
Submitted by
Dipl.-Ing. Andreas
Schörgenhumer, BSc

Submitted at
Institute for
System Software

Supervisor and
First Evaluator
o.Univ.-Prof.
Dipl.-Ing. Dr. Dr.h.c.
Hanspeter Mössenböck

Second Evaluator
Univ.-Prof.
Dipl.-Ing. Dr.
Martin Pinzger

July 2021

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Data Analysis and Error
Analytics in Large-Scale
Heterogeneous Software
Systems

Doctoral Thesis

to obtain the academic degree of

Doktor der technischen Wissenschaften

in the Doctoral Program

Technische Wissenschaften

i

Abstract

Today’s software systems continuously collect monitoring data during operation, which can be
used for assessment of system states, error analytics and overall data analysis. Due to the
increasingly large amounts of data, manual analyses are infeasible and automated tools must
be developed. While many approaches have been proposed in both research and industry
that work in the context of a single system, the area of analyzing data from a multi-system
environment has not yet been strongly focused, despite all its potential benefits such as
combining multi-system data to create powerful models or identifying errors and patterns
across multiple systems. In this thesis, we thus present our work on analyzing multi-system
monitoring data, which consists of three separate approaches that each tackle specific tasks.

The first part comprises a crash analysis of the processes of the different multi-system
topologies. Based on the processes’ software technologies, we investigate the crash behavior
with the goal to identify error-prone technologies and failures across multiple systems. In
the evaluation, where we use over one year’s worth of monitoring data of over 500 software
systems from our industry partner, we show the feasibility and usefulness of our approach.

The second part of this thesis covers a multi-system event prediction with the main objective
of predicting performance-related service slowdown events based on infrastructure monitoring
time series. Using our sophisticated preprocessing framework, we extract different datasets
and train various machine learning models, including several multi-system models that utilize
data from different systems. We evaluate our approach on monitoring data covering 20 days of
57 software systems from our industry partner, which reveals a subpar prediction performance.
In a detailed discussion and an additional evaluation of synthetic data, we identify possible
reasons and limitations of our approach.

In the third part, we present a feature-based time series clustering approach. We create
a set of clustering methods and automatically compare them using labeled data, where we
can then choose one of the top-performing methods for clustering unlabeled data to extract
common patterns across different software systems. We also propose a run-time cost model to
assess the computational costs in addition to the clustering quality. The evaluation comprises
the UCR time series archive as well as two infrastructure monitoring datasets from our industry
partner, covering thousands of time series of hundreds of systems. The results reveal interesting
insights and demonstrate the usefulness of our approach.

ii

Kurzfassung

Moderne Softwaresysteme sammeln während des Betriebs kontinuierlich Monitoring-Daten, die
zur Beurteilung von Systemzuständen, zur Fehleranalytik und zur Gesamtdatenanalyse genutzt
werden können. Aufgrund der immer größer werdenden Datenmengen sind manuelle Analysen
nicht mehr durchführbar, weshalb automatisierte Werkzeuge entwickelt werden müssen. Wäh-
rend sowohl in der Forschung als auch in der Industrie viele Ansätze vorgeschlagen wurden,
die im Kontext eines Einzelsystems funktionieren, wurde bisher noch kein ausreichender Fokus
auf eine Multisystemumgebung gesetzt, trotz aller potenziellen Vorteile wie der Kombination
von Multisystemdaten zur Erstellung leistungsfähiger Modelle oder der Identifizierung von
Fehlern und Mustern über mehrere Systeme hinweg. In dieser Arbeit stellen wir daher unsere
Arbeit zur Analyse von Multisystem-Monitoring-Daten vor, die aus drei separaten Ansätzen
besteht, welche jeweils spezifische Aufgabenstellungen behandeln.

Der erste Teil umfasst eine Crash-Analyse von Prozessen der verschiedenen Multisyst-
emtopologien. Basierend auf den Softwaretechnologien dieser Prozesse untersuchen wir das
Absturzverhalten mit dem Ziel, fehleranfällige Technologien und Ausfälle über mehrere Syste-
me hinweg zu identifizieren. Die Auswertung von mehr als einem Jahr an Monitoring-Daten
von über 500 Softwaresystemen unseres Industriepartners zeigt die Praxistauglichkeit und
Nützlichkeit unseres Ansatzes.

Der zweite Teil dieser Arbeit befasst sich mit der Vorhersage von leistungsbezogenen
Service-Slowdown-Ereignissen auf Basis von Infrastruktur-Monitoring-Zeitreihen. Mit Hilfe
unseres leistungsfähigen Preprocessing-Frameworks extrahieren wir verschiedene Datensätze
und trainieren diverse Machine-Learning-Modelle, darunter mehrere Multisystemmodelle, die
Daten von unterschiedlichen Systemen nutzen. Wir evaluieren unseren Ansatz anhand von
Monitoring-Daten, die 20 Tage von 57 Softwaresystemen unseres Industriepartners umfassen,
wobei wir eine unterdurchschnittliche Vorhersageleistung feststellen müssen. Im Rahmen
einer ausführlichen Diskussion und einer zusätzlichen Auswertung von synthetischen Daten
identifizieren wir mögliche Gründe sowie Grenzen unseres Ansatzes.

Im dritten Teil stellen wir einen merkmalsbasierten Zeitreihen-Clustering-Ansatz vor. Wir
erstellen Clustering-Methoden und vergleichen diese automatisch mit Hilfe gelabelter Daten,
aus denen wir eine der besten Methoden für das Clustering von nicht gelabelten Daten wählen
können, um gemeinsame Muster über verschiedene Softwaresysteme hinweg zu extrahieren.
Zusätzlich präsentieren wir ein Laufzeitkostenmodell, um neben der Clustering-Qualität auch
die Rechenkosten zu bewerten. Die Evaluierung umfasst das UCR-Zeitreihenarchiv sowie zwei
Infrastruktur-Monitoring-Datensätze unseres Industriepartners, die tausende Zeitreihen von
hunderten Systemen beinhalten. Die Ergebnisse zeigen interessante Einblicke und demonstrieren
die Nützlichkeit unseres Ansatzes.

iii

Acknowledgments

The financial support by the Austrian Federal Ministry for Digital and Economic Affairs, the
National Foundation for Research, Technology and Development, and Dynatrace is gratefully
acknowledged.

I would like to thank my supervisor Prof. Hanspeter Mössenböck for offering me the
chance to pursue a PhD and to work at the Christian Doppler Laboratory on Monitoring and
Evolution of Very-Large-Scale Software Systems. Thank you for trusting and encouraging me
throughout all the years I worked there. My gratitude also goes to Prof. Martin Pinzger, who
readily agreed to be my second examiner.

I would also like to thank Herwig Moser, Hans Kohlreiter, Wolfgang Beer and Thomas
Natschläger from our industry partner Dynatrace for all the meetings and their valuable input.

My utmost gratitude goes to all colleagues who I worked with, especially to my former
team members Peter Chalupar and Mario Kahlhofer, without whom I would most likely not
have had the perseverance to finish my PhD. Thank you for your constant support, your great
work and all the funny and memorable moments.

Special thanks go to my fellow PhD colleague Markus Weninger, with whom I had countless
great and fruitful discussions, and who always listened to me in case I had to complain about
something. Thank you also for the constant supply of quality memes that always kept me
smiling when things did not go as planned.

Many thanks to Prof. Paul Grünbacher, who constantly supported and encouraged me
throughout my entire PhD. Thank you for your readiness to help and for your everlasting
buoyant disposition.

Lastly, I would like to thank all my friends and especially my family. With their uncondi-
tional help and support, they enabled me to pursue my wish to study computer science and
ultimately to finish my PhD, for which I am eternally grateful. Thank you ever so much!

Contents v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Scientific Contributions . 2
1.3 Outline . 3

2 Background 5
2.1 Dynatrace . 5
2.2 Data Formats . 5

2.2.1 JSON . 5
2.2.2 YAML . 6
2.2.3 CSV . 7
2.2.4 InfluxDB . 7

2.3 Multi-System Infrastructure Monitoring Data 7
2.3.1 System . 8
2.3.2 Topology . 8
2.3.3 Events . 10
2.3.4 Time Series . 11
2.3.5 Data Collection and Storage . 11

2.4 Machine Learning . 13
2.4.1 Basics . 13
2.4.2 Data Imbalance . 15
2.4.3 Supervised Learning . 16

2.4.3.1 Training and Testing . 16
2.4.3.2 Variants of Training and Testing 17
2.4.3.3 Evaluation Metrics . 17
2.4.3.4 Random Forests . 20

2.4.4 Unsupervised Learning . 21
2.4.4.1 Evaluation Metrics . 23
2.4.4.2 t-distributed Stochastic Neighbor Embedding (t-SNE) 26
2.4.4.3 k-Means . 27
2.4.4.4 Hierarchical Clustering . 28

vi Contents

2.4.4.5 Balanced Iterative Reducing and Clustering using Hierarchies
(BIRCH) . 32

2.5 Statistical Background . 33
2.5.1 Standardization . 33
2.5.2 Normalization . 33
2.5.3 Pearson Correlation . 34
2.5.4 Wilcoxon Signed-Rank Test . 34
2.5.5 Box Plots . 35

3 Topology-driven Crash Analysis 37
3.1 Motivation . 37
3.2 Data Requirements and Assumptions . 38

3.2.1 Topology . 38
3.2.2 Events . 38

3.3 Approach . 39
3.3.1 Tuple Creation . 40
3.3.2 Tuple Merging . 41
3.3.3 Ranking . 42
3.3.4 Crash Property Analysis . 43

3.4 Data for Evaluation . 44
3.5 Evaluation . 49

3.5.1 Automated Analysis . 49
3.5.2 Manual Investigation . 51
3.5.3 Process Communication . 52

3.6 Discussion . 56
3.6.1 Lessons Learned . 56
3.6.2 Problems and Limitations . 58
3.6.3 Threats to Validity . 58

3.7 Related Work . 60
3.8 Outlook . 62

4 Time-Series-based Event Prediction 63
4.1 Motivation . 63
4.2 Data Requirements and Assumptions . 64

4.2.1 Topology . 64
4.2.2 Events . 65
4.2.3 Time Series . 65

4.3 Data Preprocessing Framework . 66
4.3.1 Requirements . 68
4.3.2 Preprocessing Pipeline . 68

4.3.2.1 Data Access . 69

Contents vii

4.3.2.2 Data Selection . 69
4.3.2.3 Sampling . 71
4.3.2.4 Data Extraction . 73

4.3.3 Scalability . 80
4.4 Approach . 81

4.4.1 Data Preparation . 81
4.4.2 Event Prediction . 82

4.5 Data for Evaluation . 82
4.6 Evaluation . 85

4.6.1 Clustering . 93
4.6.2 Balanced Scenario . 94
4.6.3 Unbalanced Scenario . 103
4.6.4 Synthetic Data . 110
4.6.5 Balanced Scenario Revisited . 120

4.7 Discussion . 123
4.7.1 Lessons Learned . 123
4.7.2 Problems and Limitations . 124
4.7.3 Threats to Validity . 125

4.8 Related Work . 126
4.8.1 Time Series Processing . 126
4.8.2 Time-Series-based Frameworks . 127
4.8.3 More General Frameworks . 127
4.8.4 Log-Data-based Approaches . 128
4.8.5 Monitoring-Data-based Approaches . 129
4.8.6 Reliability Prediction . 130

4.9 Outlook . 131

5 Time Series Clustering 133
5.1 Motivation . 133
5.2 Data Requirements and Assumptions . 134
5.3 Time Series Characteristics . 135
5.4 Approach . 139

5.4.1 Determining Feature Set Importance 143
5.4.2 Post-Processing Feature Sets . 143
5.4.3 Clustering Labeled Data . 146
5.4.4 Clustering Unlabeled Data . 154
5.4.5 Run-Time Cost Model . 154

5.5 Data for Evaluation . 156
5.5.1 UCR Archive . 156
5.5.2 IMTS Archive . 157
5.5.3 UCR and IMTS Datasets . 158

viii Contents

5.6 Evaluation . 163
5.6.1 Time Series Characteristics . 163
5.6.2 Clustering Method Selection . 165

5.6.2.1 Determining Feature Set Importance 166
5.6.2.2 Post-Processing Feature Sets 166
5.6.2.3 Clustering Labeled Data . 168
5.6.2.4 Clustering Unlabeled Data 173
5.6.2.5 Run-Time Cost Model . 179

5.7 Discussion . 183
5.7.1 Lessons Learned . 186
5.7.2 Problems and Limitations . 187
5.7.3 Threats to Validity . 188

5.8 Related Work . 189
5.8.1 Features for Time Series . 189
5.8.2 Automatic Clustering Selection . 190
5.8.3 Analysis of Industrial Systems . 190

5.8.3.1 Statistical Analysis . 191
5.8.3.2 Applied Clustering . 191

5.8.4 Run-time Costs . 192
5.9 Outlook . 193

6 Conclusion 195

A Background 197
A.1 Feature Importance . 197

B Topology-driven Crash Analysis 199
B.1 Data Exploration . 199
B.2 Evaluation Results . 204

C Time-Series-based Event Prediction 221
C.1 Data Exploration . 221
C.2 Evaluation Results . 223

D Time Series Clustering 251
D.1 Permutation Analysis Feature . 251
D.2 Data Exploration . 252
D.3 Evaluation Results . 255

D.3.1 Variant Differences . 255
D.3.2 Clustering Unlabeled Data . 255

Bibliography 301

1

Chapter 1

Introduction

1.1 Motivation

Monitoring data of software systems provide a rich source of information. Especially with the
recent advances in hard- and software technologies, an abundance of data is recorded, which
can no longer be analyzed manually. Instead, automated approaches, tools and frameworks
are required for processing and analysis, and many researchers as well as practitioners have
proposed valuable solutions throughout the years. However, analyzing data from multiple,
independent systems has not yet been a strong focus of research, despite all the potential
benefits.

For instance, we can use this kind of data to identify errors across multiple systems and
possibly even fix them in the affected systems if they share a common root cause. In addition,
we could collect all such error and failures in general to populate a multi-system fault database,
which would greatly help debugging, fixing and quality assurance, especially when dealing
with recurring incidents, regardless of the system in which they happened. This is not the only
advantage of multi-system data. For example, assume that we want to train some machine
learning model which requires certain amounts of data to build a reliable model. If we only
have data of a single system but the amount is insufficient, we cannot proceed any further.
On the other hand, if we have similar or comparable data from several systems, we can use
this to our advantage to merge this multi-system data, which then allows us to create our
intended model (of course, the data might not be sufficiently similar, which would lead to an
invalid/unusable multi-system model). Moreover, we could not only handle insufficient system
data but also potentially apply our model on yet unseen, new systems, where no historic
data is available in the first place. Another benefit that multi-system data can bring is the
possibility to identify common patterns across different systems. If we know that some systems
share certain characteristics, we could create models and tools specifically designed for these
characteristics, which could then be used in all affected systems without having to develop
such a model/tool for each single system separately.

In this thesis, we thus address the topic of analyzing data from a multi-system environment.
Our goal is to implement approaches that can leverage such data and the corresponding
benefits introduced above, where the results can either directly be used or provide a basis for
further analyses. The next section covers an overview and the scientific contributions of these
approaches.

2 Introduction

1.2 Scientific Contributions

Throughout this project, we created and implemented three main approaches that are all
focused on multi-system data. All approaches are described in detail in the following chapters,
so we only provide a brief overview of their topics and list the corresponding scientific
publications. The main focus and novelty of all our approaches compared to existing work
is the integration of the multi-system environment, i.e., we specifically address multi-system
problems, scenarios and challenges, which has not yet been done to the extent we propose in
this thesis.

The first part describes our topology-driven multi-system process crash analysis, where
we aimed to automatically find common crashes across multiple systems using the software
technology information provided by processes. Publications:

• Andreas Schörgenhumer, Mario Kahlhofer, Hanspeter. Mössenböck, and Paul Grünbacher.
“Using Crash Frequency Analysis to Identify Error-Prone Software Technologies in Multi-
System Monitoring”. In: Proceedings of the 18th IEEE International Conference on
Software Quality, Reliability and Security. IEEE, 2018, pp. 183–190. doi: 10.1109/QRS.
2018.00032

The second part contains our multi-system event prediction approach, where the goal was to
leverage infrastructure monitoring time series to predict performance-related service slowdown
events. Work on this topic also includes our comprehensive multi-system preprocessing
framework. Publications:

• Andreas Schörgenhumer, Mario Kahlhofer, Peter Chalupar, Hanspeter Mössenböck,
and Paul Grünbacher. “Using Multi-System Monitoring Time Series to Predict Perfor-
mance Events”. In: Proceedings of the 9th Symposium on Software Performance. GI
Softwaretechnik-Trends, 2018, pp. 55–57. url: http://pi.informatik.uni-siegen.
de/stt/39_3/01_Fachgruppenberichte/SSP18/SchoergenhumerKahlhoferChalupar+
18.pdf

• Andreas Schörgenhumer, Mario Kahlhofer, Peter Chalupar, Paul Grünbacher, and
Hanspeter Mössenböck. “A Framework for Preprocessing Multivariate, Topology-Aware
Time Series and Event Data in a Multi-System Environment”. In: Proceedings of the
19th IEEE International Symposium on High Assurance Systems Engineering. IEEE,
2019, pp. 115–122. doi: 10.1109/HASE.2019.00026

• Andreas Schörgenhumer, Mario Kahlhofer, Paul Grünbacher, and Hanspeter Mössen-
böck. “Can We Predict Performance Events with Time Series Data from Monitoring
Multiple Systems?” In: Companion of the 10th ACM/SPEC International Conference
on Performance Engineering. ACM, 2019, pp. 9–12. doi: 10.1145/3302541.3313101

• Andreas Schörgenhumer, Mario Kahlhofer, Peter Chalupar, Hanspeter Mössenböck,
and Paul Grünbacher. “On the Difficulties of Supervised Event Prediction based on
Unbalanced Real-World Data in Multi-System Monitoring”. In: Proceedings of the 10th
Symposium on Software Performance. GI Softwaretechnik-Trends, 2019, pp. 38–40.
url: http://pi.informatik.uni-siegen.de/stt/39_4/01_Fachgruppenberichte/
SSP2019/SSP2019_Schoergenhumer.pdf

The third part details our feature-based time series clustering approach, where we wanted
to identify common time series clusters within the monitoring data of multiple systems. Besides

https://doi.org/10.1109/QRS.2018.00032
https://doi.org/10.1109/QRS.2018.00032
http://pi.informatik.uni-siegen.de/stt/39_3/01_Fachgruppenberichte/SSP18/SchoergenhumerKahlhoferChalupar+18.pdf
http://pi.informatik.uni-siegen.de/stt/39_3/01_Fachgruppenberichte/SSP18/SchoergenhumerKahlhoferChalupar+18.pdf
http://pi.informatik.uni-siegen.de/stt/39_3/01_Fachgruppenberichte/SSP18/SchoergenhumerKahlhoferChalupar+18.pdf
https://doi.org/10.1109/HASE.2019.00026
https://doi.org/10.1145/3302541.3313101
http://pi.informatik.uni-siegen.de/stt/39_4/01_Fachgruppenberichte/SSP2019/SSP2019_Schoergenhumer.pdf
http://pi.informatik.uni-siegen.de/stt/39_4/01_Fachgruppenberichte/SSP2019/SSP2019_Schoergenhumer.pdf

Outline 3

an automatic ranking of clustering methods, we also provide a run-time cost model to assess
computational costs in addition to the clustering quality. Publications:

• Andreas Schörgenhumer, Paul Grünbacher, and Hanspeter Mössenböck. “Selecting Time
Series Clustering Methods based on Run-Time Costs”. In: Proceedings of the 11th
Symposium on Software Performance. Accepted for publication. GI Softwaretechnik-
Trends, 2020. url: https://www.performance-symposium.org/fileadmin/user_
upload/palladio-conference/2020/Papers/SSP2020_paper_1.pdf

• Andreas Schörgenhumer, Thomas Natschläger, Paul Grünbacher, Mario Kahlhofer,
Peter Chalupar, and Hanspeter Mössenböck. “An Approach for Ranking Feature-based
Clustering Methods and its Application in Multi-System Infrastructure Monitoring”. In:
AI-Enabled Software Development and Operations (AI4DevOps) of the 47th Euromicro
Conference on Software Engineering and Advanced Applications. Accepted for publication.
IEEE, 2021

1.3 Outline

In this section, we provide an outline and the structure of this thesis. Chapter 2 contains all
the relevant and necessary background information for all following chapters. It primarily
serves as a reference chapter, and readers who are already familiar with certain background
topics can simply skip them. Afterwards, our three main topics follow: Chapter 3 describes our
topology-driven crash analysis, Chapter 4 our time-series-based event prediction and Chapter 5
our time series clustering approach. To guide the reader through the thesis, each of these three
chapters is structured into the following sections:1

• Motivation: This sections presents an introduction and motivates what we try to
accomplish and implement in the corresponding chapter.

• Data Requirements and Assumptions: None of our approaches are limited to only one
sort of dataset, which is why we describe all requirements and assumptions that must be
fulfilled in order to apply the approach.

• Approach: In this section, we detail the approach itself and how it works given the data
requirements and assumptions from the previous section.

• Data for Evaluation: Here, we present the datasets that we actually use to evaluate
our approach. All datasets introduced in this section fulfill all of the requirements and
assumptions, i.e., they can be seen as an “instantiation” of the theoretical data.

Evaluation: Using the data from the previous section, we evaluate our approach and
present detailed results.

• Discussion: This section contains general points of discussion, lessons learned as well as
problems and limitations we encountered, and threats to validity.

• Related Work : In this section, related literature is discussed, including differences to our
approach and work that could prove valuable for future extensions and improvements.

• Outlook : The last section provides a brief overview of future work.
1Chapter 4 and Chapter 5 have one additional section just before the approach (the preprocessing frame

work and the time series characteristics, respectively) to achieve a clearer structure and better separation.

https://www.performance-symposium.org/fileadmin/user_upload/palladio-conference/2020/Papers/SSP2020_paper_1.pdf
https://www.performance-symposium.org/fileadmin/user_upload/palladio-conference/2020/Papers/SSP2020_paper_1.pdf

4 Introduction

Finally, Chapter 6 summarizes and concludes this thesis. There is also an appendix for the
background chapter and for each of the three main topics, which contains further information
regarding data exploration and supplementary results. The appendix is mainly intended to
provide a more complete overview of the evaluated data and results for interested readers, but
it is not necessary for the main content of this thesis.

5

Chapter 2

Background

This chapter covers everything required to understand the following chapters and also serves
as a reference for the terminology used throughout this thesis. First, we provide a short
introduction of our industry partner Dynatrace. We continue by describing the different data
formats we used for our practical work. We then introduce one of the core parts of this thesis:
the multi-system infrastructure monitoring data, including detailed information on systems,
their topology, events and time series. Afterwards, a brief introduction to machine learning
follows, with a strong focus on the methods, models and algorithms we used in our work.
Finally, we also present some important statistical features.

2.1 Dynatrace

Our industry partner Dynatrace is a software company who provides application performance
management, digital experience management, digital business analytics, artificial intelligence
for operations and infrastructure monitoring [105]. Their customers range from small businesses
to large-scale enterprises, covering a wide area of domains, which includes e-commerce, the
automotive industry or enterprise resource planning. For our cooperation, infrastructure
monitoring is the most important part, where the goals are to monitor and analyze the entire
software system of a customer, thereby collecting data of all relevant system components.
Dynatrace provides a plethora of monitoring data, however, we only need a few selected parts
thereof, which we present in detail in Section 2.3.

2.2 Data Formats

In this section, we cover all important data formats that we use throughout this thesis for
storing different kinds of data.

2.2.1 JSON

JSON [40] (JavaScript Object Notation) is a plain-text data format with the main goal of
object serialization and language-independent data exchange. Its two core building blocks are
objects (key-value pairs within braces {...}) and arrays (ordered sequences of values within
square brackets [...]), where the values can be null (no value), boolean, numbers, strings
or again objects and arrays, allowing arbitrary nesting levels to represent complex object
structures.

6 Background

The example in Listing 2.1 shows how a configuration object for extracting data of some
sensor could look like in the JSON format. Within the root object, there are five key-value
pairs: "data", "functions", "skipInvalid", "threshold" and "output". The last three
have simple values attached (boolean, number, string), "functions" has an array with three
strings as values, and "data" points to another, nested object which contains the two key-value
pairs "ids" (an array of numbers) and "meta" (yet another object with a string "type" and a
number "freq").

{
"data": {
"ids": [
123,
124,
217

],
"meta": {
"type": "sensor",
"freq": 240

}
},
"functions": [
"MIN",
"MAX",
"AVG"

],
"skipInvalid": true,
"threshold": 0.75,
"output": "C:\\eval\\data"

}

Listing 2.1: JSON example of a configuration file to extract some sensor data.

2.2.2 YAML

YAML [14] (YAML Ain’t Markup Language) is a plain-text data format primarily designed
for readability by humans, programming language independence and ease of use. In contrast
to JSON, YAML prioritizes easy human interaction over the simplicity of generating or
parsing files. It also includes a native support for the three basic primitives, namely mappings
(dictionaries/maps), sequences (arrays/vectors/lists) and scalar values, which are an integral
part of the main YAML structure. The key-value pairs of mappings can either be written as a
comma-separated list within braces {...}, or they can also be indented and listed below each
other for improved readability. Analogously, the values of sequences can either be comma-
separated and wrapped in square brackets [...] or indented with a leading dash and listed
below each other. While YAML files are not restricted to any specific scenario or domain, the
authors highlight configuration or log files, communication between processes and persisting
objects (e.g., for cross-language data exchange) as most common and fitting use cases. As of
version 1.2, YAML is a superset of JSON.

Listing 2.2 shows the YAML version of the JSON example of Listing 2.1. Since the braces
are replaced with simple indentations and quotation marks are no longer necessary for the
identifies, the YAML version is more readable and also much shorter. Note that the quotation
marks for the string values are only required for the output identifier, since it contains escape
characters. However, using quotes for all strings further enhances readability as it makes it
more clear that the values are strings.

Multi-System Infrastructure Monitoring Data 7

data:
ids:
- 123
- 124
- 217

meta:
type: "sensor"
freq: 240

functions:
- "MIN"
- "MAX"
- "AVG"

skipInvalid: true
threshold: 0.75
output: "C:\\eval\\data"

Listing 2.2: YAML example of a configuration file to extract some sensor data.

