those of AMD64, where the shift amount is
truncated to 5 bits.
Integer and floating-point conversions. Converting between
floating-point numbers and integers or converting between floating-
point numbers with different types can yield undefined behavior
if the value is not representable by the destination type. Examples
include converting NaN to an integer, converting a large double
value to a float, and converting a large long value to a float. To
implement casts efficiently across platforms, execution yields an
unspecified value in such cases.

7 EVALUATION
We evaluated our Lenient C dialect by comparing it with the
Friendly C standard and the SEI CERT C Coding Standard (see Ta-
ble 1). Additionally, we implemented the dialect in Safe Sulong.
Comparison with Friendly C. Of the 14 features that the
Friendly C standard proposes, Lenient C explicitly addresses 12, for
which it mostly requires stricter guarantees. Friendly C aims to be
implemented by a static compiler and makes tradeoffs that enable
its efficient implementation across platforms (see below). Lenient
C prioritizes consistent behavior and safety over speed, and allows
implementers less leeway. Lenient C requires freed objects to stay
alive, which meets Friendly C’s requirement that a pointer’s value
should not change when its lifetime is exceeded (1). It requires trap-
ping upon out-of-bounds accesses and NULL pointer dereferences
(4), whereas Friendly C also allows an unspecified value. Friendly
C demands more lenient treatment for signed-integer overflows
(2), invalid shift amounts (3), division-related overflows (5), and
unsigned left-shifts (7). Lenient C addresses these demands and
leaves less leeway for a compatible implementation; for example,
Friendly C specifies an unspecified result for shift operations with
an invalid shift amount, while Lenient C requires the shift value
to be masked. Like Lenient C, Friendly C requires that externally
visible side effects not be reordered (6), and that a compiler should
not be granted additional optimization opportunities when infer-
ring that a pointer is invalid (13). Additionally, both Lenient C and
6In MySQL, however, division by zero yields a NULL result.
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Friendly C abolish the strict aliasing rule (10). While Friendly C
specifies reads from uninitialized storage to yield an unspecified
value (8), Lenient C requires such reads to return 0. Both Friendly
C and Lenient C allow out-of-bounds pointers and arbitrary com-
putations on pointers (9). With respect to functions, Friendly C
requires that, when control reaches the end of a non-void function,
an unspecified value be returned if the return statement is missing
(14); Lenient C requires 0 to be returned.
Both Friendly C and Lenient C are not comprehensive. Of the two
points that Lenient C does not address, one (11) is related to data
races. We will consider extending the Lenient C standard to ad-
dress multithreading issues as part of future work. The other point
(12) proposes memmove semantics for memcpy. Using memcpy with
overlapping arguments is a common error, so Safe Sulong imple-
ments memcpy using memmove. However, we deferred the discussion
of lenient semantics for standard library functions. Lenient C has
additional guarantees compared to Friendly C. It demands addi-
tional lenience on memory management errors (M1, M2, M3) and
requires struct padding to be initialized to 0 (A2). It also estab-
lishes an ordering on objects that should hold when pointers are
converted to integers (P3, C2). Lenient C allows arbitrary pointer
casts (C1) and pointer arithmetic on pointers to non-array objects
(P4). Additionally, it specifies semantics when types or number of
arguments in a function call do not match the function declaration
(F2, F3). Lenient C requires signed numbers to be represented in
two’s complement (G3), an invalid size in variable-length arrays to
trap (G4), and otherwise undefined casts to produce an unspecified
value (C3).
Comparison with the SEI CERT C Coding Standard. The
SEI CERT C Coding Standard is a forward-looking set of best
practices for the C11 language. It comprises 14 chapters with
individual rules, each of which describes a best practice along
with anti-patterns. Our goal in Lenient C is not to rely on
programmers following these practices; instead, we assume that
they have anti-patterns in their code which they assume to work
correctly. Thus, for our evaluation we examined whether Lenient
C addresses such anti-patterns. The SEI CERT C Coding Standard
recommendations are comprehensive, and we excluded a number
of chapters because they do not fall into the scope of our work.
Specifically, we excluded the chapters on the preprocessor (PRE),
library functions (FIO, ENV, SIG, ERR), and concurrency problems
(CON).
The chapter regarding declarations and initialization (DCL) con-
tains several rules of interest to Lenient C. It requires that variables
be declared with appropriate storage durations (DCL30-C); Lenient
C keeps referenced objects alive and thus accepts inappropriate
storage durations. The chapter requires that no incompatible decla-
rations of the same object or function be made (DCL40-C), which
Lenient C partly addresses by trapping when a function is called
with a wrong number of arguments.
The chapter regarding expressions (EXP) consists of rules with
different concerns: it discusses invalid read operations, non-portable
pointer casts, and errors in calling functions. Lenient C allows
programs to read uninitialized memory (EXP33-C) and compare
padding values (EXP42-C), which it requires to be initialized with
zeroes. When NULL pointers are dereferenced, Lenient C specifies
that the implementation must trap (EXP34-C). It enables arbitrary

pointer casts (EXP36-C) and reading pointers using an incompatible
type (EXP39-C). Lenient C requires trapping when a function is
called with a wrong number of arguments (EXP37-C). The rule also
addresses wrong types in arguments, for which a callee in Safe
Sulong performs automatic conversions.
The chapter on integers (INT) warns against wrong integer conver-
sions (INT31-C), using types with an incorrect precision (i.e., bit
width, INT35-C) and unsigned integer wrapping (which is defined
behavior, INT30-C); these rules are of little concern to Lenient C.
Lenient C specifies wrapping semantics for signed overflow (INT32-
C), traps on division or remainder operations with zero as second
operand (INT33-C), and requires the shift amount to be masked
(INT34-C). One rule is concerned with conversions between point-
ers and integers (INT36-C) and details anti-patterns using crafted
pointers, which are implementation-defined. Lenient C does not
specify the semantics of casts between pointers and integers. Safe
Sulong provides two different standard-compliant strategies, of
which only the second (that stores escaped objects in a map) ad-
dresses user expectations in this context. As part of future work,
we plan to investigate both strategies using a case study of user
programs.
The chapter on floating-point numbers (FLP) is concerned mainly
with issues that are valid for floating-point numbers in general, so
they are of little interest in our evaluation; however, we defined
that otherwise undefined casts between integers and floating-point
numbers yield unspecified values (C3).
We addressed all anti-patterns of the array chapter (ARR), which
primarily discusses pointer arithmetic. Lenient C supports pointer
arithmetic on non-array types (ARR37-C, ARR39-C), creating out-
of-bounds pointers (ARR30-C, ARR38-C, ARR39-C), but traps when
dereferencing an out-of-bounds pointer (ARR30-C). It requires trap-
ping for non-positive variable-length array sizes (ARR32-C). Addi-
tionally, Lenient C supports subtracting and comparing pointers to
different objects (ARR39-C).
The characters and strings chapter (STR) discusses issues which are
statically detectable or which concern the usage of library functions.
All rules of the memory management chapter (MEM), except the
realloc alignment requirement, are of interest to us, and Lenient
C addresses each of them. Lenient C allows dangling pointers
(MEM30-C) to be accessed as if they were still alive and ignores
invalid frees (MEM34-C). It assumes a GC that reclaims memory
that is no longer needed (MEM31-C). Upon out-of-bounds accesses,
Lenient C requires implementations to trap (MEM33-C, MEM35-C).
The miscellaneous chapter (MISC) mostly discusses library func-
tions; however, MSC37-C states that control should never reach the
end of a non-void function, in which case Lenient C specifies a zero
value to be returned.
Implementation in Safe Sulong. We implemented Lenient C
in Safe Sulong, a system for executing LLVM-based languages on
the JVM. It does not directly execute C code, but LLVM IR, which
is the RISC-like intermediate format of the LLVM framework [23].
We implemented Safe Sulong on top of the Truffle language im-
plementation framework [53], which uses the Graal compiler [57]
to compile frequently-executed functions to machine code. Graal
optimizes the code based on Java semantics and thus preserves
side effects such as NULL dereferences, out-of-bounds accesses, and
arithmetic errors. Safe Sulong is based on Native Sulong [38], but it
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represents C objects on the managed Java heap instead of allocating
them in native memory. Its peak performance — reached after a
warm-up phase where Graal compiles frequently executed func-
tions to machine code — is currently around half that of executables
compiled by Clang -O3 on small benchmarks. As part of future work
we intend to thoroughly evaluate Safe Sulong’s performance and
lower its overhead.

8 RELATEDWORK
ManagedC. We previously worked on a Truffle implementation
for C called ManagedC [16]. ManagedC aimed to detect out-of-
bounds accesses and use-after-free errors, but otherwise assumed
strictly conforming C programs. Note that the implementation of
Lenient C in Safe Sulong is based on ManagedC, in particular in
its representation of pointers. However, while ManagedC had a
relaxed mode which allowed some illegal type casts, it left open
which C dialect it supported and how other portability issues (e.g.,
subtracting pointers to different objects) were addressed. Further,
Lenient C’s main goal is not to find errors in C programs, but
to tolerate them whenever possible. Unlike ManagedC, we also
tolerate use-after-free errors.
Dialects of C. Several C-like languages have been proposed, for
example, Polymorphic C [45], Cyclone [18], and CCured [30]. These
dialects add type safety and/or detection of memory errors to C-like
languages, but are not source-compatible with C. They do not touch
on other aspects of non-portable behavior.
Pointer-to-Integer casts. Kang et. al presented an approach to
using pointer-to-integer casts in formal memory models [19]. Most
formalizations rely on logical memory models (e.g., CompCert [24]),
in which pointers are represented as pairs of an allocation block
and an offset within that block, similar to our pointer pairs. They
extended this approach such that a pointer has two representations:
one in the concrete and one in the logical model. Per default, all
allocation blocks are allocated as logical blocks; only when a pointer
is cast to an integer is the logical pointer realized as an integer. This
approach is similar to ours, where we convert pointers that are cast
to an integer to a concrete representation that takes into account
the hash code and offset.
C to Java converters. Several systems exist for executing C on
the JVM, by converting C programs either to Java or to Java byte-
code [10, 25]. C-to-Java systems are typically used to migrate legacy
code and thus focus on producing readable code at the cost of cor-
rectness (e.g., by not supporting unsigned types [25]). Most of them
do not support non-portable patterns such as casting pointers to in-
tegers. Only Demaine’s approach touched on lenient execution [10];
for example, he stated that pointer comparisons between different
objects could be established by ordering of the heap. These ap-
proaches use an object hierarchy similar to ours, which makes
them suitable for implementing Lenient C.
CHERI. CHERI [54] is a RISC-based instruction set architecture
that provides hardware support for memory safety through un-
forgeable fat-pointers (called capabilities). As with Safe Sulong,
the CHERI authors found that it was straightforward to support
well-behaved C programs, but that it was difficult to compile and
run those with non-portable behavior. They studied problematic
patterns (portable, undefined, and implementation-defined idioms)

including removing const qualifiers, pointer arithmetic idioms, stor-
ing bits in an address and storing pointers in integer variables [6].
They found many instances of these patterns, and adapted their
execution model to better support such idioms.

9 CONCLUSIONS AND FUTUREWORK
We found that implementing the Lenient C dialect is helpful when
executing C programs that can be found “in the wild”, as it removes
the need to “fix” them to use only standard-compliant C. This di-
alect is best suited for execution on a managed runtime. However,
we hope that some of the rules will be incorporated into static com-
pilers to alleviate the problem of compiler optimizations conflicting
with user assumptions (thus breaking their code). The inspiration
to create this dialect came while executing non-portable programs
with Safe Sulong. However, Safe Sulong is a prototype and cannot
execute large programs, mainly due to unimplemented standard
library functions. Consequently, we have validated Lenient C in-
formally on programs of up to 5000 lines of code. We are currently
adding support for running a complete, well-behaved libc (such as
the musl libc [28]) on top of Safe Sulong. This requires Safe Sulong
to execute inline assembly and provide functionality that is typi-
cally provided by the operating system [37]. Once Safe Sulong has
reached a degree of completeness that enables it to execute larger
applications, we will conduct a case study to determine which fea-
tures of Lenient C are most useful for large real-world programs
and which features are still missing. In particular, we have yet to de-
termine which of the two strategies of converting between pointers
and integers is most suitable in practice. Lenient C still lacks stricter
semantics for standard library functions, preprocessing and other
issues (e.g., related to const and restrict qualifiers). Furthermore,
C/C++ concurrency semantics remain (among others) unsatisfac-
tory [1, 8], and Lenient C currently lacks stricter semantics for
multithreading. We will consider these issues as part of our future
work.
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1 Introduction

Since the birth of C almost 50 years ago, programmers have written many applications
in it. Even the advent of higher-level programming languages has not stopped C’s
popularity, and it remains widely used as the second-most popular programming
language [47]. However, C provides few safety guarantees and suffers from unique
security issues that have disappeared in modern programming languages. Buffer
overflow errors, where a pointer that exceeds the bounds of an object is dereferenced,
are the most serious issue in C [9]. Other security issues include use-after-free errors,
invalid free errors, reading of uninitialized memory, and memory leaks. Numerous
approaches exist that prevent such errors in C programs by detecting these illegal
patterns statically or during run time, or by making it more difficult to exploit them [46,
48, 55]. When an error happens, run-time approaches abort the program, which is more
desirable than risking incorrect execution, potentially leaking user data, executing
injected code, or corrupting program state.

However, we believe that in many cases programmers could better respond to illegal
actions in the application logic if they could use the metadata of run-time approaches
(e.g., bounds information) to check invalid actions at run time and prevent them from
happening. Library implementers in particular could use it to protect themselves from
user input and to compensate for the lack of exception handling in C. For example, if
they could check that an access would go out-of-bounds in a server library, they could
log the error and ignore the invalid access to maintain availability of the system (as
in failure-oblivious computing [35]). If the error happened in the C standard library
instead, they could set the global integer variable errno to an error code, for example,
to EINVAL for invalid arguments. Furthermore, a special value (such as -1 or NULL)
could be returned to indicate that something went wrong. Finally, explicit checks
could prevent lurking flaws that would otherwise stay undetected. For example, in the
case that a function does not actually access an invalid position in the buffer, bounds
checkers cannot detect when an incorrect array size is passed to the function. Using
bounds metadata, programmers could validate the passed against the actual array
size.
In this paper, we present a novel approach that allows C programmers to query

properties of an object (primitive value, struct, array, union, or pointer) so that they
can perform explicit sanity checks and react accordingly to invalid arguments or states.
These properties comprise the bounds of an object, the memory location, the number
of arguments of a function with varargs, and whether an object can be used in a certain
way (e.g., called as a function that expects and returns an int). The presented approach
is complementary to dynamic tools, and does not aim to replace them. Programmers
can insert custom input validations and error-handling logic where needed, but the
dynamic tool that tracks the exposed metadata still aborts execution for errors that
are not handled at the application level. Ultimately, this provides programmers with
greater flexibility and increases the robustness of libraries and applications, defined as
“[t]he degree to which a system or component can function correctly in the presence
of invalid inputs or stressful environmental conditions” [21].
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As a proof of concept, we implemented the introspection interface for Safe Su-
long [32], a bug-finding tool and interpreter with a dynamic compiler for C. Safe
Sulong prevents buffer overflows, use-after-free, variadic argument errors, and type
errors by checking accesses and aborting execution upon an invalid action. It already
maintains relevant run-time information that it can expose to the programmer.
In a case study, we demonstrate how the introspection functions facilitate re-

implementing the C standard library (libc) to validate input arguments. We use this
libc in Safe Sulong as a source-compatible, more robust drop-in replacement for the
GNU C Library. In contrast to the GNU C Library and other implementations, it can
detect lurking flaws, handle unterminated strings, check format string arguments,
and – instead of terminating execution – set errno when errors occur.
A plethora of other dynamic-bug finding tools and runtimes for C exist, and they

could expose their run-time data via the introspection functions introduced in this
paper. For example, bounds checkers [2, 11, 30, 38] could expose bounds information.
Temporal memory safety tools [4, 19, 29, 31, 39, 44] could expose information about
memory locations. Variadic argument checkers [3] and type checkers [18, 22] could
expose information about variadic arguments and types. There are also combined
tools that, for example, provide protection against both out-of-bounds accesses and
use-after-free errors [17, 29, 30].
As the overhead of dynamic tools is decreasing [22, 29, 30, 38, 44], they could

become standard in production, similar to stack canaries and address space layout
randomization [46]. At this point in time, a wider adoption of the introspection
functions (or a subset thereof) seems feasible. Additionally, we envisage that dynamic
tools available now could distribute specialized libraries that benefit from introspection,
as we will demonstrate using Safe Sulong’s libc as an example.

In summary, this paper contributes in the following ways:
We present introspection functions designed to allow programmers to prevent illegal
actions that are specific to C (Section 3).
We demonstrate how we implemented the introspection functions in Safe Sulong, a
bug-finding tool and interpreter with a dynamic compiler for C (Section 4).
In a case study, we show how using introspection increases the robustness of the C
standard library (Section 5).

2 Background

In C, the lack of type and memory safety causes many problems, such as hard-to-
find bugs and security issues. Moreover, manual memory management puts the
burden of deallocating objects on the programmer. Consequently, C programs are
plagued by vulnerabilities that are unique to the language. Faults can invoke undefined
behavior, so compiled code can crash, compute unexpected results, and corrupt or
read neighboring objects [50, 51]. It is often impossible to design C functions such
that they are secure against usage errors, since they cannot validate passed arguments
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or global data. Below we provide a list of errors and vulnerabilities in C programs
that we target in this work.
Out-of-bounds errors. Out-of-bounds accesses in C are among the most dangerous
software errors [9, 37], since – unlike higher-level languages – C does not specify
automatic bounds checks. Further, objects have no run-time information attached to
them, so functions that operate on arrays require array-size arguments. Alternatively,
they need conventions such as terminating an array by a special value.
Listing 1 shows a typical buffer overflow. The read_number() function reads digits
entered by the user into the passed buffer arr and validates that it does not write beyond
its bounds. However, its callee passes -1 as the length parameter, which is (through
the size_t type) treated as the unsigned number SIZE_MAX. Thus, the bounds check
is rendered useless, and if the user enters more than nine digits, the read_number()
function overflows the passed buffer.
A recent similar real-world vulnerability is CVE-2016-3186, where a function in libtiff
cast a negative value to size_t. As another example, in CVE-2016-6823 a function in
ImageMagick caused an arithmetic overflow that resulted in an incorrect image size.
Both faults resulted in buffer overflows.
Memory management errors. Objects that are allocated in different ways (e.g., on the
stack or by malloc()) have different lifetimes, which influences how they can be used.
For example, it is forbidden to access memory after it has been freed (otherwise known
as an access to a dangling pointer). Other such errors include freeing memory twice,
freeing stack memory or static memory, and calling free() on a pointer that points
somewhere into the middle of an object [29]. Listing 2 shows examples of a use-after-
free and a double-free error. Firstly, when err is non-zero, the allocated pointer ptr is
freed and later accessed again as a dangling pointer in logError(). Secondly, the code
fragment attempts to free the pointer again after logging the error, which results in a
double-free vulnerability. C does not provide mechanisms to retrieve the lifetime of
an object, which would allow checking and preventing such conditions. Consequently,
use-after-free errors frequently occur in real-world code. For example, in CVE-2016-
4473 the PHP Zend Engine attempted to free an object that was not allocated by one

Listing 1 Passing -1 to the size_t parameter renders the range check useless and could
cause an out-of-bounds error while writing read characters to arr

� void read_number ( char * arr , s i z e_ t length ) {
� i n t i = 0 ;
� i f ( length == 0) return ;
� i n t c = getchar ( ) ;
� while ( i s d i g i t ( c ) && ( i + 1 ) < length ) {
� arr [ i ++ ] = c ; c = getchar ( ) ;
� }
� arr [ i ] = ' \0 ' ;
� }
�� // . . .
�� char buf [ 1 0 ] ;
�� read_number ( buf , - 1 ) ;
�� p r i n t f ( "%s\n" , buf ) ;
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Listing 2 Use-after-free error which is based on an example from the CWE wiki
� char * ptr = ( char * ) malloc ( SIZE * s i zeo f ( char ) ) ;
� i f ( e r r ) {
� abrt = 1 ; f ree ( ptr ) ;
� }
� // . . .
� i f ( abrt ) {
� logEr ror ( " operation aborted " , ptr ) ; f ree ( ptr ) ;
� }
� // . . .
�� void logEr ror ( const char * message , void * ptr ) {
�� l og f ( " er ror while processing %p" , ptr ) ;
�� }

of libc’s allocation functions. Other recent examples include a dangling pointer access
and a double free error in OpenSSL (CVE-2016-6309 and CVE-2016-0705).
Variadic function errors. Variadic functions in C rely on the programmer to pass a
count of variadic arguments or a format string. Furthermore, a programmer must pass
the matching number of objects of the expected type. Listing 3 shows an example that
uses variadic arguments to print formatted output, similar to C’s sprintf() function. It
is based on a function taken from the PHP Zend Engine. As arguments, the function
expects a format string fmt, the variadic arguments ap, and a buffer xbuf to which
the formatted output should be written. To use the function, a C programmer has to
invoke a macro to set up and tear down the variadic arguments (respectively va_start()
and va_end()). Using the va_arg() macro, xbuf_format_converter() can then directly
access the variadic arguments. The example shows how a string can be accessed
(format specifier "%s") that is then inserted into the buffer xbuf.
The function uses the format string to determine how many variadic arguments should
be accessed. For example, for a format string "%s %s" the function attempts to access
two variadic arguments that are assumed to have a string type. Accessing a variadic
argument via va_arg() usually manipulates a pointer to the stack and pops the number
of bytes that correspond to the specified data type (char * in our example). In a
so-called format string attack, in which the function reads or writes beyond the stack
due to nonexistent arguments, an attacker can exploit the inability of the function to
verify the number and the types of the variadic arguments passed [8, 40].
In CVE-2015-8617, this function was the sink of a vulnerability that existed in PHP-7.0.0.
The zend_throw_error() function called xbuf_format_converter() with a message string
that was under user control. Consequently, an attacker could use format specifiers
without matching arguments to read from and write to memory, and thus execute
arbitrary code. As another example, in CVE-2016-4448 a vulnerability in libxml2
existed because format specifiers from untrusted input were not escaped.
Lack of type safety. Due to the lack of type safety, a programmer cannot verify whether
an object referenced by a pointer corresponds to its expected type [22]. Listing 4
demonstrates this for function pointers. The apply() function expects a function pointer
that accepts and returns an int. It uses the function to transform all elements of an
array. However, its callee might pass a function that returns a double; a call on it
would result in undefined behavior. Such “type confusion” cannot be avoided when
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Listing 3 Example usage of variadic functions, taken from the PHP Zend Engine
� s t a t i c void xbuf_format_converter ( void * xbuf , const char * fmt , v a _ l i s t ap ) {
� char * s = NULL ;
� s i z e_ t s_len ;
� while ( * fmt ) {
� i f ( * fmt ! = '% ' ) {
� INS_CHAR ( xbuf , * fmt ) ;
� } e lse {
� fmt ++ ;
� switch ( * fmt ) {
�� // . . .
�� case ' s ' :
�� s = va_arg ( ap , char * ) ;
�� s_len = s t r l en ( s ) ;
�� break ;
�� // . . .
�� }
�� INS_STRING ( xbuf , s , s_len ) ;
�� }
�� }
�� }

Listing 4 Example of type confusion
� i n t apply ( i n t * arr , s i z e_ t n , i n t f ( i n t arg1 ) ) {
� i f ( f == NULL ) return - 1 ;
� fo r ( s i z e_ t i = 0 ; i < n ; i ++ )
� arr [ i ] = f ( ar r [ i ] ) ;
� return 0 ;
� }
�
� double square ( i n t a ) { return a * a ; }
�
�� apply ( arr , 5 , square ) ;

calling a function pointer, since objects have no types attached that could be used for
validation.
Unterminated strings. Unterminated strings are a problem, since the string functions
of libc (and sometimes also application code) rely on strings ending with a ‘\0’ (null
terminator) character. However, C standard library functions that operate on strings
lack a common convention on whether to add a null terminator [28]. Additionally, it
is not possible to verify whether a string is properly terminated without potentially
causing buffer overreads. Listing 5 shows an example of an unterminated string
vulnerability. The read function reads a file’s contents into a string inputbuf. After the
call, inputbuf is unterminated if the file was unterminated or if MAXLEN was exceeded.
This is likely to cause an out-of-bounds write in strcpy(), since it copies characters to
buf until a null terminator occurs. Recent similar real-world vulnerabilities include
CVE-2016-7449, where strlcpy() was used to copy untrusted (potentially unterminated)
input in GraphicsMagick. Further examples are CVE-2016-5093 and CVE-2016-0055,
where strings were not properly terminated in the PHP Zend Engine as well as in
Internet Explorer and Microsoft Office Excel [27].
Unsafe functions. Some functions in common libraries such as libc have been designed
such that they “can never be guaranteed to work safely” [2, 12]. The most prominent
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Listing 5 Example fragment that may produce and copy an unterminated string
� read ( c f g f i l e , inputbuf , MAXLEN ) ;
� char buf [MAXLEN ] ;
� st rcpy ( buf , inputbuf ) ;
� puts ( buf ) ;

example is the gets() function, which reads user input from stdin into a buffer passed
as an argument. Since gets() lacks a parameter for the size of the supplied buffer, it
cannot perform any bounds checking and overflows the buffer if the user input is
too large. Although C11 replaced gets() with the more robust gets_s() function, legacy
code might still require the unsafe gets() function. In general, functions that lack size
arguments – which prevents safe access to arrays – cannot be made safe without
breaking source and binary compatibility.