2.2.3 CSV

CSV [163] (Comma-Separated Values) is a simple plain-text data format that stores records in
each line of the file, separated by commas. Due to its simplicity, the CSV format is widely
used in various domains and is a typical export format to store tabular data.

In Figure 2.1, a small example is shown how a typical use case could look like. Continuing
the example of Listing 2.1, some sensor values were recorded and listed in a standard table as
shown in Figure 2.1a. When exporting the data to the CSV format, the results could look as
shown in Figure 2.1b.

id type MIN MAX AVG

123 sensor 12.1 99.9 24.5
124 sensor 12.2 57.2 14.9
217 sensor 33.7 45.0 38.3

(a) Ordinary data table.

id,type,MIN,MAX,AVG
123,sensor,12.1,99.9,24.5
124,sensor,12.2,57.2,14.9
217,sensor,33.7,45.0,38.3

(b) The same data represented as CSV.

Figure 2.1: Example of some extracted sensor data first represented in a table view (left)
and then in the CSV format (right).

2.2.4 InfluxDB

InfluxDB [84] is a database with the main purpose of storing time series. It was specifically
designed to cope with high writing and querying loads, while allowing high compression rates as
well as easy data queries using an SQL (Structured Query Language)-like format. InfluxDB can
handle millions of data points per second and access them efficiently by utilizing indexed time
series clusters, supporting a precision up to nanoseconds but also the option to downsample
older data, i.e., to merge data to a lower precision to mitigate storage shortage over time.

2.3 Multi-System Infrastructure Monitoring Data

In this section, we present the core data structure of this thesis. We start by giving an
introduction of the systems and then continue with details on a system’s topology, the

8 Background

occurring events and the time series we collect. Finally, we describe how all the different data
was recorded and how it is stored.

2.3.1 System

A system is any kind of software system. Its size can start from one simple computer and may
range up to large clusters with thousands of servers. The domain can also be arbitrary. It
could be a travel booking platform, an online shop or a maintenance system in the automotive
sector. A system consists of various monitored hardware and software components/entities
that are connected via the topology and may be associated with events and time series, the
combination of which we refer to as infrastructure monitoring data. We describe each of
these three main parts in the following sections. Note that we have these kinds of data from
multiple, independent systems at our disposal, forming our multi-system environment, for
which a general overview is shown in Figure 2.2.

Multiple,
Independent

Software Systems

Data
Collection

Multi-System Infrastructure Monitoring Data

System 1

… Topology

… Events

… Time Series

System 2 System n

…

Figure 2.2: Overview of our multi-system environment, where infrastructure monitoring data
(topologies, events, time series) of various, independent systems is collected.

2.3.2 Topology

The topology of a system stores its components, how they are linked and different kinds of
metadata. Components are physical or abstract entities, and each one is uniquely identified
(ID), has an associated type, a lifetime (two timestamps when the entity was first seen and
when it was last seen) and, depending on the type, additional data. The most important
feature is the type. It determines to which other types a component may be connected, and
which time series and events can be recorded. Dynatrace monitors many different component
types, however, in this thesis, the following subset suffices:

• Service: This type represents abstract components that represent the business logic of
the system, e.g., a database access or a web request. Services are executed by process
groups that consist of potentially multiple processes (e.g., for handling load balancing),
i.e., a service entity is connected to one or more process entities.

• Process: This type represents process entities that execute services. The software
technologies (ST) are an important data structure that is attached to every process. It
manages a list of all technologies that the process used or uses, where each list entry
contains the following information: the technology’s type (e.g., Java), the edition (e.g.,
OpenJDK), the version (optional, e.g., 11.0.1) and the timestamp when it was last seen

Multi-System Infrastructure Monitoring Data 9

on the process, i.e., the point in time until the technology was considered active. An
example of such software technologies is shown in Table 2.1. Here, a process was running
a Tomcat server on Java until both technologies were replaced with newer versions.
Processes can communicate with each other, and they run on a host, i.e., a process entity
is connected to zero or more process entities and to one host entity.

Type Edition Version Active Until

Java OpenJDK 1.8.0_121 1495535781954
Tomcat - 7.0.65.0 1495535781954
Java OpenJDK 1.8.0_131 1499218873887
Tomcat - 8.0.44.0 1499218873887

Table 2.1: Example software technology properties of a process, taken from [157]. The
- character represents missing (optional) fields. The timestamps are in milliseconds of UTC
(Coordinated Universal Time).

• Host: Entities of this type represent the processing units of the system, which can be the
actual computers or servers, or virtual machines. They run the processes (and indirectly
the services) and are one of the three main components for collecting infrastructure
monitoring time series. Hosts can have multiple disks and network interfaces, i.e., a host
entity is connected to zero or more disks and to zero or more network interfaces.

• Disk: This type represents data storage devices of hosts, and it is the second main
component type for collecting infrastructure monitoring time series. One disk entity is
normally linked to exactly one host entity.1

• Network: This type represents network interfaces of hosts and captures all incoming and
outgoing data traffic. It is the third of the three main component types for collecting
infrastructure monitoring time series. One network entity is linked to exactly one host
entity.

It might happen that some entities are not connected at all, even though we expect them
to be linked, for instance, there might be no host for a disk component. Reasons for such
cases are either monitoring configurations by system administrators that explicitly disable the
collection of component data, or it could be because of data extraction errors or data loss.

The topology can be represented with a graph, where we show an example of a small
system in Figure 2.3. In total, there are seven components: Two service entities S1 and S2
are executed by process P1, which runs on host H1. This host has two disks D1 and D2 as
well as one network interface N1 attached. The time lines next to the entities indicate their
lifetimes. The entire system was monitored from timestamp t1 until t2. The host, its network
interface and disk D1 were active during the entire time. Service S1 was active from the start
on but was last seen at timestamp S1 2 (e.g., the service finished its task). Service S2 started
somewhere in the middle at timestamp S2 1 and ran until S2 2. The process that executed the
services also finished at around the same time (timestamp P1 2). Lastly, disk D2 was attached
to the host at timestamp D2 1 and remained active until the end of the system’s monitoring
period.

The above example is a particularly small system with only a single host, e.g., from
monitoring a single personal computer. Naturally, there are much larger systems with poten-

1In extremely rare cases, a disk might be interlinked with multiple hosts, for example, when the same disk
is attached to different hosts during its observed lifetime.

10 Background

P1

H1

D1 N1

S2S1

D2

t

t1 t2S12

t

t1 t2S21 S22

t

t1 t2

t

t1 t2

t

t1 t2

t

t1 t2

t

t1 t2D21

P12

Figure 2.3: Example system as graph visualization including component lifetimes.

tially thousands of entities, making the detailed visualization significantly more challenging.
Moreover, the components of the resulting graph do not necessarily need to be all connected.
If, for instance, services are executed on processes that only run on a single host and there is
no communication between these hosts, then the graph will contain multiple subgraphs (one
for each host), i.e., a system can be a collection of unconnected graphs.

2.3.3 Events

Events occur at a specified point in time2 and can be either expected (e.g., a process restart) or
anomalous. Every event has a unique identifier (ID) and stores the type (defines the category
and kind), the entity on which it occurred and the time of the occurrence. Similarly to the
component types, Dynatrace collects a plethora of event types, but again, we only need to
focus on a few selected ones in this thesis:

• Process crash: The anomalous events of this type occur on process entities and, as the
name suggests, indicate that the corresponding process crashed. A process crash event
can carry additional information on the crash details, such as the name of the error or
exception message, the fault location or the process signal.

• Service (response) slowdown: This anomalous event occurs on service entities and is
heuristically created by comparing the average service response time with the expected
baseline and checking for any negative deviation.

Figure 2.4 shows the two service entities and the connected process from the same system
as presented in Figure 2.3. Now, two events occurred. Somewhere during the lifetime of service
S2, a service slowdown was identified and an appropriate event E1 was created at timestamp

2More specifically, some events actually have two timestamps: a minimum and a maximum. These are
primarily events that are based on heuristics which work with time windows and allow a more fuzzy definition
of when an event occurred. For simplicity, we use the minimum timestamp as the event occurrence.

Multi-System Infrastructure Monitoring Data 11

P1

S2S1t

t1 t2S12 tE1t1 t2S21 S22

t

t1 t2tE2

!

!

…

ID: E1
Type: Service Slowdown
Entity: S2
Time: tE1

Data: -

ID: E2
Type: Process Crash
Entity: P1
Time: tE2

Data: Crash Info

Figure 2.4: Two events occurring in the example system from Figure 2.3.

tE1. Later on, process P1 crashed, which led to the event E2 at time tE2 and, in turn, to the
termination of the process since no restart was initiated.

2.3.4 Time Series

A time series x is a list/vector of n consecutive values of the form (xt | t ∈ [1, n]), where t
is called the timestamp and xt its associated value (typically, xt ∈ R). In our multi-system
infrastructure monitoring environment, the timestamps are evenly spaced, which means that
ti+1 − ti = ∆t ∀i ∈ [1, n− 1], although this is not a general requirement for time series. Yet
again, Dynatrace monitors much more time series than we use in this thesis. Table 2.2 shows
all the series we collect for our component types,3 including a unique identifier (ID), a short
description and the unit of measurement. Each time series kind, which we also call metric, is
mapped to exactly one component type, and each individual time series is mapped to exactly
one component. For example, we collect the CPU Idle (H-01) metric at components of type
Host, and for some concrete host H1, this could result in the time series xH1. In total, we have
34 metrics at our disposal: 11 host series, 13 disk series and 10 network interface series. All
these time series are evenly spaced and internally sampled every ten seconds, i.e., ∆t = 10sec.
However, when exporting the metrics (cf. Section 2.3.5), they are only available to us in
one-minute resolution (∆t = 1min), where the values are averaged over six ten-second samples.

Figure 2.5 shows the same example as Figure 2.3 but now with time series attached to the
entities. In the example, the host only provides a single metric, namely CPU Idle (H-01), i.e.,
the available utilization of the central processing unit. The time series is missing some values,
which is indicated by the question mark symbols. For network N1, two metrics are collected:
the total number of received bytes (N-01) and how many packets were transmitted (N-04). We
are also interested in the time series monitoring the amount of used disk space (D-02). There
are two disk entities, but only disk D2 has data available (bounded by the entity’s lifetime).
Disk D1 is missing the entire time series, for instance, due to a data recording error.

2.3.5 Data Collection and Storage

In this section, we describe how we collect the data from Dynatrace and how we store it
afterwards. Figure 2.6 gives an overview. In the left, the multi-system infrastructure monitoring
is shown with a cloud symbol, where single systems and their data are represented by a single
component graph (cf. Section 2.3.2), including symbols for events (labeled E) and time series
(labeled T). We access this multi-system environment via a REST [54] (representational state

3Note that services and processes can also have time series. However. we do not record them.

12 Background

Component
Type ID Time Series Kind/

Metric Unit Short Form

Host

H-01 CPU Idle Percent (%) CPU Idle
H-02 CPU System Percent (%) CPU System
H-03 CPU Load Ratio CPU Load
H-04 CPU User Percent (%) CPU User
H-05 CPU IO Wait Percent (%) CPU IO Wait
H-06 Page Faults Per second Page Faults
H-07 Memory Available Percent (%) Mem. Avail. %
H-08 Memory Available Byte Mem. Avail.
H-09 Memory Used Byte Mem. Used
H-10 Swap Available Byte Swap Avail.
H-11 Swap Used Byte Swap Used

Disk

D-01 Disk Available Byte Disk Avail.
D-02 Disk Used Byte Disk Used
D-03 Disk Available Percent (%) Disk Avail. %
D-04 Read Bytes Bytes per second Read Bytes
D-05 Written Bytes Bytes per second Written Bytes
D-06 Read Operations Per second Read Ops.
D-07 Write Operations Per second Write Ops.
D-08 Read Time Millisecond Read Time
D-09 Write Time Millisecond Write Time
D-10 Utilization Time Percent (%) Util. Time
D-11 Queue Length Count Queue Length
D-12 Inodes Available Percent (%) Inodes Avail. %
D-13 Inodes Total Count Inodes Total

Network

N-01 Bytes Received Bytes per second Bytes Rec.
N-02 Bytes Sent Bytes per second Bytes Sent
N-03 Received Packets Per second Rec. Pkts.
N-04 Sent Packets Per second Sent Pkts.
N-05 Received Packets Dropped Per second Rec. Pkts. Drop.
N-06 Sent Packets Dropped Per second Sent Pkts. Drop.
N-07 Received Packet Errors Per second Rec. Pkt. Err.
N-08 Sent Packet Errors Per second Sent Pkt. Err.
N-09 Receiving Utilization Percent (%) Receiving Util.
N-10 Sending Utilization Percent (%) Sending Util.

Table 2.2: Infrastructure monitoring time series. The Short Form is simply an abbreviated
form of the full metric name, including the unit where necessary to uniquely identify a metric.

Machine Learning 13

H1

D1 N1

D2

t

t1 t2

t

t1 t2

t

t1 t2

t

t1 t2D21

…

t

t
t

? ? ?

t
D-02: Disk Used

N-04: Sent Packets

N-01: Bytes Received
H-01: CPU Idle

D-02: Disk Used

? ? ? ? ? ? ? ? ?

Figure 2.5: Example system from Figure 2.3 with time series.

transfer) API (application programming interface) and extract all the data described in the
previous sections. The time series and events are written to an InfluxDB time series database,4

whereas the topology is stored in separate JSON files, one for each system.5

2.4 Machine Learning

The topic of machine learning covers algorithms and models that automatically “learn” from a
given set of sample data with the goal of making predictions on unseen data (supervised task)
or extracting interesting or useful information, structures or patterns (unsupervised task). In
this section, we first cover the basics of machine learning and common terms, and then we
continue with details on data imbalance, supervised learning and unsupervised learning. It
must be noted that machine learning is a huge scientific field and that we only focus on the
aspects necessary to understand our approaches in this thesis. For in-depth information and
further details, we refer the reader to [76, 171, 27].

2.4.1 Basics

When talking about machine learning, generalization can be considered a core concept.
Generalization means that a machine learning model is capable of applying insights gained
from previously seen tasks to new data, i.e., common and discerning data characteristics are

4Of course, events themselves are not time series. However, we can treat the set of all events as a single
time series by simply sorting them according to the time of their occurrences. Querying this “event time series”
is convenient and fast, which is why we decided to store events this way.

5Strictly speaking, there are multiple JSON files for each system because we do not export the entire data
all at once but rather sequentially in smaller batches to avoid increasing the load on the systems we extract
data from. However, these multiple JSON files can simply be merged (add new entities, update all timestamps),
which we regard as an implementation detail and not necessary in the context of this thesis.

14 Background

InfluxDB

JSON

JSON

JSON

T E
T E

T E

S

P

H

D N

E

T

E

T

T

S

P

H

D N

E

T

E

T

T

S

P

H

D N

E

T

E

T

T

REST
API

Multi-System Infrastructure Monitoring Data System Topologies

Time Series + Events

Figure 2.6: Overview of the data collection and storage process.

extracted to learn the concept of the task rather than the specific problem or the solution of
this problem itself. The core part of such a task is the data which should be processed. There
are just two components: the data points and the labels. Data points can be expressed as a
matrix X with n observations xi (also called feature vectors, samples or rows), where each xi
consists of k values (also called features, measurements or columns). Labels can be expressed
as a row vector with equally many rows as X, and it stores the associated label yi (also called
target or output) for each observation xi. Both X and y are defined in Equation 2.1.

X =

x1
...
xn

 =

x11 · · · x1k
...

. . .
...

xn1 · · · xnk

 y =

y1...
yn

 (2.1)

In supervised learning, both X and y (labeled data) are required since the goal is to
learn the connection between data points and labels (cf. Section 2.4.3 for details), whereas in
unsupervised learning, only the data points X (unlabeled data) are needed since the goal is to
extract patterns only within the input data (cf. Section 2.4.4 for details).

The data points X and labels y can be numerical or categorical. However, many machine
learning algorithms cannot handle categorical data out of the box, so transformations such
as label binarization are often part of the processing pipeline. For example, assume that y
contains categorical labels that are mapped to one of the two classes Event and NoEvent,
i.e., each label either represents an event occurrence or, alternatively, no event occurrence. A
straightforward solution would then be to encode these two classes by simply replacing Event
with the value +1 and NoEvent with the value −1.

Machine Learning 15

2.4.2 Data Imbalance

If the (categorical) labels in y are not evenly distributed, i.e., if one label value occurs more
often than others, we talk about data imbalance. For instance, assume that we have a labeled
dataset of 100 samples and two classes A and B. If 50 samples were labeled as class A and
50 samples as class B, we would have a balanced dataset. However, if 90 samples were labeled
as class A and 10 samples as class B, we would have an imbalanced dataset.6 In this case, A
is called the majority class and B the minority class. Naturally, multi-class datasets (datasets
with more than two classes) can also be imbalanced, in which case there are multiple majority
and minority classes, depending on the actual distribution. Since imbalanced data is often
encountered in real-world scenarios and most machine learning models cannot handle such
data directly,7 various approaches have been studied to cope with the imbalance problem. The
two most common techniques are called under- and oversampling.

The goal of undersampling is to drop samples from the majority class(es) until the
desired class distribution is reached. A simple and straightforward implementation is random
undersampling, where the samples that should be excluded are chosen at random. The
advantage of this approach is its simplicity and the reduced computational cost for further
processing, since the total number of samples decreases. On the other hand, a big disadvantage
is the fact that information is lost since we potentially drop samples that store essential data
characteristics. There are techniques which try to minimize this problem by reducing the
sample size more carefully [102], such as selecting less informative samples (e.g., duplicates
or overlapping samples via Tomek links [180] or nearest-neighbor-based heuristics [192]) or
generating fewer synthetic samples (new samples that are not part of the original data) that are
based on characteristics of the original samples (e.g., prototype generation based on clustering
approaches).

Oversampling works in the opposite direction by generating more samples of the minority
class(es) until the desired class distribution is reached. Of course, generating more samples
means higher computational costs since the total number of samples increases. The advantage,
however, is the fact that we do not drop potentially important samples but keep the entire
original information. Various oversampling techniques exist, the most simple one is random
oversampling, which duplicates minority samples at random. More sophisticated approaches
generate new, synthetic samples based on the original data, such as SMOTE [33] (synthetic
minority oversampling technique) or ADASYN [74] (adaptive synthetic sampling approach).
There is also the option to generate more samples based on altered copies of the original data
points, which is called data augmentation. Augmentation is prominent in the area of image
classification and deep learning scenarios [169], but the general concept applies to any kind of
data and approach. The data modifications can be arbitrary and can range from permutation
or scaling to adding random noise and more. The specific kind heavily depends on the domain
and on the goals the users want to achieve.

6Note that the thresholds for balanced and imbalanced class distributions can vary, depending on how many
samples we have and which algorithm we use (some are more robust than others). For example, in the above
dataset, we would probably consider a class distribution of 55/45 still balanced.

7Many models try to find thresholds and decision boundaries based on the available data. The higher the
class imbalance is, the more important and decisive the majority class becomes. If, for example, a model were
to only rely on the data of the majority class of the above example, it would still be correct 90% of the time.
However, the minority class would be ignored completely, which would result in a useless model.

16 Background

2.4.3 Supervised Learning

In supervised learning, the goal is to learn how the data points X are linked to their corre-
sponding labels y and then to predict y′ on new, unseen data X ′. If y contains categorical
data, the learning task is to find a solution how to distinguish the different classes, which is
called classification (in the special case that y only contains two classes, it is called binary
classification). If y contains numerical, continuous data, the learning task is to identify how
the magnitude of the values in y correlates with the data X, which is called regression.8

2.4.3.1 Training and Testing

Most supervised models learn the relationships in the data in the training phase and apply
the learned concepts in the testing phase, for which we give a brief theoretical introduction
that is adapted from [76]. In the training phase, the model is given a training set (or train
set) Xtrain and the corresponding labels ytrain, which is a subset of the available data. After
this phase, the parameterization vector w represents the state/configuration of this trained
model. The result is the model prediction defined by the function in Equation 2.2:

ŷ = g(x;w) (2.2)

which yields the predicted label ŷ for a given feature vector x and model parameterization
vector w. How well this functions performs is determined by the generalization error, for
which we must define some sort of loss that compares the true label y with the predicted
label ŷ. Equation 2.3 defines the quadratic loss and Equation 2.4 the zero-one loss, which are
commonly used loss functions:

L(y, g(x;w)) = (y − g(x;w))2 (2.3)

L(y, g(x;w)) =

{
0 if y = g(x;w),

1 if y 6= g(x;w).
(2.4)

Formally, Equation 2.5 defines the above mentioned generalization error or risk R as the
expectation E of the loss function for unseen, future data X ′ and y′, which we do not know
(indicated by the dot in R(g(.;w))), but we can approximate it in the testing phase using our
testing set (or test set) with X ′ ≈Xtest and the corresponding labels y′ ≈ ytest:

R(g(.;w)) = E(X′,y′)(L(y, g(x;w))) ≈ 1

m

m∑
i=1

L(yi, g(xi;w)) (2.5)

where m is the total number of samples in the test set. There are various ways to determine
how well the final model performed on the test set, which we cover in Section 2.4.3.3. It is
important to note that the training and test set must not overlap to avoid using test data in
the training process, which would invalidate the estimated model performance.

Choosing the function g is the primary goal of the training phase, and it can be accomplished
by two approaches: empirical risk minimization (ERM) and structural risk minimization (SRM).
In ERM, the goal is to find a function g which minimizes the risk R(g), whereas in SRM, the
complexity of g is additionally taken into account. Purely minimizing the risk, which is based
on the training data estimate, can lead to overfitting (a model with high variance), which
happens when the function tries to capture every detail of the training data set, including noise.

8Note that for classification, the labels can also be numeric. However, in contrast to regression, the
magnitude of the values is irrelevant since they are considered to be categorical.

Machine Learning 17

Naturally, this goes against the core concept of generalization and should thus be avoided.
Punishing overly complex functions that can model every detail can reduce the variance and
yield more appropriate functions. However, the complexity penalty must be chosen carefully
to not fall into the direct opposite direction, where only the simplest functions are considered
that ignore relevant information, which would lead to underfitting (a model with high bias).
Balancing the two extremes is called the bias-variance trade-off.

2.4.3.2 Variants of Training and Testing

Using training and test sets is only one of the possibilities to estimate the model performance
(the quality of the model). Other variants include validation sets, which are used to optimize
the model parameters (hyperparameter tuning) before the final model is fit on the test data,
i.e., to avoid overfitting to the test set. Figure 2.7 shows an example of both approaches.
Here, a 50/50 split is used for the training and test set, and a 50/25/25 split is used for the
alternative train-validation-test set approach. Of course, other splits are possible.

Data

Training Set Test Set

Training Set Test SetValidation Set

Figure 2.7: Example data split using training and test sets (middle row) or training, validation
and test sets (bottom row).

Cross-validation is another approach, where the available data is split into n parts/folds
(n-fold cross-validation), and n− 1 parts are used for training while the remaining part is used
for evaluation. There are a total of n iterations, in each of which fold i will be used as validation
fold. If enough data is available, cross-validation can be merged with the train-validation-test
set approach, where the cross-validation is performed on the train-validation set but the final
model performance is estimated on the test set. Figure 2.8 shows an example of a 5-fold
cross-validation, where an additional test set was first split from the available data. Since it is
a 5-fold cross-validation, there is one validation fold and four training folds in each of the five
iterations.

In typical application scenarios, the available data, or more precisely, the rows of X and
their labels y, are randomly shuffled before splitting it into the different sets to avoid that
certain data characteristics only appear in the one particular set. Alternatively, the different
splits can also be provided separately, e.g., if the data of interest are time series and the test
set should reflect data which was recorded after the training data. For instance, for a 50/50
split of two weeks’ worth of time series data, the training set covers week one and the test
covers week two. Ultimately, it depends on the task at hand, and it is up to the user which
model evaluation approach is selected and how the different splits are created.

2.4.3.3 Evaluation Metrics

After fitting a machine learning model on the validation or test data, we want to determine
how well the predictions ŷ match the actual/true labels y. For regression, there are various
metrics which can be directly computed based on the two label sets. We list two of the most
commonly used ones:

18 Background

Data

Training Set Test Set

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Validation Training

Training TrainingValidation

Training Validation

…

5 Iterations

Figure 2.8: Example data split using 5-fold cross-validation with an additional test set that
is only used once after the cross-validation.

• Mean Squared Error (MSE): This metric is the average squared deviation of the predicted
labels to the true labels. It is the same as the expected risk when using the quadratic
loss function (cf. Equation 2.3 and Equation 2.5). The MSE is defined in Equation 2.6
for predicted labels ŷ = (ŷ1, . . . , ŷn) and actual labels y = (y1, . . . , yn):

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (2.6)

• Mean Absolute Error (MAE): This metric is the average absolute difference between
the predicted labels and the true labels. Compared to the MSE, outliers are much less
punished. The MAE is defined in Equation 2.7 for predicted labels ŷ = (ŷ1, . . . , ŷn) and
actual labels y = (y1, . . . , yn):

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.7)

In classification scenarios, the confusion matrix lists the predicted labels and compares
them to the actual labels, from which we can then calculate various evaluation metrics that
help us in analyzing the performance of our model. Table 2.3 shows how such a confusion
matrix looks like for a given a set of c unique classes Ci within the n labels from y. The
columns store the actual classes of y, whereas the rows store the predicted classes of ŷ. The
cells xij then store how often a sample was classified as Ci but was actually of class Cj . The
main diagonal of the confusion matrix (i = j) thus holds all matching/correct predictions, and
all other cells contain mismatching/incorrect predictions. If there are n labels, then the sum
of the confusion matrix cells must be equal to n, more formally,

∑c
i,j=1 xij = n.

In case of binary classification, we only have two unique classes, i.e., c = 2 with C1 and C2.
For convenience, we will set C1 = −1 and C2 = +1 and refer to them as the negative class
and the positive class, respectively (we will also call the associated samples negative samples
and positive samples). This leads to a simplified, binary confusion matrix shown in Table 2.4,
where the previous entries x are replaced by the following four human-readable counts:

Machine Learning 19

Actual
y = C1 . . . y = Cc

P
re
di
ct
ed

ŷ = C1 x11 . . . x1c

...
...

. . .
...

ŷ = Cc xc1 . . . xcc

Table 2.3: Confusion matrix with c classes.

• TN = True Negative: Counts how many negative samples have been correctly predicted
as negative (y = −1, ŷ = −1).

• FN = False Negative: Counts how many positive samples have been incorrectly predicted
as negative (y = +1, ŷ = −1).

• FP = False Positive: Counts how many negative samples have been incorrectly predicted
as positive (y = −1, ŷ = +1).

• TP = True Positive: Counts how many positive samples have been correctly predicted
as positive (y = +1, ŷ = +1).

Actual
y = −1 y = +1

P
re
di
ct
ed ŷ = −1 TN FN

ŷ = +1 FP TP

Table 2.4: Binary confusion matrix.

Based on these numbers, we can calculate different evaluation metrics, where we will list
the ones used in this thesis in the following:

• Accuracy (ACC): This metric shows how many samples out of all samples were correctly
predicted. In other words, it can be used to answer the question “How often was our
model correct?”. It yields values in the range [0, 1] (higher is better), and it is formally
defined in Equation 2.8:

ACC =
TP + TN

TP + TN + FP + FN
(2.8)

• True Positive Rate (TPR): This metric (also called sensitivity or recall) shows how many
samples out of all actually positive samples were correctly predicted as positive. In other
words, it can be used to answer the question “How many positive samples was our model
able to detect?”. It yields values in the range [0, 1] (higher is better), and it is formally
defined in Equation 2.9:

TPR =
TP

TP + FN
(2.9)

• Positive Predictive Value (PPV): This metric (also called precision) shows how many
samples out of all predicted positive samples are actually positive. In other words, it can

20 Background

be used to answer the question “Out of all the predicted positive samples, how many are
actually correct?”. It yields values in the range [0, 1] (higher is better), and it is formally
defined in Equation 2.10:

PPV =
TP

TP + FP
(2.10)

• False Positive Rate (FPR): This metric (also called fall-out) shows how many samples
out of all actually negative samples were incorrectly predicted as positive. In other words,
it can be used to answer the question “How often did our model erroneously predict
an actually negative sample as positive?”. It yields values in the range [0, 1] (lower is
better), and it is formally defined in Equation 2.11:

FPR =
FP

FP + TN
(2.11)

• F1 Score (F1): This metric (also called F-measure) is the harmonic mean of the PPV
and the TPR (precision and recall) and is thus a more expressive measure (both other
metrics must be high in order for the F1 score to be high). It yields values in the range
[0, 1] (higher is better), and it is formally defined in Equation 2.12:

F1 =
2

1
PPV + 1

TPR
= 2 · PPV · TPR

PPV + TPR
=

2TP
2TP + FP + FN

(2.12)

• Matthews Correlation Coefficient [115] (MCC): This metric takes all confusion matrix
entries into account and calculates a correlation value. Unlike all other metrics, it is robust
against imbalanced data [22] and yields values in the range [−1, 1] (higher is better),
where −1 represents the worst possible prediction (every sample was misclassified), 0
represents a random assignment and +1 represents the best possible prediction (every
sample was correctly classified). It is formally defined in Equation 2.13:

MCC =
TP · TN + FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
(2.13)

Of course, these metrics can be extended to multi-class problems (c > 2). One way is to
micro-average the confusion matrix counts, which means to globally sum up all counts, i.e.,
sum all TN, FN, FP and TP of all individual classes, and then calculate the selected metric
based on these global counts. Another option is macro-averaging, where the selected metric is
calculated for each individual class (Ci vs ¬Ci ∀i ∈ [1, c]), and then the resulting c metrics are
averaged.

2.4.3.4 Random Forests

There are many machine learning models for supervised learning, ranging from simple decision
trees and k-nearest neighbor models to support vector machines and artificial neural networks.
In this thesis, we focus on random forests [24], which are part of ensemble learning, meaning
that multiple models are used for the final prediction in order to improve the results. In case
of a random forest, the inner models are multiple decision trees, and the final prediction is
based on, e.g., an average of the predictions (for regression) or on the class that was predicted
most often (for classification), although other methods are possible.

In short, a decision tree splits the samples of the input data in such a way that the classes
of the labels are best separated. Starting from all samples at the root node, a discriminating

Machine Learning 21

feature is selected and the samples are split into two nodes based on a chosen feature threshold.
This procedure is repeated recursively until some stopping criterion is reached, e.g., the
maximum tree depth is reached or the node cannot be split anymore (e.g., only contains
samples from a single class). After the training phase, predictions can be made by following
the different tree branches (according to the tree’s feature thresholds) until a leaf node is
reached. The leaf node either represents the predicted class for the current sample, or it
contains probabilities of all the possible classes.

The randomness in random forests was introduced to reduce variance, i.e., to avoid the
overfitting of individual decision trees, and it can be enabled in two main phases of the learning
process. The first one is the sampling phase, where a random subset of the original data is
drawn with replacement, so the different inner decision trees operate on different data. In each
decision tree, the second phase is selecting how many features (again, a random subset) to use
from the sampled data for making a tree split. The concrete sampling method as well as the
splitting configurations are often implementation-specific and can be adjusted through various
hyperparameters [131], which also include settings such as the number of inner decision trees
and their maximum depth.

Another important part of a random forest is its built-in feature importance evaluation,
i.e., an evaluation of the discriminating properties of features with respect to the class labels.
Since the internal decision trees split the data and their labels based on discriminating features
of the input data, we know after training the model which features these are, i.e., we know
which of our features are more discriminating and thus more important (the labels could be
separated well), and which of our features are less discriminating and thus less important
(the labels could not be separated well). Figure 2.9 shows a small example of ten labeled
samples (five samples are of class A and five of class B), each represented with three features
f1, f2 and f3, and a possible split by a single decision tree using the default implementation of
scikit-learn [131]. This implementation relies on the so-called Gini importance (also referred to
as Mean Decrease Impurity), which basically measures how good a split is, i.e., the better the
classes can be separated, the more “pure” the nodes become (for more information, we refer
the interested reader to [24, 108]). The example reveals that feature f3 was selected as the
most discriminating/important feature (importance value of 0.57), followed by f1 (importance
value of 0.43) and lastly f2 (importance value of 0). In the context of this thesis, it suffices to
know which features performed better than others, i.e., we do not need the exact importance
values. Using the example from above, it is thus only relevant for us that the ordering/ranking
is f3 → f1 → f2 (from most important to least important feature).

2.4.4 Unsupervised Learning

In unsupervised learning, the goal is to extract characteristics of the data pointsX only, i.e., no
labels are required. There are two main approaches: methods that find discriminating features
within the data and generative models that try to model the underlying data distribution.

For the former, the two most important types are projection methods and clustering.
Projection methods aim to to project or transform the input data into a (typically) low-
dimensional space, where essential data characteristics, patterns and clusters can be identified
more easily. They can also be useful for visualizing high-dimensional data by reducing the
dimensionality to three or two components. Often, information loss is an issue that must be
kept in mind, especially when the dimensionality reduction is significant. Clustering aims
to identify patterns that can then be used for creating clusters of similar data, i.e., splitting
the data into groups with common characteristics. Examples of projection methods include
Principal Component Analysis [194] (PCA, linear dimensionality reduction) or t-distributed

22 Background

f1 f2 f3 Label

101 0 50 A
102 0 52 A
108 0 107 A
110 0 78 A
115 0 55 A

102 0 70 B
109 0 57 B
12 0 51 B
41 0 103 B
37 0 43 B

Feature Importance
f1 f2 f3

0.43 0 0.57

gini = 0.0
samples = 2
value = [0, 2]

class = B

gini = 0.0
samples = 2
value = [2, 0]

class = A

gini = 0.0
samples = 3
value = [3, 0]

class = A

f3 <= 74.0
gini = 0.5

samples = 4
value = [2, 2]

class = A

gini = 0.0
samples = 3
value = [0, 3]

class = B

f3 <= 56.0
gini = 0.408
samples = 7
value = [5, 2]

class = A

f1 <= 71.0
gini = 0.5

samples = 10
value = [5, 5]

class = A

Figure 2.9: Example of a decision tree using the default scikit-learn implementation [131]
and how it split ten labeled samples according to the values of three features, including their
resulting feature importance values. The information displayed in a node includes the predicted
class after the training phase, the values it contains (i.e., how many samples of class A and B,
respectively), its total number of samples (equal to the sum of value), the Gini importance (cf.
[24, 108] for details) and, for non-leaf nodes, the feature fi and the condition used for splitting.
When aggregated over all nodes, the (normalized) Gini importance for all three features is
0.43 for f1, 0 for f2 and 0.57 for f3 (cf. Section A.1 on p. 197 for details), which means that
the ordering/ranking from most important to least important feature is f3 → f1 → f2.

Machine Learning 23

Stochastic Neighbor Embedding [111] (t-SNE, non-linear dimensionality reduction), and an
example of clustering is hierarchical clustering.

Generative models, on the other hand, try to model the hidden, true data distribution
given by X, which can then be used to generate data points based on the identified, estimated
distribution. The aim is to generalize and find an appropriate representation for the training
data rather than simply memorizing it. Again, clustering is a common type of generative
unsupervised learning. The goal of finding common patterns and groups of similar data is the
same as described above, however, the means to reach this goal differ (data inspection compared
to model creation). Examples include Gaussian mixture models or k-means clustering.

The theoretical background for calculating the loss and estimating the risk is more compli-
cated than for the supervised setting. However, such detailed information is not necessary in
the context of this thesis, so we refer the interested reader to [76].

2.4.4.1 Evaluation Metrics

Predominantly for clustering models, we would again like to know how well they perform, but
unlike with the supervised approach, we often do not have any “ground truth” available (e.g.,
labels y indicating the true cluster assignment of the data samples), which we could use for
the performance evaluation. Instead, several measures exist that do not require labels, which
are called internal evaluation metrics. A problem with this kind of evaluation is that the
metrics themselves represent some sort of clustering order, i.e., calculating a metric for a given
clustering may correlate with how this clustering was achieved. If the machine learning model
extracted the clusters based on similar traits which also the evaluation metric uses for the
score calculation, then chances are high that such a model will get higher scores. Conversely,
if the model relies on completely different data characteristics, low scores can be expected,
which, however, does not necessarily mean that the clustering is bad, only that the evaluation
metric and the model’s optimization objective do not align. We list some of the commonly
used metrics, which all define good clusters to be dense/compact and well separated, and bad
clusters to be sparse and/or overlapping:

• Silhouette coefficient [147]: This metric measures for each sample how close/similar it is
to objects in the same cluster (intra-cluster distance) and how far away/dissimilar it is
to objects in the next nearest clusters (inter-cluster distance). It yields values in the
range [−1, 1] (higher is better), where −1 means the worst possible clustering, 0 means
overlapping clusters and +1 means the best possible clustering.

• Davies-Bouldin index [46]: This metric measures for each cluster how similar it is to the
next nearest cluster by calculating the ratio of the sum of the two cluster sizes/diameters
(average distance of all objects to the cluster centroid) to their distance. It yields values
in the range [0, inf) (lower is better), where 0 means the best possible clustering and
higher values indicate worse clustering.

• Dunn index [52]: This metric measures the ratio of the minimum distance between
clusters (inter-cluster distance) to the maximum distance within clusters (intra-cluster
distance/cluster diameter). It yields values in the range [0, inf) (higher is better), where
0 means the worst possible clustering and higher values indicate better clustering.

• Caliński-Harabasz index [28]: This metric (also called Variance Ratio Criterion) measures
the ratio of the dispersion within clusters (intra-cluster dispersion) and the dispersion
between other clusters (inter-cluster dispersion). It yields values in the range [0, inf)

24 Background

(higher is better), where 0 means the worst possible clustering and higher values indicate
better clustering.

To get an overview how the scores of the above metrics are affected by different datasets with
different clusters, Figure 2.10 shows ten different examples. Each example contains a dataset
with color-encoded clusters, and the table next to the dataset plot lists the corresponding
values of all internal evaluation metrics described above.

Note that all these metrics include the calculation of distances as well as determining
cluster centroids or cluster diameters and the definition of inter- and intra-cluster distances
(e.g., average distance between all sample pairs, average distances based on the centroids,
smallest/largest distance of any sample pair), which is often implementation-specific and/or
parameterizable [131]. Since distances are essential, we also briefly mention a few of the
commonly used distance metrics:

• Euclidean distance: straight line distance, formally defined in Equation 2.14 for vectors
u and v of length n:

d(u,v) =

√√√√ n∑
i=1

(ui − vi)2 (2.14)

• Manhattan distance: city block distance, formally defined in Equation 2.15 for vectors u
and v of length n:

d(u,v) =

n∑
i=1

|ui − vi| (2.15)

• Cosine distance: distance based on the cosine similarity, formally defined in Equation 2.16
for vectors u and v of length n:

d(u,v) = 1− u · v
‖u‖‖v‖

= 1−

n∑
i=1

uivi√
n∑
i=1

u2i

√
n∑
i=1

v2i

(2.16)

In case we do have knowledge of the “ground truth”, e.g., labels y indicating the true cluster
assignment are available, we can use external evaluation metrics. In principle, these metrics
can be compared to the ones used for evaluating classification problems in supervised machine
learning, with the distinction that the cluster labels can be permuted without affecting the
score, nor do they have to be exactly equal. For example, given true labels y = (0, 0, 0, 1, 1),
all the following predicted cluster assignments (also called partitions) would be regarded as a
perfect clustering: ŷ = (1, 1, 1, 0, 0) (permutation), ŷ = (2, 2, 2, 1, 1) (non-matching labels),
ŷ = (1, 1, 1, 2, 2) (permutation and non-matching labels). External evaluation metrics also
come with some problems. First and foremost, they require the presence of labels, which is
often not the case in real-world applications. Moreover, the given labels may only indicate one
clustering, but there might be additional or different clusters, which could also be valid. We
list some metrics in the following:

• Adjusted Rand index [78] (ARI): This metric measures the similarity of two cluster
assignments and is comparable to the accuracy score (cf. Equation 2.8). It is based
on the Rand index (RI) but corrected for chance, so the ARI yields values between
[−1, 1] (higher is better), where −1 means a complete disagreement to the true cluster

Machine Learning 25

0.0 0.5 1.0

0.0

0.5

1.0 Metric Score

Silhouette 0.87
Davies-B. 0.08
Dunn 2.52
Caliński-H. 117.70

(a) Extremely uneven clusters (99/1).

0.0 0.5 1.0

0.0

0.5

1.0 Metric Score

Silhouette 0.59
Davies-B. 0.56
Dunn 0.10
Caliński-H. 223.66

(b) Uneven clusters (60/40) that are close together.

0.0 0.5 1.0

0.0

0.5

1.0 Metric Score

Silhouette 0.82
Davies-B. 0.25
Dunn 1.08
Caliński-H. 989.58

(c) Uneven clusters (70/30) with slightly lower
variance.

0.0 0.5 1.0

0.0

0.5

1.0 Metric Score

Silhouette 0.74
Davies-B. 0.38
Dunn 0.17
Caliński-H. 193.39

(d) Mostly even clusters (49/51) but one has two
outlier samples.

0.0 0.5 1.0

0.0

0.5

1.0 Metric Score

Silhouette 0.87
Davies-B. 0.18
Dunn 1.87
Caliński-H. 2372.75

(e) Even clusters with very low variance that are
close together.

0.0 0.5 1.0

0.0

0.5

1.0 Metric Score

Silhouette 0.97
Davies-B. 0.04
Dunn 12.60
Caliński-H. 59106.74

(f) Even clusters with very low variance that are
farther apart.

0.0 0.5 1.0

0.0

0.5

1.0 Metric Score

Silhouette 0.61
Davies-B. 0.55
Dunn 0.16
Caliński-H. 266.05

(g) Even clusters with higher variance that are
close together.

0.0 0.5 1.0

0.0

0.5

1.0 Metric Score

Silhouette 0.88
Davies-B. 0.16
Dunn 2.16
Caliński-H. 2928.00

(h) Even clusters with higher variance that are
farther apart.

0.0 0.5 1.0

0.0

0.5

1.0 Metric Score

Silhouette 0.14
Davies-B. 1.79
Dunn 0.00
Caliński-H. 24.76

(i) Even clusters that overlap significantly.

0.0 0.5 1.0

0.0

0.5

1.0 Metric Score

Silhouette 0.39
Davies-B. 0.91
Dunn 0.01
Caliński-H. 96.68

(j) Even clusters with higher variance that overlap
slightly.

Figure 2.10: Internal evaluation metrics and their scores for different datasets, each of which
has 100 samples that are distributed among two clusters.

26 Background

labels, values around 0 represent random cluster assignments and +1 means a perfect
clustering. The RI is defined in Equation 2.17, followed by the definition of the ARI in
Equation 2.18, where TP is the number of pairs of samples that are part of the same
clusters in y and ŷ (true positives), TN is the number of pairs of samples that are both
in different clusters in y and ŷ (true negatives), n is the total number of samples and
E(RI) is the expected RI of random labeling:

RI =
TP + TN(

n
2

) =
TP + TN
n(n−1)

2

(2.17)

ARI =
RI− E(RI)

max(RI)− E(RI)
(2.18)

• V-measure [146]: This metric is the harmonic mean of the homogeneity h (a cluster only
contains samples of a single class) and the completeness c (all samples of a single class are
contained in a single cluster). Depending on whether one of the two should be weighted
more, parameter β can be adjusted to values larger than one (focus completeness) or
lower than one (focus homogeneity). It yields values in the range [0, 1] (higher is better),
and it is formally defined in Equation 2.19:

Vβ =
(1 + β) · h · c
β · h+ c

(2.19)

• Fowlkes-Mallows index [56] (FMI): This metric is the geometric mean of the precision
(cf. Equation 2.10) and the recall (cf. Equation 2.9), which is similar to the F1 score that
uses the harmonic mean instead (cf. Equation 2.12). It yields values in the range [0, 1]
(higher is better), and it is formally defined in Equation 2.20, where TP is the number of
pairs of samples that are part of the same clusters in y and ŷ (true positives), FP is the
number of pairs of samples that are part of the same cluster in y but part of different
clusters in ŷ (false positives) and FN is the number of pairs of samples that are part of
different clusters in y but in the same cluster in ŷ (false negatives):

FMI =

√
TP

TP + FP
· TP
TP + FN

=
TP√

(TP + FP) · (TP + FN)
(2.20)

Since both internal and external evaluations pose different problems, human evaluation
is still an important part in clustering. The different metrics, appropriate visualizations and
cluster statistics can be used as guidance to determine whether the results are satisfying.

2.4.4.2 t-distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE [111] is a projection method for reducing the dimensionality of high-dimensional data for
the purpose of visualization and revealing structures. The original, high-dimensional samples
are represented with a probability distribution, where similar samples have a higher probability
than dissimilar samples, and afterwards, a similar probability distribution is constructed in
the low-dimensional (commonly 2D) space. The Kullback-Leibler divergence [96] (metric for
determining the difference between two probability distributions) is then minimized for these two
distributions. The algorithm’s performance can be controlled by the hyperparameter perplexity
that “can be interpreted as a smooth measure of the effective number of neighbors” [111], “which
says (loosely) how to balance attention between local and global aspects of your data” [188].
Wattenberg et al. [188] state that the resulting visual clusters depend on the chosen perplexity

Machine Learning 27

and multiple results with different values should be analyzed, where typical values range
from five to 50 [111]. Moreover, cluster sizes and distances between clusters might not mean
anything [188], so care must be taken to avoid false assumptions based on these visual cues.

Figure 2.11 shows the application of t-SNE on two datasets with varying perplexity values p.
In Figure 2.11a, the first dataset is made up from two clusters C1 and C2 containing 2D points
(Xi, Yi),9 each with 100 samples drawn from the normal distributions X1, Y1 ∼ N (1, 0.12)
and X2, Y2 ∼ N (2, 0.12), respectively. The data points are color-encoded according to the
distribution they were sampled from (“ground truth”), however, t-SNE has no knowledge of the
true cluster labels and also does not produce/predict any output labels since it is a projection
method and not a clustering model.10 We can see that for p = 2, p = 10 and p = 100, the
resulting visualizations do not reveal any structure in the data, whereas the other perplexity
values work just fine. In Figure 2.11b, we added a third cluster C3 with samples drawn from
X3 ∼ N (2, 0.12) and Y3 ∼ N (1.7, 0.12), i.e., a cluster whose y-coordinates are slightly below
those from cluster C2. Again, we can see that more extreme perplexity values do not seem
to work well. However, p = 10 not only yields a much better visualization than for the first
dataset but arguably also the best among all other perplexity values since it can tell the rather
close and thus partially overlapping clusters C2 and C3 apart.

Original Data p = 2 p = 10 p = 30 p = 50 p = 100

(a) t-SNE applied on a dataset with two clusters.

Original Data p = 2 p = 10 p = 30 p = 50 p = 100

(b) t-SNE applied on a dataset with three clusters.

Figure 2.11: Varying perplexity values p when applying t-SNE on two example datasets.

2.4.4.3 k-Means

The k-means algorithm [112] tries to assign the n samples of X to k clusters C, where each
sample xi should be in the cluster Cj (with j ∈ [1, k]) whose mean/centroid µj is closest given
the squared Euclidean distance (cf. Equation 2.14). In other words, k-means tries to minimize
the within-cluster sum of squares (intra-cluster variance) by choosing appropriate centroids,
which is formally defined in Equation 2.21:

n∑
i=0

min
µj∈C

(
‖xi − µj‖2

)
(2.21)

9Note that for the purpose of this example, the data is already in a low-dimension, for which there would
be no actual need of applying t-SNE as it can be visualized out of the box.

10However, we can use the visualizations to assign cluster labels afterwards, e.g., by manual inspection.

28 Background

The cluster centroids are calculated based on the arithmetic mean, and they are typically
not part of the original samples. At the start, k centroids are generated randomly, and then
the samples are assigned according to their nearest distance, creating k clusters. Afterwards,
the centroids are updated based on the samples in the corresponding clusters. This process
is repeated until the algorithm converges or a predefined limit is reached. To speed up this
convergence, the initial centroids can be chosen more carefully, e.g., using k-means++ [6]. The
number of clusters k must be chosen at the beginning, which can be difficult if the number
of expected clusters is unknown as it is often the case in real-world scenarios. This can be
addressed, e.g., using the elbow method (different k are tested, their resulting explained
variance is plotted against k, and then the k is chosen according to the “elbow” of the plot,
i.e., where most variance is explained and higher k do no longer significantly contribute to an
even higher explained variance) or using any of the internal evaluation metrics.

k-means is an often used algorithm due to its simplicity and fast performance which makes
it applicable even for large datasets. However, there are some caveats that must be considered,
one of which is the fact that the intra-cluster variance minimization as defined above assumes
isotropic clusters (the variance is equal in all directions), so differently shaped clusters might
not be identified correctly. Standardizing the input data can be helpful in this regard (cf.
Section 2.5.1). Figure 2.12 presents various clustering examples of unevenly sized clusters,
anisotropic clusters and clusters with different variances. The actual clusters are shown in
Figure 2.12a, whereas the predicted clusters using k-means are presented in Figure 2.12b.

2.4.4.4 Hierarchical Clustering

The main approach of hierarchical clustering is the step-by-step process of creating clusters,
which can be divided into two categories: divisive and agglomerative clustering [145]. Divisive
clustering is a top-down approach, where all samples of X initially start in one single cluster,
and this cluster is then repeatedly split into smaller subclusters until every sample is contained
in its own cluster. Agglomerative clustering works in the exact opposite direction, i.e., it is
a bottom-up approach where samples are continually merged into growing clusters until all
samples are in one final cluster. The following concepts are described based on the latter.11

Hierarchical agglomerative clustering starts with the n samples in n clusters C, i.e.,
Ci = {xi} ∀i ∈ [1, n]. Then, the two closest clusters are merged based on some distance
metric d (cf. the different distance metrics listed in Section 2.4.4.1) and on some linkage
criterion D, which can be considered as a distance measure between clusters. The objective
of the merging process is thus the minimization of distances. This results in n− 1 clusters,
where the merged cluster Cij now contains all samples from Ci and Cj , which are two samples
at the very beginning, i.e., Cij = Ci ∪ Cj = {xi,xj}. The merging of the two closest clusters
is then repeated until only one cluster remains which contains all samples xi ∈X (stopping
at an earlier merging step where still more clusters are available can be achieved by looking at
the distances of the individual clusters (using a dendrogram) as explained further below with
an example shown in Figure 2.13). There are several linkage criteria, some of them we list in
the following:

11The concepts can be applied to divisive clustering as well but just in their opposite direction (e.g., splitting
instead of merging or farthest distance instead of nearest distance).

Machine Learning 29

5 0
5.0

2.5

0.0

2.5

5.0

7.5

10.0

6 4 2 0

6

5

4

3

2

10 0

10

5

0

5

10

(a) The three datasets, each with their three actual clusters: different cluster sizes (left), anisotropic
clusters (middle), clusters with different variances (right).

5 0
5.0

2.5

0.0

2.5

5.0

7.5

10.0

6 4 2 0

6

5

4

3

2

10 0

10

5

0

5

10

(b) The clusters predicted by k-means.

5 0
5.0

2.5

0.0

2.5

5.0

7.5

10.0

6 4 2 0

6

5

4

3

2

10 0

10

5

0

5

10

(c) The clusters predicted by agglomerative clustering with Euclidean distance and Ward’s method.

5 0
5.0

2.5

0.0

2.5

5.0

7.5

10.0

6 4 2 0

6

5

4

3

2

10 0

10

5

0

5

10

(d) The clusters predicted by BIRCH.

Figure 2.12: Three example datasets with three clusters and their predicted clusters using
different unsupervised machine learning models. The cluster colors vary between the models,
which does not mean anything since the cluster labels are independent of any ordering.

30 Background

• Single linkage: This criterion (also called minimum linkage) determines the minimum
distance between all sample pairs of two clusters. It uses some specified vector distance d
to calculate the cluster distance D between (potentially differently sized) clusters U and
V and their samples u and v as defined in Equation 2.22:

D(U, V) = min
u∈U,v∈V

d(u,v) (2.22)

• Complete linkage: This criterion (also called maximum linkage) determines the maximum
distance between all sample pairs of two clusters. It uses some specified vector distance d
to calculate the cluster distance D between (potentially differently sized) clusters U and
V and their samples u and v as defined in Equation 2.23:

D(U, V) = max
u∈U,v∈V

d(u,v) (2.23)

• Weighted average linkage [172]: This criterion (also called WPGMA for Weighted Pair
Group Method with Arithmetic Mean) determines the average distance between all sample
pairs of two clusters without explicitly accounting for their sizes. It calculates the cluster
distance D between (potentially differently sized) clusters U and V , where cluster U was
previously constructed from subclusters S and T as defined in Equation 2.24:

D(U, V) = D(S ∪ T, V) =
D(S, V) +D(T, V)

2
(2.24)

Before the above formula can be applied, the initial distances between the individual
samples (single-sample clusters) have to be calculated based on some specified vector
distance d, i.e., D(U ′, V ′) = d(u,v) ∀U ′ = {u}, V ′ = {v}.