3 Introspection Functions

To enable C programmers to validate arguments and global data, we devised intro-
spection functions to query properties of C objects and the current function (see
Appendix B). These functions allow programmers only to inspect objects and not to
manipulate them; therefore, the presented functions are not a full reflection interface.

We designed these functions specifically to provide users with the ability to prevent
buffer overflow, use-after-free, and other common errors specific to C. Through in-
trospection, programmers can validate certain properties (memory location, bounds,
and types) before performing an operation on an object. Additionally, introspection
allows the number of variadic arguments passed to be queried and their types to be
validated.

We built introspection based on several introspection primitives. These primitives
are a minimal set of C functions that require run-time support. We also designed
introspection composites, which are implemented as normal C functions and are based
on the introspection primitives or on other composites. The introspection functions
that we expose to the programmer contain both selected primitives and composites.
We hereafter denote internal functions that are private to an implementation with an
underscore prefix.

3.1 Object Bounds

Most importantly, we provide functions that enable the programmer to perform bounds
checks before accessing an object. Simply providing a function that returns the size of
an object is insufficient, since a pointer can point to the middle of an object. Instead,
we require the runtime to provide two functions to return the space (in bytes) to the
left and to the right of a pointer target: _size_left() and _size_right(). Their result is
only defined for legal pointers, which we define as pointers that point to valid objects
(not INVALID, see Section 3.2).
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Listing 6 Example of how to query the space to the left and to the right of a pointee
� i n t * ar r = malloc ( s i zeo f ( i n t ) * 10) ;
� i n t * ptr = &( arr [ 4 ] ) ;
� p r i n t f ( "%ld\n" , s i z e _ l e f t ( ptr ) ) ; // pr in t s 16
� p r i n t f ( "%ld\n" , s i z e _ r i gh t ( ptr ) ) ; // pr in t s 24

_size_left _size_right

sizeof(int) * 10

Figure 1 Memory Layout of the Example in Listing 6

Listing 7 Implementation of size_left() using the functions location(), _size_left(), and
_size_right()

� long s i z e _ l e f t ( const void * ptr ) {
� i f ( locat ion ( ptr ) == INVALID ) return - 1 ;
� bool inBounds = _s i z e_ r i gh t ( ptr ) >= 0 && _s i z e _ l e f t ( ptr ) >= 0 ;
� i f ( ! inBounds ) return - 1 ;
� return _ s i z e _ l e f t ( ptr ) ;
� }

Listing 6 illustrates the function return values when passing a pointer to the middle
of an integer array to these functions. For the pointer to the fourth element of the
ten-element integer array, _size_left() returns sizeof(int) * 4, and _size_right() returns
sizeof(int) * 6. Figure 1 shows the corresponding memory layout. On an architecture
where an int is four bytes in size the functions return 16 and 24, respectively.

We do not expose these two functions to the programmer, but base the composite
functions size_left() and size_right() on them, which return -1 if the passed argument is
not a legal pointer or out of bounds. Listing 7 shows the implementation of size_left().
Using location(), the function first checks that the pointer is legal (see Section 3.2). It
then checks that the spaces to the left and to the right of the pointer are not negative,
that is, the pointer is in bounds. If both checks are passed, the function returns the
space to the left of the pointer using _size_left(); otherwise, it returns -1.
Listing 8 shows how using size_right() improves read_number()’s robustness (see

Listing 1): If arr is a valid pointer but points to memory that cannot hold length chars,
we can prevent the out-of-bounds access by aborting the program. Note that the check
also detects lurking bugs, since it aborts even if fewer than length characters are read.
If arr is not a valid pointer, the return value of size_right() is -1.

3.2 Memory Location

Querying the memory location of an object (e.g., stack, heap, global data) allows
a programmer to obtain information about the lifetime of an object. For example,
it enables programmers to prevent use-after-free errors by detecting whether an
object has already been freed. Another use case is validating that no stack memory is
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Listing 8 By using the size_right() function we can avoid out-of-bounds accesses in
read_number()

� void read_number ( char * arr , s i z e_ t length ) {
� i n t i = 0 ;
� i f ( length == 0) return ;
� i f ( s i z e _ r i gh t ( ar r ) < length ) abort ( ) ;
� // . . .
� }

Listing 9 Example of how the location() enum constants relate to objects in a program
� i n t a ; // locat ion (&a ) returns STATIC for global objects
� void func ( ) {
� s t a t i c i n t b ; // locat ion (&b ) returns STATIC for s t a t i c loca l objects
� i n t c ; // locat ion (&c ) returns AUTOMATIC for stack objects
� i n t * d = malloc ( s i zeo f ( i n t ) * 10) ;
� // locat ion (&d ) returns DYNAMIC for heap objects
� f ree (d ) ; // locat ion (&d ) returns INVALID for freed objects
� }

Listing 10 By using location() and _size_left() we can check whether an object can be freed
� bool freeable ( const void * ptr ) {
� return locat ion ( ptr ) == DYNAMIC && _s i z e _ l e f t ( ptr ) == 0 ;
� }

returned by a function. A programmer can also check whether a location refers to
dynamically allocated memory to ensure that free() can be safely called on it. For this
purpose, we provide the function location(), which determines where an object lies in
memory.

The function returns one of the following enum constants:
INVALID locations denote NULL pointers or deallocated memory (freed heap memory
or dead stack variables). Programs must not access such objects.
AUTOMATIC locations denote non-static stack allocations. Functions must not return
allocated stack variables that were declared in their scope, since they become
INVALID when the function returns. Further, stack variables must not be freed.
DYNAMIC locations denote dynamically allocated heap memory created by malloc(),
realloc(), or calloc(). Only memory allocated by these functions can be freed.
STATIC locations denote statically allocated memory such as global variables, string
constants, and static local variables. Static compilers usually place such memory in
the text or data section of an executable. Programs must not free statically allocated
memory.

Listing 9 shows how differently allocated memory relates to the enum constants used
by location().
We provide the function freeable(), which is based on location(), to conveniently

check whether an allocation can be freed. As Listing 10 demonstrates, a freeable
object’s location must be DYNAMIC, and its pointer must point to the beginning of
an object. Listing 11 shows how we can use the freeable() function to improve the
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Listing 11 By using the freeable() function we can avoid double-free errors
� char * ptr = ( char * ) malloc ( SIZE * s i zeo f ( char ) ) ;
� i f ( e r r ) {
� abrt = 1 ;
� i f ( f reeable ( ptr ) ) f ree ( ptr ) ;
� }
� // . . .
� i f ( abrt ) {
� logEr ror ( " operation aborted " , ptr ) ;
� i f ( f reeable ( ptr ) ) f ree ( ptr ) ;
�� }

Listing 12 By using the location() function we can avoid use-after-free errors
� void logEr ror ( const char * message , void * ptr ) {
� i f ( locat ion ( ptr ) == INVALID )
� log ( " dangling pointer passed to logEr ror ! " ) ;
� else
� l og f ( " er ror while processing %p" , ptr ) ;
� }

robustness of the code fragment shown in Listing 2. It ensures that freeing the pointee
is valid, and thus prevents invalid free errors, such as double freeing of memory.
Nonetheless, the logError() function may receive a dangling pointer as an argument.
To resolve this, we can check in logError() whether the pointer is valid (see Listing 12).

Note that some libraries, such as OpenSSL, use custom allocators to manage their
memory. Custom allocators are outside the scope of this paper, but could be supported
by providing source-code annotations for allocation and free functions; this informa-
tion could then be used by the runtime to track the memory. The annotations for the
allocation functions would need to specify how to compute the size of the allocated
object, and the location of the allocated memory. Additionally, it might be desirable
to add further enum constants, for example, for shared, file-backed, or protected
memory. We omitted additional constants for simplicity.

3.3 Type

We provide a function that allows the programmer to validate whether an object is
compatible with (can be treated as being of) a certain type. Such a function enables
programmers to check whether a function pointer actually points to a function object
(and not to a long, for example) and whether it has the expected function signature.
As another example, programmers can use the function as an alternative to size_right()
and size_left() to verify that a pointer of a certain type can be dereferenced.

C has only a weak notion of types, which makes it difficult to design expressive type
introspection functions. For example, it is ambiguous whether a pointer of type int*
that points to the middle of an integer array should be considered as a pointer to an
integer or as a pointer to an integer array. Another example is heap memory, which
lacks a dynamic type; although programmers usually coerce them to the desired type,
objects of different types can be stored. Even worse, when writing to memory, objects
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Listing 13 By using try_cast() we can ensure that we can perform an indirect call on the
function pointer in apply()

� i n t apply ( i n t * arr , s i z e_ t n , i n t f ( i n t arg1 ) ) {
� i f ( s i z e _ r i gh t ( ar r ) < s i zeo f ( i n t ) * n | | t r y_cas t (& f , type ( f ) ) == NULL )
� return - 1 ;
� fo r ( s i z e_ t i = 0 ; i < n ; i ++ )
� arr [ i ] = f ( ar r [ i ] ) ;
� return 0 ;
� }

can be partially overwritten; for instance, half of a function pointer can be overwritten
with an integer value, which makes it difficult to decide whether the pointer is still a
valid function pointer.

Instead of assuming that a memory region has a specific type, we designed a function
that allows the programmer to check whether the memory region is compatible with
a certain type (similar to [22]). The try_cast() function expects a pointer to an object
as the first argument and tries to cast it to the Type specified by the second argument.
If the runtime determines that the cast is possible, it returns the passed pointer, and
NULL otherwise. The cast is only possible if the object can be read, written to, or called
as the specified type.
The Type object is a recursive struct which makes it possible to describe nested

types (known as type expressions [1]). For example, a function pointer with an int
parameter and double as the return type can be represented by a tree of three Type
structs. The root struct specifies a function type and references a struct with an int
type as the argument type as well as a struct with a double type as the return type.
Since manually constructing Type structs is tedious, we specified the optional operator
type(). As an argument, it requires the expression example value, whose declared type
is returned as a Type run-time data structure. Since the declared type is a compile-time
property, we want to resolve the type() operator during compile time; consequently,
the programmer cannot take type()’s address and call it indirectly. The operator is
similar to the GNU C extension typeof, which yields a type that can be used directly
in variable declarations or casts.
Listing 13 shows how the type introspection functions make the function apply()

(see Listing 4) more robust: apply() uses try_cast() to check whether the runtime can
treat its first argument as the specified function pointer. Its second argument is the
Type object that the type operator constructs from the declared function pointer type.
The try_cast() function returns the first argument if it is compatible with the specified
function pointer type; otherwise, it returns NULL. In addition to preventing the calling
of invalid function pointers, apply() prevents out-of-bounds accesses by validating the
array size.

The try_cast() function is similar to C++’s dynamic_cast(). However, we want to point
out that C++’s dynamic_cast() works only for class checks (which are well-defined),
while our approach works for all C objects. We believe that the exact semantics of
try_cast() should be implementation-defined, since run-time information could differ
between implementations. For example, depending on the runtime’s knowledge of
data execution prevention, it might either allow or reject the cast of a non-executable
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Listing 14 By using count_varargs() and get_varargs() we can use variadics in a robust way
� double avg ( i n t count , . . . ) {
� i f ( count == 0 || count ! = count_varargs ( ) )
� return 0 ;
� i n t sum = 0;
� fo r ( i n t i = 0 ; i < count ; i ++ ) {
� i n t * arg = get_vararg ( i , type (&sum) ) ;
� i f ( arg == NULL ) return 0 ;
� else sum += * arg ;
� }
�� return ( double ) sum / count ;
�� }

char array filled with machine instructions to a function pointer. Further, different
use cases exist, and a security-focused runtime might have more sources of run-time
information and be more restrictive than a performance-focused runtime. For example,
a traditional runtime would (for compatibility) allow dereferencing a hand-crafted
pointer as long as it corresponds to the address of an object, while a security-focused
runtime could disallow it. Thus, depending on the underlying runtime, compiler, and
ABI, try_cast() can return different results.

3.4 Variadic Arguments

Our introspection interface provides macros to query the number of variadic arguments
and enables programmers to access them in a type-safe way. They are implemented as
macros and not as functions, since they need to access the current function’s variadic
arguments. The introspection macros make using variadic functions more robust and
are, for example, effective in preventing format string attacks [8].

Querying the number of variadic arguments can be achieved by calling count_varargs().
The standard va_arg() macro reads values from the stack while assuming that they
correspond to the user-specified type. As a robust alternative, introspection com-
posites can use _get_vararg() to access the passed variadic arguments directly by an
argument index. To access the variadic arguments in a type-safe way, we introduced
the get_vararg() macro, which is exposed to the programmer and expects a type that
it uses to call try_cast(). Listing 14 shows an example of a function that computes the
average of int arguments. It uses count_varargs() to verify the number of variadic ar-
guments and ensures that the ith argument is in fact an int by calling get_vararg() with
type(&sum). If an unexpected number of parameters or an object with an unexpected
type is passed, the function returns 0.

For backwards compatibility, we used the introspection intrinsics to make the stan-
dard vararg macros (va_start(), va_arg(), and va_end()) more robust. Firstly, va_start()
initializes the retrieval of variadic arguments. We modified it such that it allocates a
struct (using the alloca() stack allocation function) and populates it using _get_vararg()
and count_varargs(). The struct comprises the number of variadic arguments, an ar-
ray of addresses to the variadic arguments, and a counter to index them. Secondly,
va_arg() retrieves the next variadic argument. We modified it such that it checks that
the counter does not exceed the number of arguments, increments the counter, in-
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Figure 2 Overview of Safe Sulong

dexes the array, and casts the variadic argument to the specified type using try_cast().
If the cast succeeds, the argument is returned; otherwise a call to abort() exits the
program. Finally, va_end() performs a cleanup of the data initialized by va_start(). We
modified it such that it resets the variadic arguments counter.
Using the enhanced vararg macros improves the robustness of the

xbuf_format_converter() function (see Listing 3), since the number of format
specifiers must match the number of arguments, thus making it impossible to exploit
the function through format string attacks. Note that the modified standard macros
abort when they process invalid types or an invalid number of arguments, whereas
the intrinsic functions allow programmers to react to invalid arguments in other ways.

4 Implementation

We implemented the introspection primitives in Safe Sulong [32], which is an execution
system and bug-finding tool for low-level languages such as C. At its core is an
interpreter written in Java that runs on top of the JVM. Although this setup is not
typical for running C, it is a good experimentation platform because the JVM (and
thus also Safe Sulong) already maintains all the run-time metadata that we want to
expose. If exposing introspection primitives turns out to be useful for Safe Sulong,
similar mechanisms could also be implemented for other runtimes (e.g., those of
static compilation approaches). Unlike its counterpart Native Sulong [33], Safe Sulong
uses Java objects to represent C objects. By relying on Java’s bounds and type checks,
Safe Sulong efficiently and reliably detects out-of-bounds accesses, use-after-free,
and invalid free. When detecting such an invalid action, it aborts execution of the
program. Section 4.1 gives an overview of the system, and Section 4.3 describes how
we implemented the introspection primitives.

4.1 System Overview

Figure 2 shows the architecture of Safe Sulong, which comprises the following compo-
nents:
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Figure 3 Diagram of the ManagedObject Hierarchy

Clang. Safe Sulong executes LLVM Intermediate Representation (IR), which repre-
sents C functions in a simpler, but lower-level format. LLVM is a flexible compilation
infrastructure [25], and we use LLVM’s front end Clang to compile the source code
(libraries and the user application) to the IR.
LLVM IR. LLVM IR retains all C characteristics that are important for the content of
this paper. It can, for instance, contain external function definitions and function calls.
By executing LLVM IR, Safe Sulong can execute all languages that can be compiled
to this IR, including C++ and Fortran. Using binary translators that convert binary
code to LLVM IR even allows programs to be executed without access to their source
code. For example, MC-Semantics [10] and QEMU [6] support x86, and LLBT [41]
supports the translation of ARM code. Binary libraries that are converted to LLVM IR
can then profit from the enhanced libraries that Safe Sulong can execute, such as our
enhanced libc.
Tru�e. The LLVM IR interpreter is based on Truffle [53]. Truffle is a language imple-
mentation framework written in Java. To implement a language, a programmer writes
an Abstract Syntax Tree (AST) interpreter in which each operation is implemented
as an executable node. Nodes can have children that parent nodes can execute to
compute their results.
Graal. Truffle uses Graal [54], a dynamic compiler, to compile frequently executed
Truffle ASTs to machine code. Graal applies aggressive optimistic optimizations based
on assumptions that are later checked in the machine code. If an assumption no longer
holds, the compiled code deoptimizes [20], that is, control is transferred back to the
interpreter and the machine code of the AST is discarded.
LLVM IR Interpreter. The LLVM IR interpreter forms the core of Safe Sulong; it executes
both the user application and the enhanced libc. First, a front end parses the LLVM IR
and constructs a Truffle AST for each LLVM IR function. Then, the interpreter starts
executing the main function AST, which can invoke other ASTs. During execution,
Graal compiles frequently executed functions to machine code.
JVM. The system can run efficiently on any JVM that implements the Java-based JVM
compiler interface (JVMCI [36]). JVMCI supports Graal and other compilers written
in Java.
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4.2 Introspection Primitives and Other Functions

While the majority of Safe Sulong’s libc is implemented in C, the introspection primi-
tives (and a core API, similar to system calls) are implemented directly in Java. Both
are ultimately represented using executable ASTs, which are stored in a symbol table
created prior to program execution. For functions contained in the LLVM IR file, the
parser constructs the AST nodes from the instructions denoted in the LLVM IR function.
For introspection primitives, we implemented special nodes that have no equivalent
bitcode instruction (see Section 4.3). During execution, Safe Sulong looks up the AST
in the symbol table using the function name. From the runtime’s perspective, the
implementation of that function is transparent.

4.3 Objects and Introspection

The LLVM IR interpreter uses Java objects instead of native memory to represent
LLVM IR objects (and thus C objects). Figure 3 illustrates its type hierarchy. Every
LLVM IR object is a ManagedObject which has subclasses for the different types. For
example, an int is represented by an I32 object, which stores the int’s value in the
value field. Similarly, there are subclasses for arrays, functions, pointers, structs, and
other types. Note that we have previously described a similar object hierarchy for the
implementation of a Lenient C dialect and how certain corner cases are supported
(e.g., deriving pointers from integers) [34]. In the introspection implementation, we
needed to expose properties of these Java objects to the programmer:

Bounds. The ManagedObject class provides the method getByteSize(), which returns
the size of an object. Safe Sulong represents pointers as objects of a ManagedAddress
class that holds a reference to the pointee and a pointer offset that is updated through
pointer arithmetics (pointee and pointerO�set). For example, for the pointer to the 4th

element of an integer array in Listing 6, the pointerO�set is 16, and pointee references
an I32Array that holds a Java int array (see Figure 4). If a program were to dereference
the pointer, the interpreter would compute pointerO�set / sizeof(int) to index the array.
We implemented the size_right() function by ptr.pointee.getByteSize() - ptr.pointerO�set.
Memory location. Although ManagedObjects live on the Java heap, the location() func-
tion needs to return their logical memory location. This location is stored in a field
of the ManagedObject class. Depending on whether an object is allocated through
malloc(), as a global variable, as a static local variable, or as a constant, we assign a
different flag to its location field; calls to free() and deallocation of automatic variables
assign INVALID. For instance, for an integer array that lives on the stack, the interpreter
allocates an I32Array and assigns AUTOMATIC to its location. After leaving the function
scope, its location is updated to INVALID. When the location() function is called with a
pointer to the integer array, it returns the location field’s value.
Type. For implementing the try_cast() function, we check if the type of the passed
object (given by its Java class) is compatible with the type specified by the Type struct.
For example, to check whether we can call a pointer as a function with a certain
signature, we first compare the passed pointer with a Type that describes this signature.
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ptr: ManagedAddressptr: ManagedAddress

pointerOffset = 16
pointee

arr: I32Arrayarr: I32Array

values = 

Figure 4 Representation of a pointer to the 4th element of an int array

If the pointer references a Safe Sulong object of type Function, the argument and
return types are compared. This is possible because Function objects retain run-time
information about their arguments and return types, which can be retrieved via the
method getSignature().
Variadic arguments. In Safe Sulong, a caller explicitly passes its arguments as an object
array (i.e., a Java array of known length) to its callee. Based on the function signature
and the object array, the callee can count the variadic arguments to implement
count_varargs() and extract them to implement _get_vararg().

5 Case Study: Safe Sulong’s Standard Library

We implemented an enhanced libc for Safe Sulong. This libc uses introspection for
checks that make it more robust against usage errors and attacks. For instance,
its functions identify invalid parameters that would otherwise cause out-of-bounds
accesses or use-after-frees. In such a case, the functions return special values to
indicate that something went wrong, and then set errno to an error code. However,
for functions for which no special value can be returned (e.g., because the return type
is void), setting errno would be meaningless, since functions are allowed to change
errno arbitrarily even if no error occurred. In these cases, the functions still attempt
to compute a meaningful result. Such behavior is compliant with the C standards,
since we prevent illegal actions with undefined behavior that could crash the program
or corrupt memory.
For applications and libraries that run on Safe Sulong, the distribution format is

LLVM IR and not executable code. Our standard library improvements are binary-
compatible at the IR level, which means that users do not have to recompile their
applications when using our enhanced libc. In addition, this standard library is source-
compatible, so a user is not required to change the program when using it. Below, we
give an overview of our enhanced library functions:

String functions. Wemade all functions that operate on strings (strlen(), atoi(), strcmp(),
printf(), etc.) more robust by computing meaningful results even when a string lacks
a null terminator. They do not read or write outside the boundaries of unterminated
strings, which makes them robust against common string vulnerabilities. The functions
increase availability of the system, since unterminated strings passed to libc do not
cause crashes. Note that when a function outside libc relies on a terminated string, it
will still trigger an out-of-bounds access and cause Safe Sulong to abort execution.
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Listing 15 Robust implementation of strlen() that also works for unterminated strings
� s i z e_ t s t r l en ( const char * s t r ) {
� s i z e_ t len = 0 ;
� while ( s i z e _ r i gh t ( s t r ) > 0 && * s t r ! = ' \0 ' ) {
� len ++ ; s t r + + ;
� }
� return len ;
� }

Thus, increased availability does not harm confidentiality (e.g., by leaking data of
other objects) and integrity (e.g., by overwriting other objects).
For instance, Listing 15 shows how we improved strlen() by preventing buffer overflows
when iterating over a string, and by improving the handling of non-legal pointers
(where size_right() returns -1). For terminated strings, strlen() iterates until the first
‘\0’ character to return the length of the string. For unterminated strings, the function
cannot return -1 to indicate an error, since size_t is unsigned, so we also do not set
errno. Instead, it iterates until the end of the buffer and returns the size of the string
until the end of the buffer.
The enhanced string functions also allow execution of the code fragment in Listing 5.
Even though the source string may be unterminated, strcpy()will not produce an out-of-
bounds read, since it stops copying when reaching the end of the source or destination
buffer. The call to puts() also works as expected, and prints the unterminated string.
Functions that free memory. We made functions that free memory (realloc() and free())
more robust by checking whether their argument can safely be freed using freeable().
In Safe Sulong, malloc() is written in Java and allocates a Java object. By using the
introspection functions we were able to conveniently and robustly implement realloc()
in C without having to maintain a list of allocated and freed objects.
Format string functions. We made input and output functions that expect format
strings more robust. Examples are the printf() functions (printf(), fprintf(), sprintf(),
vfprintf(), vprintf(), vsnprintf(), vsprintf()) and the scanf() functions (scanf(), fscanf(),
etc.). These functions expect format strings that contain format specifiers, and match-
ing arguments that are used to produce the formatted output. Since the functions
are variadic, we used count_varargs() to add checks that verify that the number of
format specifiers is equal to the actual number of arguments. Further, the functions use
get_vararg() to verify the argument types. This prevents format-string vulnerabilities
and out-of-bounds reads in the format string, as demonstrated in the implementation
of strlen().
Higher-order functions. We enhanced functions that receive function pointers such as
qsort() and bsearch(). Listing 16 shows how qsort() can use try_cast() to verify that f is
a function pointer that is compatible with the specified signature. Furthermore, the
functions verify that no memory errors, such as buffer overflows, can occur.
gets() and gets_s(). While C11 replaced the gets() function with gets_s(), Safe Sulong
can still provide a robust implementation for gets() (see Listing 17). Since size_right()
can determine the size of the buffer to the right of the pointer, we can call it and use
the returned size as an argument to the more robust gets_s() function. If the pointer
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Listing 16 Robust qsort() implementation that checks whether it can call the supplied
function pointer

� void qsort ( void *base , s i z e_ t nitems , s i z e_ t s ize , i n t ( * f ) ( const void * , const void * ) ) ←�
�→ {

� i n t ( * ve r i f i edPo in te r ) ( const void * , const void * ) = t r y_cas t (& f , type ( f ) ) ;
� i f ( s i z e _ r i gh t ( base ) < nitems * s i ze | | ve r i f i edPo in te r == NULL ) errno = EINVAL ;
� else {
� // qsort implementation
� }
� }

Listing 17 Robust implementation of gets() that uses the more robust gets_s() in its imple-
mentation

� char * gets ( char * s t r ) {
� i n t s i ze = s i z e_ r i gh t ( s t r ) ;
� return gets_s ( s t r , s i ze == -1 ? 0 : s i ze ) ;
� }

Listing 18 Robust implementation of gets_s() that verifies the passed size argument
� char * gets_s ( char * st r , r s i z e _ t n ) {
� i f ( s i z e _ r i gh t ( s t r ) < ( long ) n ) {
� errno = EINVAL ; return NULL ;
� } e lse {
� // o r i g i na l code
� }
� }

is not legal, we pass 0, which gets_s() handles as an error. We also made gets_s() more
robust against erroneous parameters (see Listing 18). By using size_right() we can
validate that the size parameter n is at least as large as the remaining space right
of the pointer. The check prevents buffer overflows for gets() and gets_s(), and also
passing of dead stack memory or freed heap memory.

6 Related Work

C Memory safety approaches. For decades, academia and industry have been coming
up with approaches to tackling memory errors in C. Thus, there is a vast number of
approaches that deal with these issues, both static and run-time approaches, both
hardware- and software-based. We consider our approach as a run-time approach,
since the checks (specified by programmers in their programs) are executed during
run time. The literature provides a historical overview of memory errors and defense
mechanisms [48], an investigation of the weaknesses of current memory defense
mechanisms including a general model for memory attacks [46], and a survey of
vulnerabilities and run-time countermeasures [55]. Using introspection to prevent
memory errors is a novel approach that is complementary to existing approaches
because the programmer can check for and prevent an invalid action; if the check is
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omitted and an invalid access occurs, an existing memory safety solution could still
prevent the access.
Run-time types for C. libcrunch [22] is a system that detects type-cast errors at run
time. It is based on liballocs [23], a run-time system that augments Unix processes
with allocation-based types. libcrunch provides an __is_a() introspection function
that exposes the type of an object. It uses this function to validate type casts and
issues a warning on unsound casts. In contrast to our approach, libcrunch checks for
invalid casts automatically, so the __is_a() function is not exposed to the programmer,
nor are there other introspection functions. However, we believe that the system
could be extended to provide additional run-time information that could be used to
implement the introspection primitives. Typical overheads of collecting and using the
type information are between 5-35%, which demonstrates that introspection functions
are feasible in static compilation approaches.
Failure-oblivious computing. Failure-oblivious computing [35] is a technique that en-
ables servers to continue their normal execution path in the presence of memory errors.
Instead of aborting the program, invalid writes are discarded, and for invalid reads
values are manufactured. Note that this approach is automatic, since the compiler
inserts checks and continuation code where memory errors can occur. Failure-oblivious
computing would, for example, work well for strlen by manufacturing the value zero
when the NULL terminator is missing and the read runs over the buffer end. However,
returning zero for out-of-bounds accesses does not work in general; for example, when
the loop’s exit condition checks if the array element is -1, failure-oblivious computing
approaches could run into an endless loop. In contrast, using our introspection tech-
nique, programmers can take into account the semantics of a function to prevent such
situations. Additionally, introspection can also be used for bug-finding (not only to
increase availability), for example, by checking if the actual buffer length corresponds
to the expected buffer length in functions like gets_s.
Static vulnerability scanners. Static vulnerability scanners identify calls to unsafe func-
tions such as gets() depending on a policy specified in a vulnerability database [49].
Such approaches must decide conservatively whether a call is allowed, unlike our
approach, which validates parameters at run-time through introspection. Nowadays,
most compilers issue a warning when they identify a call to an unsafe function such
as gets(), but not necessarily for other, slightly safer functions, such as strcpy().
Fault injection to increase library robustness. Fault injection approaches generate a se-
ries of test cases that exercise library functions in an attempt to trigger a crash in
them. HEALERS [13, 14] is an approach that, after identifying a non-robust function,
automatically generates a wrapper that sits between the application and its shared
libraries to handle or prevent illegal parameters. To check the bounds of heap ob-
jects passed to the functions, the approach instruments malloc() and stores bounds
information. In contrast to our solution, the approaches above support pre-compiled
libraries. However, they can generate wrapper checks only where run-time information
is explicitly available in the program. Additionally, they prevent the programmer from
specifying the action in case of an error, and always set errno and return an error
code.
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Detecting API misusages. APISan [56] is a tool for finding API usage errors, such as
cryptographic protocol API misues, but also integer overflows, NULL dereferences,
memory leaks, incorrect return values, format string vulnerabilities, and wrong argu-
ments. It is based on the idea that the dominant usage pattern of an API across several
projects indicates its correct use. APISan is implemented by gathering execution
traces using symbolic execution, from which it infers correct API usages; deviating
patterns are potential API misuses. While this approach aims to identify incorrect use
of libraries, our approach aims to make library functions more robust.
Replacing (parts of) libc. SFIO [24] is a libc replacement and addresses several of its
problems. It mainly improved completeness and efficiency, but it also introduced safer
routines for functions that operate on format strings. Additionally, the SFIO standard
library functions are more consistent in their arguments and argument order, and
thus less error-prone than some of the libc functions. In [28], the less error-prone
strlcpy() and strlcat() functions were presented as replacements for the strcpy() and
strncat() functions. Unlike our improved C standard library, these approaches lack
source compatibility.
Safer implementation of library functions. To prevent format string vulnerabilities in
the printf family of functions, FormatGuard [8] uses the preprocessor to count the
arguments to variadic functions during compile time and checks that the number com-
plies with the actual number at run time. FormatGuard replaces the printf functions
in the C standard library with more secure versions while retaining compatibility
with most programs. From a user perspective, FormatGuard is similar to Safe Sulong’s
standard library, in that both provide more robust C standard library functions. While
our approach works only for runtimes that implement the introspection primitives,
StackGuard works for arbitrary compilers and runtimes. However, our approach can
also verify bounds, memory location, and types of objects.
Restricting bu�er over�ows in library functions. Libsafe [2] replaces calls to unsafe li-
brary functions (such as strcpy() and gets()) with wrappers that ensure that potential
buffer overflows are contained within the current stack frame. It can prevent only
stack buffer overflows, since it checks that write accesses do not extend beyond the
end of the buffer’s stack frame. In contrast, approaches exist that protect only against
heap buffer overflows caused by C standard library functions [15]. By intercepting
C standard library calls, the approach keeps track of heap memory allocations and
performs bounds checking before calling the C standard library functions that operate
on buffers. Both approaches work with any existing pre-compiled library, but do not
protect against all kinds of buffer overflows. With our approach, a programmer can im-
plement checks that prevent both heap and stack overflows, and use the introspection
interface to also prevent use-after-free and other errors.
Re�ection for C. Higher-level languages such as Java or C# throw exceptions when
encountering out-of-bounds accesses and other errors. Exception handling is a more
expressive approach than explicitly checking for invalid accesses in advance, since it
separates the two concerns in the program. Some approaches introduced mechanisms
to raise and catch exceptions in C [16, 26]. However, these approaches do not describe
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how invalid memory errors could be caught and exposed to the programmer as an
exception.

7 Discussion

Advantages over existing tools. We assume that introspection is exposed by a runtime
that automatically aborts when detecting an error (e.g., an out-of-bounds access). In
this scenario, using introspection allows programmers to override the default behavior
of aborting the program by checking for invalid states and by reacting to them before
the failure occurs. Even if checks are omitted, the runtime aborts execution in case
of an error. Additionally, introspection can be used to check for faults that might not
result in errors during run time. While adding these checks does not come for free (i.e.,
they require programming effort), we believe that they can be useful at boundaries of
shared libraries, and at the boundaries of subcomponents within a project.
Adoption of introspection. Two of the C/C++ tenets are that “you don’t pay for what
you don’t use” [45] and to “trust the programmer” [5]. Hence, programmers often
eschew checks even if they are possible without introspection functions [14]. An open
question is thus whether C programmers would use introspection if they had access
to it. We believe that there is a need for the safe execution of legacy C code (at the
expense of performance) as an alternative to porting programs to safer languages.
It has yet to be determined which of the introspection functions are useful in practice
(e.g., by conducting a case study on real-world programs). We believe that functions
such as size_right() are easy to understand and use, and could prevent common errors
in practice. In contrast, grasping the semantics of try_cast() is more difficult because C
does not have a strong notion of typing, and use cases for it are also rare; consequently,
it would probably be used less often.
Safer languages. Since using introspection requires changes to the source code, a
question is whether a library should not simply be rewritten in some other systems
programming language, such as Rust or Go, that approach the performance of C
while being safe. First, preventing out-of-bounds accesses or use-after-free errors can
already be prevented by using special runtimes without rewriting the project in a safer
language (e.g., using AddressSanitizer [38] or SoftBound+CETS [29, 30]). However,
our approach goes beyond these guarantees by allowing the programmer to handle
errors in customized ways. Second, the effort required to rewrite an application would
simply be too high for many real-world applications. In contrast, incrementally adding
checks to an existing code base is less work.
Legacy code. Our approach also brings benefits for legacy applications, namely when
a commonly used shared library is modified to employ introspection for additional
checks: For example, there are legacy applications that use the insecure gets() libc
function. Using our approach, a safe implementation of gets() can be provided if the
runtime implements the introspection interface and libc uses it to query the length
of the buffer. Thus, availability or security of legacy code can be improved simply by
employing a libc that inserts additional checks enabled by introspection. In contrast,
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when reimplementing libc in a safer language, the function gets() cannot be made
safe, as a buffer allocated by C code has no bounds information attached to it.
Static compilation. Introspection requires information about run-time properties of
objects in the program. While interpreters and virtual machines often maintain this
information, runtimes that execute native programs compiled by static compilers such
as Clang or GCC do not. We want to point out that debug metadata (obtained by
compiling with the -g flag) cannot provide per-object type information needed for
introspection. However, it has been shown that per-object information (such as types)
can be added add low cost to static compilation approaches [22] and hence make
implementing the introspection functions in their runtimes feasible. As part of future
work, we intend to implement introspection primitives using tools based on a static
compilation model.
Partial metadata availability. While designing the interface, we assumed that a tool
that implements introspection maintains all relevant metadata. However, some run-
times maintain only a subset of it; for example, bounds checkers track bounds informa-
tion and can implement only _size_left() and _size_right(). Custom memory allocators
that track heap allocations can implement only a subset of the function location(). It
has yet to be investigated how code can benefit from runtimes that implement only
parts of the interface. A compile-time approach would involve checking introspection
features using preprocessor directives. Another approach would involve structuring
the checks such that they do not fail when an introspection function returns a default
value that indicates that the corresponding feature is unsupported.
Performance measurement. The focus of this work was on evaluating the usefulness
of exposing introspection functions to library writers. We did not invest much time in
optimizing the peak performance of our approach in Safe Sulong. Thus, we show its
performance only on a small set of microbenchmarks for which we used our enhanced
libc (see Appendix A). As part of future work, we want to extend Safe Sulong’s
completeness to execute larger benchmarks, such as SPEC INT [7].

8 Conclusion

We have presented an introspection interface for C that programmers can use to make
libraries more robust. The introspection functions expose properties of objects (bounds,
memory location, and type) as well as properties of variadic functions (number of
variadic arguments and their types). We have described an implementation of the
introspection primitives in Safe Sulong, a system that provides memory-safe execution
of C code. However, our approach is not restricted to Safe Sulong; many dynamic bug-
finding tools and runtimes exist that could implement (a subset of) the introspection
interface. The approach is complementary to existing memory safety approaches, as
programmers can use it to react to and prevent errors in the application logic. Finally,
we have shown how we used the introspection interface to implement an enhanced,
source-compatible C standard library.
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A Preliminary Performance Evaluation

The focus of this work was on evaluating the usefulness of exposing introspection
functions to library writers. We have not yet invested much time in optimizing the peak
performance of our approach in Safe Sulong. To demonstrate that Safe Sulong can run
programs in a testing environment, we ran six benchmarks of the Computer Language
Benchmark Game [42] (binarytrees, fannkuchredux, fasta, mandelbrot, nbody, and
spectralnorm) and the whetstone benchmark [52], once with the enhanced libc and
once without introspection checks. We determined the average peak performance of
10 runs by measuring the execution time after 50 in-process warm-up iterations. On
these benchmarks, Safe Sulong’s peak performance was 2.3× slower than executables
compiled by Clang with all optimizations turned on (-O3 flag). We were unable to
find any observable performance differences between the two libc versions, which is
in part due to some of the introspection checks redundantly duplicating automatic
checks performed by the JVM (e.g., bounds checks); such redundant checks can be
eliminated by using the Graal compiler (e.g., through conditional elimination [43]). As
part of future work, we will evaluate Safe Sulong’s performance in combination with
the enhanced libc on larger benchmarks that stress the introspection functionality.

B Introspection Functions

Table 1 shows the functions and macros of the introspection interface. Internal func-
tions that are private to the implementation are denoted with an underscore prefix.
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Table 1 Functions and macros of the introspection interface

Object bounds functions
long _size_right(void *) Primitive

internal
Returns the space in bytes from the pointer
target to the end of the pointed object. This
function is undefined for illegal pointers.

long _size_left(void *) Primitive
internal

Returns the space in bytes from the pointer
target to the beginning of the pointed ob-
ject. This function is undefined for illegal
pointers.

long size_right(void *) Composite Returns the remaining space in bytes to the
right of the pointer. Returns -1 if the pointer
is not legal or out of bounds.

long size_left(void *) Composite Returns the remaining space in bytes to the
left of the pointer. Returns -1 if the pointer
is not legal or out of bounds.

Memory location functions
Location location(void *) Primitive Returns the kind of the memory location

of the referenced object. Returns -1 if the
pointer is NULL.

bool freeable(void *) Composite Returns whether the pointer is freeable
(i.e., DYNAMIC non-null memory; pointer
referencing the beginning of an object).

Type functions
void* try_cast(void *, struct Type
*)

Primitive Returns the first argument if the pointer is
legal, within bounds, and the referenced
object can be treated as of being of the
specified type and NULL otherwise.

Variadic function macros
int count_varargs() Primitive Returns the number of variadic arguments

that are passed to the currently executing
function.

void* _get_vararg(int i) Primitive
internal

Returns the ith variadic argument (starting
from 0) and returns NULL if i is greater or
equal to count_varargs().

void* get_vararg(int i, Type*
type)

Composite Returns the ith variadic argument (starting
from 0) as the specified type. Returns NULL
if the object cannot be treated as being of
the specified type or if i is greater or equal
to count_varargs().
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Context-aware

Failure-oblivious Computing

This chapter includes a paper about a failure-oblivious computing mecha-

nism that is based on our introspection ideas.

Paper: Manuel Rigger, Daniel Pekarek, and Hanspeter Mössenböck. Pre-

venting Buffer Overflows by Context-aware Failure-oblivious Computing. In

Proceedings of the 12th International Conference on Network and System

Security, NSS 2018, 2018
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Context-aware Failure-oblivious Computing as a
Means of Preventing Buffer Overflows�

Manuel Rigger1, Daniel Pekarek1, and Hanspeter Mössenböck1

Johannes Kepler University Linz, Austria
{manuel.rigger,daniel.pekarek,hanspeter.moessenboeck}@jku.at

Abstract. In languages like C, buffer overflows are widespread. A com-
mon mitigation technique is to use tools that detect them during exe-
cution and abort the program to prevent data leakage or the diversion
of control flow. However, for server applications, it would be desirable
to prevent such errors while maintaining availability of the system. To
this end, we present an approach to handling buffer overflows without
aborting the program. This approach involves implementing a recovery
logic in library functions based on an introspection function that allows
querying the size of a buffer. We demonstrate that introspection can
be implemented in popular bug-finding and bug-mitigation tools such
as LLVM’s AddressSanitizer, SoftBound, and Intel-MPX-based bounds
checking. We evaluated our approach in a case study of real-world bugs
and show that for tools that explicitly track bounds data, introspection
results in a low performance overhead.

Keywords: memory safety · reliability · dependability · availability ·
fault tolerance

1 Introduction

Buffer overflows in C, where an out-of-bounds pointer is dereferenced, belong to
the most dangerous software errors [5,32]. Unlike higher-level languages, buffer
overflows invoke Undefined Behavior and are not prevented during execution;
programmers also cannot handle them using exception or similar mechanisms,
since the language lacks them. Buffer overflows allow attackers to overflow func-
tion addresses stored on the stack or heap and thus to maliciously divert execu-
tion of the program [28] and to leak sensitive data [31]. A plethora of tools exist
that make their exploitation more difficult or detect them and abort execution of
the program [34,32,36,30]. However, when availability of an application is impor-
tant (e.g. for production servers), it would be preferable to continue execution
as long as security is not compromised [24]. This could, for example, make it
harder to perform a denial-of-service attack where a buffer overflow is exploited
to crash the program or inject code.

� We thank Oracle Labs for funding this research. We thank Gergö Barany, Roland
Yap, and Fabio Niephaus for their useful feedback on an early draft of this paper.
We thank Ingrid Abfalter for proofreading and editorial assistance.
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To safely maintain execution in the presence of buffer overflows, we have come
up with the concept of context-aware failure-oblivious computing. Our core idea
is that library writers (e.g., the libc maintainers) can query run-time data such as
bounds information in library functions by using an introspection interface. This
information can then be used to implement a recovery logic that can mitigate
incorrect execution states instead of aborting the program. Library writers can
implement a custom recovery logic that depends on each function’s semantics,
which is why we refer to our technique as being context-aware. For example,
a libc function that processes an unterminated string could prevent an out-of-
bounds access by checking for the end of the buffer to handle the fault and
continue execution. We expect that this recovery logic would be used mainly in
a production context, as it would be preferable that execution is aborted if an
error occurs during development and testing so that programmers can fix the
error.

Our work is based on a combination of failure-oblivious computing [25] and
our previous work on an introspection interface for C to increase the robustness of
libraries [23]. We show how the introspection interface can be used to implement
a failure-oblivious computing mechanism. We evaluated our approach by demon-
strating that introspection for preventing buffer overflows can be implemented
in popular bug-finding and bug-mitigation tools such as LLVM’s AddressSani-
tizer [27], SoftBound [15], and GCC’s Pointer Bounds Checker, which is based
on the Intel Memory Protection Extensions (MPX) [19]. Furthermore, we show
how our approach allows execution to continue in the presence of buffer overflows
found in real-world programs as described by the Common Vulnerabilities and
Exposures (CVE) database [33], and demonstrate that the performance overhead
for introspection implemented in approaches such as MPX is negligible.

2 Background

Failure-oblivious computing. One technique for maintaining availability in the
presence of buffer overflows is failure-oblivious computing, where invalid writes
are discarded and values for invalid reads are manufactured [25,26]. By carefully
selecting a sequence of return values for invalid reads, the program can success-
fully continue execution in most cases. However, a drawback of this approach is
that it is “blind”; that is, it cannot guess the context (i.e., a function’s seman-
tics) to return a meaningful value for all reads. In this paper, we address this
aspect by making failure-oblivious computing context-aware.

Introspection for C. As part of previous work, we demonstrated how use of intro-
spection (i.e., exposing run-time data) benefits the robustness of libraries [23].
The core idea of our approach was that bug-finding tools and runtimes for C
that track additional metadata such as object bounds or object types can expose
this data to library writers via an introspection interface, which programmers
can use to check the input of library functions. We showed that various intro-
spection functions can be used to detect bugs or to maintain availability of the
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program. For example, to detect buffer overflows by means of introspection, the
size right() function can be applied, which expects a pointer and returns
the number of allocated bytes to the right of the pointee (or zero for invalid
pointers) and can therefore be used for bounds checks. In this paper, we expand
on how introspection can be used to increase availability, which we define as
context-aware failure-oblivious computing.

Evaluation of introspection. We have previously evaluated an introspection libc
using Safe Sulong [21,22], an LLVM IR interpreter on top of the Java Virtual
Machine (JVM) [20] which automatically keeps track of array lengths, object
sizes, and object types of C data [23]. Although the JVM tracks all relevant
run-time information necessary to implement our introspection mechanism, it is
not a typical environment in which to execute C code. In this paper, we address
this by evaluating our approach in the context of popular bug-finding and bug-
mitigation tools for buffer overflows and show that our refined introspection
approach prevents real-world errors while maintaining availability.

3 Introspection Interceptors

This section explains the implementation of the introspection-based libc func-
tions. These enhanced functions rely on the size right() introspection func-
tion to mitigate buffer overflows. Challenges to introducing them were that the
original code not be cluttered by the introspection checks, that the effort for
implementing these checks be low, and that the code behave in the same way as
the original library during correct execution.

Libc interceptors. Based on our requirements, we implemented the introspection-
based libc functions as interceptors, which are wrappers that intercept calls to
libc functions and which are used by many bug-checking and bug-mitigation
tools (including ASan, GCC’s Pointer Bounds Checker and SoftBound)1. The
introspection logic was kept separate from the normal code to avoid cluttering
of the original source code. The cost of adding introspection-based recovery logic
was low, as for each unsafe function that we considered (e.g., strlen()), libc
provides safer functions that expect an additional size argument, which we used
for our implementation (e.g., strnlen()). By reusing existing libc functions
from the same library, we expect correct execution to behave in the same way as
without the interceptors. For example, consider our strlen() interceptor, which
is based on the safer strnlen() function:

size_t strlen(const char *s) {

return ORIGINAL(strnlen)(s, _size_right(s));

}

1 Note that in our previous work we instead reimplemented parts of a libc to use intro-
spection, which made the libc less readable and required programs to be compatible
with this libc.
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The ORIGINAL macro yields a reference to the function passed as its argument
that is part of the library and prevents recursively calling interceptors. We im-
plemented the size right() function in various memory-safety-checking tools,
as described in Section 4. Both the original strlen() implementation and this
interceptor behave correctly for strings that are terminated with a ‘\0’, which is
needed to determine their length. However, if an unterminated string is passed to
the original strlen() implementation, the function results in a buffer overflow
that causes bug-finding and bug-mitigation tools to abort execution. Using the
introspection-based interceptor instead prevents the buffer overflow, as the string
length can be computed even for strings for which the ‘\0’ is missing, because the
interceptor assumes the underlying buffer size to be the maximum length of the
string. Note that application-level functions can still cause bug-finding and bug-
mitigation tools to abort execution if these functions run over string bounds.
However, in many cases, application-level functions process strings up to the
length computed by strlen(), which consequently prevents an out-of-bounds
access.

As another example, an introspection interceptor can address the insecure
interface of gets(), which reads user input and writes it to a buffer whose size
is unknown to the function:

char *gets(char *s) {

return ORIGINAL(fgets)(s, _size_right(s), stdin);

}

Using introspection, gets() reads only as much user input as the buffer can
store.

Some introspection interceptors correct invalid parameters, for instance, in
memcpy:

void *memcpy(void *dest, const void *src,

size_t n) {

ssize_t dstsz = _size_right(dest);

size_t len = n;

if (dstsz < len) {

len = dstsz;

}

return ORIGINAL(memcpy)(dest, src, len);

}

If the size of the destination buffer is smaller than the number of bytes that
the function is expected to copy, the function ignores the writes that go out
of bounds. Note that another check for the size of the source buffer would be
applicable.

In contrast to our previous work [23], we treat the return value of
size right() as a conservative estimate of the object’s right bounds. This
estimate can be the real size of the object, in which case the introspection inter-
ceptors work most reliably. However, it can also be at least as large as the actual
allocation, which could include additional space due to alignment requirements
(e.g., to accommodate approaches that track only allocation sizes). Finally, if
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no bounds information is available for a given pointer, returning MAX LONG ef-
fectively disables the introspection interceptors. This is useful, since it allows
execution without recompilation of the code even when no tool is used that
could determine the bounds of an object.

4 Introspection in Tools

We implemented size right() by exposing existing bounds information in
three tools, namely LLVM’s AddressSanitizer [27], SoftBound [15], and GCC’s
Intel MPX-based Pointer Bounds Checker instrumentation. SoftBound and
LLVM’s AddressSanitizer (ASan) are both software-based approaches. Soft-
Bound provides access to bounds information in constant time, and is therefore
a favorable candidate for implementing introspection. ASan’s representation of
metadata is suboptimal for implementing introspection, because it does not ex-
plicitly maintain bounds information and finding the end of an object takes
linear time. By implementing introspection in ASan, we wanted to determine a
worst-case overhead for implementing introspection in existing tools. Intel MPX
instrumentation allowed us to additionally evaluate a hardware-based approach.

SoftBound. SoftBound is a bounds checker that has also been enhanced by a
mechanism (called CETS) to find temporal memory errors [16]. It tracks base and
bounds information for every pointer as separate metadata. To propagate this
metadata across call sites, SoftBound adds additional base and bounds metadata
to pointer arguments of functions. To implement size right(), we return the
right bounds of a pointee by subtracting its base address from its bounds, which
are associated with the pointer. For all SoftBound experiments, we used the
latest stable version 3.8.0, which is distributed together with CETS.