• Ward’s method [89]: This criterion determines the variance between all sample pairs
of two clusters and is thus comparable to the objective of k-means clustering. It
calculates the cluster distance D between (potentially differently sized) clusters U and
V , where cluster U was previously constructed from subclusters S and T as defined in
Equation 2.25:

D(U, V) = D(S ∪ T, V) =

√
|V |+ |S|

N
D(V, S)2 +

|V |+ |T |
N

D(V, T)2 − |V |
N
D(S, T)2

(2.25)
where | ∗ | represents the cluster’s cardinality and N = |V |+ |S|+ |T |. Analogously to
the weighted average linkage from above, the initial distances between the individual
samples (single-sample clusters) must first be calculated based on some specified vector
distance d, i.e., D(U ′, V ′) = d(u,v) ∀U ′ = {u}, V ′ = {v}.

After the entire merging process, the final result is a linkage matrix which stores all the
calculated distances, i.e., the entire agglomerative clustering hierarchy. Such a matrix can
then be visualized with a dendrogram [126], which uses a tree to display the distances between
clusters and how they are linked to their subclusters (the cluster hierarchy). Each level in
the tree represents exactly one merge step, which means that the tree has a depth of n− 1
since the n samples were merged n − 1 times in order to get the final root cluster with all
samples. This has the advantage that the number of clusters k does not need to be specified
in advance but can be determined based on the dendrogram. Choosing some k then simply
means cutting the tree at depth k − 1, which yields k clusters. Figure 2.13 shows an example
of a dataset of 30 samples that form three clusters. Running the agglomerative clustering

Machine Learning 31

yields the linkage matrix which is visualized in Figure 2.13a. The x-axis shows the individual
samples of the dataset, the y-axis represents the distance between clusters. In the dendrogram,
we can see that there are three dense areas/branches: the left one from sample 21 to sample 2,
the middle one from sample 17 to sample 28 and the right one from sample 15 to sample 10.
This is a good indication where to cut the tree and thus extract the clusters. Therefore, we
cut the tree at depth two, i.e., just at the level of our three main branches, which results in
three clusters. This cut and the resulting clusters are visualized in the colored dendrogram
in Figure 2.13b, where we additionally show the final clustering result in the original data
space (left figure). Especially for large datasets, it can be useful not to display every single
sample in the dendrogram but to merge clusters based on the closest distance until only a
specified number of tree branches remain. Figure 2.14 shows a truncated dendrogram of the
above example where the branch limit was set to ten. Plain numbers still represent single
samples (e.g., the third branch from the left indicates sample 3), numbers within brackets (x),
on the other hand, indicate merged clusters of size x (e.g., the last branch on the right (6)
represents a cluster with six samples).

1 2

1.0

1.5

Actual Clusters

=⇒

21 22 4 5 3 12 19 1 2 17 14 23 26 29 18 20 25 28 15 8 9 0 6 13 16 27 11 24 7 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a) The 30 samples forming three clusters (left) and the dendrogram (right) that was created based on
the linkage matrix from agglomerative clustering with Euclidean distance and Ward’s method.

1 2

1.0

1.5

Predicted Clusters

⇐=

21 22 4 5 3 12 19 1 2 17 14 23 26 29 18 20 25 28 15 8 9 0 6 13 16 27 11 24 7 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b) The same dendrogram (right) but with the tree cut at depth two, which results in clustering the
samples into three groups that are shown for the original samples (left)

Figure 2.13: Example of agglomerative clustering and the dendrogram visualization based
on a dataset of 30 samples and three clusters.

For hierarchical clustering, there are also some points to consider. First, for large datasets,
the linkage matrix becomes rather large and may pose some memory problems. Second, new
samples cannot simply be assigned to existing clusters since hierarchical clustering, unlike

32 Background

(2) (2) 3 (4) 17 (4) (4) (3) (3) (6)
0

1

2

3

Figure 2.14: A truncated version of the dendrogram in Figure 2.13b.

k-means, is not a generative approach (cf. Section 2.4.3), and thus, the entire hierarchy must
be rebuilt. Moreover, the identified clusters largely depend on the chosen linkage criterion.
For example, single linkage tends to create uneven cluster sizes, whereas Ward’s method leads
to more evenly sized clusters. In Figure 2.12, we again show how agglomerative clustering
performs on example datasets. The actual clusters are shown in Figure 2.12a, whereas the
predicted clusters using agglomerative clustering with Euclidean distance for d and Ward’s
method for D are presented in Figure 2.12c.

2.4.4.5 Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)

BIRCH [206] was specifically designed for large datasets. A clustering feature (CF) tree is built
incrementally from the input samples, and it is height-balanced using a specifiable branching
factor b and threshold t. The nodes of the tree do not contain the original samples but only
aggregations thereof, so-called CF subclusters, which drastically reduces resource consumption
(time and memory). A CF subcluster only stores its sample count m and both the linear sum
(vector) l =

∑m
i=1 xi as well as the squared sum (scalar) s =

∑m
i=1 ‖xi‖2 of the subcluster

samples. Given these aggregated measures, the subcluster centroid c and its radius r can be
calculated as defined in Equation 2.26:

c =

m∑
i=1
xi

m
=
l

m
and r =

√√√√√ m∑
i=1

(xi − c)2

m
=

√
s

m
−
(
l

m

)2

(2.26)

Each node can hold multiple CF subclusters, which is bound by the branching factor b. In case
it is not a leaf node, the subclusters can also contain a link to another node further down in the
tree hierarchy. Staring with the root node, a new sample is tried to be fit into the subcluster
that has the smallest radius r after adding the sample, or a new subcluster is created if the
threshold t is exceeded. If the selected subcluster has any child nodes, then this process is
repeated until a leaf is reached. Afterwards, the stored data (m, l, s) is recursively updated.
In case the branching factor b is reached, i.e., the current node already has the maximum
number of subclusters, then this node is split into two child nodes, where all subclusters of
the node must be distributed again. The current node’s parent subcluster (the aggregation of
all the node’s subclusters) is then replaced with the two aggregated subclusters of the two
new nodes. The final cluster of a sample corresponds to the CF subcluster leaf to which it is
assigned. This means that BIRCH automatically identifies the number of clusters, which is the
number of leafs in the tree. Alternatively, another clustering algorithm such as agglomerative
clustering can be applied on the CF subcluster leafs to cluster them into k groups, where k
must be less than or equal to the number of leafs. In Figure 2.12d, we also present how BIRCH
performs on the example datasets compared to the actual clusters shown in Figure 2.12a.

Statistical Background 33

2.5 Statistical Background

In this section, we establish a common ground for the terms standardization and normalization,
and then we present statistical correlation and test methods used in this thesis.

2.5.1 Standardization

Standardization means scaling values to have an arithmetic mean of zero and a standard
deviation/variance of one (zero mean, unit variance). More formally, given a set of values
X = {x1, . . . , xn | xi ∈ R}, its arithmetic mean µ = 1

n

∑n
i=1 xi and its standard deviation

σ =
√

1
n

∑n
i=1 (xi − µ)2, the standardized set Xs is calculated as defined in Equation 2.27:

Xs =

{
xi − µ
σ

| ∀xi ∈ X
}

(2.27)

If all values in X are equal, then σ = 0. In this case, only the mean µ is subtracted, which
yields a standardized set of values Xs that only contains zeros (since µ = xi ∀xi ∈ X).

Figure 2.15 visualizes an example dataset of 100 values and the effect of standardization.
All values were drawn from a normal distribution with a mean of five and a standard deviation
of three, formally given by N (µ, σ2) = N (5, 32). In Figure 2.15a, the original, unaltered
data and its histogram are shown. In Figure 2.15b, the standardized data is shown with
the new mean of zero and unit variance as if sampled from the normal distribution given by
N (0, 1). This example demonstrates that the mean and standard deviation of the data change,
but the proportions and relative distances of the individual data points are not affected, i.e.,
the original distribution is not changed, which is expected since standardization is a linear
transformation.

0 50 100

1
1
3
5
7
9

11

0 10
0

5

10

15

(a) Data and histogram before standardization.

0 50 100

2
1
0
1
2

2 0 2
0

5

10

15

(b) Data and histogram after standardization.

Figure 2.15: Example dataset and its histogram in the original scale (left) and after
standardization (right).

2.5.2 Normalization

In this thesis, normalization is the procedure to scale values to the range [0, 1]. More formally,
given a set of values X = {x1, . . . , xn | xi ∈ R}, its minimum value min(X) and its maximum
value max(X), the normalized set Xn is calculated as defined in Equation 2.28:

Xn =

{
xi −min(X)

max(X)−min(X)
| ∀xi ∈ X

}
(2.28)

34 Background

If all values in X are equal, then max(X) − min(X) = 0. In this case, only the minimum
min(X) is subtracted, which yields a normalized set of values Xn that only contains zeros
(since min(X) = xi ∀xi ∈ X).

Figure 2.16 shows the same example as Figure 2.15, i.e., 100 values randomly sampled from
N (5, 32), but now, normalization is applied. Since normalization is also a linear transformation,
the original distribution is not changed, as can be clearly seen in the histograms shown in
Figure 2.16a and Figure 2.16b.

0 50 100

1
1
3
5
7
9

11

0 10
0

5

10

15

(a) Data and histogram before normalization.

0 50 100
0.0

0.5

1.0

0.0 0.5 1.0
0

5

10

15

(b) Data and histogram after normalization.

Figure 2.16: Example dataset and its histogram in the original scale (left) and after
normalization (right).

2.5.3 Pearson Correlation

We can check whether two variables X and Y correlate with each other using different
correlation measures that typically yield values close to +1 for a strong positive correlation,
values close to −1 for a strong negative correlation and values around 0 for no correlation. One
of the most widely used measures is the Pearson correlation coefficient ρX,Y , which calculates
the linear correlation based on the covariance cov(X,Y) = 1

n

∑n
i=1 (xi − µX) · (yi − µY) and

standard deviations σX and σY as shown in Equation 2.29:

ρX,Y =
cov(X,Y)

σX · σY
(2.29)

A visual representation of examples best demonstrates how various X and Y yield different
correlation coefficients. Figure 2.17 displays various datasets of two-dimensional points with
coordinates represented by X and Y . In the first data row, we can see that the Pearson
correlation coefficient takes on values close to ±1 the stronger the data points resemble a
straight line, either with X and Y in the same direction (positive correlation) or in the opposite
direction (negative correlation). The second data row clearly shows that the correlation does
not represent the slope of the direction (the middle dataset is undefined because σY = 0 and
thus Equation 2.29 cannot be computed). Naturally, since the Pearson correlation is based on
linear correlation, it cannot detect non-linear relationships, as can be seen in the third data
row, where all datasets have a correlation of 0 (= no correlation).

2.5.4 Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test [189] is a statistical hypothesis test used for paired/matched
samples (one sample ai of the first dataset A must have a corresponding sample bi in the
second dataset B) to check whether two datasets come from the same distribution (null
hypothesis) or not (alternative hypothesis). Internally, the differences (ai− bi) of all data pairs

Statistical Background 35

1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 -1 -1 -1

0 0 0 0 0 0 0

Figure 2.17: Example datasets and their Pearson correlation coefficients, adapted from [37].

are calculated and ranked according to their absolute value, which is ultimately used to check
whether the median of all differences is around zero. Thereby, differences that are exactly zero
are discarded in the ranking process per default. However, Pratt’s [137] method can be used
as an alternative that incorporates these zero-differences, which is useful when dealing with
ordinal data where zero-differences are not unlikely. For checking if the null hypothesis must
be rejected or, alternatively, cannot be rejected, the p-value is calculated (probability based
on the calculated test statistic). The smaller the p-value is, the less confident we are that the
null hypothesis is true. This confidence is expressed via the significance level α, with typical
values of 0.1, 0.05 or 0.01 (lower values mean stricter significance thresholds, or, alternatively,
higher confidence levels since the confidence level is 1−α). If the p-value is equal to or smaller
than the chosen α, we are confident enough and must reject the null hypothesis, which means
that the median of the differences is not around zero, i.e., the differences of the two datasets
are statistically significantly different. Conversely, if the p-value is larger than α, we are not
confident enough and thus cannot reject the null hypothesis, meaning that the median of
the differences appears to be around zero, i.e., the differences of the two datasets are not
statistically significantly different. Since we check differences in both directions, this is referred
to as the two-sided version.

There also exist two one-sided variations of the hypothesis test. One is checking whether the
median of the differences is equal to zero or positive (null hypothesis) or negative (alternative
hypothesis), and the other is checking whether the median of the differences is equal to zero
or negative (null hypothesis) or positive (alternative hypothesis). This can be used to confirm
that one dataset is statistically significantly smaller or larger than the other by rejecting the
corresponding null hypothesis in favor of its alternative. Since we now only check differences
in a single direction compared to the two-sided version above, we must adapt the significance
level accordingly to α

2 .

2.5.5 Box Plots

Box plots [116] are used to visualize the distribution and important characteristics of a set of
values. Since there are slight variations possible, we briefly introduce the box plots that we
use throughout this thesis. As an example, we randomly sample 50 values from N (10, 1) and
manually replace two of these values with 4 and 5. Figure 2.18 visualizes the resulting dataset
with a box plot. The box ranges from the first quartile (25% percentile) to the third quartile
(75% percentile), the so-called interquartile range (IQR). The line in the middle indicates
the median (50% percentile). Left and right to the box are the whiskers, which represent

36 Background

values outside the IQR. They extend to the lowest and highest data point but are limited to
a maximum of 1.5 · IQR. All values that surpass this threshold are considered outliers and
are visualized with diamond-shaped symbols as shown in the example for values 4 and 5. For
more details, Table 2.5 provides an overview of various statistics.

4 5 6 7 8 9 10 11 12

Figure 2.18: Example of a box plot with lower outlier values (cf. Table 2.5 for details).

µ σ min p10 p25 p50 p75 p90 max

9.88 1.57 4.00 8.38 9.17 10.08 10.84 11.50 12.27

Table 2.5: Various statistics of the example data. µ = average, σ = standard deviation, pi =
i% percentile, min = minimum, max = maximum.

37

Chapter 3

Topology-driven Crash Analysis

In this chapter, we present our first approach on tackling problems within the multi-system
environment. The goal of our process crash analysis, which is based on the topologies and
crash events of the various systems, is to identify potentially problematic software technologies
that may lead to crashes across multiple systems. The following sections cover all details
of this approach, an evaluation on real-world data, and problems and limitations we faced
throughout our work. Major parts of this chapter were published in [157].

3.1 Motivation

Faults leading to crashes are common in software systems, especially in large-scale systems due
to their high complexity [32, 127]. This can result in further failures, performance degradations
or even entire outages, which can have an economical impact as well as damage the reputation
of the service provider [32]. As systems tend to grow even further and more and more
data about their behavior is collected, manually inspecting all the crashes is unfeasible and
automated approaches are necessary, which has caught the interest of many researchers [202,
205, 181]. Since the number of crashes can become large, prioritizing them is essential to
help developers find the most important or urgent ones. Typical techniques for prioritization
are bucketing and grouping similar crashes, which can then be used, for example, to focus
on the groups with the highest number of crash occurrences. All this is an active field of
research, and many approaches have already been developed, which include the inspection of
crashes within single software systems or applications (e.g., [124]), specific products or product
families (e.g., Microsoft Windows and Office suite [68], or products from Mozilla [67]), or
certain software ecosystems such as Android [65]. However, investigating crashes that occur
across different, independent software systems has not yet been a focus in related work. If we
identified common cross-system crash causes, we could develop a fix and potentially apply
it to all affected systems, rather than having to find the same root cause multiple times and
fixing every system individually.

Analyzing crashes in a multi-system environment comes with additional challenges. First,
the technological landscape is significantly larger and much more diverse than in a single system
because various technologies are deployed in different versions and interact with a wide range of
components. Second, the multi-system aspect must be taken into consideration when filtering
and prioritizing the individual crashes, since we are especially interested in those crashes that
not only occur frequently but also across multiple systems. To this end, we developed an
approach that utilizes the topological information of systems and creates so-called software
technology tuples based on the technologies of the systems’ processes. A tuple can either store

38 Topology-driven Crash Analysis

a single (1-tuple) or multiple technologies (n-tuple) indicating the communication between n
processes. For instance, the 2-tuple (Java, .NET) represents two connected processes, one
executing a Java-based application and the other running within a .NET environment. We
check for every tuple how often the associated process(es) crashed and merge them across all
systems. Using a specifiable ranking metric, the tuples are then sorted and the top-ranked
ones are selected for further inspection, where groups of common crash properties (e.g., the
error or exception message) are created. Finally, these resulting crash groups can be analyzed
by an engineer as a starting point for identifying the root cause of the problem, where a fix
can potentially be applied to all systems where these crashes happened.

3.2 Data Requirements and Assumptions

Our evaluation is based on the data we collected from our industry partner, however, the
general approach is independent of this particular infrastructure. In the following, we list all
required data and all our assumptions that must hold in order to apply our approach in other
settings as well.

3.2.1 Topology

The topology of a system must at least contain data of all processes, including lifetime
properties (the start and end timestamps) and, for n-tuples with n > 1, information on the
process communication. For the latter, it suffices to know whether two processes communicate
with each other or not, the tuple extraction is then simply based on their (overlapping) lifetimes.
Additionally, every process must have a list of software technologies attached that were active
throughout its lifetime. Every software technology entry must store the type (e.g., Java,
Tomcat, etc.) and the timestamp until it was active (the end timestamp1), and it can have
optional properties such as the version.

Figure 3.1 shows a small, abstract example system with three connected processes (P1 is
linked with P2, which is linked to P3, but P1 and P3 are not connected), each with data
on their lifetimes as well as the list of software technologies. From the timeline, we can see
one additional assumption of our approach. Since we only have a single timestamp for the
technologies, which are the end timestamps, we cannot know when they started. We thus
assume that every attached technology is already active when the corresponding process starts.
For instance, A and B both start together with process P1 at timestamp 100. Naturally, this
might not actually always be the case, the effects of which we discuss in Section 3.6.3.

3.2.2 Events

Events are process crashes2 that happened in a system throughout the monitored period of
time. Every event must include the time of the occurrence, the corresponding process entity
and at least one crash property (e.g., exception, stack trace, crash location).

1Ideally, there would also be a start timestamp available, which indicates when a technology became active.
However, since the data that is provided by our industry partner and that we are going to use in the evaluation
unfortunately does not contain this information, our approach must be capable of handling this limited data as
well, which is the reason we only list the end timestamp of a technology as a requirement.

2They do not necessarily need to be process crashes. In fact, our approach can handle arbitrary events with
the single restriction that they must occur on process entities. However, it must make sense to investigate such
events in combination with the software technologies, which is certainly the case for crashes.

Approach 39

P2 P3P1

ID: P1
Start: 100
End: 200

ST

Type End

A 150

B 200

ID: P2
Start: 130
End: 200

ST

Type End

C 200

ID: P3
Start: 110
End: 190

ST

Type End

A 120

C 190

100 200

t

150110 120 130 190

P1
A
B

P2
C

P3
A
C

Figure 3.1: Example system with three processes and their software technologies (ST). The
timeline shows the start and end timestamps between which the various components were
active.

In Table 3.1, we show a few crash event examples of the processes in Figure 3.1 and with
the exception as the selected crash property. This could be typical crash exceptions if process
P1 was Java-based and P2 a process within the Microsoft .NET environment. In both cases,
the processes were restarted, which explains why their end timestamps are independent of the
crashes. The event timestamps can be used to see which software technologies were active
when the crash occurred. For instance, at the time of event E2, only technology B was running
on process P1, whereas for event E1, both A and B were active.3

Event Process Property: Exception Timestamp

E1 P1 java.lang.NullPointerException 105
E2 P1 java.lang.IllegalArgumentException 167
E3 P2 System.TypeInitializationException 192

Table 3.1: Example crashes with the exception property.

3.3 Approach

Now that we established the data requirements, we continue with the detailed description of
our approach. The main idea is to create so-called software technology tuples and link them
with process crashes to see which technologies seem more error-prone. After having identified

3According to our assumption that all technologies are active when the corresponding process starts.

40 Topology-driven Crash Analysis

problematic tuples, we use any of the crash properties to investigate them more closely, which
can help us in identifying the root cause. Before the tuple creation, we have to appropriately
process the topologies of all the systems we want to analyze. We do this by creating snapshots
that capture the changes and states within a system, i.e., we know exactly which processes
and which software technologies were active at a certain point in time, and which processes
communicate with each other.

3.3.1 Tuple Creation

Tuples are the core concept in our approach, everything that follows builds on them. A tuple
stores the software technologies, and then we count how often a process actively using these
technologies crashed and how often it did not crash. For simplicity reasons and since we
do not know the data flow within the processes anyway, we decided to drop the exact time
information4 and reduce it to these two single metrics (crashed, not crashed). In addition
to these crash counts, we also record the systems in which the crashes occurred. The goal is
to extract information on whether a tuple can be considered more error-prone than others,
especially if multiple systems are involved, and is thus of interest to engineers who investigate
the crashes. Our approach supports the following types of tuples:

• 1-tuples: These tuples only capture a software technology of a single process, which
means that the process communication information in the analyzed data is optional in
this case. They are primarily designed to investigate bugs within a particular software
technology. For every system, process and each technology X, a tuple is created in the
form (X). For example, for the system in Figure 3.1, we would create five 1-tuples: (A)
and (B) of process P1, (C) from process P2, and (A) and (C) from process P3 (two
tuples we have already seen in the other processes).

• 2-tuples: These tuples store the software technologies of two connected processes. They
are primarily designed to investigate if there are software incompatibilities leading to
failures, perhaps due to a wrong system configuration [198]. For instance, if there
are mismatching technologies (e.g., different, incompatible versions) running on two
communicating processes, we can capture such crash incidents with 2-tuples, whereas
1-tuples could not express this particular issue. For every system, we extract all process
pairs and then create active technology pairs in the form (X, Y), where X is the
technology of the first process, Y the one of the second process and active means that
the execution time of both X and Y must be overlapping (the duration is irrelevant).
For example, for the system in Figure 3.1, we would create three 2-tuples: (A, C) and
(B, C) of processes P1 and P2, and (C, C) from processes P2 and P3. Although P1
and P3 have overlapping lifetimes and thus overlapping, active software technologies, no
tuples are created because the two processes do not communicate with each other. We
also do not create the tuple (C, A) for processes P2 and P3 since technology A from
process P3 is not active any more when P2 (more specifically, technology C from P2)
starts, i.e., the technologies do not overlap.

• n-tuples: These tuples store the software technologies of multiple (n > 2) connected
processes. Since the direct process communication is already covered by 2-tuples, we
regard n-tuples as a more theoretical application, but we will discuss this topic later in
Section 3.6. They are analogous to the above case where n = 2, i.e., the same conditions
must apply: The technologies must be active and the processes must be linked (no full

4We only know the type of software technology, the rest is a black box, as we do not know which inner
parts are active at what time, so incorporating the exact timestamps of the crashes would not make sense.

Approach 41

connection required, a “chain” of communicating processes suffices). For the system
in Figure 3.1 and n = 3, we would create two 3-tuples: (A, C, C) and (B, C, C) of
processes P1, P2 and P3.

For every created tuple, we then check whether it crashed somewhere during its lifetime
(the time period where all software technologies are active) or “survived” the entire time. A
tuple crashed if one or more crash events occurred on one or more processes that run the
tuple’s software technologies. For every system we parse, we get a set of annotated tuples T ,
where each tuple t ∈ T contains the information as specified in Table 3.2.

Data Description Example

t.techs The software technology tuple. (A, C) of processes P1 and P2.
t.crashed 1 if at least one of the processes running the

techs crashed and this crash occurred during
the time the techs were active, 0 otherwise.

1 because process P1 (running
technology A) crashed at time
105 (event E1).

t.events The set of all crash events that occurred on
the processes or an empty set if no crash
happened.

{E1 }

t.system The identifier of the monitored system where
the processes are running.

DemoSystem

Table 3.2: Data for an annotated tuple t ∈ T after the tuple creation process. The examples
are based on the system and events in Figure 3.1 and Table 3.1.

3.3.2 Tuple Merging

The next step in our approach is to merge the set of annotated tuples T within each system.
Thus, for each system, we create a set of groups GT , where each group contains the tuples
t whose software technologies t.techs are equal. More formally, GT = {G1, . . . , Gk | Gi ⊆
T ∧ ∀i 6= j : Gi ∩Gj = ∅ ∧ ∀tx, ty ∈ Gi : tx.techs ≡ ty.techs}, where k is the number of groups,
i.e., the number of unique technologies within the current system, and

⋃
G∈GT

G = T . We
consider two technologies equal if their properties are equal, which means that the mandatory
types (e.g., Java) but also all optional data must be the same. If the version information is
available, we treat this as a special case because we can optionally apply a version compaction:
Often, version numbers can be rather long and users might want to ignore irrelevant version
tokens. Our approach enables users to do so by specifying how many version tokens should at
least be kept and how many should be discarded, starting from the back. Our default setting
is to drop the last token but keeping at least two in the front. For instance, if the version
is 1.8 (two tokens), it remains unchanged. If the version is something like 1.8.15.127 (four
tokens), it is compacted to 1.8.15 (last token is removed). Of course, this is an entirely optional
step, so users may choose to always consider the entire version number. For n-tuples with
n ≥ 2, equality is determined based on whether the tuple is exactly identical or “reverse-equal”,
more formally, (x1, . . . , xn) ≡ (xn, . . . , x1), where xi is a single software technology with all its
(optional) properties as described above. As an example from Figure 3.1, tuples (A, C, C)
and (C, C, A) would be considered equal but not (C, A, C). Ultimately, we end up with
our k equality groups GT , where all equal annotated tuples of T are assigned to a separate
group G ∈ GT . For each system s, we now merge these annotated tuples in every group,
which results in a set of merged tuples Ms, where each tuple m ∈Ms contains the information
as specified in Table 3.3. Every tuple m ∈Ms contains information on how often it crashed

42 Topology-driven Crash Analysis

(m.crashed) and how often it survived (m.¬crashed) throughout the observation period of the
corresponding system.