LLVM’s AddressSanitizer. ASan is one of the most widely used bug-finding
tools for C/C++ programs; it allows memory errors such as buffer overflows and
use-after-free errors to be found by instrumenting the program during compile
time. Its implementation is based on shadow memory [17], where a memory
cell allocated by the program has a corresponding shadow memory cell that
stores meta-information about the original allocation. To detect buffer overflows,
ASan allocates space between allocations and marks the corresponding shadow
memory as redzones ; if a dereferenced pointer points to such a redzone, ASan
detects the overflow and aborts the program. Shadow memory is not a favorable
representation of metadata for introspection, since bounds information cannot
be accessed in constant time. We implemented size right() in linear time by
iterating over the current buffer until its associated shadow memory indicates
that a redzone has been reached. For all LLVM and ASan experiments, we used
the development branch of LLVM version 6.0.0 based on commit 1d871d6 in
compiler-rt.
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Intel MPX. Intel MPX is an instruction set extension that adds instructions
for creating, maintaining, and checking bounds information. Although its per-
formance overhead is relatively high [19], providing buffer overflow protection
at the hardware level is a promising research direction [35]. To use Intel MPX,
we relied on GCC’s Pointer Bounds Checker instrumentation, which employs
Intel MPX to verify bounds. Similarly to SoftBound’s implementation, we im-
plemented size right() by querying the upper bounds (using a GCC builtin
function) and subtracted the pointer address from it. For all experiments, we
used GCC version 7.2.0.

Using libc. To use our introspection-based libc extensions, we redefined the
names of the libc functions by means of preprocessor macros. While this required
recompilation of the target application, it allowed the tools to also instrument
our introspection-based libc functions and did not require us to maintain bounds
information, as libc calls from our interceptors invoked the tools’ interceptors.
Note that our approach could be extended by using the dynamic loader to load
the interceptors to retain binary compatibility (e.g., using the LD PRELOAD mech-
anism); however, redefining the function names was less invasive.

5 CVE Case Study

To demonstrate the applicability of our approach in real-world projects, we con-
sidered recent (i.e., less than one year old) buffer overflows in widely-used soft-
ware such as Dnsmasq, Libxml2, and GraphicsMagick. We selected the first libc-
related bugs that we found in the CVE database for which an executable exploit
existed. For each buffer overflow, we evaluated whether our introspection-based
approach could mitigate the error and whether execution could successfully con-
tinue. Our approach prevented four out of five buffer overflows while successfully
continuing execution; in one case, execution was aborted due to a subsequent
buffer overflow in user-level code. Note that the unmodified tools also detected
those buffer overflows; however, they aborted the program instead of mitigating
the error and continuing execution. Since we performed this case study on com-
plex real-world applications, and because SoftBound is a research prototype, we
could not successfully execute any of these applications with it. The unmodified
SoftBound version was also unable to execute them.2 However, we extracted
the functions in which the errors occurred, which SoftBound could execute, and
created a driver to trigger the bug.

Dnsmasq. Dnsmasq is a lightweight DHCP server and caching DNS server which
is used in many home routers.3 In versions prior to 2.78, a bug existed that could
cause a stack-based buffer overflow that allowed attackers to execute arbitrary
code or to cause denial of service by crafting a DHCPv6 request with a wrong
size (see CVE-2017-14493). It occurred in memcpy(), to which an incorrect size

2 https://github.com/santoshn/softboundcets-3.8.0/issues/x ∈ {5, 6, 7, 8}
3 http://www.thekelleys.org.uk/dnsmasq/doc.html



Context-aware Failure-oblivious Computing 7

argument was passed:

state->mac_len = opt6_len(opt) - 2;

memcpy(&state->mac[0], opt6_ptr(opt, 2), state->mac_len);

A similar bug could be exploited for denial of service attacks (see CVE-2017-
14496). It occurred in memset() and was triggered by an integer overflow:

/* Clear buffer beyond request to avoid risk of information disclosure. */

memset(((char *)header) + qlen, 0, (limit - ((char *)header)) - qlen);

When using our introspection interceptors, all tools continued execution by copy-
ing or setting up to as many bytes as the destination buffer could hold. The server
stayed fully functional.

Libxml2. Libxml2 is a widely used open-source XML parsing library.4 For ver-
sions up to 2.9.4, a vulnerability in the xmlSnprintfElementContent() function
enabled attackers to crash the application through a buffer overflow (see CVE-
2017-9047). It was caused by an incorrect length validation (at another code
location) followed by strcat():

if (content->name != NULL)

strcat(buf, (char *) content->name);

The introspection interceptor for strcat() mitigated the buffer overflow by
restricting the length of the concatenated string in all tools. The application
continued execution and printed the truncated string as part of an error message.
Although the error message was truncated, the output appeared reasonable from
the user’s point of view.

GraphicsMagick. GraphicsMagick is a widely used image processing tool.5 In
version 1.3.26, its DescribeImage() function allowed attackers to overflow and
corrupt the heap to execute arbitrary code or to cause denial-of-service at-
tacks (see CVE-2017-16352). As shown below, the size argument in the call
to strncpy() did not limit the number of copied bytes to the size of the buffer;
instead, the number was calculated by the length of the directory name (which
was determined by searching for the newline or NUL). Consequently, an overly
long directory name could be used to cause an overflow:

for (p=image->directory; *p != ’\0’; p++) {

q=p;

while ((*q != ’\n’) && (*q != ’\0’))

q++;

(void) strncpy(image_info->filename,p,q-p);

image_info->filename[q-p]=’\0’;

p=q;

// ...

}

4 http://xmlsoft.org/
5 http://www.graphicsmagick.org/
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The introspection interceptor for strncpy() successfully restricted the length of
the copied string to the length of the destination buffer image info->filename.
However, in the line after the call to strncpy(), the program attempted to write
a NUL character to the end of the string, which then caused an out-of-bounds ac-
cess in the user application. The introspection approach does not protect against
buffer overflows that happen in code that does not use introspection; however, we
intend introspection to be used together with a bounds-checking tool, which is
expected to abort execution for unhandled errors and thus prevent incorrect exe-
cution. In fact, all introspection-instrumented tools prevented this buffer overflow
by aborting execution.

LightFTP. LightFTP is a small FTP server.6 A logging function
writelogentry() in version 1.1 of LightFTP was vulnerable to a buffer overflow
that allowed denial of service or remote code execution (see CVE-2017-1000218).
As shown below, the program added log entries to a buffer with a hard-coded
size; as the log entries depended on user input that was restricted by another,
larger constant, a buffer overflow could be triggered:

char _text[512];

// ...

if (logtext1)

strcat(_text, logtext1);

if (logtext2)

strcat(_text, logtext2);

strcat(_text, CRLF);

The introspection interceptor for strcat() mitigated the error without crashing
the FTP server. Note that our mitigation truncated the log entry, but allowed
subsequent requests to be handled successfully.

6 Performance Evaluation

To determine the performance of the introspection-based interceptors, we used
LightFTP and Dnsmasq, which are the servers we also investigated in our CVE
case study. We selected them for their high attack surface and because they are
expected to be highly available. We evaluated the performance of ASan and Intel
MPX both with and without the introspection interceptors; SoftBound failed to
execute the servers, as explained above. Further, to establish a baseline, we
measured the performance of C programs compiled with the Clang compiler [13]
without using any bug-mitigation mechanisms. For all systems, we turned on
compiler optimizations by using the -O3 flag. We measured the throughput by
means of the load-testing tool JMeter version 3.3. We configured JMeter to use
4 threads, each of which each sent 250 requests to simulate multiple concurrent
users using the built-in FTP sampler and the UDP Protocol Support plugin. As
the Intel MPX instructions are not thread-safe [19], we also evaluated all tools

6 https://github.com/hfiref0x/LightFTP/
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Fig. 1. Throughput on LightFTP and Dnsmasq.

using only 1 thread. We performed each measurement 10 times to account for
variability. Our setup consisted of a quad-core Intel Core i7-6700HQ CPU at
2.60GHz on Ubuntu version 17.10 (with kernel 4.13.0-32-generic) with 16 GB of
memory.

Figure 1 shows boxplots of the results for LightFTP and Dnsmasq. On
LightFTP, the performance overhead for using introspection was below 1% for
ASan; MPX was even slightly faster when introspection was used. On Dnsmasq,
employing introspection caused a slowdown of around 1% when using only one
thread for both ASan and MPX. The performance difference to the baseline was
negligible on LightFTP, and up to 11% on Dnsmasq (between Clang and ASan
with introspection), which suggests that the applications’ performance was dom-
inated by factors other than instrumentation cost (e.g., networking overhead).
Thus, our measurements cannot be generalized to CPU-bound benchmarks.

To quantify the overhead on CPU-bound benchmarks, we also evalu-
ated the approaches on the SPEC2006 INT benchmarks, which consist of 12
benchmarks. We excluded all C++ benchmarks (471.omnetpp, 473.astar, and
483.xalancbmk), which we expected to make little use of C functions and thus
of our interceptors. Further, we excluded all benchmarks in which the tools de-
tected memory safety errors (400.perlbench and 403.gcc). ASan detected memory
leaks in two benchmarks (445.gobmk and 464.h264ref), and since we investigated
only buffer overflows in this work, we disabled memory leak detection to also
run them. SoftBound in its original and introspection versions detected memory
safety errors in all but one benchmark (458.sjeng), which were presumably false
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Fig. 2. Execution times on the SpecInt2006 benchmarks.

positives. MPX had an additional known false positive [19] in one benchmark
(429.mcf), so we excluded this benchmark for MPX.

Figure 2 shows the execution times of the SPECInt2006 benchmarks rela-
tive to Clang -O3 as a baseline. On four of the seven benchmarks (429.mcf,
456.hmmer, 458.sjeng, 462.libquantum), the performance overhead was negli-
gible because no interceptors were executed in code that contributed to the
overall run-time performance of the respective benchmark. For SoftBound, the
introspection overhead was 3% on the only benchmark that it could execute.
Using introspection with ASan resulted in higher overheads, namely 140% on
h264ref, 43% on bzip2, and 81% on gobmk. For MPX, the performance over-
head of introspection was relatively low, with maximum overheads of 13% on
bzip2 and 6% on gobmk.

We also executed micro-benchmarks, measuring the direct overhead of inter-
ceptors. For example, we evaluated the performance of the strlen() interceptor,
which directly relies on size right() to call the safer strnlen() function. For
SoftBound, the overhead was not measurable. For Intel MPX, the overhead was
2× for strings with a length of 10; for longer strings (e.g., a length of 1000)
the overhead was not measurable. The overhead for ASan was the highest, as
our size right() implementation has to traverse the shadow memory, which
depends linearly on the length of the string. Its overhead varied between 2× and
10× with different string lengths.
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7 Discussion

Availability. We have demonstrated that our introspection-based libc intercep-
tors are an effective means of mitigating the effects of buffer overflows. Our
main idea is to use run-time information that is tracked by existing tools to
prevent buffer overflows and to increase the availability of applications. Using
the introspection-based interceptors is useful only in production, because during
development and testing it would be preferable to abort execution so that the
programmer can fix bugs that cause errors.

Complementarity. We have designed our approach to complement existing ap-
proaches for handling buffer overflows. Our idea is that, for important functions,
programmers can implement custom semantics that mitigate the effects of buffer
overflows. For buffer overflows in other functions or in user-level code, existing
memory tools would continue to detect out-of-bounds accesses and would abort
execution in the case of an error. Alternatively, the interceptors could also be
used with the original failure-oblivious computing approach as a fallback for
functions that are not guarded by introspection checks.

Performance. The overhead of introspection and our interceptors depends
mainly on how efficiently a tool tracks bounds information. Our evaluation on
servers suggests that the overhead of introspection is often small compared to
the cost of network communication, making introspection especially applicable
for servers. Our evaluation on the CPU-bound SPEC benchmarks also seems to
suggest that libc functions are typically not part of the code that significantly
contributes to the overall performance of a program. While the MPX-based intro-
spection overhead was low on all benchmarks, only the ASan-based implementa-
tion caused larger overheads on three benchmarks. Overall, introspection-based
libc functions are feasible with a low overhead for approaches that maintain ex-
plicit bounds information (e.g., Intel MPX or SoftBound), but result in higher
overheads for approaches in which bounds information must be computed (e.g.,
in ASan). Furthermore, our implementation could be made more efficient by
using introspection directly in the libc functions.

Implementation. We have demonstrated implementations of the size right()

function for three popular bug-finding and bug-mitigation approaches and be-
lieve that implementing this function in many others (e.g., libcrunch [10,11]) is
also straightforward. Some tools cannot give precise estimates for all pointers,
which makes our approach less effective. For example, binary-instrumentation
tools such as Valgrind [18] and Dr. Memory [3] cannot reliably determine the
size of buffers located on the stack. Other approaches track run-time informa-
tion only for specific types of allocations (e.g., stack buffers [2]). Furthermore,
some tools give rough estimates in general or round up allocation sizes [1,2,6];
for example, after evaluating our approach with low-fat pointer checking [6,8],
we found that rounding up allocation sizes alone mitigated several of the buffer
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overflows that we investigated.7 Note that conservative estimates (e.g., the max-
imum integer value if no information is available) ensure correct execution, but
might result in undetected errors.

8 Related Work

Failure-oblivious computing. Rinard et al. coined the term failure-oblivious com-
puting, where illegal read accesses yield predefined values and out-of-bounds
write accesses are ignored [25]. An extension of this work are boundless memory
blocks, where out-of-bounds writes store the value in a hash map that can be re-
turned for out-of-bounds reads to that address [4,12,26]. Furthermore, Long et al.
extended failure-oblivious computing by also covering divide-by-zero errors and
NULL-pointer dereferences [14]. In contrast to these approaches, introspection en-
ables programmers to handle out-of-bounds accesses by taking into account the
semantics of a function. However, the drawback of our approach is that library
developers must implement these checks manually.

Failure-oblivious computing models. Durieux et al. studied failure-oblivious com-
puting behaviors [9]. Their findings suggest that for many failures, multiple al-
ternative strategies exist that can mitigate the error. For example, to mitigate a
NULL-pointer dereference the access could be ignored, but the pointer could also
be initialized with the address of a newly-created or existing object.

Monitored execution. Sidiroglou et al. devised a system that monitors an ap-
plication for failures such as buffer overflows [29]. If a fault occurs, the current
function is aborted and—based on heuristics—an appropriate value is returned.
In order to avoid crashes because a pointer returns NULL, the heuristics take into
account whether the parent function dereferences the pointer thereafter. While
this approach takes into account the context of the fault, it lacks the ability of
our introspection approach to benefit from programmer knowledge.

Libsafe. Libsafe replaces libc functions with enhanced versions that prevent
buffer overflows from going beyond the stack frame [2]. It achieves this by travers-
ing frames to determine their bounds and aborting the program if the bounds
are exceeded. While we tried implementing the introspection function using the
traversal logic, we found that it is based on assumptions such as the location
of the stack, which no longer hold with modern mitigation techniques such as
address space layout randomization. Additionally, libsafe does not handle out-of-
bounds reads well, for which our approach, in contrast, can compute meaningful
results, for example, by letting strlen() return the length of the buffer under-
lying the string if it is unterminated.

7 EffectiveSan [7], an extension of the low-fat pointer approach, provides accurate
bounds but has not been released to the public as of June 2018.
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9 Conclusion

In this paper, we have presented how implementation of an introspection function
that returns the length of an object can be used to implement failure-oblivious
computing mechanisms. We have also shown that such a mechanism is useful
in mitigating real-world errors and that the performance overhead when imple-
mented in approaches such as Intel MPX is negligible. For reproducibility and to
facilitate further research, we distribute all artifacts and experimentation scripts
at https://github.com/introspection-libc/main.
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Abstract
C codebases frequently embed nonportable and unstandard-
ized elements such as inline assembly code. Such elements are
not well understood, which poses a problem to tool develop-
ers who aspire to support C code. This paper investigates the
use of x86-64 inline assembly in 1264 C projects from GitHub
and combines qualitative and quantitative analyses to answer
questions that tool authors may have. We found that 28.1%
of the most popular projects contain inline assembly code,
although the majority contain only a few fragments with
just one or two instructions. The most popular instructions
constitute a small subset concerned largely with multicore
semantics, performance optimization, and hardware control.
Our findings are intended to help developers of C-focused
tools, those testing compilers, and language designers seek-
ing to reduce the reliance on inline assembly. They may also
aid the design of tools focused on inline assembly itself.
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1 Introduction
Inline assembly refers to assembly instructions embedded in
C code in a way that allows direct interaction; for example,
they can directly access C variables. Such code is inherently
platform-dependent; it uses instructions from the target ma-
chine’s Instruction Set Architecture (ISA). For example, the
following C function uses the rdtsc instruction to read a
timer on x86-64. Its two output operands tickh and tickl
store the higher and lower parts of the result. The platform-
specific constraints =a and =d request particular registers.

uint64_t rdtsc() {

uint32_t tickl , tickh;

asm volatile ("rdtsc":"=a"(tickl),"=d"(tickh));

return (( uint64_t)tickh << 32)|tickl;

} /* see §2.5 for detailed syntax */

This kind of platform dependency adds to the complexity of
C programs. A single complex ISA, such as x86, can contain
about a thousand instructions [25]. Furthermore, inline as-
sembly fragments may contain not only instructions, but also
assembler directives (such as .hidden, controlling symbol
visibility) that are specific to the host system’s assembler.

It is not surprising that many tools that process C code or
associated intermediate languages (such as LLVM IR [38] and
CIL [45]) partially or entirely lack support for inline assembly.
For example, many bug-finding tools (e.g., the Clang Static
Analyzer [70], splint [18, 19, 63], Frama-C [69], uno [26],
and the LLVM sanitizers [55, 58]), tools for source transla-
tion (e.g., c2go [44]), semantic models for C [36, 43], and
alternative execution environments such as Sulong [51–53]
and Klee [12] still lack support for inline assembly, provide
only partial support, or overapproximate it (e.g., by analyz-
ing only the side effects specified as part of the fragment),
which can lead to imprecise analyses or missed optimization
opportunities. How to provide better support depends on
the tool, for example, in Sulong, adding support for assem-
bly instructions requires emulating their behavior in Java,
while support in a formal model would require specifying
the instructions in a language such as Coq.
Literature on processing C code seldom mentions inline

assembly except for stating that it is rare [31]. Tool writers



would benefit from a thorough characterization of the oc-
currence of inline assembly in practice, as it would enable
them to make well-informed decisions on what support to
add. Hence, we analyzed 1264 C projects that we collected
from GitHub. We manually analyzed the inline assembly
fragments in them (i.e., inline assembly instructions that
are part of a single asm statement). From these fragments,
we created a database with fragments specific to the x86-64
architecture to quantitatively analyze their usage.

We found that:

• Out of the most popular projects, 28.1% contain inline
assembly fragments.

• Most inline assembly fragments consist of a single
instruction, andmost projects contain only a few inline
assembly fragments.

• Since many projects use the same subset of inline as-
sembly fragments, tool writers could support as much
as 64.5% of these projects by implementing just 5% of
x86-64 instructions.

• Inline assembly is used mostly for specific purposes:
to ensure semantics on multiple cores, to optimize
performance, to access functionality that is unavailable
in C, and to implement arithmetic operations.

Our findings suggest that tool writers might want to con-
sider adding support for inline assembly in their C tools, as
it is used surprisingly often. We also found that inline as-
sembly is not specific to a small set of domains, but appears
in applications in which one might not expect it (e.g., text
processing). Since most applications use the same subset of
inline assembly instructions, a large proportion of projects
could be supported with just a moderate implementation
effort. Another finding, however, is that instructions are not
all that matters. Rather, assembly instructions are only one of
many non-C notations used in C codebases, all of which gen-
erally suffer from the same lack of tool support. For example,
some uses of asm contain no instructions, consisting only of
assembler directives and constraints. Others are interchange-
able with non-portable compiler intrinsics or pragmas. Yet
others gain meaning in conjunction with linker command-
line options or scripts. This paper is therefore a first step
towards characterizing this larger “soup” of notations that
tools must support in order to fully comprehend C codebases.

2 Methodology
To guide tool developers in supporting inline assembly, we
posed six research questions. We detail how we scoped the
survey, selected and obtained C applications, and finally
analyzed their inline assembly fragments.

2.1 Research Questions
To characterize the usage of inline assembly in C projects,
we investigated the following research questions (RQs):

RQ1: How common is inline assembly in C programs?
Knowing how commonly inline assembly is used indicates
to C tool writers whether it needs to be supported.
RQ2: How long is the average inline assembly frag-
ment? Characterizing the length of the average inline assem-
bly fragment gives further implementation guidance. If inline
assembly fragments typically contain only a single instruc-
tion, simple pattern-matching approaches might be sufficient
to support them. If inline assembly fragments are large, nu-
merous, or “hidden” behind macro meta-programming [57],
it might be more difficult to add support for them.
RQ3: In which domains is inline assembly used? An-
swering this question helps if a tool targets only specific
domains. It seemed likely that the usage of inline assem-
bly differs across domains. We expected inline assembly in
cryptographic libraries because instruction set extensions
such as AES-NI explicitly serve cryptographic code [6]. This
was supported by a preliminary literature search, as inline
assembly is, for example, often mentioned in the context of
cryptographic libraries [23, 37, 40, 61]. We also expected it
to implement related security techniques, preventing timing-
side channels [7] and compiler interference [66, 67]. It was
less clear what other domains make frequent use of inline
assembly.
RQ4:What is inline assembly used for? Knowing the typ-
ical use cases of inline assembly helps tool writers to assign
meaningful semantics to inline assembly instructions. It also
helps to determine whether alternative implementations in
C could be considered. We hypothesized that inline assem-
bly is used—aside from cryptographic use cases—mainly to
improve performance and to access functionality that is not
exposed by the C language.
RQ5: Do projects use the same subset of inline assem-
bly? Answering this question determines how much inline
assembly support needs to be implemented to cope with
the majority of C projects. Currently, C tool writers have to
assume that the whole ISA needs to be supported. However,
one of our assumptions was that most projects—if they use
inline assembly—rely on a common subset of instructions.
By adding support for this subset, C tool writers could cope
with most of the projects that use inline assembly.

2.2 Scope of the Study
Our focus was to quantitatively and qualitatively analyze
inline assembly code. For our quantitative analysis, we built
a database (using SQlite3) of inline assembly occurrences
in code written for x86-64, as it is one of the most widely
used architectures. The database contains information about
each project, inline assembly fragment, and assembly instruc-
tion analyzed. We used this database to perform aggregate
queries, for example, to determine the most common instruc-
tions. The database and aggregation scripts are available
at https://github.com/jku-ssw/ inline-assembly to facilitate
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further research. Additionally, we qualitatively analyzed all
instructions to summarize them in a meaningful way.

2.3 Obtaining the Projects
In our survey, we selected C applications from GitHub,
a project hosting website. To gather a diverse corpus of
projects, we used two strategies:
We selected all projects with at least 850 GitHub stars—

an arbitrary cut-off that gave us a manageable yet suffi-
ciently large sample—which resulted in 327 projects being
selected. Stars indicate the popularity of a project and are
given by GitHub users [10]. We assumed that the most pop-
ular projects reflect those applications that are most likely
processed by C tools.

We selected another 937 projects by searching for certain
keywords1 and by taking all matching projects that had at
least 10 stars. The goal was to select projects of a certain
domain with different degrees of popularity to account for
the long tail of the distribution. In order to avoid personal
forks, experiments, duplicate projects and the like [32, 41],
we did not consider projects that had fewer than 10 stars.

2.4 Filtering the Projects
Our primary goal was to analyze C application-level code
which we consider to be of general interest. Consequently,
we ignored projects if they were operating systems, device
drivers, firmware, and other code that is typically considered
part of an operating system. Such code directly interacts
with hardware and thus comes with its own special set of
issues and usage patterns of inline assembly. Further, to keep
the scope manageable, we focused on code for x86-64 Linux
systems. Therefore, we excluded projects that worked only
for other architectures or other operating systems. Further,
we did not consider uncommon x86 extensions such as VIA’s
Padlock extensions [65].

We restricted our analysis to C code, excluding C++ code.
Projects that mixed C/C++ code were also excluded if the
C++ LOC were greater in number than the C LOC. We also
excluded C/C++ header files (ending with .h) when they
contained C++ code. A number of projects used C code to
implement native extensions for PHP, Ruby, Lua, and other
languages; we included such code in our analysis. In a few
cases, inline assembly was part of the build process; for exam-
ple, some configure scripts checked the availability of CPU
features by using cpuid. We discarded these cases because
inline assembly was not part of the application; however, we
checked whether build scripts generated source files with
inline assembly, which we then incorporated in our analysis.

1Our keywords were: crc, argon, checksum, md5, base64, dna, web server,
compression, math, fft, string, aes, simulation, editor, single header library,
parser, debugger, ascii, xml, markdown, smtp, sqlite, mp3, sort, json, bitcoin,
udp, random, prng, metrics, misc, tree, parser generator, hash, font, gc, i18,
and javascript.

34 projects used inline assembly in fairly large program
fragments, notably featuring SIMD instructions and using
preprocessor-based metaprogramming. Although written us-
ing inline assembly constructs, these fragments have more in
common with separate (macro) assembly source files. In par-
ticular, supporting these would require a close-to-complete
implementation of an ISA. We excluded these fragments
from our quantitative analysis.
We performed our analysis on unpreprocessed source

code to include all inline-assembly fragments independent of
compile-time-configuration factors [62]. This is significant
because inclusion of inline assembly is often only condi-
tional, achieved by #ifdefs that not only check for various
platforms and operating systems, but also for configuration
flags, various compilers, compiler versions, and availability
of GNU C intrinsics [17]; examining only preprocessed code
would have left out many fragments.

2.5 Inline Assembly Constructs
Since inline assembly is not part of the C language standard,
compilers differ in the syntax and features provided. In this
study, we assume use of the GNU C inline assembly syntax,
which is the de-facto standard on Unix platforms, recognizes
the asm or __asm__ keywords to specify an inline assembly
fragment, and has both “basic” and “extended” flavors. Using
basic asm, a programmer can specify only the assembler frag-
ment or directive. Use cases for basic assembly are limited;
however, in contrast to extended asm, basic inline assembly
can be used outside of functions. For example,

asm(".symver memcpy,memcpy@GLIBC_2.2.5")

uses basic inline assembly for a symbol versioning directive
(see Section 5).

The more commonly used form is extended asm, which
also allows specifying output and input operands as well as
side effects (e.g., memory modifications). It is specified using

asm ( AssemblerTemplate : OutputOperands

[ : InputOperands [ : Clobbers ] ]).

Adding the volatile keyword restricts the compiler in its
optimization; for example, it prevents reachable fragments
from being optimized (e.g., by register reallocation).

2.6 Analyzing the Instructions
Our analysis focused on inline assembly fragments found
with grep in the source code. We searched for strings con-
taining “asm”, which made it unlikely that we missed in-
line assembly instructions. For the quantitative analysis, we
judged whether an inline assembly fragment was used for
an x86-64 Linux machine. If so, we manually extracted the
fragment and preprocessed it (see the criteria below) using a
script created for this purpose.

We assumed that tools would support all addressingmodes
(e.g., register addressing, immediate addressing, and direct
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memory addressing) for a certain instruction. Consequently,
we did not gather statistics for different addressing modes. In-
line assembly can contain assembler directives that instruct
the assembler to perform certain actions, for example, to allo-
cate a global variable. We ignored such assembler directives
in our quantitative analysis, but discuss them qualitatively.
An exception is the .byte directive, which is sometimes used
to specify instructions using their byte representation (and
similar cases, see Section 5), for which we assumed their
mnemonic (i.e., their textual) representation.
By default, GCC assumes use of the AT&T dialect [8,

9.15.3.1, 9.15.4.2]; however, some projects enabled the In-
tel syntax instead. Using the AT&T syntax, a size suffix is
typically appended to denote the bitwidth of an instruction.
An add instruction can, for example, operate on a byte (8
bit), long (32 bit), or quad (64 bit) using addb, addl, and
addq, respectively. Using Intel syntax, the size suffix is typi-
cally omitted. For consistency, we stripped size suffixes and
recorded only the instruction itself (e.g., add). We also ap-
plied other criteria to group instructions.2

3 Quantitative Results
Based on our quantitative analysis, we can answer the first
three research questions on the use of inline assembly in C
projects, the length of fragments used, and the domains in
which they occur.
Projects using inline assembly. Our corpus contained
1264 projects, of which 197 projects (15.6%) contained in-
line assembly for x86-64. The distribution differed between
the popular projects and those selected by keywords. Among
the most popular 327 projects, 28.1% contained inline assem-
bly, while of the 937 other projects only 11.2% used inline
assembly. One possible explanation for this difference is that
the popular projects were larger (69 KLOC on average) than
the projects selected by keywords (13 KLOC on average).
Density of inline assembly fragments. The percentage of
projects with inline assembly is high, which is surprising
because many C tools are based on the assumption that inline
assembly is rarely used. Nevertheless, in terms of density,
inline assembly is rare, with one fragment per 40 KLOC of C
code on average. The density of inline assembly is lower for
the popular projects (one fragment per 50 KLOC) than for
those selected by keywords (one fragment per 31 KLOC).

2 The x86 architecture allows adjusting the semantics of an instruction with
a prefix. This includes the lock prefix for exclusive access to shared mem-
ory, and rep to repeat an instruction a certain number of times. In inline
assembly, these prefixes are denoted as individual instructions (e.g., lock;
cmpxchg). In our survey, we merged the prefix and its instruction and han-
dled them as a single instruction (e.g., lock cmpxchg). The xchg instruction
has an implicit lock prefix when used with a memory operand. For jump-
if-condition-is-met instructions and set-on-condition instructions, several
mnemonics exist for the same instruction. We grouped such mnemonics and
counted them as the same instruction. We also considered different software
interrupts as distinct instructions, since their purposes differ markedly.

RQ1.1: 28.1% of the most popular and 11.2% of the
keyword-selected projects contained inline assembly.

Number of fragments per project. To measure the num-
ber of inline assembly fragments in a project, we considered
only unique fragments because duplicates do not increase
the implementation effort (see Figure 2). 36.2% of the projects
with inline assembly contained only one unique inline as-
sembly fragment. 93.3% of them contained up to ten unique
inline assembly fragments. On average, projects analyzed in
detail contained 3.7 unique inline assembly fragments (with
a median of 2).

RQ1.2: C projects with inline assembly which were
analyzed in detail contained on average 3.7 unique
inline assembly fragments (median of 2)

Overview of the fragments. In total, we analyzed 1026 frag-
ments, of which 607 were unique per project. Projects that
used inline assembly tended to bundle instructions for sev-
eral operand sizes in the same source file; consequently, we
found 715 fragments that were unique within a single file.
Overall, we found 197 unique inline assembly fragments.
Analysis of the fragments. Of the 197 projects with inline
assembly, we analyzed the inline assembly in 163 projects
(82.7%) in detail. To this end, we extracted each fragment
and added it together with metadata about the project to
our database, which we then queried for aggregate statis-
tics (e.g., the frequency of instructions). The 34 projects that
we did not analyze used complicated macro metaprogram-
ming and/or contained an excessive number of large inline
assembly fragments, which made our manual analysis ap-
proach infeasible. We call these “big-fragment” codebases.
They consisted mostly of mature software projects (such as
video players) that used inline assembly for SIMD operations,
for which they provided several alternative implementations
(e.g., AVX, SSE, SSE2). We assumed that tools need to provide
close-to-complete SIMD inline assembly support for these
projects, and thus omitted them from the detailed analysis.

RQ2.1: 17.3% of all C projects with inline assembly
contained macro-metaprogramming and many large
inline assembly fragments that were omitted from
our detailed analysis.

Instructions in a fragment. When analyzing instructions
in inline assembly fragments, we again considered those frag-
ments that were unique to a project. Typically, they were
very short (see Figure 1). 390 (64.3%) of them had only one in-
struction. 73.3% had up to two instructions. However, we also
found inline assembly fragments with up to 438 instructions.
The average number of instructions in an inline assembly
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Table 1. The 10 most common file names that contained
inline assembly and their average numbers of instructions

file name projects instr. file name projects instr.

sqlite3.c 10 1.0 inffas86.c 4 1.0
atomic.h 8 3.4 mb.h 4 1.0
SDL_endian.h 4 2.0 timing.c 4 1.0
atomic-ops.h 4 2.0 util.h 4 1.0
configure.ac 4 1.0 utils.h 4 2.2

fragment was 9.9; the median was 1. In total, we found only
167 unique instructions, which contrasts with the approxi-
mately 1000 instructions that x84-64 provides [25].

RQ2.2: Inline assembly fragments contained on av-
erage 9.9 instructions (median of 1) per fragment.

Duplicate fragments. It has been shown that file dupli-
cation among GitHub projects—mainly targeting popular
libraries copied into many projects—is a common phenom-
enon [41], which we also observed for the projects we an-
alyzed (see Table 1). For example, many projects contained
sqlite3.c, which corresponds to the databasewith the same
name (which uses the rdtsc instruction), SDL_endian.h for
the SDL library (which uses inline assembly for endianness
conversions), and inffas86.c (which implements a com-
pression algorithm using inline assembly). We did not try
to eliminate such duplicate files in the analysis, because the
duplication is significant: tool authors have a stronger incen-
tive to implement those inline assembly instructions that are
used by many projects.
Project domains. Table 2 classifies the projects into do-
mains and shows how many projects per domain contained
inline assembly. We created this table by manually labelling
the projects using an ad-hoc vocabulary of seventeen domain
labels. Note that the domains differ in extent and intersect
in some cases. As expected, the majority of projects were
crypto libraries (with SSL/TLS libraries as a subdomain).
However, in general, the domains were relatively diverse.
In addition to the eleven domains in the table, we also used
seven other domain labels3 which had fewer than 7 projects
each and were omitted for brevity.

RQ3: Inline assembly is used in many domains, most
commonly in projects for crypto, networking, media,
databases, language implementations, concurrency,
ssl, string and math libraries.

3These were: games, general-purpose libraries, reverse engineering, garbage
collection, monitoring, and virtualization.

Table 2.Domains of projects that used inline assembly (each
domain containing at least 7 projects)

domain projects description

# %

crypto 23 11.7 encryption and decryption algo-
rithms, cryptographic hashes,
non-cryptographic hashes,
base64 encodings

networking 20 10.2 protocols, email systems, chat
clients, port scanners

media 17 8.6 video and music players and en-
coders, audio processing soft-
ware, image libraries

database 16 8.1 databases, key/value storages,
other in-memory data structures

language im-
plementation

15 7.6 compilers, interpreters, virtual
machines

misc 13 6.6 projects not assigned to any do-
main

concurrency 9 4.6 concurrency libraries, concurrent
data structures

ssl 8 4.1 SSL/TLS libraries

string library 8 4.1 string algorithms, converters be-
tween different formats, parsers

math library 7 3.6 scientific applications, math li-
braries

web server 7 3.6

4 Use Cases of Inline Assembly
Instructions

We identified four typical use cases for inline assembly. One
was to prevent instruction reorderings, either in the com-
piler (prevented by “compiler barriers”) or in the processor,
both in single-core execution and between multiple cores
(prevented by memory barriers and atomic instructions—see
Section 4.1). The second use case was performance optimiza-
tion, for example, for efficient endianness conversions, hash
functions, and bitscans (see Section 4.2). The third use case
was to interact with the hardware, for example, to detect
CPU features, to obtain precise timing information, random
numbers, and manage caches (see Section 4.3). The fourth
use case was for more general “management” instructions,
for example, moving values, pushing and popping from the
stack, and arithmetic instructions (see Section 4.4).

Note that there might be more than one reason for using
assembly code: for example, programmers might read the
elapsed clock cycles using the rdtsc instruction because

5



0 100 200 300 400

0
2
0

6
0

1
0
0

# instructions / project−unique inline assembly fragments

C
u
m

u
la

ti
ve

 p
e
rc

e
n
ta

g
e

Figure 1. Inline assembly fragment lengths

0 5 10 15 20 25 30 35

0
2
0

6
0

1
0
0

# unique inline assembly fragments /

project with inline assembly

Figure 2. Number of fragments per project

similar C timing functions might not provide the same accu-
racy; however, they might also use it for efficiency because
it has a lower overhead than those functions.

RQ4: Inline assembly is used to ensure correct se-
mantics on multiple cores, for performance optimiza-
tion, to access functionality that is unavailable in C,
and to implement arithmetic operations.

For each use case, we denoted in parentheses the percent-
age of projects that relied on at least one instruction. Some
instructions were counted for several use cases; for example,
xchg can be used to exchange bytes to convert the endian-
ness of a 16-bit value and has an implicit lock prefix when
applied to a memory operand, which is why it can also be
used to implement an atomic operation.

We found that most inline assembly instructions can also
be issued using compiler intrinsics instead of inline assem-
bly (compiler barriers being the only exception). Although
compiler intrinsics are specific to a compiler, they are easier
to support in tools because they follow the same conven-
tions as C functions, both syntactically and semantically. For
example, unlike inline assembly, compiler intrinsics cannot
modify local variables.

4.1 Instruction Reordering and Multicore
Programming

For threading and concurrency control, most C programs
rely on libraries (such as pthreads [9]), compiler intrinsics,
and inline assembly instructions. Intrinsics and assembly
instructions are used mainly for historical reasons, since
atomic operations became standardized only in 2011 [29].

In this section, we describe how inline assembly was used
to perform atomic operations and to control the ordering of
instructions at the compiler and processor levels.
Atomic instructions (24.0%). In 24.0% of the projects, in-
structions were prefixed to execute atomically to prevent
races when data is accessed by multiple threads (see Table 3).
More recent code uses C11 atomic instructions as an alter-
native; for example, the add-and-fetch operation, which is

equivalent to lock xaddq, can also be implemented using
the C11 atomic_fetch_add function.
Compiler barriers (24.0%). C compilers are permitted to
reorder instructions that access memory. Unless specially
directed, these reorderings are allowed to assume single-
threaded execution. A common use case of inline assembly
is to implement such a special directive, called a “compiler
barrier”, telling the compiler to assume an arbitrary side
effect to the memory, hence preventing reorderings around
the barrier. This is expressed as follows (a memory clobber):

asm volatile("" : : : "memory");

Such barriers are often necessary in lock-free concurrent
programming.
Additionally, compiler barriers were used to prevent the

compiler from optimizing away instructions. For example, in
Listing 1, the compiler is prevented from removing memset
to implement a secure_clear function that can be used to
clear sensitive data from memory. A compiler could remove
the memset call, for example, if the call is inlined and the
memory freed, because the compiler can assume that it is no
longer accessible [16]. If so, attackers could exploit a buffer
overflow at another location in the program to read the data.
Note that the C11 standard specifies the function memset_s,
which provides the same guarantees as the secure_clear
implementation.

Listing 1. Implementing a secure memory-zeroing function
void secure_clear(void *ptr , size_t len) {

memset(ptr , 0, len);

asm volatile("" : : "r"(ptr) : "memory");

}

Memory barriers (11.2%). Not only compilers, but also pro-
cessors reorder instructions. Memory barriers are used to pre-
vent reorderings by the processor (see Table 4). On x86, they
are mostly needed for special cases (e.g., write-combining
memory or non-temporal stores), as all memory accesses
except store-load are ordered, so a compiler barrier is often
sufficient to ensure the desired ordering [1].
Spin loop hints (15.1%). We found that 27 projects used
the pause instruction as a processor hint in busy-waiting
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loops. Busy waiting refers to a tight loop in which a check
is performed repeatedly. For example, in spinlocks, a thread
repeatedly tries to acquire a lock that has potentially already
been acquired by another thread. To remedy the costs of
busy waiting in terms of performance and energy, pause
causes a short delay and controls speculative execution [48].

4.2 Performance Optimizations
Several inline assembly instruction categories were used to
optimize performance, even when the code could have been
written in pure C.
SIMD instructions (6.1% + 34 projects). In the quantitative
analysis, only a few SIMD instructions ranked among the
most common instructions, for example, pxor and movdqa
(used in 9 and 8 projects, respectively). However, the actual
number of projects using SIMD instructions was higher be-
cause the 34 “big-fragment” projects that we did not analyze
mostly targeted various SIMD instruction sets (e.g., MMX,
SSE, and AVX);
Endianness conversion (25.7%). A common use case of in-
line assembly is to change the byte order of a value (see
Table 5), for example, when the file format of a read file and
the processor differ in their endianness. On x86, the xchg
instruction can be used to swap the bytes of 16-bit integers,
because x86 allows both the higher and lower byte of a 16-bit
register to be addressed. A less common alternative is to use
rotation left or right (rol or ror) by eight places. For 32-bit
and 64-bit values, the bswap instruction is used instead. Half
of the projects with instructions for endianness conversions
included the SDL library [54] as source files in the repository
tree. Using inline assembly to implement endianness con-
version is most likely a performance optimization that is no
longer needed, because state-of-the-art compilers produce
as efficient code [22].
Hash functions (15.6%). A number of projects used inline
assembly to implement hash functions. This included the
crc32 instruction as well as the rol, ror, and shl instruc-
tions to compute the CRC32 and SHA hashsums (see Table 6).
The shift and rotate instructions could also simply be im-
plemented in C, and current C compilers produce efficient
machine code for them [49].
Bit scan (7.8%). Several projects used bit-scan instructions
to determine the most significant one-bit using bsr (in 12
projects) or the least significant one-bit using bsf (in 7
projects). Both instructions have many applications [68, Sec-
tions 5.3 and 5.4]. As bsr corresponds to a log2 function
that rounds the result down to the next lower integer, the
instruction was often used for this purpose. For an input
value, it is also possible to round the result up by providing
the input (value<<1)-1. Bitscan instructions were mostly
used by memory allocators such as jemalloc [20] (which was
included in four projects) or dlmalloc as well as by compres-
sion and math libraries.

Advanced Encryption Standard (AES) instructions
(2.2%). We found that 2.2% of the projects used inline as-
sembly to speed up AES using AES-NI instructions.

4.3 Functionality Unavailable in C
Feature detection (28.5%). The cpuid instruction allows
programs to request information about the processor. It was
often used to check cache size, facilities for random-number
generation, or support for SIMD instructions such as SSE and
AVX. Also, perhaps surprisingly, cpuid is defined as a “seri-
alizing instruction” in the processor’s out-of-order execution
semantics, guaranteeing that all instructions preceding it
have been executed and none is moved above it.
Clock cycle counter (60.9%). Inline assembly was most
commonly used for accurate time measurement using the
rdtsc instruction. The rdtsc instruction reads the time-
stamp counter provided by the CPU. This instruction is
both efficient and accurate for measuring the elapsed cy-
cles, which makes it suitable for benchmarking [27]. As the
CPU’s out-of-order execution could move the code-to-be-
benchmarked before the rdtsc instruction, it is typically
used together with a serializing instruction (such as cpuid)
when measuring the elapsed clock cycles. To minimize the
overhead when measuring the end time, the rdtscp instruc-
tion can be used, which also reads the timestamp counter
but has serializing properties; to prevent subsequent code
from being executed between the start- and end-measuring
instructions, another cpuid instruction is needed.
Debug interrupts (3.9%). Some projects used an interrupt
to programmatically set a breakpoint in the program. If a
debugger, such as GDB, is attached to the program, execut-
ing a breakpoint causes the program to pause execution. A
definition of a breakpoint, for example,

#define BREAKPOINT asm("int $0x03")

is often selectively enabled through ifdefs, depending on
whether the debugging mode in the project is enabled.
Prefetching data (3.9%). The prefetch instruction was
used in 7 projects. It is a hint to the processor that the mem-
ory specified by the operandwill be accessed soon, which typ-
ically causes it to be moved to the cache. Using a prefetch
instruction timely can improve performance, because the
latency of fetching data can be bridged. However, as pro-
cessors provide prefetching mechanisms in hardware, using
them correctly requires a thorough understanding of cache
mechanisms [39]. For example, software prefetches that are
issued too early can reduce the effectiveness of hardware
prefetching by evicting data that is still being used.
Random numbers (3.4%). The rdrand instruction was
used in 6 projects. It computes a secure random number
with an on-chip random-number generator that uses statisti-
cal tests to check the quality of the generated numbers [28].
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Table 3. Instructions for atomics (with
at least 4 projects using them)

instruction % projects

lock xchg 14.2
lock cmpxchg 13.2
lock xadd 8.6
lock add 3.0
lock dec 2.5
lock inc 2.5
lock bts 2.0

Table 4. Instruction for fences

instruction % projects

mfence 6.6
sfence 6.6
lfence 5.6

Table 5. Instructions for endianness
conversion

instruction % projects

lock xchg 14.2
bswap 9.1
ror 5.6
rol 4.6

Table 6. Instructions for hash
functions

instruction % projects

shl 6.1
ror 5.6
rol 4.6
crc32 2.5

Table 7. Instructions for tim-
ing

instruction % projects

rdtsc 27.4
cpuid 25.4
rdtscp 2.5

Table 8. Instructions for fea-
ture detection

instruction % projects

cpuid 25.4
xgetbv 4.1

Table 9. Instructions to move
around data

instruction % projects

mov 24.9
pop 7.1
push 7.1
pushf 1.5
popf 1.0

Programmers can verify successful random-number genera-
tion by checking the carry flag (CF), for example, by writing
its value to a variable (using the setc instruction).

4.4 Supporting Instructions
Some instructions were most commonly used together with
other instructions, and we therefore classify them as “sup-
porting instructions”.

Moving and copying data (30.2%). Some inline assembly
fragments, mainly those larger in size, contained instruc-
tions to copy data to a register before some other instruction
accessed this register (see Table 9). While the mov instruc-
tion was also used in smaller fragments for that purpose, the
instruction could in many cases have been omitted entirely,
simply by correctly specifying the input and output con-
straints and letting the compiler generate the data-movement
code. In rarer cases, mov was also used to build a stack trace
by retrieving the value of %rbp. Additionally, the push and
pop instructions were used to save register values on the
stack and restore them. The pushf and popf instructions
were used to save and restore processor flags.

Arithmetic operations (21.2%). Arithmetic instructions
(see Table 10) were used in larger inline assembly fragments,
for example, in vector-reduction arithmetic (e.g., vector sum-
mation, inner product, and vector chain product) [47] in
crypto and math libraries. Additionally, they were used to
implement operations that are not available in standard C.

Table 10. Instructions for
arithmetics

instruction % projects

xor 12.7
add 10.7
mul 6.6
sub 6.6
adc 6.1
lea 5.6
or 5.6
and 4.6
inc 3.6
dec 3.0
neg 3.0

Table 11. Instructions for
control flow (with at least
4 projects using them)

instruction % projects

jmp 9.1
cmp 6.6
jz/je 5.6
jne/jnz 5.1
test 4.6
jb/jnae/jc 4.1
jnb/jae/jnc 3.6
ja/jnbe 2.0
jbe/jna 2.0

Table 12. Instructions that
set a value based on a flag

instruction % projects

sete/setz 5.1
setc/setb 3.6
setne/setnz 2.0

Table 13. Instructions with
rep prefixes

instruction % projects

rep movs 3.0
cld 2.0
rep stos 2.0

An example is the mulq instruction, which can be used to
obtain a 128-bit result when multiplying two 64-bit integers.
Another example is use of the add instruction for imple-

menting signed integer addition with wraparound semantics,
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because signed integer overflow has undefined behavior in
C [15]. Inline assembly was also used to implement opera-
tions on large integer types; for example, adc was used for
multi-word additions, because it adds the value of the carry
flag to the addition result (e.g., see [13]).
Control-flow instructions (13.4%). Control-flow-related
instructions were mostly confined to larger inline assembly
fragments (see Table 11). Some of these instructions compute
condition values (test and cmp), while others transfer con-
trol flow (e.g., jmp). However, they were also used for indirect
calls, for example, when implementing setjmp and longjmp
for coroutines. Another example was retrying the rdrand
instruction using jnc because it sets CF̸=1 if unsuccessful.
Set-byte-on-condition (10.6%). Several projects used in-
structions that extract a value from the flags register (see Ta-
ble 12). They were typically used together with instructions
that indicate their success via a flag. For example, rdrand
sets CF=1 on success, and the flag’s value can be used from
C by loading it into a variable using setc. As another ex-
ample, cmpxchg sets ZF=1 if the values in the operand and
destination are equal, which can be checked using setz.
No-ops (3.9%). The nop operation was used in 7 projects and
does not have any semantic effects. Normally, it is used for
instruction alignment to improve performance.
Rep instructions (3.4%). Instructions with a rep prefix
were used to implement string operations (see Table 13).
The rep prefix specifies that an instruction should be re-
peated a specified number of times. To control the direction
of repetition, cld was used to clear the direction flag.

4.5 Implementing Inline Assembly
One goal was to determine the “low-hanging fruits” when
implementing inline assembly. Therefore, the question was
how many projects could be supported by implementing
only 5% of all x86-64 instructions (i.e., 50 instructions). The
result is shown in Table 14. It groups similar instructions
that can be easily implemented together in an order that
maximizes the number of supported projects with each new
group. Note that the order of the implementation makes a
difference because a project is considered to be supported
only if all the instructions it uses are supported.
First, the timing instructions should be implemented; al-

though rdtscp is seldom used, it is similar to rdtsc and
could be implemented together with it. Next would be the
feature detection instructions. For tools that execute C code,
the feature detection instructions could also be used to indi-
cate that certain features are missing (e.g., SIMD support),
which could then guide the program not to use inline as-
sembly for these features. Some instructions could be imple-
mented as “no-ops”, as they either have no semantic effect
(e.g., prefetch) or are important only when multithreaded
execution needs to be modeled or analyzed (e.g., memory
fences). Implementing bit operations and atomics, would

Table 14. Instruction groups and the percentage of projects
covered by them

Instruction group Instructions Supported
Projects

Timing rdtsc, rdtscp 11.0%

Feature detection cpuid, xgetbv 18.4%

"No-ops" <compiler barrier>, mfence,
sfence, lfence, prefetch, nop,
int $0x03, pause, ud2

28.2%

Bit operations bsr, bsf, or, xor, neg, bswap,
shl, rol, ror

41.1%

Atomics lock xchg, lock cmpxchg,
lock xadd, lock add, lock
dec, lock inc

51.5%

Moving data mov, push, pop 58.9%

Checksum crc32 62.0%

Flag operations sete/setz, setc/setb, set-
ne/setnz, stc

67.5%

Arithmetics add, sub, mul, adc, lea, div,
imul, sbb, inc, dec

70.6%

Random numbers rdrand 72.4%

Control flow jmp, jnb/jae/jnc 76.7%

String operations rep movsb 77.9%

allow half of the projects to be supported. Finally, by imple-
menting the other instructions in the table (50 in total), tool
writers could support 77.9% of the projects that we analyzed
in detail and 64.5% when counting also the projects that we
did not analyze in detail. An alternative to implementing rep
movsb would be int $0x80; however, we thought that this
instruction is difficult to implement because it is used for
system calls, and thus preferred rep movsb. In general, we
believe that the semantics of most instructions in the table
are relatively straightforward to support in comparison with
some other portions of the instruction set, such as extensions
for hardware transactional memory [72].

RQ5: By implementing 50 instructions (5% of x86-
64’s total number of instructions) tool writers could
support 64.5% of all projects that contain inline as-
sembly.