Data Description

m.techs t.techs, arbitrary t ∈ G
m.crashed

∑
t∈G

t.crashed

m.¬crashed
∑
t∈G

(1− t.crashed)

m.events
⋃
t∈G

t.events

m.system t.system, arbitrary t ∈ G

Table 3.3: Data for a merged tuple m ∈ Ms and group G ∈ GT after the tuple merging
process. G contains annotated tuples t that are considered equal. For t.techs and t.system, we
can use an arbitrary t since all software technologies are identical within G and we are still
only inspecting a single system s.

The final step is to combine the data of all systems. Assume that we have a set of systems S,
and each system s ∈ S is assigned its corresponding set of merged tuples Ms. We first create
the supersetM =

⋃
s∈SMs. Similarly to before, we then create a set of groupsGM , where each

group contains equal merged tuples m, but now across all different systems. More formally,
GM = {G1, . . . , Gl | Gi ⊆ M ∧ ∀i 6= j : Gi ∩Gj = ∅ ∧ ∀mx,my ∈ Gi : mx.techs ≡ my.techs},
where l is the number of groups, i.e., the number of unique technologies across all systems,
and

⋃
G∈GM

G = M . Equality is defined precisely as above, which results in a set of final
tuples F that covers all systems, where each tuple f ∈ F contains the information as specified
in Table 3.4. The new value f.crashedSystems represents the set of systems in which the
tuple crashed, whereas f.¬crashedSystems indicates the set of systems where the tuple did no
crash. Note that both these sets may overlap. This happens, for example, if an annotated
tuple t1 crashed on some process of system s but another annotated tuple t2 with equal
software technologies (t1.techs ≡ t2.techs) did not crash on some other process of the same
system. In the merging process, m.crashed would then be 1 and m.¬crashed would be 1 as
well, which would ultimately result in the final tuple f with f.crashedSystems = {s} and
f.¬crashedSystems = {s}.

3.3.3 Ranking

After having computed the set of final tuples F , we want to extract tuples that are “interesting”.
We accomplish this by a user-specifiable ranking metric (higher is better/more interesting)
that sorts the tuples based on the data features stored in every f (cf. Table 3.4). By default,
we characterize interesting tuples as those that crashed often and in many different systems,
since we are especially focusing on investigating cross-system crashes, where identifying a
common bug and finding a fix can potentially bring the most benefits. The default ranking
metric r for a final tuple f is formally defined in Equation 3.1:

r(f) =
|f.cS|

|f.cS|+ |f.¬cS|
· |f.cS| · f.crashed (3.1)

where | ∗ | represents the set’s cardinality and cS is short for crashedSystems. This ranking
metric consists of three main factors. The first factor rewards a tuple that crashed in many
different systems compared to the number of systems where it did not crash. It yields values

Approach 43

Data Description

f.techs m.techs, arbitrary m ∈ G
f.crashed

∑
m∈G

m.crashed

f.¬crashed
∑
m∈G

m.¬crashed

f.events
⋃
m∈G

m.events

f.crashedSystems
⋃

m∈G∧m.crashed>0

{m.system}

f.¬crashedSystems
⋃

m∈G∧m.¬crashed>0

{m.system}

Table 3.4: Data for a final tuple f ∈ F and group G ∈ GM after the final cross-system
merging process. G contains merged tuples m that are considered equal across all systems.
For m.techs, we can use an arbitrary m since all software technologies are identical within G.

in the range [0, 1], where 0 means that the tuple did not crash at all (no systems exist where
the tuple crashed) and 1 means that the tuple crashed in every possible scenario, i.e., every
time the tuple was observed, a crash occurred (no systems exist where the tuple survived).
The second factor represents the number of crashed systems, and it is necessary to balance
the previous one, since otherwise, tuples with |f.¬crashedSystems | = 0 would always have a
maximum score of 1 despite having a potentially very low absolute number of crashed systems.5

Lastly, the third factor is simply a scaling factor that rewards tuples with a high absolute
number of crashes, so reoccurring crashes are ranked higher than those that happen rarely.

3.3.4 Crash Property Analysis

After ranking the final tuples in F , we sort them in descending order and select the top-ranked
ones (how many is up to the user). The final step of our approach is then to analyze a specified
crash property for the crashes within such a top-ranked tuple. This is done by first grouping
the crash events according to the selected property (e.g., the exception), i.e., we form groups of
equal property values. Within in each group, we then apply yet another grouping based on the
systems where the (grouped) crashes occurred. Finally, the results are sorted and visualized in
a bar plot, where the y-axis indicates the crash property values in descending order of occurred
crashes, and the x-axis shows the absolute number of crashes. If a property is missing (e.g.,
the data is incomplete or erroneous), then the grouping algorithm simply treats these cases
as “missing”. This way, we do not know the actual value, but we can still see the entries in
the plot, so we do not accidentally overlook them. The individual bars of the plot can be
multi-colored, where each color represents a different system in which the crashes happened.
For us, the most promising visual cues are heavily multi-colored bars with a high number of
crashes, which is exactly what we defined as interesting above. Naturally, the plots depend on
the selected crash property of the top-ranked tuples, which, in turn, depend on the chosen
ranking metric.

Figure 3.2 shows a small example of such a bar plot. The title indicates which tuple was
analyzed and which rank it was assigned given our ranking metric. Note that this rank is not
equal to value obtained via the ranking metric r. We only use that value for sorting to get

5The extreme case would be f.crashedSystems = 1, i.e., the tuple occurred only in a single system, which
would lead to |f.cS|

|f.cS|+|f.¬cS| =
1

1+0
= 1. Of course, this is not what we consider to be interesting.

44 Topology-driven Crash Analysis

the most interesting tuples. After this sorting, we replace the actual ranking metric value
with the tuple’s position, which we call its rank. For instance, if there are three tuples f1,
f2 and f3 and calculating their ranking metric value (cf. Equation 3.1) yielded r(f1) = 0.71,
r(f2) = 0.02 and r(f3) = 0.34, we first sort these values in descending order (highest ranking
metric value is the best), which results in the list (f1 : 0.71, f3 : 0.34, f2 : 0.02). Afterwards,
the ranking metric values are replaced with their corresponding position in this list (the rank),
i.e., (f1 : 1, f3 : 2, f2 : 3), which means that tuple f1 is the most important one and f2 the
least important one. The rank is thus a lower-is-better value in the range [1, n], where n is
the number of tuples and 1 means the highest/best possible rank. In this case, the results
for the 1-tuple f1 = (|Tomcat, 8.0.44|)6 are shown, which happened to be the 1st-ranked
tuple. We opted for investigating the exception crash property, and the plot reveals that three
exceptions were thrown, where the java.lang.NullPointerException occurred most often (10
crashes). The colors represent the different systems in which the crashes happened. In the
example, three systems were affected by java.lang.NullPointerException and java.lang.Illegal-
ArgumentException crashes, and in two systems, a java.lang.OutOfMemoryError led to a
crash.

0 2 4 6 8 10
Number of Crashes

java.lang.OutOfMemoryError
java.lang.IllegalArgumentException

java.lang.NullPointerException
Tomcat, 8.0.44 [1]

Figure 3.2: Example crash property bar plot.

Of course, the plots alone do not automatically provide an explanation for the various root
causes of the problems, which was not the goal of our approach in the first place. However,
they serve as a starting point for further manual investigation by showing prioritized tuples
or tuples of interest. An engineer can then actively search for causes and perhaps identify a
common issue and a corresponding fix, which can potentially be applied in all affected systems.

3.4 Data for Evaluation

We already presented how the data must look like in order for our approach to be applicable.
Now, we introduce the dataset we use for the evaluation. The data originates from software
systems of customers of Dynatrace, and each system is completely independent of each other
and may operate in arbitrary domains. The structure is exactly as described in Section 2.3 on
p. 7. However, we only need a few parts of the collected data, which we briefly summarize in
the following:

• Topology: Only the process components are required. They store every information
needed, which includes all relevant properties such as lifetimes, connections (for process
communication) and their software technologies. The technologies also fulfill all data
requirements, and we additionally have the optional edition and version information at
our disposal (cf. Table 2.1 on p. 9).

6The enclosing | characters are only there to avoid confusion with n-tuples, i.e., to make it clear that
everything within |...| is a single tuple element but with potentially multiple internal entries, such as the
type and version in this example case.

Data for Evaluation 45

• Events: Only the process crash events are relevant, which also cover every information
that our approach requires. The following crash properties are available: the fault
location (location within the executable or the linked library), the fault module path (of
the executable or the linked library), the fault module version (of the executable or the
linked library), the executable path (same as the module path in case the crash occurred
in the executable and not in a linked library), the class name of the exception/error
(.NET-based processes) or the class where the exception occurred (Java-based processes),
the assembly name (.NET-specific units), the exception message and the process signal
(e.g., “aborted”, “segmentation fault”).

For the evaluation, we gathered monitoring data spanning over 15 months, so changes in the
topology such as different versions of software technologies are more likely to be included than
when inspecting a shorter observation period. To avoid an increased load on the monitored
systems and to keep the data size manageable, we decided to export the first week of every
month. More specifically, as listed in Table 3.5 (cf. Figure 3.3 for a visual representation), we
exported data starting from January 2017 until March 2018, i.e., a total of 15 exports, each
covering the first seven days of the corresponding month.7 The table also lists the number of
systems, processes and crashes that occurred during the various time periods. Ultimately, we
included only those systems where at least one software technology was recorded on a process in
order to be applicable to our approach.8 Additionally, all processes without software technology
information must be discarded as well (compare columns #Proc. and #ST-Procs.), leaving
us with fewer crashes, especially in the first couple of exports (compare columns #Crashes
and #Crashes for ST-Procs.). It must be noted that the properties of the remaining crashes
are not fully complete as well. This is because of two reasons: First, the aforementioned list
clearly indicates that not every property can be collected for every crash (technology specifics).
Second, properties cannot be resolved sometimes, for example, due to a data extraction error or
if the property was (temporarily) not available. Figure 3.4 shows the crash property availability
for all our crashes that occurred on processes with at least one software technology (column
#Crashes for ST-Procs.), grouped by each monthly export.

Ultimately, the dataset covers roughly 500 systems and an average of 14000 crashes per
month (11000 after dropping processes without any software technologies), however, there is a
strong tendency of an increasing number of systems9 as well as crashes, which is an indication
for a growing customer base. Furthermore, the data reveals that the differences between
the number of processes (#Procs.) and the number of processes with software technologies
(#ST-Procs.) shrink over time, meaning that more detailed data is available, which, in turn,
results in a higher number of usable crashes (compare columns #Crashes and #Crashes for
ST-Procs.). These trends can also be seen in the visual representation of the data summary
in Figure 3.3, where we can also inspect the export differences of the various metrics more
easily. Further details on the data exploration can be found in the appendix (cf. Section B.1
on p. 199).

7Due to a configuration error, the export of February 2018 actually starts from 29th of January rather than
February 1st. However, we still have a complete week at our disposal.

8This also means that we dropped some systems where process crashes occurred, which is fine since we
cannot use such systems in our approach anyway.

9In the majority of the cases, decreases in system counts can be attributed to trial customers that only
appear in some of the observed months.

46 Topology-driven Crash Analysis

E
xp

ort
S
tart

00:00
E
n
d

23:59
#
S
ystem

s
#
P
rocs.

#
C
rash

ed
P
rocs.

#
S
T
-P

rocs.
#
C
rash

ed
S
T
-P

rocs.
#
C
rash

es
#
C
rash

es
for

S
T
-P

rocs.

January
2017

01.01.
07.01.

149
46985

92
16984

42
788

192
February

2017
01.02.

07.02.
203

71463
132

24970
67

3201
387

M
arch

2017
01.03.

07.03.
185

61984
158

22826
78

4027
2253

A
pril2017

01.04.
07.04.

216
80117

256
29708

162
6103

1967
M
ay

2017
01.05.

07.05.
233

81917
254

34086
154

2216
1154

June
2017

01.06.
07.06.

319
140953

333
51077

214
13300

11390
July

2017
01.07.

07.07.
318

119624
347

51877
257

9159
2476

A
ugust

2017
01.08.

07.08.
430

185056
404

84436
268

10466
5550

Septem
ber

2017
01.09.

07.09.
514

210529
1548

132720
495

12353
7653

O
ctober

2017
01.10.

07.10.
591

278463
717

219526
606

24266
16682

N
ovem

ber
2017

01.11.
07.11.

675
348508

980
281154

864
31662

25872
D
ecem

ber
2017

01.12.
07.12.

734
373395

1763
302742

1159
46648

42056
January

2018
01.01.

07.01.
819

384146
380

307806
207

1160
1015

February
2018

29.01.
04.02.

931
437400

360
345396

259
1482

1314
M
arch

2018
01.03.

07.03.
879

522124
1668

427692
1499

48421
42882

A
verage

480
222844

626
155533

422
14350

10856

T
ab

le
3.5:

Sum
m
ary

of
our

real-w
orld

m
onitoring

dataset.
Start

and
end

entries
are

in
the

form
at

day.m
onth,and

every
export

begins
at

00:00
and

ends
at

23:59
U
T
C

(C
oordinated

U
niversalT

im
e).

T
he

#
character

represents
the

num
ber

of
system

s,processes
and

crashes.
P
rocs.

is
the

abbreviation
for

processes,ST
-P

rocs.
are

processes
w
ith

at
least

one
softw

are
technology

(ST
).

Data for Evaluation 47

102 103 104 105

March 2018

February 2018

January 2018

December 2017

November 2017

October 2017

September 2017

August 2017

July 2017

June 2017

May 2017

April 2017

March 2017

February 2017

January 2017

#Systems
#ST-Processes
#Crashes for ST-Processes

#Processes
#Crashed ST-Processes

#Crashed Processes
#Crashes

Figure 3.3: Visualization of the data summary presented in Table 3.5 (logarithmic scale).
The # character represents the number of systems, processes and crashes.

48 Topology-driven Crash Analysis

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

March 2018

February 2018

January 2018

December 2017

November 2017

October 2017

September 2017

August 2017

July 2017

June 2017

May 2017

April 2017

March 2017

February 2017

January 2017

Fault Location
Class Name

Fault Module Path
Assembly Name

Fault Module Version
Exception Message

Executable Path
Signal

Figure 3.4: Availability (in percent) of the different crash properties for all crashes of processes
with at least one software technology (cf. column #Crashes for ST-Procs. in Table 3.5).

Evaluation 49

3.5 Evaluation

Given our two datasets, we can now begin with the evaluation of our approach. Specifically,
we would like to investigate whether we can identify error-prone software technologies and
incompatibilities between them across multiple software systems based on common crash
properties. We formulate three research questions (RQ) that we originally defined in [157]:

• RQ 1: Can our automated analysis find error-prone software technologies in a multi-system
environment? To answer this question, we investigate 1-tuples within the real-world
dataset from our industry partner.

• RQ 2: Do the results of the crash property analysis reveal insights to identify cross-
system root causes? We want to detect the common root cause in the data with an
appropriate selection of crash properties and a manual investigation of the results. Given
the real-world dataset, we perform such a manual analysis based on selected results.

• RQ 3: Can process communication provide further insights to find connected, error-
prone software technologies? In addition to the 1-tuple analysis, we extract 2-tuples
for the real-world dataset and make a comparison to see whether they yield additional
information or if the 1-tuples are already sufficient.

In the following, we cover the results of our approach when applied to the real-world,
industrial dataset as described in Section 3.4. We first present the automatically detected
top-ranked 1-tuples, where we perform a manual inspection for a selection afterwards. Finally,
we also run a 2-tuple analysis to investigate the impact of process communication.

3.5.1 Automated Analysis

For investigating our first research question (RQ 1), we performed a 1-tuple analysis for each
of the 15 months and decided to use the class name as main crash property to see whether
the crashes occurred in the same set of classes.10 Moreover, the number of crashes with
this property is sufficiently high (cf. Figure 3.4), and it should lead to more helpful results
compared to using the process signal or the executable path, where also many crashes have
these properties attached, but the information is simply too coarse for a meaningful manual
investigation. Each monthly export yields top-ranked 1-tuples that we can visualize with the
bar plots showing the corresponding crash property groups. Since our main objective is still
finding multi-system crashes, we excluded groups which only consist of crashes that occurred
in a single system (visually speaking, these are single-colored bars). Moreover, we only list the
top ten groups at maximum, i.e., the ten groups with the highest number of crashes, to avoid
an overloaded output. Finally, we deliberately do not show missing property entries which
would otherwise be displayed as “missing”. The reason is that we expect some processes not to
have this information attached, for instance, processes executing code that does not support
the concept of classes (e.g., code written in C). We thus only inspect crashes that occurred
within certain runtime environments (e.g., Java or .NET), which is perfectly fine as long as we
keep in mind that we did not analyze all crashes.

Figure 3.5 provides three representative examples of top-ranked 1-tuples. In the bar plot of
Figure 3.5a, we can see the groups for our selected class name property of the 1st-ranked tuple
(|clr, fullclr, 4.0.30319|) of the October 2017 export, where clr is the type, fullclr the

10Of course, the class name alone does not mean that the exception was caused by the same reason, but it
does serve as a common starting point for further investigations.

50 Topology-driven Crash Analysis

edition and 4.0.30319 the version (already the compacted and merged number as defined in
our approach). This tuple is part of the .NET framework in version 4.7, where clr stands
for Common Language Runtime. The System.Reflection.TargetInvocationException occurred
most often (456 times) but only in two systems, whereas, for instance, the System.Type-
InitializationException occurred in 97 crashes but in eight different systems. Figure 3.5b
shows another crash property groups example of the 13th-ranked tuple (|clr, fullclr,
2.0.50727|). Evidently, the 104 crashes with the System.AppDomainUnloadedException
across six systems appears to be interesting and worthwhile of a manual investigation (cf.
Section 3.5.2). Lastly, the 1st ranked tuple in Figure 3.5c happened to be the same as the
1st-ranked tuple in the October export but with different crash distributions. Here, the
System.TypeInitializationException occurred significantly more often (6523 times) and in
42 different systems, although a direct comparison between exports should be treated with
care as the number of systems and crashes changes as well. Another interesting property
group could be the System.OutOfMemoryException with a not necessarily high number of
occurrences (only 34 times) but with nine affected systems. Perhaps this could indicate some
sort of memory leak. A full overview of the five top-ranked tuples for all monthly exports can
be found in the appendix (cf. Section B.2 on p. 204).

100 101 102

Number of Crashes

System.Exc
System.NullReferenceExc
System.OutOfMemoryExc

System.Runtime.Serialization.SerializationExc
System.Net.WebExc

System.ObjectDisposedExc
System.Security.VerificationExc

System.TypeInitializationExc
System.Data.SqlClient.SqlExc

System.Reflection.TargetInvocationExc
clr, fullclr, 4.0.30319 [1]

(a) Export October 2017: 1st-ranked 1-tuple with a total of 1025 crashes.

0 20 40 60 80 100
Number of Crashes

System.Threading.ThreadAbortExc
System.AppDomainUnloadedExc

clr, fullclr, 2.0.50727 [13]

(b) Export October 2017: 13th-ranked 1-tuple with a total of 107 crashes.

101 102 103

Number of Crashes

System.ComponentModel.Win32Exc
System.IO.IOExc

System.Data.SqlClient.SqlExc
System.Web.HttpExc

System.ObjectDisposedExc
System.OutOfMemoryExc

System.Exc
System.NullReferenceExc

System.Runtime.Serialization.SerializationExc
System.TypeInitializationExc

clr, fullclr, 4.0.30319 [1]

(c) Export March 2018: 1st-ranked 1-tuple with a total of 7293 crashes.

Figure 3.5: Property groups of top tuple examples of the class name crash property. The
number in the square brackets represents the rank (1 = highest possible rank). Exc is an
abbreviation for Exception to shorten unnecessary long labels.

Evaluation 51

All these cases are prioritized suggestions by our approach that ultimately an engineer has
to inspect and decide which of them to study more closely. For demonstrating purposes and
to answer our second research question whether these results can actually be meaningful, we
took on the role of such an engineer and initiated a manual investigation.

3.5.2 Manual Investigation

As an example of what an engineer could do with the output and results provided by our
automated approach, we decided to look at the crashes of the software technology (|clr,
fullclr, 2.0.50727|) in Figure 3.5b, and specifically, at the System.AppDomainUnloaded-
Exception property group in more detail. As a starting point for our investigation, we list all
the other properties of the crashes with this exception in Figure 3.6. Unfortunately, we cannot
gain any additional insights here, as most of the properties are either missing, could not be
collected (assembly name) or are simply not useful enough (exception message; however, we
do now know that the message is the same for all crashes).

0 20 40 60 80 100
<invalid>

Assembly Name

0 20 40 60 80 100

Attempted
to access an

unloaded
AppDomain.

Exception Message

0 20 40 60 80 100
missing

Executable Path

0 20 40 60 80 100
missing

Fault Location

0 20 40 60 80 100
missing

Fault Module Path

0 20 40 60 80 100
missing

Fault Module Version

0 20 40 60 80 100
Number of Crashes

missing
Signal

Figure 3.6: All other crash properties of the crashes with the System.AppDomainUnloaded-
Exception for the tuple (|clr, fullclr, 2.0.50727|) in Figure 3.5b.

We thus continued our search for a possible common cause on the Internet and found
several hints that this can happen due to bugs in SQLite and NUnit, using the Visual Studio
Test Runner instead of the MSTest Runner or switching between different versions of the
.NET framework. For a closer inspection, we then looked at the individual crashes and the
corresponding processes including the time where the events occurred, as well as additional
log files (if available) to determine whether there are correlations or similarities. Utilizing the
topology metadata of the affected processes, we found that the majority of crashes occurred in
the ReportingServicesService.exe and happened every twelve hours. Given this information, we
searched for possible explanations and finally discovered that by default, Microsoft’s Reporting
Services recycles application domains every twelve hours as well [119], which is most likely
the common root cause for these process crashes. We were thus able to identify an actual,

52 Topology-driven Crash Analysis

common problem across multiple systems based on the results from our approach (RQ 2),
where fixing it could potentially benefit all the affected systems.11

Note that this manual investigation is not part of our automated tuple analysis approach
but simply serves as a proof of concept to show that we can indeed make use of the provided
results. Naturally, it is not guaranteed that we can find a common cause in every case (such
as for the System.AppDomainUnloadedException example from above). However, we do not
claim this in the first place, as our approach is merely a multi-system crash prioritization and
not an automatic root cause identification tool, which would surely be an interesting field of
research in future work. However, we note that detailed crash properties (e.g, stack traces
or library versions) would greatly enhance the outcome of our approach and thus aid such a
manual investigation, which we discuss in Section 3.6.2.

3.5.3 Process Communication

To investigate process communication (RQ 3), we also performed a 2-tuple analysis to check
if we can gain additional information compared to the 1-tuple analysis from before. While
the 1-tuple results may indicate errors in single software technologies, we expect from the
2-tuple results that we can potentially detect communication-based problems, for instance,
if two neighboring processes and their technologies are (in parts) incompatible. The idea is
that here, the software technology pair, i.e., the combination of two technologies, crashes more
often than they would crash individually and independently from each other. In other words,
if we see crashes of a process with technology A which communicates with another process
with technology B, and otherwise, technology A seems to be running without any issues (e.g.,
no other process communication or communication with different technologies than B), then
we can assume that the 2-tuple (A, B) could be suspicious, more so than the 1-tuple (A).
Our approach helps us in identifying such cases, which would then be ranked higher than
their corresponding 1-tuple counterparts. For example, assume that technologies A and B
sometimes crashed and sometimes survived across multiple systems, but the combination (A,
B) often crashed. In the 1-tuple analysis, this would lead to average ranks, maybe somewhere
in the middle. In the 2-tuple analysis, on the other hand, (A, B) would be ranked very high
(using our default ranking metric). Conversely, if, for instance, technology A crashed all the
time on its own and regardless of any neighboring software technologies, then we would obtain
a high rank for its 1-tuple (A) but not necessarily for its 2-tuples.12

We can visualize this 1-tuple to 2-tuple rank comparison by creating a so-called rank-diff
plot, for which we show an example in Figure 3.7. The x-axis represents the rank of a 2-tuple
(A, B) and the y-axis is the difference to its highest 1-tuple rank, which is either from tuple (A)
or (B), depending on which of the two has the better rank. The difference is then calculated as
the 2-tuple’s rank minus the better 1-tuple’s rank, meaning that a positive difference indicates
that the 1-tuple was more important, whereas a negative difference indicates that the 2-tuple
was more important. In the example, there are two 2-tuples. Assume that these tuples are (A,
B) and (B, C) with ranks 1 and 2, respectively (directly obtained from the x-axis labels in
the figure). Further assume that the ranks of the corresponding 1-tuples are (A) = 4, (B) = 5

11We do not have access to the actual systems and the source code, so our manual investigation inevitably
comes to a stop at this point. A solution would be to inform a corresponding engineer of every affected system
provider and instigate an in-depth cross-system investigation. However, this is outside the scope of this thesis.

12Of course, it can happen that a 2-tuple (A, B) crashed often as well (100% lifetime overlap of technologies
A and B), which, in turn, can lead to a high 2-tuple rank, but in this case, this high rank would already be
explained by the always crashing 1-tuple (A).

Evaluation 53

and (C) = 1. For each 2-tuple, we first determine which of its 1-tuples has the better rank.13

For (A, B), we choose (A) because its rank 4 is better than (B)’s rank 5. Analogously, we
select (C) for (B, C). Now, we calculate the differences: (A, B) − (A) = 1 − 4 = −3 and
(B, C)−(C) = 2−1 = +1. −3 means that the 2-tuple was more important (the corresponding
1-tuple rank was worse), whereas +1 means that the 1-tuple was (slightly) more important.
From a visual perspective, we can say that the more bars in the plot are ≥ 0, the less the
process communication seems to affect the tuple results.

1 2
2-Tuple Rank

3

1
0

Di
ffe

re
nc

e
to

1-
Tu

pl
e

Ra
nk

Figure 3.7: Example rank-diff plot for comparing the ranks of two 2-tuples with the ranks of
their corresponding 1-tuples.