Note that, depending on the tool, another order could
be more suitable—tool writers can consult the database to
determine the order that best suits their project.

5 Declarative Use Cases of Inline Assembly
Our syntactic analysis naturally turned up uses of the asm
keyword, but, perhaps surprisingly, not all of these were for
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inserting instructions. A small number of projects used it
instead for declarative means, for example, to control the
behavior of the linker. While many tools can ignore or work
around these usages of inline assembly, we discuss some of
the examples found as a first step towards characterizing the
remaining “soup” of non-C notations used in C codebases, as
noted in the Introduction. Additionally, we discuss examples
in which a mix of instruction representations was used to
encode certain instructions.
Specifying assembler names. Some projects use the inline
assembly asm keyword to specify the names of symbols, thus
preventing name mangling. For example,

AES_ECB_encrypt(...) asm("AES_ECB_encrypt");

is a function declaration with an inline assembly label that
specifies its symbol name in the machine code. In this exam-
ple, the function was implemented in macro assembly, so, in
order to guarantee binary compatibility, the name must not
be mangled. Labels are also used when the symbol cannot be
written in plain C (e.g., because it contains special characters
that are forbidden in C), and when symbol names need to be
accessible by a native function interface.
Linker warnings. A few projects used inline assembler di-
rectives to emit linker warnings when incompatible or dep-
recated functions of a library were included. C library imple-
mentations often make use of this; for example, using

asm(".section .gnu.warning.gets; .ascii

\"Please do not use gets!\"; .text");

at global scope causes the linker to emit a warning when
the unsecure gets function is linked.
Symbol versioning. Several libraries used symbol version-
ing to refer to older libc functions in order for code compiled
on a recent platform to work also on older platforms. A com-
mon example is memcpy, where current Linux versions link
to the relatively new glibc function memcpy@@GLIBC_2.14.
Most other standard library functions link to older glibc ver-
sions; for example, memset links to memset@@GLIBC_2.2.5.
If the most recent memcpy is not needed, and older platforms
should be supported, one can directly bind memcpy to the
older 2.2.5 version, for example, using

asm(".symver memcpy,memcpy@GLIBC_2.2.5").

Register variables. Programmers can use inline assembly
to associate local or global variables with a specific regis-
ter [24]. For example, one could store an interpreter’s pro-
gram counter in the %rsi register:

register unsigned char *pc asm("%rsi");

Such code was used for performance optimization.

Instruction representations. Inline assembly instructions
are normally written using mnemonics, which are textual
representations of the assembly instructions. However, 16.6%
of the projects with inline assembly (27 of 163) deviated from
this, either by avoiding instruction mnemonics entirely or
by combining mnemonics to surprising effect.
A number of projects denoted the pause instruction as

rep; nop. Even though the rep (0xF3) prefix is unspec-
ified for nop (0x90), the resulting opcode corresponds to
that of the pause (0xFE90) instruction. This works because
portions of the prefix-opcode space are, in effect, aliased,
and the assembler will accept an aliased combination in
place of the more direct encoding. In other cases, instruc-
tions were directly specified by their opcode, for example,
.byte 0x0f, 0x01, 0xd0 to represent the xgetbv instruc-
tion. Some projects even mixed both representations within
an instruction; for example, .byte 0x66; clflush %0 was
used to specify clflushopt, because prepending 0x66 to
the opcode of clflush (0x0FAE) yields the opcode for
clflushopt (0x660FAE).

Programmers resort to such notations to allow use of older
assemblers which fail to recognize mnemonics, but can pro-
cess opcodes or simpler instructions. Such notations were
also used for less common architectures, for example, for
VIA’s Padlock extensions [65]. While tool writers could treat
common patterns not specified by their mnemonics as spe-
cial cases, canonicalizing them would be more comprehen-
sive, as also rare or unknown combinations of instruction-
representations could be supported.

6 Threats to Validity
We used a standard methodology [21] to identify validity
threats, which we mitigated where possible. We considered
internal validity (i.e., whether we controlled all confounding
variables), construct validity (i.e., whether the experiment
measured what we wanted to measure), and external validity
(i.e., whether our results are generalizable).

6.1 Internal Validity
The greatest threat to internal validity is posed by errors in
the analysis. We used a manual best-effort approach to ana-
lyze x86-64 inline assembly fragments detected by our string
search. It cannot be ruled out that we incorrectly included
inline assembly that works only for other architectures (e.g.,
x86-32), or, conversely, that we rejected some erroneously. To
address this, we carefully analyzed inline assembly fragments
and repeated analyses when we had doubts or when we
found a single inline assembly fragment in several projects,
so we believe that errors in the analysis have little impact
on the result. A threat in the qualitative analysis is that bi-
ases in our judgements influenced the outcome of the study;
however, since we also used a quantitative approach, gross
distortions or misinterpretations are unlikely.
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6.2 Construct Validity
The main threat to construct validity is that we used a source-
code-based search to determine the usage of inline assembly.
This approach enabled us to analyze the usage of inline as-
sembly independent of conditions such as operating system,
compiler and its version, platform, and availability of func-
tions and intrinsics. However, while conducting this survey,
we found that some system library headers (which are not
part of the project repository) contained inline assembly
in macros. For example, GCC provides a cpuinfo.h header
file that wraps the cpuid instruction. We ignored such sys-
tem header libraries, and inspected only the source code of
the projects. While we recognize that this could have had
a minor impact on the quantitative analysis, we would ex-
pect the qualitative analysis to remain unaffected, as the
macros were used for the same purposes as inline assembly
fragments. Note that, if the goal had been to analyze what
inline assembly instructions are actually executed on a given
system, a binary-level approach would have been more ap-
propriate. Similarly, to analyze which instructions appear in
built binaries in any particular configuration, analysis after
C preprocessing would have been more useful.

6.3 External Validity
There are several threats to external validity, which are given
by the scope of our work.
Sample Set. One problem could be that the set of projects
is not representative of user-level C. To mitigate this and
increase the variety of projects, we employed two differ-
ent strategies to collect samples for analysis, one based on
GitHub stars as a proxy for popularity and one based on
keywords. Nevertheless, the number of stars of a project
might not reflect its popularity, and our search keyword
could also bias the results. While inline assembly could differ
in domains not represented in the survey, we believe that
the overall results would differ only marginally, given the
large body of source code that we examined (1264 projects
and 56 million LOC).
OS software. We excluded projects with software that typ-
ically forms part of an operating system, which we would
expect to use more inline assembly than typical user appli-
cations, for example, in order to implement interrupt logic,
context switches, clearing pages, and for virtualization exten-
sions [5, 42]. The usage of inline assembly in such projects
would best be analyzed separately (especially when consid-
ering the size of operating systems), which we will consider
as part of future work. The findings of our survey are thus
not generalizable to such software.
Macro assembly code. We analyzed only inline assembly
in detail and not macro assembly, which is stored in separate
files. Macro assembly is used to implement larger program
parts. This is reflected in the high average number of 888.3
LOC of macro assembly in the 7.8% of projects that used

macro assembler. Note that projects with inline assembly
were likely to also contain macro assembly, namely with
33.5%. While inline assembly is syntactically and semanti-
cally embedded into C code (e.g., C code can access registers,
and inline assembly can access local C variables), macro as-
sembler communicates only via the calling convention of
the platform. As macro assembly can be called via native
function interfaces by C execution environments and allows
modular reasoning by analysis tools, we generally ignored
it. Our findings are not generalizable to macro assembly.
Architectures. In our study, we focused on x86 inline assem-
bly. However, when inline assembly was used for a particular
use case, it was typically implemented for several common
architectures (e.g., x86, ARM, and PowerPC). Most projects
provided both x86-32 and x86-64 implementations, which
were either the same or only slightly different (also see [30]).
In rare cases, x86 lacked an inline assembly implementation
that other architectures provided; for example, reversing the
individual bits in an integer is available on ARM using the in-
struction rbit, with no equivalent x86 instruction. However,
in general, we believe that we would have come to similar
conclusions regarding the usage of inline assembly for other
mainstream architectures.
GitHub. We performed the survey on open-source GitHub
projects, and our findings might not apply to proprietary
projects. Additionally, our findings might not be general-
izable to older code, where inline assembly may be more
frequent, since 89.1% of the projects we analyzed had their
first commit in 2008 or later (the year GitHub was launched).

7 Related Work
To the best of our knowledge, inline assembly has to date
attracted little research attention, and consequently we con-
sider a wider context of related work.
LinuxAPI usage. Ourmethodologywas inspired by a study
of Linux API usage which analyzed the frequency of system
calls at the binary level to recommend an implementation
order [64]. While we adopted a similar perspective, we ana-
lyzed the usage of inline assembly in C projects. Additionally,
we directly analyzed the source code because we were inter-
ested in inline assembly usage independent of, for example,
compilers and compiler versions.
Inline assembly and teaching. Anguita et al. discussed
student motivation when learning about assembly-level ma-
chine organization in computer architecture classes [2]. In
these classes, students were taught instructions that high-
level languages lack (e.g., cpuid and rdtsc) and those that
can improve the performance of a program (e.g., by prefetch-
ing data or using SIMD instructions). We found strong simi-
larities between those instructions and the most frequently
used inline assembly instructions, which further supports
the validity of both studies.
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Linker. Kell et al. studied the semantic role of linkers in
C [34]. As with inline assembly, linker features are used in
C programs, but transcend the language. Furthermore, some
linker-relevant functionality, such as symbol versioning, is
expressed in inline assembly.
C preprocessor. Ernst et al. explored the role of the C pre-
processor [17]. As with linker features, the C preprocessor
is also relied upon by C programs, but is not part of the
language. They found that the preprocessor served—among
other purposes—to include inline assembly.
Formal verification. Some formal verification approaches
support inline assembly and/or macro assembly [5]. For ex-
ample, Vx86 translates macro assembly to C code by abstract-
ing its functionality [42]. Manual approaches assume that
such inline assembly portions need to be converted to C
functions [31]. Note that it is more straightforward to trans-
late macro assembler, because C code mixed with assembler
typically exchanges values between registers and variables.
Binary analysis. Tools that analyze or process binaries are
widely established [3, 4, 11, 35, 46, 56] and could analyze
C projects after they have been compiled to machine code.
However, they are not always applicable, for example, when
analyzing the high-level semantics of a program or when
converting between different source languages.

8 Conclusion
We analyzed 1264 GitHub projects to determine the usage
of inline assembly in C projects using both quantitative and
qualitative analyses.

Our results demonstrate that inline assembly is relatively
common in C projects. 28.1% of the most popular C projects
contain inline assembly fragments, even when operating-
system-level software, which might be more likely to con-
tain inline assembly, is excluded. Inline assembly fragments
typically consist of a single instruction, and most projects
with inline assembly contain fewer than ten fragments. We
found that the majority of projects use the same subset of
instructions: by implementing 50 instructions, tool writers
could support as much as 64.5% of all projects that contain
inline assembly. 17.3% of the remaining projects use macro-
metaprogramming techniques and/or many inline assembly
fragments, for example, to benefit from SIMD instruction
set extensions. By implementing the remainder of the total
of 167 instructions and the SIMD instruction set extensions,
tool writers could support the majority of projects “in the
wild”. Another challenge to implementing inline assembly is
that invalid combinations of mnemonics are used that form
valid opcodes when converted to machine code.

We found that inline assembly is often used in crypto-
graphic applications. However, networking applications, me-
dia applications, databases, language implementations, con-
currency libraries, math libraries, text processing and web
servers also contain inline assembly. It is therefore likely

that tools have to deal with inline assembly, even if they are
intended for a specific domain. Inline assembly is used for
multicore programming, for example, to implement compiler
barriers, memory barriers, and atomics. It is employed for
performance optimization, namely for SIMD instructions,
endianness conversions, hash functions, and bitscan opera-
tions. Further, it is used when a functionality is unavailable
in C, for example, for determining the elapsed clock cycles,
for feature detection, debug interrupts, data prefetching, and
generating secure random numbers. Finally, larger inline
assembly fragments use moves, arithmetic instructions, and
control flow instructions as “filler” instructions. Interestingly,
the inline assembly syntax of compilers is not only used to
insert instructions but also to control symbol names, linker
warnings, symbol versioning, and register variables.

We believe that the results of our study are important to
tool writers who consider adding support for inline assembly.
Our study gives guidance on the need for such support and
helps to plan and prioritize the implementation of instruc-
tions. Additionally, this study could be useful to language
designers, as it reveals where plain C is inadequate to a task
and where developers fall back on assembler instructions.
Finally, compiler writers could obtain feedback on which in-
structions are frequently used, for example, to handle them
specifically in compiler warnings [59] (e.g., by analyzing
whether constraints and side effects are specified correctly).

9 Future Work
Our study opened up several directions for future work. One
question is how inline assembly influences program correct-
ness, since its use is error-prone; for example, undeclared
side effects are not detected by state-of-the-art compilers and
might remain as undetected faults or hard-to-debug errors in
the source code. This question might be addressed by novel
bug-finding tools that specifically target inline assembly. Sim-
ilarly, an open question is whether compilers handle inline
assembly correctly in every case. In recent years, random
program generators for testing compilers [50, 60, 71] and
other tools [14, 33] have been successful in identifying bugs.
Future work could investigate whether generating programs
with inline assembly could expose additional compiler bugs.
While investigating inline assembly, we found that many
programs use compiler intrinsics as an alternative to inline
assembly. However, we did not investigate the usage of com-
piler intrinsics, which could be done as part of a future study.
Finally, we believe that our study could be extended, for ex-
ample, by investigating inline assembly in software (I) that is
close to the machine (e.g., in operating systems), (II) in other
languages (e.g., in C++), and (III) for other architectures (e.g.,
for ARM), and by investigating macro assembly.
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Table 15 shows the instructions sorted by their frequency.
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Table 15. Instruction table with instructions that were contained in at least 2 projects

instruction # projects % projects instruction # projects % projects instruction # projects % projects

rdtsc 54 27.4 test 9 4.6 aeskeygena 4 2.0

cpuid 50 25.4 jc 8 4.1 cld 4 2.0

mov 49 24.9 movdqa 8 4.1 ja 4 2.0

43 21.8 shr 8 4.1 jbe 4 2.0

lock xchg 28 14.2 xgetbv 8 4.1 lock bts 4 2.0

pause 27 13.7 bsf 7 3.6 lods 4 2.0

lock cmpxchg 26 13.2 call 7 3.6 pclmulqdq 4 2.0

xor 25 12.7 inc 7 3.6 pslldq 4 2.0

add 21 10.7 int $0x03 7 3.6 psllq 4 2.0

bswap 18 9.1 jnc 7 3.6 psrldq 4 2.0

jmp 18 9.1 nop 7 3.6 rep stos 4 2.0

lock xadd 17 8.6 por 7 3.6 sar 4 2.0

pop 14 7.1 prefetch 7 3.6 setnz 4 2.0

push 14 7.1 setc 7 3.6 stos 4 2.0

cmp 13 6.6 dec 6 3.0 imul 3 1.5

mfence 13 6.6 lock add 6 3.0 lock or 3 1.5

mul 13 6.6 neg 6 3.0 lock sub 3 1.5

sfence 13 6.6 rdrand 6 3.0 movzb 3 1.5

sub 13 6.6 rep movs 6 3.0 pand 3 1.5

adc 12 6.1 crc32 5 2.5 pushf 3 1.5

bsr 12 6.1 lock dec 5 2.5 shrd 3 1.5

shl 12 6.1 lock inc 5 2.5 div 2 1.0

jz 11 5.6 movdqu 5 2.5 emms 2 1.0

lea 11 5.6 pshufd 5 2.5 fldcw 2 1.0

lfence 11 5.6 psrlq 5 2.5 int $0x80 2 1.0

or 11 5.6 rdtscp 5 2.5 jl 2 1.0

ror 11 5.6 ret 5 2.5 ldmxcsr 2 1.0

jnz 10 5.1 aesdec 4 2.0 lock and 2 1.0

setz 10 5.1 aesdeclast 4 2.0 popf 2 1.0

and 9 4.6 aesenc 4 2.0 punpcklb 2 1.0

pxor 9 4.6 aesenclast 4 2.0 punpckldq 2 1.0

rol 9 4.6 aesimc 4 2.0 stmxcsr 2 1.0
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Abstract—C programs can use compiler builtins to provide
functionality that the C standard library lacks. On Linux, GCC
provides several thousand builtins that are also supported by
other mature compilers, such as Clang and ICC. Maintainers
of other tools lack guidance on whether and which builtins
should be implemented to support popular projects. To assist
tool developers who want to support GCC builtins, we analyzed
builtin use in 4,912 C projects that we obtained from GitHub.
We found that 38% of these projects relied on at least one
builtin. Supporting an increasing proportion of projects requires
support of an exponentially increasing number of builtins;
however, implementing only 10 builtins already covers over
30% of the projects. Since we found that many builtins in our
corpus remained unused, the effort needed to support 90% of
the projects is moderate, requiring about 110 builtins to be
implemented. For each project, we analyzed the evolution of
builtin usage over time and found that in most cases projects
added calls to builtins. This suggests that builtins are not a
legacy feature and must be supported in future tools. Systematic
testing of builtin support in existing tools revealed that many
lacked support for builtins either partially or completely; we also
discovered incorrect implementations in various tools, including
the formally verified CompCert compiler.

Index Terms—GCC builtins, compiler intrinsics, GitHub

I. INTRODUCTION

Most C programs consist not only of C code, but also of
other elements, such as preprocessor directives, freestanding
assembly code files, inline assembly, compiler pragmas, and
compiler builtins. While recent studies have highlighted the
role of linker scripts [1] and inline assembly [2], compiler
builtins have so far attracted little attention. Builtins resemble
functions or macros; however, they are not provided by libc,
but are directly implemented in the compiler. The following
code fragment shows the usage of a GCC builtin that returns
the number of leading zeroes in an integer:
int leading_zeroes = __builtin_clz(INT_MAX); // returns 1

On Linux, we observed that GCC builtins are widely used and
seem to be supported also by other mature compilers, such as
Clang [3] and ICC [4].

For developers working on tools that process C code,
implementation and maintenance of GCC builtins is a large
effort, as we identified a total number of 12,126 GCC builtins,
all of which are potentially used by projects. Hence, to assist
developers of tools that process C code, the goal of this study
was to investigate the use of builtins and how current tools

support them. To this end, we analyzed the builtin use of 4,912
projects from GitHub and implemented a builtin test suite,
which we used to test popular tools employed by C developers.
By combining quantitative and qualitative analyses, we could
answer the following research questions (RQs):

RQ1: How many builtins do exist? Answering this question
can help tool writers to estimate the effort of providing com-
plete support for GCC compiler builtins. We initially thought
that we could obtain a list of builtins from the documentation
or source code. However, GCC’s organic growth has led to
some builtins being omitted from the documentation, and
others are considered internal, even when they are widely
relied upon by other projects.

RQ2: How frequently do projects use builtins? Knowing the
prevalence of builtins helps tool writers to judge the impor-
tance of implementing support for them. We hypothesized that
builtins are used by many projects, and that any program that
processes C code will therefore encounter them, yet—similar
to inline assembly [2]—we expected that they are used in only
a few source-code locations.

RQ3: For what purposes are builtins used? Knowing the
primary use cases for builtins helps tool developers to judge
whether their tools can support them. For example, static anal-
ysis tools might lack support for multithreading and hence be
unable to deal with atomic builtins used for synchronization.

RQ4: How many builtins must be implemented to support
most projects? Tool authors who have decided to support GCC
builtins would find it helpful to know the implementation order
that would maximize the number of projects supported at a
given implementation stage.

RQ5: How does builtin usage develop over time? Under-
standing the usage of builtins over time could tell us whether
projects continue to add builtins or remove them. If builtins
were a legacy feature of compilers that projects sought to
remove, the incentive of tool developers to implement them
would be low.

RQ6: How well do tools support builtins? To determine
the room for improvement in tools, we examined how well
existing tools support builtins. Our assumption was that state-
of-the-art compilers such as GCC, Clang, and ICC provide full
support, while other tools provide partial or no support.

We found the following:



• 12,126 GCC builtins exist, but only 3,084 were used in
our corpus of projects;

• 38% of the projects used builtins. When projects used ar-
chitecture-specific builtins, they were often used in large
numbers.

• Projects primarily used architecture-independent builtins,
for example, to interact with the compiler, for bit-level
operations, and for atomic operations.

• While mature compilers seem to provide full support
for builtins, most other tools lack some builtins or have
some incorrectly implemented. Notably, we found two
incorrectly implemented GCC builtins in an unverified
part of the formally verified CompCert compiler.

• The effort of supporting a specific number of projects is
exponential; for example, to support half of the projects
only 32 builtins are needed. Supporting 99% of the
projects, however, requires about 1,600 builtins.

• Over time, most of the projects increasingly used builtins;
nevertheless, a number of projects removed builtin usages
to reduce maintenance effort.

Our results are expected to help tool developers in prioritiz-
ing implementation effort, maintenance (including deprecation
of unused builtins), and optimization of builtins. Thus, this
study facilitates the development of compilers such as GCC,
Clang [5], ICC, and the formally verified CompCert com-
piler [6], [7]; of static-analysis tools such as the Clang Static
Analyzer [8], splint [9], [10], Frama-C [11], and uno [12]; of
semantic models for C [13], [14]; and of alternative execu-
tion environments and bug-finding tools such as KLEE [15],
Sulong [16], [17], the LLVM sanitizers [18], [19], and Soft-
Bound [20], [21]. We believe that our results are also useful to
language designers, as they show which functionality plain C
lacks, and can help with testing compilers [22], [23], [24] and
other tools that process C code [25], [26]. For reproducibility
and verifiability, we provide the database with GCC builtin
usage, test suite, tools used for the analysis, and an online
appendix with more details on a website yet to be determined.

II. METHODOLOGY

To answer our research questions, we analyzed builtin usage
in a large number of C projects and populated a SQLite3
database with the extracted data. This section explains how we
selected the projects, filtered them, and searched for builtins.

Selecting the Projects. We analyzed projects from GitHub,
a code-hosting service. We downloaded all C projects starting
from 80 GitHub stars, an arbitrary cutoff value that yielded
a large number of projects for our study. As the number of
stars is a metric for popularity [27], this cutoff point prevented
the inclusion of personal projects, homework assignments, and
forks [28]. In total, we downloaded 4,997 GitHub projects that
contained in total 1,124 million lines of C code and occupied
409 GB of disk space. This strategy allowed us to obtain a
diverse set of projects (see Table I).

Filtering the Projects. From the downloaded projects, we
selected 4,912 by filtering out those that did not meet our
needs. First, we filtered out all projects that had fewer than 100

TABLE I: Overview of the projects obtained (after filtering);
the first commit in 1984 stems from a project that was
converted from another version-control system.

Metric Minimum Maximum Average Median

C LOC 100 37M 228k 10k
# commits 1 668k 4873 1147
# committers 2 17k 121 55
first commit 1984-02-21 2017-11-06 - 2011-04-12
last commit 2003-12-08 2017-11-24 - 2017-11-07

LOC, as we considered them too small to constitute C projects.
GCC, forks of GCC1, and other compilers (such as ROSE [29])
implement the GCC builtins themselves, use them internally,
and exercise them in their test suites. To avoid a high number
of false positives, we excluded these projects; they were easy
to identify, as they had the most unique builtins.

Searching within the Projects. We searched all C files for
the names of 12,126 builtins described by the GCC documen-
tation and used in the GCC source code (see Section III-A).
Note that we considered only occurrences where the builtin
name was not part of another identifier. For each builtin that
we found, we created a record in our database, thus obtaining
630k builtin entries.

Filtering the Builtin Records. We used several strategies
to eliminate false positives in the builtin records. While
investigating the projects with the highest numbers of unique
builtins—mostly operating systems—we found that many of
them included the source code of Clang or GCC. As with GCC
forks, we excluded directories that started with gcc, clang or
llvm (excluding 45% of our records); however, we continued
to analyze source files in other directories of such projects.
We excluded builtin occurrences that were enclosed in double
quotes, as this indicates that they are part of a string (excluding
1% of the records). To exclude builtins in comments, we did
not consider builtins found in lines that started with /*, *, or
// (which excluded 2% of the records). Finally, we skimmed
over the builtin occurrences and created a list of 4,026 one-line
code fragments that indicated false positives, such as inline
assembly with an instruction mnemonic that corresponded to
a builtin name (excluding 1% of the records). In total, these
measures reduced the number of records to 320k (51% of the
original number). Note that the exclusion criteria overlapped
for some records.

III. RESULTS

To answer our research questions, we analyzed the data
gathered as follows.

A. RQ1: How many builtins do exist?

To determine the number of builtins in GCC, we investi-
gated (I) builtins listed in the GCC documentation and (II)

1The projects filtered out included the GCC fork for the Xtensa processor
(https://github.com/jcmvbkbc/gcc-xtensa), and a fork that is based on GCC to
dump an XML description of C++ code (https://github.com/gccxml/gccxml).



builtins internal to GCC, which we obtained from GCC’s
source code (including test cases for its builtins).