In Figure 3.8, we show the rank-diff plots for all our monthly exports, covering the top 50
2-tuples. In most of the exports, the majority of the differences are positive, which means that
the 2-tuples were generally considered less important than their 1-tuple counterparts, or in
other words, the 2-tuples simply contained a 1-tuple that was also top-ranked. In these cases,
analyzing 2-tuples does not yield additional information, as no new/unseen technologies were
marked as suspicious. We can also observe a growing trend, i.e., the differences to the 1-tuple
ranks are increasing. Such a trend occurs if there is a highly ranked 1-tuple (A) that happens to
be part of multiple top-ranked 2-tuples. For instance, if there are some 2-tuples with the same
technology A and some other, low-ranked technology Xi, and if these 2-tuples have adjacent
ranks, i.e., rank(A,Xi+1) = rank(A,Xi) + 1, then the differences would be monotonically
increasing, since the rank of the corresponding 1-tuple (A) remains constant. There are some
exceptions with negative differences, although in most cases, such 2-tuples only occurred in
one or two systems, which are not of particular interest to us given our main objective of
identifying cross-system crashes. In fact, there are only five tuples where the number of crashed
systems is at least three, which are listed in Table 3.6. Three of them have a low negative
difference of −2, −3 and −6, respectively, meaning that the corresponding 1-tuples have similar
ranks, so we do not gain sufficiently more information here. The only remaining 2-tuples of
potential interest are (|websphere, null, 8.5.5|, |java, ibm, 1.7|) and (|java, ibm,
1.7|, |java, ibm, 1.7|) of the March 2018 export, where an engineer could again analyze
their crash properties and start another manual investigation to check whether a common root
cause exists that can be attributed to some form of (partial) software incompatibility between
the technologies of these tuples.

Taking these results into account, running a 2-tuple analysis to inspect the process
communication does not seem to yield much additional, useful information, making the 1-tuple
analysis sufficient enough. However, this insight only holds for the data we analyzed, and
other datasets or data from other export periods might result in a different 2-tuple to 1-tuple
comparison.

13Remember that the rank is the position of a tuple after sorting all tuples according to their values obtained
from the ranking metric (cf. Equation 3.1) in descending order. In contrast to the ranking metric, which is
a higher-is-better metric, the rank is a lower-is-better measure, where a value of 1 means the highest/best
possible rank.

54 Topology-driven Crash Analysis

50
25

0
25
50

January 2017

50
25

0
25
50

February 2017

50
25

0
25
50

March 2017

50
25

0
25
50

April 2017

50
25

0
25
50

May 2017

50
25

0
25
50

June 2017

50
25

0
25
50

July 2017

1 5 10 15 20 25 30 35 40 45 50
2-Tuple Rank

50
25

0
25
50

August 2017

Di
ffe

re
nc

e
to

 1
-T

up
le

 R
an

k

Evaluation 55

50
25

0
25
50

September 2017

50
25

0
25
50

October 2017

50
25

0
25
50

November 2017

50
25

0
25
50

December 2017

50
25

0
25
50

January 2018

50
25

0
25
50

February 2018

1 5 10 15 20 25 30 35 40 45 50
2-Tuple Rank

50
25

0
25
50

March 2018

Di
ffe

re
nc

e
to

 1
-T

up
le

 R
an

k

Figure 3.8: The rank-diff plots for each of the 15 months of our export data. Each plot
shows the 50 top-ranked 2-tuples and the difference to their corresponding (best) 1-tuple rank.

56 Topology-driven Crash Analysis

Export 2-Tuple Rank
(Diff.) #c #nc #cs #ncs

Apr 2017 (|asp.net, null, 4.5.2|,
|wcf, null, 4.5.2|)

16
(−2)

194 565 3 11

Feb 2018 (|dotnet, .net framework, 4.7.2114|,
|clr, fullclr, 4.7.2114|)

13
(−3)

110 6758 7 52

Mar 2018 (|websphere, null, 8.5.5|,
|java, ibm, 1.7|)

29
(−21)

1489 178688 5 22

Mar 2018 (|java, ibm, 1.7|,
|java, ibm, 1.7|)

31
(−28)

1333 178620 6 30

Mar 2018 (|websphere, null, 8.5.5|,
|websphere, null, 8.5.5|)

44
(−6)

569 47526 6 24

Table 3.6: The five 2-tuples with a negative rank difference (cf. Figure 3.8) and at least three
crashed systems. null indicates a missing edition in the software technology. Abbreviations:
Diff. = difference to (best) 1-tuple rank, #c = number of crashes, #nc = number of times the
tuple did not crash, #cs = number of crashed systems, #ncs = number of systems where the
tuple did not crash.

3.6 Discussion

We now discuss the evaluation results for our dataset as well as the approach itself. We start
with general insights and lessons learned and then continue with problems and limitations
that we encountered, finishing with threats to validity.

3.6.1 Lessons Learned

In the following, we present various lessons that we learned and general insights we gained
when applying our approach to the industrial dataset:

For our data, the 2-tuple analysis for investigating process communication does not con-
tribute much additional, valuable information. We already mentioned this part briefly in
the previous section, where we discussed that this observation is only true for the data we
analyzed. However, it is also important to note the impact of the chosen ranking metric (cf.
Equation 3.1). Our focus was on finding high crash occurrences across multiple systems, but if
we decided to follow a different goal, we would have to change the ranking metric, which, in
turn, would result in different ranks and thus in a different 2-tuple to 1-tuple comparison as well.
Figure 3.9 displays rank-diff plots of the March 2018 export for three different ranking metrics.
We can see the differences between the original ranking metric r (Equation 3.2), a ranking
metric ra that highlights the multi-system aspect even more by dropping the crash-count factor
(Equation 3.3), and a ranking metric rb that ignores the systems entirely and just calculates a
tuple-crash ratio (Equation 3.4). Clearly, the focus of rb completely deviates from that of our
original goal as well as that of ra, and Figure 3.9c thus shows a drastically different picture of
the 2-tuple to 1-tuple comparison, which would then require another manual investigation to
gain further insights.

Performing an n-tuple analysis does not pay off. This follows directly from above. If
already 1-tuples cover nearly all the necessary information compared to 2-tuples, then this
is even more the case for n-tuples with n > 2. We also argue that crashes due to software
incompatibilities should already be detectable with 2-tuples, as chances are much higher that
an error occurs when processes communicate directly with each other rather than over multiple

Discussion 57

r(f) =
|f.cS|

|f.cS|+ |f.¬cS|
· |f.cS| · f.crashed (3.2)

1 5 10 15 20 25 30 35 40 45 50
2-Tuple Rank

25

0

25

50

Di
ffe

re
nc

e
to

1-
Tu

pl
e

Ra
nk

March 2018

(a) The original ranking metric r (identical to Equation 3.1).

ra(f) =
|f.cS|

|f.cS|+ |¬f.cS|
· |f.cS| (3.3)

1 5 10 15 20 25 30 35 40 45 50
2-Tuple Rank

0

25

50

Di
ffe

re
nc

e
to

1-
Tu

pl
e

Ra
nk

March 2018

(b) A new ranking metric ra which drops the f.crashed factor of the original metric.

rb(f) =
|f.c|

|f.c|+ |¬f.c|
(3.4)

1 5 10 15 20 25 30 35 40 45 50
2-Tuple Rank

200
150
100

50
0

50

Di
ffe

re
nc

e
to

1-
Tu

pl
e

Ra
nk

March 2018

(c) A new ranking metric rb which solely focuses on the number of crashes and non-crashes.

Figure 3.9: Different ranking metrics and their effect on the 2-tuple to 1-tuple comparison
of the March 2018 export, visualized by rank-diff plots.

58 Topology-driven Crash Analysis

(process) hops. Naturally, if the 2-tuples do yield significantly different results, an n-tuple
analysis (starting with n = 3) can indeed be make sense.

Given appropriate crash properties, the approach yields useful results. As demonstrated in
the manual investigation in Section 3.5.2, the prioritized results provided by our automated
approach can be used to investigate the causes of crashes for actual cross-system problems. Of
course, not every top-ranked tuple necessarily indicates a common issue, but it does serve as a
valid starting point for an engineer to decide whether further steps should be taken. Moreover,
we can utilize different crash properties and thus gather more knowledge about the crashes.
Unfortunately, the data we had at our disposal did not have detailed properties such as stack
traces and library versions, from which we would have greatly benefited in both the automated
crash property analysis as well as the manual investigation.

The manual crash investigation can be tedious. Our approach cannot automatically reveal
a common root cause for a given set of crashes but only prioritize those that seem to be
worthwhile to take a closer look. It is then still up to the engineer to perform a manual
investigation, which can be a hard and tedious task, especially if the available data for the
crashes is limited. The fewer crash properties are available, the more difficult it is to actually
find the underlying reasons. In our dataset, we also have this problem to some extent, which
we will discuss in the next section.

3.6.2 Problems and Limitations

A keen reader might already have seen that our dataset unfortunately suffers from missing
detailed crash properties, i.e., there are some limitations imposed on us by the data (not
the approach). With missing, we not only mean that not every crash has all properties
available (cf. Figure 3.4) or that some entries carry mediocre up to entirely useless information
(cf. Figure 3.6), but also that there could be much more valuable properties, most notably
stack traces and attached library versions. If we had such details at our disposal, this would
immensely aid the manual investigation for finding a possibly common root cause. Especially
stack traces would help to pinpoint the exact error location. Since stack traces are complex
and provide much more information than, for example, our plain class names, we would need
a more fitting property equality measure for the crash property grouping step, since simply
comparing two traces and checking if they are identical is most certainly not what the users
want.14 Partial stack trace matching or some sort of stack trace similarity measure [26] could
be a noteworthy extension of our approach. Besides stack traces, detailed log data could also
prove valuable, which has been demonstrated in related work [200, 201].

3.6.3 Threats to Validity

Our dataset only covers the first week of each month. However, given that software technologies
typically do not change that frequently, especially in production environments, we argue that
one week suffices to get an overall insight into the different software systems. Moreover, if
crashes occur due to erroneous implementations or incompatibilities, they should most likely
occur within one week, so observing the entire month would just increase the total number of
crashes but not change their distribution. Even if there are different distributions, we should
at least be able to detect them on a monthly basis since we did not skip anything in between
our exports, i.e., we collected the first week of every consecutive month. If they should actually

14It is highly unlikely that two programs of two different, independent software systems have exactly the
same source code, even if the tasks are the same. If they are not identical, our approach currently would
produce crash property groups that only contained a single stack trace each, which is not useful.

Discussion 59

occur on a weekly basis, then we miss the analysis of these, but this does not invalidate the
findings on all the other exports.

A different problem we have with our data is the timestamp of the software technologies of
the processes. As already briefly mentioned in Section 3.2.1, the only available timestamp is
the end timestamp, i.e., the time the technology was last seen. Unfortunately, we do not have
the exact information when a software technology became active. In our approach, we handle
this problem by simply assuming that every technology starts together with its corresponding
process as indicated in Figure 3.1, which can be wrong (e.g., the technologies in the example
of Table 2.1 on p. 9 are most certainly updated to newer versions rather than both versions
running from the start on). For 1-tuples, there is no impact on the number of created tuples,
but we might classify some as crashed (depending on the time of the crash events), for instance,
if a crash occurred right after the process start and one of the technologies had actually not
yet been active at that point in time. For n-tuples, the assumption additionally leads to an
increased number of tuples because we also generate tuples which do not actually overlap.
Figure 3.10 shows an example of these two cases. Process P1 has a technology A1 that is
later updated to a newer version A2. Analogously, process P2 updates its technology A1
to A3. Since we are unaware of the actual start timestamps of A2 and A3, we incorrectly
assume that both already started with their respective processes. We thus have the following
1-tuples: (A1) for both processes, (A2) and (A3). In the example, both processes crash at
timestamp 120. With our simplified assumption, we thus wrongly mark the tuples (A2) and
(A3) as crashed, although they only become active after the crash (timestamps 150 and 130),
and therefore did not actually crash. For the 2-tuple case, we have the same problem with
(A1, A3), where at the time of the crash, technology A3 is not yet active, so the tuple does
not actually exist yet. Additionally, we create the non-existent tuple (A2, A1) because we
assume that the technology A2 of process P1 and A1 of process P2 overlap. Of course,
this assumption is wrong since A2 actually starts (timestamp 150) after A1 of process P2
already ended (timestamp 130). All this might sound worrying, however, we must bear in
mind that this only occurs in cases where software technologies are actually updated within
our one-week exports, which is not something that happens all too often, as already mentioned
in the previous threat. Chances for a wrong classification further decrease by the fact that
our assumption is not 100% incorrect. For instance, the tuple (A2) lives in the time range
[150, 200] compared to our assumed range [100, 200], meaning that we are only incorrect when
crashes happen in [100, 150), whereas everything is in order should they occur in [150, 200].
Even if we do incorrectly classify some tuples, this merely results in a slight increase in false
positives, where an engineer would then have to invest more time in the manual investigation
if such a tuple happened to be among the top-ranked ones. Of course, we could easily fix all
these problems if the actual start timestamps of the software technologies were available, so it
is not a problem of our approach but rather a problem of the inaccurate data we got.

Regarding external validity, the results can partially be generalized to other software
systems since the process crashes and causes thereof are similar or can even be identical (cf. the
manual investigation in Section 3.5.2). The technologies, the crashes and their properties are
not specific to our industry partner because they originate from the hundreds of independent
systems that we have at our disposal, supporting our claim of generalizability. Of course, as
time progresses, our findings and results become less important due to the evolution of the
technological landscape. Furthermore, our conclusion that 2-tuples do not provide significantly
more information than 1-tuples cannot be generalized since different data (different systems,
other data ranges, other crash properties) as well as different goals (achieved with appropriate
ranking metrics) can yield significantly different results and must thus always be evaluated
individually.

60 Topology-driven Crash Analysis

P1
ID: P1
Start: 100
End: 200

ST

Type
Assumed

Start
Actual
Start

End

A1 100 100 150

A2 100 150 200

ST

Type
Assumed

Start
Actual
Start

End

A1 110 110 130

A3 110 130 190

P1
ID: P2
Start: 110
End: 190

100 200

t

150110 130 190

P1
A1
A2

P2
A1
A3

120

!

Figure 3.10: Example of the incorrect assumption of software technology start timestamps
(highlighted with dark yellow and dark green) of two processes. At timestamp 120, crash
events occurred on both processes.

3.7 Related Work

Software bug and crash management is a large, active field of research and can coarsely be
divided into three categories that include optimization (of data related to bugs and crashes,
e.g., the quality of bug reports), triage (prioritization, detection of duplicates, assignment
to engineers) and fixing (localization of faults and their resolution) [202, 205, 181, 69]. Our
approach mainly falls into the triage, whereas the manual investigation can be mapped to the
fixing category, which, however, is not part of our actual approach any more. Managing bugs
and crashes on individual systems, products or individual applications has been thoroughly
investigated, and the ideas of the following related work is often closely related to our own
goal. However, we do not focus on a single program or product family but take the crash
grouping and prioritization to an even more general level, namely for entire, independent
software systems that provide a wide range of different technologies and applications.

Ghafoor and Siddiqui [67] tried to find common bugs in different programs from the
Mozilla product family (e.g., Firefox, Thunderbird, MailNews). They extracted stack traces
via the Bugzilla API and grouped them according to a threshold-based stack trace similarity
measure using the Levenshtein distance [104] for comparing the strings of the stack frames. In
their evaluation, the authors analyzed 132 products with a total of 877000 bug reports and
17219 stack traces. They conducted a manual inspection and concluded that the resulting
groups of similar bugs are indeed correlated. Fixing a common issue could thus benefit possibly
all affected programs. In [48], the authors improved the automatic grouping of crash reports
by yet another stack trace similarity. They applied a two-stage grouping where they first
compared the top stack frame, i.e., the location of the occurred error, and then continued
with the similarity of the entire trace. 82156 crashes across ten different releases of Mozilla
Firefox were investigated, with the conclusion that 80% of the bugs can be identified using
stack traces. Glerum et al. [68] presented Windows Error Reporting (WER) for processing
the automatic collection of debugging data (e.g., stack traces and memory dumps) for reports
from various Microsoft products such as Office, Windows or Windows Mobile. WER employs

Related Work 61

a two-sided bucketing algorithm: The client-side heuristic for grouping similar crashes is based
on information such as the program name as well as the module name, version and timestamp,
whereas the server-side heuristic processes stack frames. Afterwards, the results are aggregated,
sorted and grouped for prioritization purposes. With over ten years’ worth of data and billions
of reports, the authors highlighted the great success and results of their approach. Kim
et al. [94] improved WER by using weighted crash graphs to combine the stack traces of all
crashes of a bucket. Given a graph similarity measure, truly similar crashes are separated from
those that the original bucketing heuristics incorrectly assigned to the same bucket. The tool
ReBucket [42] aims to improve WER as well by also including a stack trace similarity measure.
The authors implemented a measure called Position Dependent Model, which is based on
the number of functions in a stack trace, their distance to the top stack frame as well as the
offsets between matching functions. The evaluation of five Microsoft products with 1198 crash
reports showed better results than the original bucketing. Another modification of WER was
developed in [41], where the authors extracted additional information from memory dumps.
Compared to syntactic stack trace similarities, this approach considers program semantics
that are reconstructed from these dumps via a binary-level backward taint analysis. They
evaluated 140 bugs in Windows 8 and Office 2013, where they could significantly outperform
WER’s triaging capabilities. Wang et al. [186] presented a different approach by investigating
the correlation between different crashes. The correlation is based on structural information
(crash type signature and stack trace), temporal information (similar times of occurrences)
and semantic information (textual similarity of user comments). They defined several rules
for identifying correlation and evaluated their approach on Mozilla Firefox and Eclipse bug
reports with auspicious results. As we can see, most of these approaches utilize stack traces,
since they have been found essential in the debugging process [161]. This highlights once more
the unfortunate circumstances regarding our datasets, where such a crash information is not
available, thus limiting the triaging process.

Shifting the focus on how to specifically handle recurring crashes and potentially providing
fixes, Modani et al. [121] proposed automatic stack trace matching to retrieve fixes for problems
that have previously already been solved. A similar idea was presented even earlier in 2005
by Brodie et al. [26]. Gao et al. [65] automatically parsed well-known Q&A sites (e.g., Stack
Overflow), given the stack traces of the crashes, to find fixes for common bugs and root causes.
In the evaluation, the authors studied 90 different Android projects with 161 issues with
promising results, although they limited the crashes to be specific to the Android framework.
We could include such an idea in our own manual investigation to support engineers in finding
the root causes more easily. In [124], the goal was to identify recurring faults for which fixes
and solutions already exist, where such errors occur most prominently due do not updating
to newer software versions. The authors used function call traces to detect such recurrences
and evaluated their approach on a commercial software application with different releases. It
would be an interesting addition to our approach if we stored old/previous problems and their
fixes, and then notified the engineers when crashes occurred due to the same issue, thereby
providing the corresponding fix. In future work, this could theoretically even be extended to
automatically fixing and repairing the failed software [122].

One step further is then to not only prioritize collected crashes but also to predict whether
new ones are worth investigating in more detail. Kim et al. [93] presented an approach to
automatically classify crash events as relevant or irrelevant (e.g., just an isolated event) by
learning from previous crash occurrences, where higher crash counts were marked as more
important. They collected crash event dumps from Mozilla Firefox and Thunderbird, and
then used two machine learning algorithms for the relevancy prediction. Such an idea could
also be a powerful extension of our approach if we were capable to pre-filter the thousands
of crashes that occur in our multi-system environment, which could greatly improve our

62 Topology-driven Crash Analysis

prioritization procedure. In the area of prediction, there is also a branch called cross-project
defect prediction [209, 138, 77, 136], where the goal is to leverage the data of multiple projects
to be able to predict defects (process crashes could be an example of such defects) for systems
that do not (yet) have enough data to build a within-project defect prediction model. Albeit
challenging, it sounds quite interesting, especially if we investigated whether we could transfer
the idea of cross-project prediction (or parts thereof) to our cross-system scenario and perhaps
create a multi-system crash/event prediction approach.

3.8 Outlook

As it is the case with most research, there still remain many possible improvements, extensions
and open challenges. First, we could collect more data, both in the sense that we could analyze
the entire month instead of only its first week, but also that we could continuously create
exports to see how the multi-system environment with the various software technologies evolves
over time. Moreover, given their availability, it would be immensely helpful to also incorporate
the start timestamps of technologies as well as detailed crash properties, such as stack traces
and information about library versions, into our approach, which would improve our automated
crash property analysis and further aid engineers in investigating the possible root causes. The
manual investigation itself could also be greatly improved as already indicated when discussing
the related work. For instance, we could store already identified common issues together with
their possible solutions and fixes to provide a knowledgebase, where recurrences of crashes
caused by the same problem could easily be detected, for which a corresponding remedy could
then be provided. Another interesting part of future work could be the automatic detection of
crashes, i.e., a crash prediction approach, where we could utilize data from multiple systems
(cf. cross-project defect prediction).

Since the data exports from our industry partner did not provide enough detailed crash
properties and the idea of a crash prediction sounded both promising and interesting, we
decided to not pursue further improvements and extensions of our topology-driven crash
analysis for now but rather continue with such a prediction approach. Given the same
topological information and event structure, we included the remaining part of our industrial
multi-system data, namely the time series, which form the basis of our event prediction
approach described in the following chapter.

63

Chapter 4

Time-Series-based Event Prediction

In this chapter, we present our second approach that works within the multi-system environment.
Now additionally utilizing the available time series data, our main objective is the prediction
of performance-related events to notify system providers in a timely matter, which we try to
accomplish with a combination of a sophisticated data preprocessing framework and supervised
machine learning models. In the following, we describe the details of our approach, an evaluation
on real-world as well as synthetic data, and problems and limitations that we encountered.
The majority of this chapter was published in various conferences. More specifically, the data
preprocessing framework was proposed in [153], initial results of the event prediction were
published in [155, 156], and extended insights were presented in [154].

4.1 Motivation

As we already have seen in the previous chapter, faults that can lead to crashes are ubiquitous
in software systems. However, crashes are not the only thing service providers have to worry
about. Other performance-related events, such as slowdowns and performance degradations,
are omnipresent as well, which can heavily impact the operation of a system. Researchers
have thus put a strong focus on the areas of proactive fault management [149] and anomaly
prediction [175], so system administrators can be notified before the actual occurrence of
performance degradations, which enables them to take preventative measures and possibly
avoid incoming crashes, downtimes or slowdowns altogether. There are two main directions
in related work, often in conjunction with various machine learning methods: Approaches
that use log files as a prediction basis [150, 199, 58, 134, 43] and those that utilize monitoring
data such as memory, disk or CPU metrics [20, 175, 4, 164, 207, 135]. Many of the proposed
solutions yielded promising results, but the majority of them only focused on the data of a
single application or system, whereas a prediction within a multi-system environment is still
lacking in current research, despite the possible benefits. One such benefit is the possibility to
combine the data of multiple systems in order to alleviate the problem of insufficient data of
an individual system, where we could otherwise not create an appropriate machine learning
model. Another advantage would be a cross-system event prediction, where we could utilize
the multi-system data to make predictions in a new, unseen system without any historic data.
This idea is similar to cross-project defect prediction [209, 138, 77, 136], where the goal is also
to use data from already seen projects and to try to predict defects in other projects.

In this chapter, we thus propose an approach for predicting performance-related events in
a multi-system environment. The main motivation is that certain events might be explained
due to effects and patterns within infrastructure monitoring metrics, e.g., increasing CPU

64 Time-Series-based Event Prediction

load, growing memory or suspicious disk behavior, which are common phenomena that can be
observed across multiple systems, independent of the actual domain and tasks of those systems.
With this idea in mind and after a discussion with experts from our industry partner, our
approach is therefore based on 34 infrastructure monitoring time series, which include CPU,
memory, disk and network metrics, with the goal to predict service slowdown performance
events. Since our multi-system environment introduces a high complexity, we first present a
highly customizable data preprocessing framework that aids us in creating appropriate output
which can then be used for training our prediction machine learning models. There are many
important points to consider, ranging from the sizes of the different systems to the data
sampling and balancing strategies, as well as training and testing decisions and post-processing
options. Overall, we create a variety of datasets and train numerous random forest classifiers
to see how our approach copes with the multi-system data from our industry partner.

4.2 Data Requirements and Assumptions

Similarly to our topology-driven crash analysis from Chapter 3, we primarily designed our
new event prediction approach for the data from our industry partner. Nevertheless, it does
work for other datasets as well as long as they fulfill certain requirements and assumptions,
which we present in the following.

4.2.1 Topology

Each system must have an associated topology that stores all relevant components/entities (can
be physical or abstract entities, such as sensors, hosts, servers or services) together with their
connections (forming a graph), lifetime information and other arbitrary, optional properties.
Every component has exactly one component type, and this type defines to which other types
it may be linked. An individual component can then be connected to zero or more entities of
these types. The lifetime of a component is given by a start timestamp, indicating when it
first became active, and by an end timestamp, indicating when it was last seen, i.e., became
inactive. The lifetime information is only required for components that potentially have time
series data attached (see further below in Section 4.2.3). It is not necessary that the topology’s
graph is fully connected, which means that there might be some disconnected subgraphs or
even solitary components. Another requirement is to select the main component type, which
is going to be the main entry point when querying the data later on.

Figure 4.1 shows a small example system with its topology and lifetime information. There
are four component types, A, B, C and D, with the following connectivity rules: Entities
of type A can be connected to B and B can be interlinked with both C and D. There are
two disconnected subgraphs, one originating from component A1 and the other from A2.
Assume that we started to monitor this system in the time interval [t1, t6] and that component
type A is not mapped to any time series. Components B1, B2, C1 and D1 all were active
right from the start, whereas B3, C2 and C3 were only seen later at timestamps t2 and t4,
respectively. We can also see that some entities became inactive throughout the system’s
observation period. B1 only lived until t3, C1 until t4, and B3 and C3 until t5. There is no
lifetime information available or, more specifically, necessary for the components of type A,
since there is no time series data attached. It suffices to know that these components exist
and are linked as displayed in the figure.

Data Requirements and Assumptions 65

t
t1 t6

B1

B2

C1

C2

D1

B3

C3

t3t2 t4 t5

A2

B3

C3

B2

C1 D1

A1

C2

B1

Figure 4.1: Example topology with lifetime information of a small system.

4.2.2 Events

Events can be of any event type of interest (e.g., crash, slowdown, etc.) that occur at one
of the above components. For the prediction, only events that occur on entities belonging
to the main component type are considered, and furthermore, only a single type of event
may be selected. Each event must store the type, the time of its occurrence and the affected
component.

Figure 4.2 shows an example of an event occurrence using the same system as above. At
timestamp te, some event occurred at component A1, which means that type A is the main
component type in this example. At this time, A1 was linked with B1 and B2, and B2 was
connected to C1 and D1 but not C2, since C2 had not yet been active at the time of the event.
The other topology subgraph is completely independent of this event occurrence because no
connecting links between the subgraphs of A1 and A2 exist.

4.2.3 Time Series

Time series are the primary data source for the event prediction. Each component type defines
which kinds of time series can be collected at components of that type. It is not necessary that
every component type must be mapped to time series, nor is it required that each individual
entity must have data for every time series, i.e., data can be missing. The resolution of
the time series must be the same across all systems, and they must be evenly spaced, i.e.,
ti+1− ti = ∆t ∀i ∈ [1, n−1], where ti is a timestamp and n is the length of the series. However,
the global granularity can be arbitrary (seconds, minutes, hours, etc.).

Again, we use the system specified in Figure 4.1. Table 4.1 lists the component-type-to-
time-series-kind mapping and all the components with their actually attached time series data.

66 Time-Series-based Event Prediction

t
t1 t6

B1

B2

C1

C2

D1

B3

C3

t3t2 t4 t5

A2

B3

C3

B2

C1 D1

A1

C2

B1

!

!

te

Figure 4.2: Example event occurrence at component A1 and timestamp te for the same
system as shown in Figure 4.1. The affected components are highlighted with darker colors.

As described above, type A has no time series mapping, so the entities A1 and A2 naturally
do not have any attached data. The components of type B can have up to two time series
kinds: B-01 and B-02, but only entity B2 actually has data for both (B-01B1 , B-02B1). For
B1, there is only B-01 available (B-01B1), whereas B3 does not have any time series data
attached. Analogously, components C1 and C3 support time series C-01 (C-01C1 , C-01C3),
and again, for C2, all data is missing. Lastly, D1 has data for all three time series kinds
(D-01D1 , D-02D1 , D-03D1). As specified before, all time series must be evenly spaced and
have the same resolution, i.e., ∆t of B-01, B-02, C-01, D-01, D-02 and D-03 is equal across all
components (and all systems), and ∆t could be one minute, for example. A visualization of
example time series data for all the relevant components in consideration of their lifetimes is
shown in Figure 4.3.

4.3 Data Preprocessing Framework

Appropriately processing data is an essential and challenging part of machine learning applica-
tions, especially if the amount of data is large and its complexity high [95, 171, 27], which
is often the case when dealing with time series. For instance, in the area of performance
monitoring and predictive maintenance [149, 199, 164, 21, 86, 135], huge amounts of raw and
unprocessed time series are continuously gathered, stored and analyzed for event prediction.
Therefore, many researchers have proposed tools, frameworks and approaches [125, 16, 71, 168,
15, 57, 86, 135] for automatically processing the data and preparing it for further use, such
as visualization or machine learning. While there exists work that considers the topology of
a system [135], how to design a preprocessing framework for a multi-system environment is
still an open challenge. We thus propose a sophisticated, highly configurable preprocessing

Data Preprocessing Framework 67

Component Type
→ Time Series Kind

Components
→ Attached Time Series

A → ∅ A1 → ∅
A2 → ∅

B → B-01, B-02
B1 → B-01B1
B2 → B-01B2 , B-02B2
B3 → ∅

C → C-01
C1 → C-01C1
C2 → ∅
C3 → C-01C3

D → D-01, D-02, D-03 D1 → D-01D1 , D-02D1 , D-03D1

Table 4.1: Example time series mappings for the same system as shown in Figure 4.1.

B-01B1 B-01B2

B-02B2 C-01C1

C-01C3 D-01D1

t1 t2 t3 t4 t5 t6

D-02D1

t1 t2 t3 t4 t5 t6

D-03D1

Figure 4.3: Example data for the Attached Time Series in Table 4.1 with the corresponding
component lifetimes as specified in Figure 4.1.

68 Time-Series-based Event Prediction

framework that can handle event and time series data from topologies of multiple systems,
and create ready-to-use CSV files that can directly be plugged into existing machine learning
models.

4.3.1 Requirements

Originally defined in our contribution in [153], we first list five requirements (RQM) that a
data preprocessing framework should fulfill, following the data assumptions introduced in
Section 4.2 and recommendations from related work:

• RQM 1: Multi-system analysis support [209, 77, 157]: Handling data from multiple
systems comes with new challenges that must be addressed by the framework. Specifically,
the different sizes of the systems in terms of components must be taken into account,
since these have a direct impact on the data balance.

• RQM 2: System topology support [135]: The topology of a system, i.e., the components
and their lifetimes as well as connections, must be supported by the framework. An
important task is also to map events and timeseries to the corresponding entities and to
resolve all connections accordingly.

• RQM 3: Data selection and sampling techniques [125, 193]: Given potentially huge
amounts of data, selecting and sampling play an essential role. The framework should
enable users to exactly specify which systems, topological components, events and time
series (for each component type) should be processed. Configuration settings for the time
series must allow precise control over which parts and how they should be processed.

• RQM 4: Missing data handling techniques [71, 168]: Incomplete data is a common
issue due to recording errors, data loss, bugs and various other reasons, especially with
real-world data. A framework must thus be capable of appropriately handling missing
system components as well as incomplete time series data.

• RQM 5: Big data performance scalability [66]: Continuously collecting time series data
from hundreds of components in multiple systems results in large amounts of data. The
performance of a preprocessing framework needs to scale well with increasing input sizes.

4.3.2 Preprocessing Pipeline

Our proposed framework is primarily designed for assisting users in creating time-series-based
feature vectors that can be used for training machine learning models with the goal of event
prediction. Repetitive and error-prone tasks are completely handled by the framework, allowing
users to concentrate on the machine learning part rather than the equally important but
often tedious data selection and preprocessing. We expect only three inputs: The raw data
together with an appropriate interface for querying, and so-called configuration files (config
as an abbreviation). After having established a data connection (typically only done once in
the beginning), the only thing users have to provide are configs, which store every relevant
preprocessing information and are thus the most important driver of our framework. Due to
this reason, we opted for the YAML file format to aid users in reading, creating and adapting
configs. Once a config is passed to the framework, the framework automatically processes the
data according to this config and creates feature vectors stored in CSV files as output, which
can directly be used for training and testing machine learning models.

Data Preprocessing Framework 69

A general overview of our configuration-based framework is shown in Figure 4.4. It consists
of four main steps, each of which takes the data from the previous step as input and produces
an output for the next one, starting from the raw data and configuration files, and ending
with the final CSV files. The first part of this preprocessing pipeline is establishing the data
access to the raw data. Afterwards, a config is used to specify which parts of all the raw
data should be selected for further processing (data selection). In the third step, the config
defines all locations where actual data should be extracted (sampling), which results in (still
empty/unfilled) samples. The fourth and last part is the data extraction, where the time
series are actually queried and processed according to the provided config. This is done for
all samples of the previous step, thereby filling them and creating feature vectors, which are
ultimately stored in the final CSV output files. We describe the individual steps and their
config settings1 in detail in the following sections.

4.3.2.1 Data Access

In the first step, we establish the data access to the raw data of the different systems, which
includes the topologies, events and time series. We accomplish this by providing an application
programming interface (API) from which we can query structured data,2 i.e., the users
have to provide corresponding implementations for their raw data sources, for example, an
implementation to query the time series in an InfluxDB, one to provide the events that are
stored in CSV files and another to access the topology from JSON files. If the different data
sources do not change, this part only needs to be done once at the very start, the remaining
tasks for users are then to simply write configs. The data access step da can be described with
the function defined in Equation 4.1:3

da(rawData)→ structuredData (4.1)

where rawData describes the original data (topologies, events, time series) and structuredData
the unified, structured view on that data, which the framework can access to extract and
process (selected) parts in the next step.

4.3.2.2 Data Selection

The second part of the preprocessing pipeline is selecting the data that should be extracted
by our framework, which addresses the requirements RQM 1 and RQM 3. As annotated in
Figure 4.4, the data selection can be specified in the config file, which contains the settings
systems for selecting the systems, eventType for specifying the type of events for the main-
ComponentType and timeSeriesKinds for selecting the metrics we want to analyze. from and
to specify the observation period, and timeUnit defines the resolution of the time series (e.g.,
one minute). The example in Listing 4.1 shows how these config settings could look like in
the YAML format. Here, three systems and four time series kinds are selected for processing.
The events of interest are ServiceSlowdowns and the main component type is thus Service.

1There are actually more configuration settings than mentioned here, but many are irrelevant for the points
demonstrated in this thesis (e.g., the location of databases, the file output names or settings for randomization).

2The exact format of this structured data is implementation-specific and thus not explained in more detail
in the context of this thesis. Roughly summarized, the structured data represents easy-to-use objects for
topologies, events and time series, which are much more convenient to use in a programming context than to
repeatedly having to access the raw data (e.g., parsing JSON files or querying an InfluxDB).

3The actual function should be ds(rawData, cda), where cda are the config settings for the data access part.
However, as mentioned in the previous footnote, these settings are not important in the context of this thesis,
which is why they are omitted in Equation 4.1.

70 Time-Series-based Event Prediction

L
T

C
S

V

S
 (S

e
t o

f A
n
n
o
ta

te
d

 S
a
m

p
le

s
)

F
(S

e
t o

f F
e
a
tu

re
 V

e
c
to

rs
)

!

C
S

V
C

S
V

1
. D

a
ta

 A
c
c
e
s
s

A
P
I

T
o
p

o
lo

g
y

E
v
e
n
ts

T
im

e
 S

e
rie

s

(T
S

)

3
. S

a
m

p
lin

g

P
e
r E

v
e
n
t (P

E
)

P
o
s
itiv

e

S
a
m

p
lin

g

!

N
e
g

a
tiv

e

S
a
m

p
lin

g

R
e
d

Z
o
n
e

S
lid

e
 T

h
ro

u
g

h
 (S

T
)

!
!

S
tru

c
tu

re
d

 D
a
ta

2
. D

a
ta

 S
e
le

c
tio

n

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

S
e
le

c
te

d
 S

tru
c
tu

re
d

 D
a
ta

s
y
s
t
e
m
s

m
a
i
n
C
o
m
p
o
n
e
n
t
T
y
p
e

e
v
e
n
t
T
y
p
e

t
i
m
e
S
e
r
i
e
s
K
i
n
d
s

f
r
o
m
,

t
o

t
i
m
e
U
n
i
t

s
p
l
i
t
s

p
a
r
t
i
t
i
o
n
S
i
z
e

c
o
m
b
i
n
a
t
i
o
n
s

b
a
l
a
n
c
i
n
g
R
a
t
i
o

b
a
l
a
n
c
i
n
g
M
o
d
e

n
e
g
S
a
m
p
l
i
n
g
S
o
u
r
c
e

m
i
n
D
i
s
t
N
e
g
S
a
m
p
l
e
T
o
E
v
e
n
t

s
a
m
p
l
i
n
g
M
o
d
e

o
f
f
s
e
t

s
t
e
p
S
i
z
e

p
r
e
d
i
c
t
i
o
n
W
i
n
d
o
w
S
i
z
e

l
e
a
d
T
i
m
e

(L
T
)

fo
r e

a
c
h
 T

S
 k

in
d

:
s
i
z
e

a
g
g
r
F
u
n
c
s

c
o
m
b
F
u
n
c
s

d
r
o
p
C
l
o
s
e
E
v
e
n
t
s

c
l
o
s
e
E
v
e
n
t
s
D
i
s
t

m
i
s
s
i
n
g
D
a
t
a
M
o
d
e

u
s
e
N
a
N
F
o
r
M
i
s
s
i
n
g
T
S

d
i
s
c
a
r
d
N
a
N
I
n
A
g
g
r
F
u
n
c
s

d
i
s
c
a
r
d
N
a
n
I
n
C
o
m
b
F
u
n
c
s

a
u
g
m
e
n
t
a
t
i
o
n
s

a
u
g
m
e
n
t
P
o
s
S
a
m
p
l
e
s

a
u
g
m
e
n
t
N
e
g
S
a
m
p
l
e
s

4
. D

a
ta

 E
x
tra

c
tio

n

B
-0

1

C
o
m

b
in

e

X

M
is

s
in

g
 D

a
ta

O
b

s
e
rv

a
tio

n
 W

in
d

o
w

F
e
a
tu

re
 V

e
c
to

r A
v
e
ra

g
e

!
o
r

?

N
a
N

B
-0

1

L
a
b

e
l

X
.B

-0
1

.m
e
a
n

…
D

1
.D

-0
1

.m
in

A
u
g

m
e
n
ta

tio
n

T
o
p

o
lo

g
y
 R

e
s
o
lu

tio
n

A
1

B
1

B
2

C
1

C
2

D
1

B
1

B
2

s
t
a
n
d
a
r
d
i
z
e

F
igu

re
4.4:

O
verview

of
the

configuration-based
fram

ew
ork

that
consists

of
a
four-step

preprocessing
pipeline:

data
access,

data
selection,

sam
pling

and
data

extraction.
T
he

blue
annotations

represent
configuration

settings
that

can
be

set
for

the
corresponding

parts.

Data Preprocessing Framework 71

The observation period is a single day in the resolution of one minute, i.e., the resolution of
the individual time series of the four selected kinds is one minute. There are also a couple of
settings on how to partition the inspected data. splits specifies how the above observation
period should be split into multiple smaller parts (e.g., a 60% train split and a 40% test
split). This splitting is done based on the observation period partitions, which are extracted
with the given partitionSize (e.g., the period is 20 days and the partition size is one day,
then 20 partitions are created which are then distributed according to the splits). Finally,
the setting combinations can be used to repeat the splitting multiple times in a randomized
fashion. With the input structuredData from the data access part, the data selection step ds
can be described with the function defined in Equation 4.2:

ds(structuredData, cds)→ structuredDatads (4.2)

where structuredDatads represents the subset of the structured data as specified via the
corresponding configuration settings cds.
...
systems:
- "SystemA"
- "SystemB"
- "SystemC"
eventType: "ServiceSlowdown"
mainComponentType: "Service"
timeSeriesKinds:
- "H-01"
- "H-02"
- "D-04"
- "N-01"
from: "2020-07-21␣00:00"
to: "2020-07-22␣00:00"
timeUnit: "1␣min"
...

Listing 4.1: Partial YAML config file with some data selection settings.

4.3.2.3 Sampling

The sampling step parses the selected data subset from the previous step to create so-called
annotated samples s ∈ S, which store a timestamp ts, the entity (must be of the main
component type), the corresponding system and whether it is a positive (an event occurred) or
a negative sample (no event occurred). Given the structuredDatads from above, the sampling
step sp can be described with the function defined in Equation 4.3:

sp(structuredDatads, csp)→ S (4.3)

where S is the set of annotated samples that are obtained when running the preprocessing
framework with the sampling configuration settings csp. Two different kinds of sampling are
supported, which can be selected with the setting samplingMode.

The first method is Per-Event (PE) sampling, where positive samples are based on event
occurrences. For each event, an annotated sample is created at the time of the event. However,
there are two main configuration settings that influence this behavior. dropCloseEvents
specifies whether events that happened on the same entity should be dropped, given a distance
threshold closeEventsDist. These settings can help, for instance, if the users want to ignore
data from multiple consecutive events that perhaps occurred only due to the first event. After
having created all positive samples, negative samples must be created, which is done by

72 Time-Series-based Event Prediction

randomly selecting timestamps for random entities within the observation period. There are
several settings allowing more control over this second sampling procedure. negSampling-
Source defines which random entities are eligible for creating negative samples. Three values are
available: non-event entities (no events occurred during the entity’s lifetime), event entities (at
least one event occurred during the entity’s lifetime) or all entities (no event-based restriction).
The latter two can be specified in more detail if minDistNegSampleToEvent is given, which
represents the minimum distance to any positive sample (cf. Red Zone in Figure 4.4). While
the amount of positive samples is limited by the number of events, the negative sample count
can be controlled with the ratio of positive to negative samples as 1 : balancingRatio (e.g.,
1 : 2 would mean that twice as many negative samples are created). Another important
setting is the balancingMode that can either be system balancing or overall balancing, which
addresses our first requirement RQM 1. The former simply treats every system individually,
thus applying the balancing ratio (to create the negative samples) within each system on its
own. Overall balancing, on the other hand, considers the system sizes. The balancing ratio is
applied to the sum of all positive samples across all systems, and then the resulting negative
samples are distributed according to the system sizes that are defined by the number of entities
of the main component type. More formally, the number of negative samples (before addressing
the balancing ratio) for a system sys is equal to sys.#mc∑

sys′∈Sys sys′.#mc ·
∑

sys′∈Sys sys
′.#ps, where Sys

is the set of available systems, and sys.#mc and sys.#ps are the number of main components
and number of positive samples of system sys. For example, if the balancing ratio is 1 : 1 and
if there are two systems with 10 and 90 events (i.e, 100 negative samples must be created) and
20 and 60 main components each, the overall balancing mode will result in 25 negative samples
(20
20+60 · (10 + 90) = 25) for the first system and 75 for the second (60

20+60 · (10 + 90) = 75),
whereas the system balancing mode will yield 10 and 90 negative samples, respectively.

The second method is Slide-Through (ST) sampling, where samples are created using a
sliding sampling point that advances through the observation period. With an optional offset,
this sampling point is successively moved forward until the end of the inspected data period is
reached, and at each step, a sample is created. The setting stepSize can be used to specify
by how much the point advances in each step. ST requires no balancing settings since the
ratio of positive to negative samples is automatically determined based on how many of the
created sliding samples were classified as positive or negative. Whether a sample is labeled as
positive or negative is defined by the predictionWindowSize pws. Assume that ST returned
a sample for some entity at timestamp ts. If at least one event occurred at this entity in the
interval [ts, ts+pws), i.e., in the prediction window, then the sample is labeled as positive, and
otherwise, it is labeled as negative. In case pws = 0, the sample is only classified as positive if
at least one event happened exactly at timestamp ts. A positive sample is duplicated for each
individual event that occurred within the prediction window in order not to discard any event
data. Figure 4.5 shows an example time series and the process of ST sampling. Starting at
timestamp 5 (offset), we slide through the series in steps of five (step size), which results in
a total of five samples for the observation period [0, 30). Given a prediction window size of
two, we create one positive sample at timestamp 5 because an event occurred at timestamp 6,
which is inside the corresponding prediction window [5, 5 + 2), and four negative samples at the
remaining timestamps. Note that prediction window sizes can influence the lead time, which
is the time between the sample timestamp and the data extraction window (the observation
window; cf. Section 4.3.2.4 for details). In the example, the positive sample at timestamp 5
actually has an additional lead time of one (in addition to the global lead time specified in the
data extraction part; cf. Section 4.3.2.4), since the event occurred at timestamp 6 = 5 + 1.
The larger the prediction windows are, the more the lead time might be affected.

Data Preprocessing Framework 73

Prediction Window Size

!

t

10 15 20 255

!

Offset

Step Size

Figure 4.5: Example of the slide-through sampling mode on a time series and the resulting
samples. Config settings: offset = 5, stepSize = 5, predictionWindowSize = 2.

4.3.2.4 Data Extraction

Until this point, no actual time series data has been extracted, which is the task of the final
preprocessing step. Given the set of annotated samples S from the sampling part, the data
extraction step de can be described with the function defined in Equation 4.4:

de(S, cde)→ F (4.4)

where F is the set of feature vectors which are created for the annotated samples in S, i.e.,
F = {fs | s ∈ S}, and cde represents the corresponding data extraction configuration settings
that can be categorized into three groups: settings controlling the observation windows, settings
for handling missing data and data augmentation settings. There is also one setting that
controls the raw data before the following data extraction, which is called standardize. If
enabled, each time series of each individual entity is standardized (cf. Section 2.5.1 on p. 33)
beforehand. This way, we ensure that the value ranges of the different entities are about the
same, which is important when considering absolute time series metrics (e.g., the available
memory in bytes), as these can yield drastically different values compared to relative metrics
(e.g., one service could run on a host with 64GB of main memory, whereas another service
could be connected to a host with only 4GB of memory).

Observation Windows The observation window settings contain all relevant information
needed to extract data from a set of time series, which ultimately results in a feature vector fs
for an annotated sample s. To better understand the following technical description, we
provide a small example config in Listing 4.2, which is visualized in Figure 4.6 (details on the
example are provided further below). A global setting is the leadTime lt, which indicates the
time between where data should be extracted and the timestamp of the annotated sample, i.e.,
it can be used to collect data for a sample that lies lt in the future. For each time series kind
that was chosen in the data selection step, an observation window4 can be specified with three
config settings to extract the actual data from the time series of that kind. The final feature
vector is then a conjunction of blocks (cf. the three blocks B-01, C-01 and D-01 of the example
feature vector show in Figure 4.6), where each block contains the data of the corresponding

4In fact, multiple windows can be specified, however, this is a rare use case which does not occur in this
thesis. Since it would needlessly complicate the following description, we decided to omit unnecessary details.

74 Time-Series-based Event Prediction

observation window, i.e., the feature vector will contain as many blocks as there are time series
kinds, since one kind equates to one observation window. For a given annotated sample, the
framework first automatically resolves all entities to which the sample’s main component is
connected (cf. Topology Resolution in Figure 4.4 and requirement RQM 2). Afterwards, the
time series are prepared for each entity, and the observation windows for the corresponding
time series kinds are applied. Three config settings control the data extraction as follows:

• size indicates the observation window size ows for time series of the specified type, i.e.,
the inspected time range of the corresponding series x, meaning that ows time units
of x should be collected. The window’s start timestamp tw is determined by its size,
the timestamp ts of the annotated sample and the lead time lt, and it is calculated as
tw = ts − lt− ows. In the end, a vector rx containing ows raw values of time series x is
extracted using the timestamps of the window, where rx = (xt | t ∈ [tw, tw + ows)) =
(r1x , . . . , rowsx), i.e., rx is a subsequence of x.

• These raw values can optionally be aggregated with the setting aggrFuncs, which
specifies a list of aggregation functions AF = (aggri | i ∈ [1, n]), where n is the
number of functions, and aggri can be any valid function that takes the raw time series
values as input and returns a single value, such as the minimum, maximum, average,
standard deviation, median, skewness, kurtosis, slope of the fitted regression line or
Pearson correlation. The raw values rx are then transformed into aggregated values
ax = (aggri(rx) | ∀i ∈ [1, n] ∧ aggri ∈ AF) = (a1x , . . . , anx), which form one block of
the feature vector fs for the current sample s.

This procedure is repeated for all time series kinds K = {kj | j ∈ [1,m]}, with m being
the number of kinds, until the entire feature vector is finished, i.e., all blocks have been
assembled. This can be formulated as fs = (ak1x , . . . ,a

km
x), where akjx represents the

aggregated values of time series x of kind kj ∈ K.

• The topological assumptions of our data state that there can be multiple entities of
the same component type. If there are e ≥ 2 such entities, this can result in e time
series X = {x1, . . . ,xe} of the same kind k. Here, we cannot create the feature vector
because akX is not defined. We can only compute the individual aggregated values, i.e.,
akx ∀x ∈X. One idea would be to simply append these individual results to the feature
vector (resulting in multiple boxes), but then, the feature vectors across all annotated
samples S would no longer be equal in length (the number of entities might vary between
the samples), violating our definition of a feature vector (cf. Section 2.4.1 on p. 13).

This is where the third config setting combFuncs comes into play, which allows us to
specify a list of combination functions CF = (combi | i ∈ [1, n]), where n is the same
number of functions as there are aggregation functions, and combi can be any valid
function that takes a list of values as input and returns a single value (again, minimum,
maximum, average, etc.). The number of aggregation and combination functions must
be equal because there must be exactly one matching combination function for each
aggregation function, i.e., aggri ↔ combi ∀i ∈ [1, n]. We can now solve our multi-time-
series predicament. We create a list of aggregations aki by combining the i-th entries of all
the individual aggregated values akx. Let akx = (ak1x , . . . , a

k
nx

), then aki = (akix | ∀x ∈X).
Naturally, we obtain n such aggregation lists aki since we have n aggregation functions.
Finally, we merge the values of every aki by applying the matching combination function,
which results in the combined values ckX = (combi(aki) | ∀i ∈ [1, n] ∧ combi ∈ CF) =
(c1X , . . . , cnX

) that replace our undefined akX . We now can combine arbitrary many
time series X of a certain kind k while still producing a single box (of size n) in the
feature vector.

Data Preprocessing Framework 75

If there are multiple time series but we did not decide to specify any aggregation
functions, i.e., we want to collect the raw values rx ∀x ∈ X, the procedure is very
similar. Analogously as before, we create a list of raw data rki by combining the i-th entries
of all the individual raw values rkx. Let rkx = (rk1x , . . . , r

k
owsx), then rki = (rkix | ∀x ∈X).

Naturally, we obtain ows such raw data lists rki since we have ows raw values. In
contrast to above, we now only have a single combination function with CF = (comb)
that is applied to all these raw data lists. Finally, we merge the values of every rki
by applying this combination function, which results in the combined (raw) values
ckX = (comb(rki) | ∀i ∈ [1, ows]) = (c1X , . . . , cowsX) that replace our undefined akX . We
now can combine arbitrary many time series X of a certain kind k while still producing
a single box (of size ows) in the feature vector.

Example Since the above mathematical description of the data extraction with observation
windows might seem complicated at first glance, we provide a small example in Figure 4.6,
which is based on (parts of) the topology of the system in Figure 4.1. Assume that we selected
A as our main component type and that we have an annotated sample s with timestamp ts,
entity A1 and a negative label (no event occurred at the timestamp). We now want to create
the corresponding feature vector fs. The label can directly be copied from the annotated
sample, whereas the actual time series data values are extracted using the config settings
specified in Listing 4.2.

...
leadTime: 5
observationWindows:
- B-01:

size: 10
aggrFuncs:
- "Min"
- "Max"
- "Avg"
combFuncs:
- "Min"
- "Max"
- "Avg"

- C-01:
size: 5
aggrFuncs: []
combFuncs:
- "Avg"

- D-03:
size: 15
aggrFuncs:
- "Slope"
- "Correlation"
combFuncs:
- "Avg"
- "Avg"

...

Listing 4.2: Partial YAML config file with the data extraction settings used in the example
in Figure 4.6.