(I) Builtins from the documentation. Initially, we assumed
that we could answer RQ1 by extracting the list of builtins
from the GCC documentation. The GCC documentation stated
that some builtins are internal, which we did not want to
include as we expected that other projects would not use
them. Extracting the builtins was a best-effort approach, since
the list of builtins in the GCC documenation appeared to be
manually derived and contained duplicates and errors. This
worked well with architecture-independent builtins, but GCC
also provides builtins that are specific to an architecture.
For example, __builtin_ia32_paddq allows the use of
x86’s paddq instruction. In some cases, architecture-specific
builtins were not described by the documentation, but referred
to vendor documentation, for example, the ARM C Language
Extensions. For these builtins, the documentation of GCC
version 4.8 contained a list of builtins, which we used instead.
However, in some cases, obtaining such a list was imprac-
tical, for example, for the TILE-Gx and TILEPro processor
builtins. As we expected little influence on the results—
overall, architecture-specific builtins were used infrequently
(see Section III-C)—we omitted analyzing such builtins. In
total, this process yielded 6,040 builtins, of which 560 were
architecture-independent and 5,480 were architecture-specific.

(II) Builtins from the GCC source code To verify that
we did not omit any commonly used builtins, we searched the
projects for strings starting with __builtin_. We found that
many projects relied on a small number of GCC’s internal (i.e.,
undocumented) builtins. We assumed that tool developers also
need to support these builtins, and added them to our search
terms by including all additional __builtin_ functions
that we found in the GCC source code and test suite (6,067
additional builtins). In a number of cases, GCC implemented
public builtins using undocumented internal builtins; this was a
potential problem in our study, as public and internal builtins
would be counted as separate even if they implemented the
same semantics. However, since the number of internal builtins
actually used was relatively small, we did not attempt to match
public builtins with internal ones in our quantitative analysis.

In total, we considered 12,126 builtins in our analysis.

B. RQ2: How frequent are builtins?

To answer RQ2, we considered both duplicate and unique
builtin usages per project. Counting usages—even if they were
duplicated within a project—allowed us to measure the overall
prevalence of builtin use. Counting project-unique usages
better reflected the implementation effort needed to support a
project, because duplicates do not increase the implementation
effort.

Overall usage. In total, 1,847 of the projects (38% of
all projects) used a common subset of 3,084 builtins. The
frequency of compiler builtins varied strongly, depending on
the project, and ranged from one builtin every 7 LOC to one
every 1,680,582 LOC. The median frequency of builtins was
one every 5,737 LOC (on average one builtin every 20846
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Fig. 1: Number of architecture-specific and architecture-
independent builtins per project that used builtins of the
respective category. The plots use a logarithmic scale to
accommodate the large variations between projects.

LOC). Figure 1 shows boxplots to illustrate the builtin usage
by the projects, and breaks their usage up into architecture-
specific and architecture-independent usages, considering both
unique and non-unique builtin occurrences within a project.

Non-unique occurrences. The median number of builtin
calls in a project that used builtins was 9, the average was
174. Where they were used in projects, architecture-specific
builtins were employed in greater numbers (median = 69);
in contrast, when architecture-independent builtins were used,
their numbers were far lower (median = 7). However, since
use of architecture-specific builtins was less common (see Sec-
tion III-C), the overall result is dominated by the architecture-
independent builtins. We investigated the 15 projects with the
highest numbers of builtins and found that audio/video players
and codecs lead the ranking (9/15), followed by operating
systems (3/15), a game engine, a software library specialized
for ARM processors, and a libc implementation.

Unique occurrences. Of the 320k builtin calls, 30k were
project-unique; that is, the others were duplicated within a
project. The median number of unique builtins used by projects
with builtins was low, with a median of 4 and an average of 17.
As with non-unique builtins, projects that used architecture-
specific builtins had more such builtins (median = 17) than
projects that used architecture-independent builtins (median =
3). The projects with the highest numbers of unique builtins
were, again, in most cases audio/video players and codecs
(6/15). However, operating systems (2/15), game engines
(2/15), language implementations and compilers (2/15), a
messenger, and an image codec also ranked among the top
15.

Reoccurring files. We observed that files with particular
names, primarily header files, were more likely to contain
calls to builtins. One reason for this was that, consistent with
findings by Lopes et al. [30], files were copied from other
projects. The majority of these files originated either from
the GNU C library glibc or from Linux-based operating
systems. While they were used primarily in operating sys-



tem implementations, they were also copied to projects with
application code. As another example, the frequently used
sqlite3.c and SDL_stdinc.h files even contained the
projects’ names as part of the file name: SQLite is a popular
database, and SDL a commonly used media library. In other
cases, duplicate file names indicated the use case for the builtin
usage. For example, builtin-based atomicity support was often
implemented in files named atomic.h, and math builtins
were used in files named math.h.

C. RQ3: For what purposes are builtins used?

To identify the purpose for which builtins are used,
we explored their usage at different levels of granular-
ity: First, we considered the differences in usage between
architecture-independent and architecture-specific builtins. We
subsequently examined the usage of architecture-independent
builtins and of architecture-specific builtins in more detail.
The results are summarized in Figure 2. Finally, we analyzed
builtins that remained unused in our corpus.

Architecture-specific and -independent builtins. The
GCC documentation categorizes builtins into architecture-
specific and architecture-independent ones, which we used
as a basis for discussion. While 1,779 projects used at least
one architecture-independent builtin, we found architecture-
specific builtins in only 424 projects. That architecture-
independent builtins are more common was unexpected, since
we found only 86k architecture-independent builtin uses, but
214k architecture-specific ones. However, as discussed in Sec-
tion III-B, a project using architecture-specific builtins is likely
to use more such builtins than projects that use architecture-
independent builtins.

Usage of architecture-independent builtins. The builtin
category “other”, which contained miscellaneous builtins, was
the most common category of GCC builtins, even though
it comprised only 68 builtins—21 of which were among
the 50 most frequently used. Since these builtins were the
most common, we further analyzed their use, and classified
them into the following subcategories: (I) direct compiler
interaction, (II) bit and byte operations, (III) special floating-
point values, and (IV) dynamic stack allocation.

(I) Direct compiler interaction. Some builtins allow
direct interaction with the compiler, for example, to
improve performance; the most frequently used builtin
was __builtin_expect, which communicates
expected branch probabilities to the compiler, which
can exploit this information for optimization. The
__builtin_unreachable builtin can be used to silence
warnings by informing the compiler that code is unreachable,
which is useful when the compiler cannot deduce this. Some
of the builtins in this subcategory can also be used for
metaprogramming; the __builtin_constant_p builtin
is resolved at compile time and allows programmers to query
whether a pointer is known by the compiler to be constant. As
another example, __builtin_types_compatible_p
queries whether two input types passed to the builtin are the
same. Plain C does not offer similar functionality.

(II) Bit and byte operations. Some builtins process integers
at the level of bits and bytes. The second-most frequently
used builtin was __builtin_clz, which counts the leading
zeroes in an unsigned int; its variants for other data types
also ranked among the most commonly used builtins overall.
Similarly frequent were builtins for computing the position of
the least significant one-bit, for counting the number of one-
bits in an integer, and for reversing the bytes of an integer.
We believe that these builtins were used for convenience and
performance optimizations, as the same functionality could be
implemented in plain C.

(III) Special floating-point values. Some builtins generate
special values for various floating-point types. For example,
the __builtin_inf builtin generates a positive infinity
double value. As another example, __builtin_nan re-
turns a not-a-number value. Recent C standards specify macros
and functions for obtaining such values.

(IV) Dynamic stack allocation. The
__builtin_alloca builtin allocates the specified
number of bytes of stack memory. Since C99, variable length
arrays have offered a similar functionality, as the size of an
allocated array can depend on a run-time value.

Synchronization and atomics. After “other”, the next
common builtin category was synchronization (“sync”) with
11 of the 50 most common builtins. In this category, the most
frequently used builtin was __sync_synchronize, which
issues a full memory barrier to restrict the order of execution
in out-of-order CPUs. Builtins for atomically executing opera-
tions were also common (e.g., __sync_fetch_and_add).
These builtins were designed for the Intel Itanium ABI and
were deprecated in favor of the builtins contained in the
“atomic” category. The builtins in the “atomic” category addi-
tionally allow specifying the memory order of the operation,
but were not that frequently used; nevertheless 7 builtins of
this category ranked among the 100 most common builtins.
Note that C11 introduced synchronization primitives, which
are alternatives to these builtins.

Libc functions. GCC provides builtins for many functions
of the standard C library—4 such builtins were the 100
most common builtins. An example is __builtin_memcpy,
which implements the semantics of memcpy. The builtin
version of the libc function is useful when compiling a
program assuming a C dialect in which a function is not yet
available; for example, when compiling under the C90 stan-
dard (-std=c90), the newer C99 function log2 cannot be
used; however, the prefixed version __builtin_log2 can
still be used. Furthermore, they enable bare-metal programs,
which are compiled freestanding and therefore do not have
access to libc functions, unless they use compiler builtins.

GCC internal functions. Several builtins were used by
projects although they were not documented—4 ranked
among the top 100 frequently used builtins. These most
frequently used builtins, namely __builtin_va_start,
__builtin_va_end, __builtin_va_arg, and
__builtin_va_copy, were used only to implement
the vararg macros of the C standard; for example,



#define va_start(v,l) __builtin_va_start(v,l)

Function return address and offsetof. The “intro-
spection” category—with 3 of the top 100 builtins—
enables programmers to query (I) the address to which
a function returns and (II) the address of the current
frame (i.e., the area where local variables are stored). To
this end, GCC provides __builtin_return_address,
__builtin_frame_address and other builtins. An-
other, similar category is “offsetof” with a single builtin
__builtin_offsetof, which was one of the top 100
builtins. It determines the offset of a struct or array member
from the start address of the struct or array.

Object size and safe integer arithmetics. The builtin
__builtin_object_size in the “object-size” category
enables programmers to query the size of an object, which is
useful when implementing bounds checks. To implement this
builtin, GCC relies on static analysis to determine the size of
an object where possible. The “overflow” category—of which
no builtin ranked among the top 100—provides wraparound
semantics for overflow in signed-integer operations (e.g.,
__builtin_add_overflow for addition), which would
otherwise induce undefined behavior in C [31].

Usage of architecture-specific builtins. Of the 100 most-
frequent builtins, 44 were specific to an architecture. Most
frequent were the builtins for the PowerPC family—17 of
which were among the top 100 builtins. The most frequent
PowerPC builtins were those implementing vector operations
such as vec_perm, which implements a vector permutation.
The second category were ARM C NEON extensions—25 of
which were among the top 100 builtins—that also implement
vector operations. On x86, which ranked next, the most com-
mon builtin was __builtin_cpu_supports followed
by __builtin_cpu_init, which allow programmers to
query the availability of CPU features such as SIMD support.
In x86-64 inline assembly, the equivalent cpuid instruction
ranked among the most commonly used instructions [2]. Other
x86 builtins were quite diverse and less frequent. For brevity,
the less frequently used architecture-specific builtin categories
are omitted. However, they are included in the full list of
commonly used builtins in the online appendix.

Unused builtins. To identify unused builtins, we con-
sidered only those described in the GCC documentation
(i.e., the public ones). Surprisingly, we found that half of
them, namely 3,030 (50%), were not used in our cor-
pus. The distribution differed between architecture-specific
and architecture-independent builtins. From the architecture-
independent builtins, 379 of 560 were used, which corresponds
to 32% unused builtins. We characterize these builtins below.
From the architecture-specific builtins, only 2,630 of 5,480
builtins were used, which means that more than half of them
(52%) were not used in any project; this is why we do not
characterize them in detail.

We contacted the GCC developers to report our findings2;
they responded that builtins could not be removed from the

2https://gcc.gnu.org/ml/gcc/2018-01/msg00166.html

documentation due to vendor guarantees (for architecture-
specific builtins) and because they might still be used in
closed-source software or by projects not hosted on GitHub.
Note that builtins that are used only internally could still
be removed from the public documentation, which explicitly
states that it does not document such builtins.

Unused architecture-independent builtins. None of the
projects used any of the 11 bounds-checking builtins for
controlling the Intel MPX-based pointer-bounds-checker in-
strumentation, which is based on a hardware extension in
Intel processors. One reason for this is that they are used
by a pass within GCC and have received only little fur-
ther attention [32], as Intel MPX-based approaches per-
form only about as fast as pure software approaches [33].
Four of the object-size-checking builtins were not used,
namely a subset of those for printing format strings
(e.g., __builtin___vfprintf_chk). The builtins of
this category were derived from library functions (e.g.,
memcpy), but require an additional size argument (e.g.,
__builtin___memcpy_chk). The intended use of these
builtins is to prevent buffer overflow attacks, since object
accesses that exceed the size of the object can be prevented.
We speculate that these builtins were not frequently used
because such checks can only be enforced completely at run
time [34].

None of the 13 builtins of the Cilk Plus C/C++ language
extensions [35], which offer a mechanism for multithreading,
were used. In 2017—the year this study was conducted—Cilk
Plus was deprecated, and in November 2017 GCC removed
its implementation3. Of the prefixed libc functions, 37% were
unused. Most programs are probably compiled in hosted mode,
where compilers can substitute calls to the libc functions with
these builtins. Another reason could be that some of them are
used only internally. Nevertheless, they were documented in
the public API.

Of the unused builtins in the “other” category,
the majority were narrowly specialized builtins
such as __builtin_inffn, which generates an
infinity value for the data type _Floatn. Further,
__builtin___clear_cache for flushing the
processor’s instruction cache remained unused. The unused
__builtin_call_with_static_chain enables calls
to languages that expect static chain pointers, such as Go.

D. RQ4: How many builtins must be implemented to support
most projects?

In order to provide tool developers with a recommended
implementation order for builtins, we considered two imple-
mentation scenarios. The first scenario considered all builtins
as implementation candidates. The second considered only
architecture-independent builtins, which can be relevant when
only a subset of architectures is to be supported. Additionally,
we assumed two pragmatic strategies for the order of imple-
mentation: an order based on the frequency of builtins, and
one based on a greedy algorithm.

3https://gcc.gnu.org/ml/gcc-patches/2017-11/msg01345.html
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Fig. 2: The number of projects that rely on architecture-specific and architecture-independent builtins.

Frequency order. Using this strategy, we assumed that the
builtins used by the highest number of projects are to be
implemented first. Thus, this strategy follows the order given
by Table II. This order is not generally optimal, because it
does not take into account that, in order for a project to be
supported, all builtins used must be implemented.

Greedy order. For rapid experimentation, it can be benefi-
cial to quickly support as many projects as possible. To this
end, we implemented a greedy order where the next builtin to
be implemented is selected such that it enables support of the
largest number of additional projects. If no such builtin exists,
the next builtin is selected using the frequency order.

Results. Implementing builtins takes an exponential imple-
mentation effort in terms of number of builtins that must
be implemented to support a specific number of projects
(see Figure 3). The greedy order for implementing builtins
performs better than the frequency order, a trend that is
more clear-cut when considering all builtins rather than just
architecture-independent ones. To support half of the projects,
in both scenarios and using both strategies, no more than 32
builtins need to be implemented. However, supporting 90%
of the projects requires 106 builtins to be implemented for
the greedy approach and 112 builtins for the frequency strat-
egy when considering only architecture-independent builtins.
When considering all builtins, more than 850 builtins must be
implemented for the frequency strategy, and more than 600
for the greedy strategy. To support 99% of the projects, the
greedy algorithm is better: when considering only architecture-
independent builtins, around 250 instead of 300 builtins must
be implemented, compared to 1,600 instead of 3,000 builtins
when considering all builtins.

E. RQ5: How does builtin usage develop over time?

To understand whether builtin usage is an ongoing con-
cern of software projects or just a form of technical debt
(introduced temporarily before being removed), we studied the
development of builtin usage over time in the projects that
used builtins. For this, we analyzed all commits by iterating
from the latest commit to the oldest commit—including merge
commits (represented by the union of all commits that are
merged)—always by following the first parent (i.e., staying
on the master branch). We analyzed 1,839 projects (100% of
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TABLE II: The 10 most frequent builtins.

builtin category projects

builtin expect other (compiler interaction) 891 / 48.2%
builtin clz other (bitwise operation) 542 / 29.3%
builtin bswap32 other (bitwise operation) 483 / 26.2%
builtin constant p other (compiler interaction) 431 / 23.3%
builtin alloca other (stack allocation) 375 / 20.3%
sync synchronize sync 357 / 19.3%
builtin bswap64 other (bitwise operation) 347 / 18.8%
sync fetch and add sync 333 / 18.0%
builtin ctz other (bitwise operation) 324 / 17.5%
builtin bswap16 other (bitwise operation) 303 / 16.4%

all projects that used builtins); the rest could not be processed
in a feasible amount of time.

We first classified projects manually as having an increas-
ing, decreasing, or inconclusive trend of builtin usage (see
Table III). Amongst others, we considered those trends as
inconclusive whose projects had just 5 or fewer commits
that added or removed builtin calls; surprisingly, this was
the case for the majority of the projects (1,145)4. We then
improved our classification iteratively by forming subcate-
gories. To find reasons for changes in the numbers of builtins,
we analyzed commit messages and commit changes, then
identified common cases. Finally, we selected four projects

4 More than 80% of them only added builtins and never removed any. If
we counted these projects, the increasing trend would be more significant.



TABLE III: Builtin trends in projects.

trend classification #/% builtins median
commits

Increasing
mostly increasing 175 10% 11
monotonically increasing 55 3% 6
increasing, with stable parts 88 5% 10

Decreasing increasing, then decreasing 97 5% 9

Inconclusive
fewer than 5 commits 1,145 64% 1
no clear pattern 179 10% 10
initial commit 48 3% 12

that were representative of the most important trends in order
to qualitatively explain the development of builtins in them.

Classification. We found that the majority of projects with
a conclusive trend showed increasing usage of builtins. 55
projects only added builtins, but never removed any; however,
the number of builtin-related commits was low in this category,
with a median of 6 of such commits. 175 projects—the highest
number in a conclusive subcategory—had a mostly increasing
usage of builtins, which was the case for many large projects;
this is also demonstrated by the high median number of builtin-
related commits. Finally, we identified 88 projects with an
increasing trend, but either long periods without builtin-related
commits or only marginal increases.

Decreasing trends—preceded by an increasing trend—were
relatively rare (97 projects), which suggests that a significant
number of builtins was removed only in a few cases. 179
projects varied between increasing and decreasing trends, so
we could not characterize their development. 48 projects were
left uncharacterized as they added a significant number of
builtins as part of their first commit. This is typical for cases
where an existing project was imported in a version control
system without its prior commit history.

Reasons for builtin additions. The majority of sharp
increases in the number of builtins was caused by the inclusion
of third-party libraries that call builtins internally, as indicated
by commits such as “update packaged sqlite to 3.8.11.1” or
“Added latest stb image.” In some cases, only single existing
header files were included, as indicated by commit messages
such as “add atomic.h that wraps GCC atomic operations” or
“Copy over stdatomic.h from freebsd.”

Builtins, both architecture-specific and -independent ones,
were used for performance optimizations. Architecture-
independent optimizations were described as “popcount()
optimization for speed” (using __builtin_popcount),
“Use builtin expect in scanline drawers to help gcc pre-
dict branching”, and “A prefetch of status->last alloc tslot
saved 5%” (using __builtin_prefetch). Examples of
architecture-specific builtin commits were “VP9 common for
ARMv8 by using NEON intrinsics” and “30% encoding
speedup: use NEON for QuantizeBlock()”.

Builtins were also used because they conveniently supported
required functionality in commits such as “bitmap – Add
few helpers for [bit] manipulations”. They were often used
for atomics, as in “GCC 4.1 builtin atomic operations” and

“Adding atomic bitwise operations api and rwlocks support”.
They enabled metaprogramming techniques, for example, by
enabling macros to handle various data types: “util: Ensure
align power2() works with things other than uint. This uses
a casacading set of if ( builtin types compatible p()) state-
ments to pick the correct alignment function tailored to a
specific type [...]”.

Finally, builtins were employed to reduce the usage of
inline assembly in commits such as “avoid inline assembly
in favor of gcc builtin functions” and “Padlock engine: make
it independent of inline assembler.”, or as an alternative to
architecture-specific system libraries, such as “alloca fallback
for gcc”, which added a usage of __builtin_alloca
when the platform did not provide a header file that imple-
ments alloca.

Reasons for builtin removals. Removals of third-party
libraries accounted for the most significant number of removals
of builtins, as indicated by commits such as “Remove thirdpar-
ties” or “Removed outdated headers and libraries.” Individual
files or functions that used builtins were removed as side
effects of refactoring or cleanup in commits with messages
such as “General cleanup of the codebase, remove redundant
files.” or “tools: Remove unused code.” Auto-generated files
were removed, for instance, in the commit “Removed getdate.c
as it is regenerated from getdate.y”.

A number of removals were related to technical debt [36].
Projects removed builtins for old architectures for which
they dropped support, for instance, in “avr32: Retire AVR32
for good. AVR32 is gone. [...]” or “Blackfin: Remove. The
architecture is currently unmaintained, remove”. In other
cases, builtins for certain architectures were removed due to
their maintenance effort: “Remove support for altivec using
gcc builtins, since these keep changing across gcc versions.
[...]”. Usages of builtins were hidden behind a macro, to
concentrate their usage to a single location in the source
code: “Convert remaining builtin expect to likely/unlikely
[...]” (for __builtin_expect) and “Use the new sol-
atomic.h API instead of directly GCC intrinsics” (for atomic
operations).

In other cases, a usage of __builtin_expect was
removed because it did not improve performance: “[...] It had
no reliably measurable performance improv[e]ment, at least
on an i7 960 and within a microbenchmark.”.

Case study. Finally, we examined the builtin development in
four projects whose trends we considered both representative
and insightful for our case study (see Figure 4). First, we
selected libucl, a configuration library parser, which is repre-
sentative of the increasing trend. Like the majority of projects
that we examined, it added a small number of builtin calls for
various tasks. We selected libav, a collection of cross-platform
tools to process multimedia formats and protocols, to represent
the decreasing category (increasing, then decreasing). As is
typical of a media library, it contained a number of builtin-
related commits that improved performance by adding calls to
architecture-specific builtins, but also systematically removed
them to reduce maintenance effort. We selected cpuminer,



●
●
●
●

●
●● ●

●

●

● ●

● ●●●
●●●●●●●●●
●●●●●●●

●●●●
●●
●●●●
●●
●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●●

●●

● ●

libucl libav cpuminer hashcat

2014 2015 2016 2017 2005 2010 2015 2012 2014 2016 2016−01 2016−07 2017−01 2017−07
0.0
2.5
5.0
7.5

10.0
12.5

0
1
2
3
4

0

1000

2000

3000

0.0

2.5

5.0

7.5

date

nr
_b

ui
lti

ns

Fig. 4: Builtin development in cpuminer, hashcat, libav, and libucl.

an application for mining bitcoins, as a representative of
projects with fewer than five commits, the class to which
the majority of projects belonged. As a second representative
of the inconclusive category, we selected hashcat, a tool for
password recovery, which we classified as having no clear
pattern.

libucl (mostly increasing). The builtin additions in libucl
were in most cases related to hashing. The first two
builtin-related commits of libucl imported a hash algorithm
from third-party libraries which used __builtin_clz
and __builtin_swap32 in their hashing computations.
Subsequently, a third-party library hashing implementa-
tion was replaced with a custom implementation, re-
moving a builtin usage. Subsequent commits were also
related to finding better hashing algorithms, resulting
in additions of calls to byteswap builtins and checks
for SIMD support using __builtin_cpu_init and
__builtin_cpu_supports. Additionally, the library
added a reference-counting scheme to free memory when
an allocation is no longer referenced, whose implementation
depended on atomics.

libav (increasing then decreasing). In the first half of
libav’s development, its usage of builtins mainly increased,
mostly due to Altivec-specific builtins used to optimize
computation-intensive operations, but also due to architecture-
specific builtins of other architectures such as PowerPC or
ARM. In a few cases, calls to architecture-independent builtins
were added, for example for atomics. In the second half of
the project, refactorings reduced the number of builtin calls.
In 2009, calls to 236 Altivex-specific builtins were removed to
reduce technical debt and improve the maintainability of the
Snow codec (which was removed in 2012): “Remove AltiVec
optimizations for Snow. They are hindering the development of
Snow, which is still in flux.” In 2012, calls to 233 builtins were
removed as part of a cleanup that dropped an unused function;
in the same year, a library was removed that used 469 builtins.
In 2013, another smaller, but interesting, commit removed
calls to 23 Alpha-specific builtins, as the platform was no
longer considered important: “Remove all Alpha architecture
optimizations. Alpha has been end-of-lifed and no more test
machines are available.”

cpuminer (Fewer than five commits). Cpuminer had four
builtin-related commits in the initial stage of the project. Two
of them introduced macros for performance optimizations that
used __builtin_expect to communicate branch probabil-
ities to the compiler. The other two commits added usages of
__builtin_alloca and __builtin_bswap32. They

were included only when the alloca.h and byteswap.h
header files were not available on the given platform. Until
the latest commit in 2017, no further builtin calls were added
or removed.

hashcat (no clear pattern). In hashcat, an initial commit
added a helper macro that wrapped __builtin_bswap32.
Subsequently, this logic was reimplemented in the file
bitops.c—which contained fallbacks in plain C—and the
macro was removed, causing the first drop in builtin us-
age. The project added more hash modes, and byteswap
macros that directly used GCC builtins were added in
interface.c (accounting for the first maximum). How-
ever, they caused problems and were replaced with the
byteswap implementations in bitops.c: “Fix travis-ci er-
ror caused by builtin bswapXX()”. The author eventually
decided to remove the usage of GCC builtins altogether and
to use a plain C implementation instead: “Simply do not use

builtin bswap16() this causes all kinds of problems, use our
own implementation”.

The next series of commits was related to overflow check-
ing. The project added __builtin_mul_overflow to
sanitize user input, and another commit added checks with
__builtin_add_overflow (resulting in a second maxi-
mum). However, portable solutions seemed to be preferred,
as a commit reduced the use of overflow-related builtins
by employing C code. However, to extract the number of
leading zeroes, __builtin_clz and __builtin_clzll
were added: “Add some compiler independent integer overflow
functions”. Ultimately, these were also replaced with plain C
code: “Replace builtin clz() and builtin clzll() with some
straightforward solution”.

Discussion. The four representative projects gave insights
into how projects added and removed builtin usages. Like
the majority of projects we examined, libucl, cpuminer, and
hashcat had few commits related to architecture-independent
builtins. These builtins were used in various use cases,
for instance, to improve the performance of code using
__builtin_expect, to test for CPU features, to imple-
ment hash computations, and as a fallback when architecture-
specific builtins were missing. Libav was one of the relatively
few projects that had a large number of commits related
to architecture-specific builtins, and it reduced their number
during code refactorings. For hashcat and libav, builtins were
also removed to reduce technical debt; in hashcat, builtins were
quickly replaced by implementing their functionalities in C,
and in libav they were removed since an outdated architecture
was no longer supported.
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F. RQ6: How well do tools support builtins?

To determine how well current tools support GCC builtins,
we manually implemented a test suite that tests the correct
implementation of the 100 most commonly used architecture-
independent builtins (cf. RQ2), which would support the
architecture-independent portion of almost 90% of the builtin-
using projects (see Section III-D). We omitted testing
architecture-specific builtins due to the variability in architec-
tures supported. For each builtin, we used its type information
and documentation to determine both typical inputs and corner
cases, then wrote test cases for them. As tools to be tested, we
selected popular and widely used mature compilers, special-
purpose compilers, source-to-source translators, alternative ex-
ecution environments, and static analysis tools. Figure 5 shows
the results.

Mature compilers. We tested the mature compilers GCC
and Clang [5], the most widely used open-source compilers
on Linux, and the commercial ICC. They all executed the
test cases successfully, which demonstrates that mature tools
should support them.

Special-purpose compilers. We tested the special-purpose
compilers CompCert [6], [7] and TCC. CompCert is a com-
piler used in safety-critical applications and has been for-
mally verified to be correct, which, however, excludes its
implementation of builtins. We found that CompCert correctly
executed only 9 builtin test cases, supporting 5 out of the 10
most frequently used builtins. Both __builtin_clzl and
__builtin_ctzl computed an incorrect result for large
input values.5 After reporting the bugs detected by our test
suite, they were fixed within a day with the note that “we
need more testing here”.

The TCC compiler is a small compiler developed to
compile code quickly. It successfully ran only six builtin
test cases. While most tests failed with a build error, the

5https://github.com/AbsInt/CompCert/issues/243

__builtin_types_compatible_p builtin produced an
incorrect result when comparing enumerations.6

C front end. The C Intermediate Language (CIL) [37] is a
front end for the C language that facilitates program analysis
and transformation. We tested its driver, called cilly, which can
also be used as a drop-in replacement for GCC. It successfully
executed 40 builtin test cases. The __builtin_bswap16
and __builtin_types_compatible_p builtins pro-
duced incorrect results.7 Cilly also failed on 34 atomic test
cases, on 15 test cases due to a failure to parse a system
library, on 5 test cases due to unrecognized builtins, and on 4
test cases due to warnings for the long double type.

Source-to-source translators. We evaluated DragonEgg as
a representative of source-to-source translators. DragonEgg
compiles source languages supported by GCC to LLVM
IR. Although it has not been updated for several years, it
successfully executed more than two thirds of the test cases. It
failed to translate more recent builtins (e.g., from the “atomic”
category) that were added to GCC after the last commit in
DragonEgg.

Static analysis. We tested Frama-C [38], [39], a static-
analysis framework. By default, it assumes code to be portable,
and supports compiler extensions only with an option. For 41
test cases, Frama-C’s analysis did not trigger a warning or
error 8. 9 test cases failed because its standard library lacked
macros for INFINITY and NAN, which were used in the
test cases. 14 test cases for __sync builtins were generally
supported, but incorrectly implemented for the long type. Fur-
thermore, __builtin_object_size was implemented to
always return -1—signifying that the size of an object could
not be determined—but referred to an undefined variable in
its macro, which resulted in an error.

Alternative execution environments. We tested Su-
long [16], [17], an interpreter with dynamic compiler for
LLVM-based languages, and KCC [40], [41], a commer-
cial interpreter for C that was automatically derived from
a formal semantics for C and detects Undefined Behavior.
Sulong successfully executed all but two test cases, namely for
__builtin_fabsl and __builtin___clear_cache,
which were not implemented.9 Note that we found these errors
with a preliminary version of the test suite, and consequently
contributed implementations for the two missing builtins.

KCC successfully executed test cases for 10 builtins, but,
since it is based on CIL, it had the same error in the implemen-
tation of the __builtin_types_compatible_p builtin.
The KCC developers also mentioned that they have “recently
been trying to add more supports for gnuc builtins.”10

Symbolic execution engine. We tested KLEE [15], a sym-
bolic execution for LLVM-based languages. KLEE executed
all test cases successfully when executed with concrete inputs.

6http://lists.nongnu.org/archive/html/tinycc-devel/2018-07/msg00007.html
7https://github.com/cil-project/cil/issues/44
8https://lists.gforge.inria.fr/pipermail/frama-c-discuss/2018-July/005483.

html
9https://github.com/graalvm/sulong/pull/807
10https://github.com/kframework/c-semantics/issues/318



IV. THREATS TO VALIDITY

Internal Validity. The main threat to internal validity (i.e.,
whether we controlled for all confounding variables) is that we
relied on a source-based heuristic approach to determine the
usage of GCC builtins, namely by searching for identifiers of
known builtins in the source files. We could have mistakenly
recorded a builtin usage when the builtin was enclosed in a
comment, or when an identifier with the same name as a builtin
was used for another purpose. However, as described, we
used several mitigation strategies to address such “deceiving”
usages. Conversely, we could have missed builtin usages if
their names consisted of strings that were concatenated by
using preprocessor macros; however, we expect such usages
to be uncommon.

External Validity. Several threats to external validity (i.e.,
whether our results are generalizable) are related to the scope
of our analyses. First, besides C code, C++ code also can
access GCC builtins, which we considered beyond our scope,
so our results cannot be generalized to C++ projects. We
analyzed open-source GitHub projects, hence our findings
might not apply to proprietary projects. Furthermore, they do
not necessarily apply to projects hosted on sites other than
GitHub; this biases our results as, for example, GNU projects
other than GCC are often hosted on Savannah and could
potentially rely more strongly on GCC builtins. Additionally,
our results cannot be generalized to the builtins of compilers
other than GCC. Finally, we investigated the usage of builtins
at the source level, which might be different from the usage
in the compiled binary (e.g., because their usage could be
influenced by macro metaprogramming) and the usage during
execution of the program.

V. RELATED WORK

Studies of inline assembly and linkers. Besides compiler
builtins, C projects also contain other elements not specified
by the C standard. Rigger et al. investigated the use of x86-
64 inline assembly [2] and found that around 30% of popular
C projects use it. In this paper, we demonstrated that GCC
builtins are used more frequently than inline assembly, which
provides even stronger incentives to implement support by C
tools. Other studies focused on the role of linkers [1] and the
preprocessor [42]. C projects are often built using Makefiles,
whose feature usage has also been investigated [43].

Studies of other language features. This paper fits into a
recent stream of empirical studies of programming language
feature usage, all of which share a methodology of mining
software repositories to determine the popularity of features
in large sets of open-source projects and/or evaluate the
“harmfulness” of features in terms of potential for bugs. Most
of this work has focused on general-purpose programming
languages, and research has evolved from more common to
lesser known features. For example, for Java the usage of gen-
eral language features [44], [45], fields [46], inheritance [47],
exception handling [48], [49], [50], lambda features [51] and
async constructs on Android [52] have been studied. For C++
projects, the usage of templates [53], generic constructs [54],

concurrency constructs [55] and asserts [56] have been studied.
The latter also considered C projects, similar to Nagappan
et al.’s study [57] of the usage and harmfulness of the goto
construct.

However, to the best of our knowledge, a study of the usage
of compiler builtins has not yet been conducted, and as such
fits into the line of research into C programming language
features. Analysis of GCC builtins warrants analysis, since
developers of tools for C need to deal with them and since
they affect the maintenance cost of projects due to potential
for vendor lock-in. Furthermore, builtins are not documented
well, as we demonstrated in Section III-A.

VI. CONCLUSIONS

We have presented an empirical study of the usage of
GCC builtins in a corpus of 4,912 open-source C projects
retrieved from GitHub. We found that 12,126 GCC builtins
exist that tool developers potentially need to consider, but
that only about 3,000 of these are used. Although a builtin
is typically found only once every 5,737 lines of C code, 38%
of all popular projects rely on compiler builtins, thus strongly
incentivizing their implementation in analysis and other tools.

The use of GCC builtins was dominated by architecture-
independent builtins for direct interaction with the compiler,
for bit-and-byte operations, atomic operations, and libc equiva-
lents. Depending on the tool, different builtin categories could
be supported to different degrees; for example, static analysis
tools that do not analyze the semantics of multithreaded atomic
operations might eschew implementing the atomic builtins
or implement them assuming only one thread. Architecture-
specific builtins were used by fewer projects, but in greater
number than architecture-independent builtins; they were used
for SIMD instructions, to determine CPU features, and to
access platform-specific registers.

Mature compilers such as GCC, Clang, and ICC support the
most common builtins. However, in other popular tools, such
as CompCert, TCC, KCC, and Frama-C, we found missing and
erroneous implementations. We speculate that builtin support
could be improved also in less commonly used tools. Tools
based on existing mature compiler infrastructure—such as
KLEE and Sulong, which are based on LLVM—seem to have a
better builtin support, partly because some builtins are handled
in the compiler’s front end.

We have shown that it is sufficient for compilers and other
tools to support only a small number of builtins to be able
to handle a large percentage of all C projects. We suggest
that tool developers use a greedy approach: by implementing
30 builtins, half of the projects are supported, about 600
builtins are needed to support 90% of all projects, and about
1,600 builtins are required to support 99% of projects. When
considering only architecture-independent builtins, only about
250 builtins need to be implemented.

We analyzed the development history of builtins in projects
and found that more projects (143) added them than re-
moved them (97) over time. Calls to builtins were added
for performance optimizations, atomic implementations, to



enable metaprogramming techniques, and others; they were
removed, for example, due to their maintenance cost and
through refactorings. Overall, it seems that compiler builtins
are not a legacy feature from times when compilers applied
less sophisticated optimizations; tool developers must expect
that contemporary and future code will use them.
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Chapter 11

Future Work

This chapter discusses potential future research directions and ongoing work

based on the results of this thesis. The topics are categorized according to

the thesis’ contributions into those related to Safe Sulong, to introspection,

and to empirical studies of unstandardized elements in C/C++.

11.1 Safe Sulong

The evaluation of Safe Sulong could be extended to incorporate larger pro-

grams, by running a complete libc on it. To improve efficiency, Safe Su-

long’s warm-up costs could be reduced. Furthermore, it could be enhanced

to detect further kinds of undefined behavior and an execution mode could

be added that tracks the flow of undefined behavior through the program.

Since Safe Sulong cannot call binary code contained in native libraries, fu-

ture research could explore possibilities to interact with such code. Finally,

Safe Sulong could be paired with a fuzzer to cover more paths in the tested

program, to have a higher chance of finding bugs.

Extending the evaluation The evaluation of Sulong could be extended

into various directions. In our evaluation, we tested Safe Sulong only on

small to medium-sized benchmarks and programs. While the performance of

previous Truffle implementations scaled also with their completeness [148],

evidence is required to determine if Safe Sulong executes as efficiently on

larger benchmarks and programs. Safe Sulong could also be evaluated on

other unsafe languages supported by LLVM, such as Fortran (which we eval-
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uated on Native Sulong [103]) and C++. When evaluating Safe Sulong’s

performance on C++, it would be interesting to determine how speculative

function pointer inlining (i.e., inlining of virtual calls) influences perfor-

mance, which, to the best of our knowledge, has not yet been researched for

C++. Finally, Safe Sulong could be evaluated as a native function interface

used by Java programs or by other Truffle language implementations; cur-

rently, Native Sulong is already used for the implementation of the native

function interface in TruffleRuby and GraalPython.

Improving warm-up performance One challenge for executing some

larger programs are long warm-up times. Sulong does not yet support On-

Stack Replacement (OSR) [41, 3], a technique that allows transferring con-

trol to a compiled version of a loop while the loop is running in the inter-

preter, to reduce the time being spent in its unoptimized version. In fact,

Sulong interprets some of the loops in the SPEC benchmarks for a long

time before they are compiled and their machine code is executed. As part

of future work, OSR is currently being implemented in Sulong to support

the efficient execution of such benchmarks.

Benchmarks for evaluating dynamic compilation systems for

C/C++ New benchmark suites for evaluating dynamic compilation for

C/C++ could be developed. Since the peak performance of dynamically

compiled code is evaluated using a large number of runs to account for

warm-up time and nondeterminism [8], the SPEC benchmarks, where a sin-

gle benchmark execution can take hours, makes evaluations time-consuming.

Shorter-running benchmarks, which could then be executed a larger number

of times, would be better suited for evaluating such systems.

Executing a complete libc Missing features, such as unimplemented

library functions, constitute a problem for executing larger benchmarks. We

currently use a custom libc that relies on functions similar to system calls,

which are implemented as Java methods. However, this library only provides

the most commonly used library functions, and lacks functions that are

difficult to implement in Java (e.g., mmap for mapping memory). Recently,

we have implemented the Linux syscall interface in Java, which allows Native
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Sulong to execute the musl libc.1 As part of future work, Safe Sulong could

be extended to support the execution of such a libc implementation.

Detecting further occurrences of undefined behavior Currently,

Safe Sulong can detect various memory errors and illegal inputs for arith-

metic operations. It could be extended to add checks for other instances of

undefined behavior. For example, libc functions could be enhanced to detect

input that is considered illegal by the C standard. Additionally, Safe Sulong

could be enhanced to detect memory leaks, for example, by adding a field to

all dynamically-allocated objects that indicates whether an object has been

freed; when an object is eventually collected by the garbage collector, a Java

finalizer could check whether it has actually been freed.

Tracking the flow of undefined behavior Safe Sulong’s Lenient C de-

fines semantics for undefined behavior in C in order to predictably execute

programs with such undefined behavior. However, since undefined behavior

constitutes an error, it would still be desirable to determine whether val-

ues affected by undefined behavior propagate to safety-critical or security-

critical parts of an application. To achieve this, operations could, when

causing undefined behavior, produce a special undefined behavior value that

could be tracked through the program (known as a taint value). Every opera-

tion that depends on this value would then be marked as unsafe, which could

be visualized for the programmer. Furthermore, security-critical operations

(e.g., memory allocations) could reject tainted values to lower the probabil-

ity of a critical error, as has been proposed for integer overflows [138].

Calling native code Safe Sulong currently does not support calling func-

tions contained in binaries, which is a problem when the source code of a

library is no longer available. Using a native function interface like the Java

Native Interface2 would cause significant overhead, as Java objects passed

to the native side would need to be moved to unmanaged memory. To tackle

this, we have been working on an x86 Truffle interpreter that can be used

as a native function interface by Sulong. By using this interpreter, Sulong

does not need to move Java objects to unmanaged memory, because the

1https://www.musl-libc.org/
2https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.

html
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x86 interpreter is implemented in Java itself and also uses Java objects to

represent user objects. Furthermore, using a Java interpreter for x86 code

prevents memory errors from crashing or corrupting the virtual machine.

Instead, such errors result in Java exceptions that can be handled appropri-

ately. A similar approach has also been implemented on top of the RPython

tool chain [110, 2], albeit it was proposed for simulating processor architec-

tures [84]. Alternatively, binary code could be “lifted” to LLVM IR, which

Safe Sulong could then execute.

Implementing a hybrid Sulong system A hybrid version that com-

bines the advantages of Native Sulong and Safe Sulong could be imple-

mented. Native Sulong provides seamless native interoperability, while Safe

Sulong provides memory safety. These approaches could be combined by

allocating either a Java object or unmanaged memory for a user allocation,

depending on the context. The decision could be based on heuristics, run-

time feedback, or static analysis. For example, if an object is possibly passed

to a native library, it would be beneficial for the run-time performance to

allocate this object as an unmanaged object to avoid conversion. Note that

such a hybrid version would no longer be completely safe, as objects allo-

cated in unmanaged memory would be accessed without bounds checks.

Implementing a Sulong-specific fuzzer Safe Sulong detects only those

errors that are triggered during the execution of a program. Thus, its bug-

finding capabilities depend on the coverage and quality of test cases. A tech-

nique to improve the coverage is fuzzing, where sample input to the program

is mutated randomly. There are three different categories of fuzzers that

make no assumptions about the structure of inputs: blackbox, whitebox, and

greybox fuzzers. Blackbox fuzzers [89] are the least-sophisticated kind, as

they generate and mutate the input without considering the paths triggered

in the program. Whitebox fuzzers [45] are based on symbolic execution, to

collect path constraints, negate them, and pass them to a SAT solver to

systematically generate new test cases. Greybox fuzzers [14] combine both

approaches; while they incorporate program feedback like whitebox fuzzers,

they are almost as fast as blackbox fuzzers since they only use lightweight

instrumentation. The lightweight instrumentation consists of counters that

are inserted to determine which paths are executed. While any kind of fuzzer
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could be implemented in Sulong, we believe that a greybox fuzzer would be

most suitable, since it could benefit from dynamic compilation. For exam-

ple, it could use dynamic optimizations to selectively enable instrumentation

for paths that are seldom executed and disable it for paths that are often

executed. This would likely improve the performance of fuzzing, while still

being able to guide the fuzzer to generate “interesting” inputs. Challenges

for implementing fuzzing in Safe Sulong (and other Truffle languages) would

be to find out how to efficiently reset global state after each run to achieve

a high fuzzing throughput.

11.2 Introspection

We believe that introspection could be used to increase the effectiveness of

fuzzers, and also to implement special-purpose applications that could not

be easily implemented without introspection.

Introspection to assist fuzzing Fuzzers generate random program input

that can trigger errors in applications by causing them to crash or time out.

Frequently, they are also used together with dynamic bug-finding tools that

detect illegal operations. As part of our work on introspection, we have

demonstrated that introspection functions are applicable to being used in

assertions to, for example, verify bounds. A hypothesis is that the use of

such introspection-based assertions could be effective to expose bugs when

used together with fuzzers. This could be tested in a case study, in which

such assertions would be added to real-world programs, which would then

be fuzzed.

Introspection for special-purpose applications Being able to query

object metadata allows the implementation of various applications that are

difficult (or impossible) to write in C. For example, serializing objects in

C requires programmers to write a custom serialization logic that requires

knowledge about the structure of each object. Using introspection, the size

and types of each object could be determined, which would allow for an

automatic serialization mechanism. We believe that also other introspection-

based special-purpose applications could be implemented and evaluated.
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11.3 Empirical Studies

In terms of empirical studies, the investigation on the use of inline assembly

and GCC builtins could be extended for better generalizability, and also

the use of unstandardized elements (e.g., compiler flags) could be studied.

Furthermore, the findings could be used to improve the support in tools.

Extensions of the inline assembly and builtin studies We analyzed

the usage of x64-86 inline assembly and GCC builtins in open-source GitHub

C projects. It is unclear whether the results are generalizable to other lan-

guages such as C++, to closed-source projects, to projects hosted on other

sites, and to other architectures and compiler builtins. Future work could in-

vestigate this. Furthermore, we analyzed inline assembly and GCC builtins

on the source level; analyzing them in the resulting binary (or during compi-

lation) would be a better indicator of how often they are used, since they can

be excluded by preprocessor macros and by similar mechanisms. However,

note that the results would only apply to specific versions of evaluated com-

pilers, since preprocessor macros that decide on whether to include builtins

or inline assembly often check for specific compilers and compiler versions.

Finally, it could be researched whether the instructions resulting from the

compiler builtins are executed during typical program runs.

Other unstandardized elements in C projects Besides GCC builtins

and inline assembly, also other unstandardized elements in C/C++ projects

exist (e.g., function attributes, variable attributes, and compiler pragmas).

These elements could be researched to determine their maintenance cost

and the cost needed to support them in tools. For Lenient C, we assigned

semantics for otherwise undefined operations ad-hoc while executing non-

portable programs by Safe Sulong, and based on the results of related work.

As part of future work, it could be researched whether these assumptions

hold for real-world programs. One way to test this hypothesis would be to

analyze the use of compiler flags in practice. GCC provides, for example,

the -fwrapv flag to define signed integer overflow to wrap around. If this

and other flags are commonly used, it would support the decision to make

this the default behavior in Lenient C, or even in an upcoming C standard.
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Testing the support of unstandardized elements In our studies, we

have shown that many tools lack support for unstandardized elements in C

projects or that they implement them incorrectly. To improve the support of

such elements, tools could be systematically tested. For example, random

program generators such as Csmith [126] could be extended to generate

unstandardized elements.
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Chapter 12

Conclusion

Programs written in unsafe languages like C/C++ can cause undefined be-

havior, which poses a problem for the programs’ correct execution and the

systems’ security. To tackle undefined behavior, this thesis has contributed

in three areas.

Safe Sulong First, we have proposed a safe execution system that has

an interpreter written in a safe programming language at its core. We

implemented this approach as a tool, called Safe Sulong. Our evaluation

demonstrated that Safe Sulong detects bugs in corner cases that other tools

overlook (e.g., because instrumentation was omitted for corner cases); Safe

Sulong’s advantage is that it is based on automatic run-time checks of the

underlying virtual machine and that it employs an optimizer that does

not exploit undefined behavior. In terms of peak performance, the results

demonstrated that programs executed by Safe Sulong, which uses a dynamic

compiler, execute similarly efficient as executables generated by static com-

pilers. However, Safe Sulong is still a research prototype and it yet needs

to be extended in terms of completeness to evaluate its behavior on large

programs.

Introspection Second, we have proposed an approach to provide meta-

data tracked by existing dynamic bug-finding tools to the programmer, who

can use this metadata to improve a library’s robustness. We have shown that

introspection is applicable to various tools, as we implemented introspection

functions in Safe Sulong, LLVM’s AddressSanitizer [112], SoftBound [94],

195
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and GCC’s Intel MPX-based bounds instrumentation [99]. Furthermore,

we implemented a subset of libc, which we enhanced by introspection-based

functionality and studied how introspection could improve its robustness.

Based on these results, we proposed context-aware failure-oblivious com-

puting as an introspection-based technique to continue program execution

in the presence of a buffer overflow. We evaluated this approach in a case

study of real-world bugs in popular applications, and in terms of perfor-

mance. The results indicate that context-aware failure-oblivious computing

is effective to continue normal program behavior after mitigating an er-

ror. For tools where introspection access could be implemented efficiently,

the performance overhead of introspection was low. Thus, we believe that

context-aware failure-oblivious computing could be used in a real-world sce-

nario.

Empirical studies Third, we have analyzed the use of C language exten-

sions, namely inline assembly and GCC builtins, in C projects. We found

that these extensions are commonly used, which provides high incentives to

tool authors to support them in existing bug-finding tools. However, due to

the high implementation effort, fully implementing them is sometimes infea-

sible, as, for example, over 10,000 GCC builtins exist. Our findings suggest

that by implementing only a small subset of GCC builtins and inline assem-

bly, already a large number of projects could be supported, as most projects

use a specific subset of these elements. Our analysis on the development of

GCC builtins over time suggests that they are not legacy features, so that

tools are likely required to support them also in the future.

Impact The work done as part of this thesis has already had an impact

on industry and research. Sulong was productized as a part of GraalVM,

which is a multi-lingual virtual machine that is maintained by Oracle Labs.1

In GraalVM, Native Sulong has been used to implement native extensions

in Truffle-based language implementations, for example, for the Ruby2 and

Python3 Truffle implementations. Sulong has been used for other research

projects within Oracle, for example, Iraklis et al. used it to implement

a smart array data structure [101]. From the Johannes Kepler University

1http://www.graalvm.org/
2https://github.com/oracle/truffleruby
3https://github.com/graalvm/graalpython
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Linz, for example, Kreindl et al. used Sulong as a platform to implement a

mechanism for debugging native extensions [78] and Mosaner et al. used it

to demonstrate the implementation of an On-stack Replacement mechanism

for Truffle implementations of unstructured languages [90]. Gaikwad et al.

from the University of Manchester evaluated their approach on visualizing

the performance of Truffle-based languages also by using Sulong [43]. While

evaluating Safe Sulong, we found and reported bugs and missing features,

both in projects and in other bug-finding tools; we also implemented miss-

ing features in other tools, for example, in LLVM’s AddressSanitizer.4 We

found incorrectly implemented builtins in our GCC builtin study, which,

for example, resulted in a bug fix in the formally-verified CompCert com-

piler.5 Native Sulong, the data sets and scripts used in our empirical studies,

and the implementation for context-aware failure-oblivious computing are

available online to facilitate further research.

4https://github.com/google/sanitizers/issues/766
5https://github.com/AbsInt/CompCert/issues/243