We chose a global lead time (LT) of 5, which is thus the same for all observation windows.
We further decided to inspect three time series kinds: B-01 of component type B, C-01 of
component type C and D-03 of component type D. For B-01, we chose an observation window
of size 10 and three aggregation functions that calculate the minimum, maximum and average
of the data within this window. Since we have multiple time series of this kind, we also have

76 Time-Series-based Event Prediction

B-01B1 LT

ts

D-03D1 LT

ts

Time: ts

Entity: A1
System: DemoSystem
Label:

Min Max Avg

0.0 4.1 3.5

1.2 5.0 1.7

Min Max Avg

0.0 5.0 2.6

Slope Correlation

0.9 0.7

B-01B2 LT

ts

C-01C1 LT

ts

r1 r2 r3 r4 r5

19 93 95 97 12

21 23 25 25 18

C-01C2 LT

ts

r1 r2 r3 r4 r5

20 58 60 61 15

Combine
(Min, Max, Avg)

Combine
(Avg)

Aggregate (Min, Max, Avg)

Aggregate (Min, Max, Avg)

Raw

Raw

Aggregate (Slope, Correlation)

Label Min Max Avg r1 r2 r3 r4 r5 Slope Correlation

0.0 5.0 2.6 20 58 60 61 15 0.9 0.7

A1

B1 B2

C1 C2 D1

fs =

B-01 C-01 D-03

Annotated Sample s: DemoSystem:

Figure 4.6: Example of how a feature vector fs is created for an annotated sample s using
different observation windows as specified in Listing 4.2.

Data Preprocessing Framework 77

to specify equally many combinations functions. Here, we simply used the same functions,
which results in the minimum of the minima, the maximum of the maxima and the average
of the averages. For C-01, we selected an observation window of size 5 but no aggregation
functions in order to extract the raw values. Again, there are multiple time series of kind C-01
in our example, but since we have no aggregation functions, we only need to provide a single
combination function, where we opted for the average. Lastly, the observation windows of D-03
yield 15 values, which are aggregated using the slope of the regression line and the Pearson
correlation. For the combination functions, we chose the average two times, meaning that we
calculate the average of the slopes as well as the averages of the correlations.

First, the topology is resolved. Given the main component A1, we know that we have
to extract data for the connected entities B1 and B2 of type B, C1 and C2 of type C and
D1 of type D. We start with B1 and B2, for which we need to collect data for time series
kind B-01, according to our config. B-01B1 and B-01B2 show the corresponding time series.
Starting from our sample timestamp ts, we first go back LT (lead time) steps and then extract
the previous ten data values. Afterwards, we aggregate these ten values using the functions
Min (minimum), Max (maximum) and Avg (average), and temporarily store the aggregated
values. Since we have two components of the same type, we also have two time series of the
same kind, which we need to combine using our specified combination functions (Min, Max,
Avg). In the example, we thus calculate the minimum of the two minima, the maximum of
the two maxima and the average of the two averages, which results in the first box of the
feature vector fs (cf. B-01 in Figure 4.6). Analogously, we proceed for the components C1
and C2 and their corresponding time series C-01C1 and C-01C2 . However, we can skip the
aggregation part and directly carry over the raw values. Again, we have two components of
the same type and therefore two time series of the same kind. In this case, we need to use
our single combination function (Avg), which is applied to all raw values. In the example, we
thus calculate the average of the first two raw values (r1 of C-01C1 and r1 of C-01C2), then
the average of the second two raw value (r2 of C-01C1 and r2 of C-01C2), and so forth. This
results in the second box of the feature vector fs (cf. C-01 in Figure 4.6). Finally, we need to
extract data for entity D1, which is again analogous to above, although we do not need to
use our combination functions because we only have a single component and therefore only
a single time series as well. Hence, we can directly use the results of the aggregation (the
slope and the correlation) and store them in the last box of the feature vector fs (cf. D-03 in
Figure 4.6). This concludes the data extraction for the annotated sample s.

Handling Missing Data Incomplete data (cf. NaN (Not a Number) in Figure 4.4) is a
common issue. Therefore, the framework provides several config settings that can be used
to tackle such problems, thereby addressing our fourth requirement RQM 4. The first one
is missingDataMode, which is used to handle missing data within an observation window.
The following actions are all performed on the raw data r = (r1, . . . , rows), i.e., before the
aggregation and combination steps. It can be set to either perform no action and keep the
original NaN data, to drop the window entirely, to fill up missing values with the most recent
non-NaN value, to fill up missing values with the nearest neighbor that is not a NaN value (in
case of a tie, the previous/left neighbor is used), or to use linear interpolation for missing data.
A small example of an observation window of size 7 and the effect of these different modes is
shown in Table 4.2.

The next setting useNaNForMissingTS controls how to deal with missing time series. A
time series can be missing if there are no entities of the corresponding time series kind (the
topology is missing components) or if all the observation windows were discarded in the
previous step using the drop mode. If we disable this setting, then we simply discard the entire

78 Time-Series-based Event Prediction

r1 r2 r3 r4 r5 r6 r7

Original Data NaN 2.0 3.0 NaN NaN NaN 7.0

Missing Data Mode

No Action NaN 2.0 3.0 NaN NaN NaN 7.0
Drop ∅
Most Recent NaN 2.0 3.0 3.0 3.0 3.0 7.0
Nearest Neighbor 2.0 2.0 3.0 3.0 3.0 7.0 7.0
Linear Interpolation NaN 2.0 3.0 4.0 5.0 6.0 7.0

Table 4.2: Example of the effect of different missing data modes.

feature vector. On the other hand, if we enable it, the corresponding box in the feature vector
is filled with NaN values. In Figure 4.7, we show such a case for the same config and topology
introduced in Listing 4.2 and Figure 4.6. Assume that entity D1 is not available, which means
that there are no components of type D anymore and, in turn, there no longer exist any time
series of kind D-03 that we originally specified in our config. Enabling useNaNForMissingTS
solves this problem by replacing the corresponding feature vector values of the box D-03 (slope
and correlation) with NaN.

Min Max Avg r1 r2 r3 r4 r5 Slope Correlation

0.0 5.0 2.6 20 58 60 61 15 NaN NaN

B-01 C-01 D-03

A1

B1 B2

C1 C2 D1

A1

B1 B2

C1 C2

Figure 4.7: Example of missing entities and therefore missing time series, using the same
example as shown in Listing 4.2 and Figure 4.6 but with entity D1 being dropped, which results
in no time series of kind D-03. With the enabled configuration setting useNaNForMissingTS,
the corresponding feature vector box D-03 is filled with NaN values.

Depending on the missing data mode, it might also sometimes happen that we obtain
observation windows with NaN values among the raw values (cf. Table 4.2), which are then
passed to the aggregation and combination functions. We can control how these NaN values
should be treated with the settings discardNaNInAggrFuncs and discardNaNInCombFuncs.
Both these values specify a threshold ratio below which NaN values are discarded. For example,
a value of 0.3 means that NaN values are ignored as long as the amount of NaN values does
not exceed 30% of the total number of values of an observation window. If there are more
than 30% NaN values, no action is performed and all values (including NaN) are passed to
the aggregation/combination functions. Assume that we have a window containing 100 values
and ten of them are NaN (= 10%), then the NaN values are discarded (because 10% < 30%)
and the remaining 90 non-NaN values are be passed to the aggregation/combination function.
This can be helpful to still get meaningful aggregation or combination results rather than
an all-NaN output, especially if the NaN values are scarce (which is the case when using an

Data Preprocessing Framework 79

appropriate missing data mode). For instance, calculating the average of 90 out of 100 values
is still useful, where otherwise, we could not compute the average due to the NaN values.5

Data Augmentation The last part of the data extraction step shown in Figure 4.4 is
the optional augmentation, which can be used to create multiple feature vectors for a single
annotated sample to address data imbalance by means of oversampling the minority class (cf.
Section 2.4.2 on p. 15). The augmentation is performed after having processed the raw data with
the selected missing data mode. The most important config setting is called augmentations,
which allows us to specify arbitrary many augmentation functions aug ∈ AUGF together with
a number naug of how many times this function should be applied to the data of an observation
window, where aug can be any valid function that takes the raw time series values r =
(r1, . . . , rows) as input and returns equally many augmented values raug = (r1aug , . . . , rowsaug).
Following the same data extraction procedure as described above, each of the naug augmented
values raug is ultimately converted to a corresponding feature vector faug, which is repeated for
all selected augmentation functions aug ∈ AUGF, i.e., the augmentation of a single annotated
sample results in

∑
aug∈AUGF naug individual feature vectors, in contrast to the single feature

vector when no augmentation is performed (1 :
∑

aug∈AUGF naug vs. 1 : 1 mapping).

Repeatedly calling an augmentation function on the same raw values might at first sound
pointless, however, all the functions provided by our framework incorporate randomness to
generate different augmented values every time they are invoked. We provide five functions,
which we adapted from [182]. The first one is called jitter, which adds random numbers drawn
from a normal distribution N (0, σ2) to the raw data values (σ can be defined by the user).
The next function is scaling, where a single random scaling factor is drawn from a normal
distribution N (1, σ2) and each raw value is multiplied with this factor (σ can be defined by
the user). The third function is called magnitude warp. Here, a random curve with k knots
is generated with the same size as the observation window, where a knot represents a local
minimum/maximum of the curve (k can be defined by the user). The knot values are randomly
drawn from a normal distribution N (0, σ2) and are evenly placed within the observation
window (σ can be defined by the user). Each point of the generated curve is then added to
the corresponding raw value of the observation window. The fourth function named time warp
also utilizes a random curve (the k knot values are randomly drawn from a normal distribution
N (1, σ2), where k and σ can again be defined by the user), but in this case, the timestamps
(and not the values) of the observation window are shifted according to the points of the
curve. Afterwards, the new values corresponding to the original timestamps are reconstructed
using linear interpolation. A small example (adapted from [154]) should convey the idea
more clearly: Given an observation window of size 5 with raw values r and timestamps t as
r =
t = [5 7 5 8 7

1 2 3 4 5], the timestamps are first randomly shifted based on the generated curve, resulting,
for instance, in r =

t′ = [5 7 5 8 7
1.00 2.01 2.97 4.02 5.00], and then the new values raug are computed for the

original timestamps t using linear interpolation, which yields raug =
t = [5 6.98 5.09 7.94 7

1 2 3 4 5]. The last
augmentation function is called permutation, where segments of length z, i.e., continuous parts
of the observation window, are randomly permuted p times (z and p can be defined by the
user). Figure 4.8 shows a visual example of how these augmentation functions transform an
original observation window of size 100 with r = (0, . . . , 99). Depending on the parameters,
the augmented values raug can be significantly different. The example only contains a single
augmentation of every function, i.e., naug = 1 ∀aug ∈ AUGF. Of course, a larger naug would
yield different augmented values due to the randomization.

5Strictly speaking, this depends on the concrete implementation of the function and whether it can handle
NaN values out of the box. The Python-based scientific computation package NumPy [73], for example,
provides both mean and nanmean functions. However, since this is implementation-specific and thus of limited
interest in the context of this thesis, we will not go into further details regarding this particular subject.

80 Time-Series-based Event Prediction

0

50

100
Original Jitter

(= 5)

0

50

100
Scaling
(= 1)

Magnitude Warp
(= 15, k = 10)

0 20 40 60 80 100
0

50

100
Time Warp
(= 5, k = 5)

0 20 40 60 80 100

Permutation
(z = 10, p = 5)

Figure 4.8: Example of the different augmentation functions applied to 100 raw data values.

Finally, two last config settings remain: augmentPosSamples and augmentNegSamples.
These settings control whether we want to augment positive samples and/or negative samples,
respectively. If only one of the settings is enabled, then this has a direct impact on the balancing
ratio, i.e., the ratio of the number of positive samples to the number of negative samples. This
can be useful if we have an unbalanced dataset and we want to apply oversampling on the
minority class (cf. Section 2.4.2 on p. 15).

4.3.3 Scalability

To check whether our framework also fulfills the last requirement RQM 5, we performed an
evaluation where we checked how the framework scales with an increasing number of systems
and time series. To this end, we selected a system with 25 main components of type A that
are connected to one or two entities of type B, which, in turn, are interlinked with one or two
components of either type C or D. During the observation period of this system, 100 events
occurred. We explicitly disabled any parallelization for a better comparability of the results
when conducting the following two experiments:

• In the first evaluation experiment, we created up to 1000 duplicates of the systems and
measured the execution time of the framework when creating feature vectors according
to some given configuration settings. As main configuration settings, we decided to
use per-event sampling with a balanced ratio, and we specified to extract 30 values
of a single time series kind D-01, which we then aggregated using the average (single
aggregation function). Due to the balanced sampling ratio, each system thus yields
100 positive+ 100 negative = 200 features vectors, i.e., up to 200 · 1000 = 200000 feature
vectors for the configuration with the maximum number of systems.

• The second experiment is analogous to the first, with the only difference that the number
of systems remains the same (only the single system is used), but instead, the number of
time series increases. Here, we created up to 1000 duplicates of the single time series
kind D-01 and treated them as if they were different kinds, i.e., D-0001 up to D-1000.
All other config settings are the same as before (balanced per-event sampling, average
of the observation windows of size 30). Naturally, the number of feature vectors now
remains the same at 200 (there is only one system), however, the length of the vectors

Approach 81

increases proportional to the number of time series (one additional feature vector box
for every additional time series), with a maximum length of 1000.

The results of the two experiments are shown in Figure 3.4, where we can see that increasing
the number of systems (#Systems) as well as time series (#Time Series) both scale linearly
proportional, which is a desirable property, especially for large datasets (RQM 5). We can
also observe that increasing the number of systems has an overall lower effect on the run-time
performance of our framework.

1 100 200 300 400 500 600 700 800 900 1000
#Systems and #Time Series

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ru

n
Ti

m
e Systems

Time Series

Figure 4.9: Normalized run times of the preprocessing framework when increasing the number
of systems (#Systems) and the number of time series (#Time Series), revealing a linear trend
in both cases. The normalization is based on the minimum and maximum run time of both
measurements to allow a relative comparison between them.

4.4 Approach

Our approach for the multi-system event prediction can be summarized in two steps: data
preparation and machine learning model fitting. The main idea is to create a configuration
to extract multi-system time series and event data, potentially post-process the resulting
feature vectors (e.g., if special treatment is necessary which cannot be accomplished with our
preprocessing framework6) and then train various supervised machine learning models, whose
objective is to find patterns, links and correlations between the time series input and the
event/non-event output.

4.4.1 Data Preparation

The above introduced preprocessing framework considerably facilitates data preparation, since
we no longer have to worry about the peculiarities of the multi-system environment with
the topologies, events and time series. The only thing required to extract data is providing
appropriate configs. However, this is an essential task, as the configuration heavily influences
the resulting feature vectors, and thus, care must be taken when creating such a config. Some
machine learning models and training/testing scenarios might require certain data adaptations
and changes, so we can optionally post-process the CSV output generated by our framework.

6Of course, we could adapt our framework to also handle special cases. However, we deliberately decided
against this because we wanted to keep the framework general (to a certain degree) without explicitly having
to address every special case, which are often heavily dependent on the current problem, the domain and the
chosen machine learning models.

82 Time-Series-based Event Prediction

4.4.2 Event Prediction

After the data preparation, the actual prediction can begin. Since event prediction is a
supervised task, we require a labeled training set (Xtrain, ytrain) as well as a labeled test set
(Xtest, ytest), which we can achieve by either a standard train-test split or via cross-validation.
Afterwards, we select the machine learning algorithm which we want to use for the subsequent
experiments. This can be any supervised algorithm, such as decision trees, neural networks
or random forests. For our multi-system environment and a given set of systems S, we then
create three kinds of supervised machine learning models (using the selected algorithm).

Starting with the training phase, the first kind comprises single-system modelsMsingle, where
we only use data of the respective system for model fitting, more formally,Msingle = {fit(strain) |
s ∈ S}, where strain contains the training feature vectors Xtrain and the corresponding event
labels ytrain of system s. The second kind is a naive multi-system model mnaive, where
we simply use the data of all systems for training, i.e., mnaive = fit(Strain), where Strain
contains the training data merged across all systems. The third kind represents clustered
multi-system models Mclustered, which are more sophisticated multi-system models. Here,
we try to identify clusters C ∈ C within the available systems based on some criteria (e.g.,
the number of components of a system), and then we train a model for each cluster with
the data of its contained systems. Formally speaking, Mclustered = {fit(Ctrain) | C ∈ C},
where C = {C1, . . . , Ck | Ci ⊂ S ∧ ∀i 6= j : Ci ∩ Cj = ∅}, k indicates the number of clusters,⋃
C∈C C = S and Ctrain contains the training data merged across all systems of cluster C.

In the testing phase, we now determine the performance of every model by extracting their
predicted labels ŷs for every system s and then calculating appropriate evaluation metrics (cf.
Section 2.4.3.3 on p. 17). For each single-system model, the test data of the corresponding
system is used, i.e., ŷs = ms.predict(stest) ∀s ∈ S ∧ms ∈ Msingle, where stest only contains
the testing feature vectors Xtest of system s (without the true labels ytest). Analogously, we
proceed with our naive multi-system model, which results in ŷs = mnaive.predict(stest) ∀s ∈ S.
The clustered multi-system models are also handled similarly. We only need to make sure that
the test data of system s is passed to the clustered model that was trained with data from this
system, more formally, ŷs = mC .predict(stest) ∀s ∈ S ∧mC ∈Mclustered ∧ s ∈ C. Ultimately,
given |S| = n systems (| ∗ | represents the set’s cardinality), we thus obtain n predicted labels
ŷ for each of our three kinds of machine learning models, which we can then compare to the
true labels ytest to determine the prediction quality.

4.5 Data for Evaluation

Once again, we use real-world data from our industry partner. We collect monitoring data
from multiple, independent systems, which includes topologies, events and time series. Their
structure is exactly as described in Section 2.3 on p. 7, and we list what concrete parts thereof
we need in the following:

• Topology: We select the service as our main component type, as we are interested in
events occurring there. Services are connected to processes, but since processes do not
have any time series data attached, we drop them and directly move on to the hosts
on which they run (we thus have a shortened topology link Service→ Host instead of
Service → Process → Host). The last two component types we collect are disks and
network interfaces that are both interlinked with host entities.

• Events: As already indicated above, we want to inspect events that occur on services.
Specifically, we investigate whether a service slowdown, i.e., a performance-related event

Data for Evaluation 83

where the average response time of a service appears to be slower than normal, can be
predicted based on the time series of the connected components.

• Time series: This is where the actual data for the prediction comes from. For a given
service, we collect all available time series metrics of all component types: 11 host series,
13 disk series and 10 network series, which are listed in detail in Table 2.2 on p. 12. All
time series are evenly spaced and available to us in one-minute resolution.

For the evaluation of our event prediction approach, we gathered monitoring data from
705 systems over the course of 20 days, ranging from 19.01.2018 09:00 UTC (Coordinated
Universal Time) to 08.02.2018 09:00 UTC. During this observation period, 17733 slowdowns
occurred on 2084 service entities in 434 systems, for which we present statistical insights in
the following. Further details on the data exploration (e.g., the complete data overview of all
705 systems) can be found in the appendix (cf. Section C.1 on p. 221). For the visualizations,
we use box plots, but we do not show outlier values in most cases to avoid overloading and
skewing the plots. Instead, we provide tables that list detailed information to complement the
box plots.

Figure 4.10 and Table 4.3 show the number of entities for each component type, averaged
across the 434 systems. We can also see the total number of components (cf. column Total).
For each of these components, we calculated the average number of connections to other
entities, which is presented in Figure 4.11 as well as Table 4.4.

0 100 200 300 400 500

#Services
#Hosts
#Disks

#Networks

Figure 4.10: Component count statistics of the 434 systems, visualized with a box plot.
Detailed information is available in Table 4.3.

Component
Type Total µ σ min p10 p25 p50 p75 p90 max

#Services 120528 277.71 826.85 3 13 29 75.5 223.75 434.2 11339
#Hosts 22058 50.82 157.84 1 2 5 13 34 100.6 2383
#Disks 75713 174.45 550.15 0 4 9 32.5 123 287 6025
#Networks 27921 64.33 166.14 0 2 6 15 40 144.4 1442

Table 4.3: Component count statistics of the 434 systems. µ = average, σ = standard
deviation, pi = i% percentile, min = minimum, max = maximum.

Moving on to the event statistics, Figure 4.12 displays the system-averaged number of
slowdowns, the number of all services, the number of services where an event occurred and
the number of services where no event occurred (#Event Services + #Non-Event Services =
#Services). More details on these statistics can be looked up in Table 4.5.

Finally, we present statistics on the time series data. The system-averaged available
observation period [From,To) for each of the 34 time series metrics is shown in Figure 4.13.7

7Since the year is always the same (2018), we omit this information in all date formats.

84 Time-Series-based Event Prediction

0 1 2 3 4 5 6 7

Service to #Hosts
Disk to #Hosts

Network to #Hosts
Host to #Services

Host to #Disks
Host to #Networks

Figure 4.11: Connection count statistics of the 434 systems, visualized with a box plot.
Detailed information is available in Table 4.4.

Connection Type µ σ min p10 p25 p50 p75 p90 max

Service to #Hosts 1.47 3.90 0 0 1 1 1 3 419
Disk to #Hosts 1 0.02 0 1 1 1 1 1 1
Network to #Hosts 0.64 0.48 0 0 0 1 1 1 1
Host to #Services 8.02 80.64 0 0 0 1 3 11 5671
Host to #Disks 3.44 38.42 0 0 0 1 2 6 2873
Host to #Networks 0.81 2.17 0 0 0 1 1 1 173

Table 4.4: Connection count statistics of the 434 systems. µ = average, σ = standard
deviation, pi = i% percentile, min = minimum, max = maximum.

100 101 102

#Slowdowns
#Services

#Event Services
#Non-Event Services

Figure 4.12: Event and corresponding component count statistics of the 434 systems where
events occurred, visualized with a box plot on a logarithmic scale. Detailed information is
available in Table 4.5.

Counts Total µ σ min p10 p25 p50 p75 p90 max

#Slowdowns 17733 40.86 73.89 1 2 4 13 40 111.5 689
#Services 120528 277.71 826.85 3 13 29 75.5 223.75 434.2 11339
#Event Services 2084 4.80 5.79 1 1 2 3 6 10 61
#Non-Event S. 118444 272.91 825.77 1 11 26 69.5 218 415 11314

Table 4.5: Event and corresponding component count statistics of the 434 systems where
events occurred. S. is short for services. µ = average, σ = standard deviation, pi = i%
percentile, min = minimum, max = maximum.

Evaluation 85

We can see that the starting timestamp From falls indeed on the 19.01.2018 in most systems,
but the end timestamp To, on the other hand, averages to February 7th. This is because for
roughly half of the systems, we only could extract time series data until the 6th of February
due to a data export error. Regarding the number of time series data points, an overview is
displayed in Figure 4.14, where the average number of data points per system is shown for each
of the 34 time series kinds (details are listed in Table 4.6). In total, the 434 systems roughly
contain twelve billion individual time series data points. Although this is a huge amount,
many of the time series are incomplete due to data loss, data extraction errors or component
unavailability. A detailed description of how the following time series data completeness was
calculated can be found in [90]. Figure 4.15 shows the average completeness of our 34 metrics.
Normalized by Systems means that the completeness was first calculated per system, i.e., the
average component completeness within a system, and then the average was computed over
all systems. Normalized by Components means that the completeness was calculated as the
average over the completeness of all components of all systems. There is a strong trend of lower
component-based completeness, indicating that there are some systems with a considerable
number of components which have a low completeness score. Figure 4.16 allows a more closer
look into the data completeness of each of the 20 days of the export. This plot also clearly
reveals missing data for the last two days, since for half of the systems, time series data was
only collected up to 06.02.2018 rather than 08.02.2018 as already mentioned above. To get
an even more in-depth view, we also present the time series completeness percentage of each
individual system, which is shown in Figure 4.17.8 The results are first sorted by by the
most complete system (top to bottom across both columns) and then by the most complete
time series metric (left to right), i.e., the most upper left system has the highest data point
availability (cf. system fffa0 in Figure 4.17a), whereas the most lower right system is the least
complete one (cf. system 11919 in Figure 4.17c).

Obviously, a significant amount of data is missing and incomplete, so extra care must
be taken when processing and evaluating this dataset, which means creating appropriate
framework configurations and applying post-processing options before training the machine
learning models. Moreover, given the comparably low number of events during the entire
observation period, we clearly operate on a dataset with a significant data imbalance (cf.
Section 2.4.2 on p. 15). Both these matters must be addressed accordingly, where we present
details in the next section.

4.6 Evaluation

With the exploratory data analysis from above in mind, simply using all 434 systems hardly
makes any sense, so we first decided to only include those systems where at least 50 events
occurred during the observation period. The reasoning behind this is the fact that for creating
our single-system models, we can only use data from a single system. If a system does not
have many events, it necessarily does not have many (positive) samples as well, which limits
the learning capability of our machine learning model. Moreover, we also need to split the
system data into training and testing datasets, which reduces the samples available for learning
even further.9 Given the event statistics #Slowdowns in Table 4.5, we can already see that
we need to drop the majority of the systems to fulfill our minimum event requirement: Only
96 systems remained after this filtering step.

8Due to confidentiality, all systems are represented via a five-digit hash code.
9For instance, an 80/20 split would mean that we can use 40 of the 50 events for training and the remaining

ten for testing.

86 Time-Series-based Event Prediction

19
.0

1.
20

.0
1.

21
.0

1.
22

.0
1.

23
.0

1.
24

.0
1.

25
.0

1.
26

.0
1.

27
.0

1.
28

.0
1.

29
.0

1.
30

.0
1.

31
.0

1.
01

.0
2.

02
.0

2.
03

.0
2.

04
.0

2.
05

.0
2.

06
.0

2.
07

.0
2.

08
.0

2.

CPU Idle: H-01

CPU System: H-02

CPU Load: H-03

CPU User: H-04

CPU IO Wait: H-05

Page Faults: H-06

Mem. Avail. %: H-07

Mem. Avail.: H-08

Mem. Used: H-09

Swap Avail.: H-10

Swap Used: H-11

Disk Avail.: D-01

Disk Used: D-02

Disk Avail. %: D-03

Read Bytes: D-04

Written Bytes: D-05

Read Ops.: D-06

Write Ops.: D-07

Read Time: D-08

Write Time: D-09

Util. Time: D-10

Queue Length: D-11

Inodes Avail. %: D-12

Inodes Total: D-13

Bytes Rec.: N-01

Bytes Sent: N-02

Rec. Pkts.: N-03

Sent Pkts.: N-04

Rec. Pkts. Drop.: N-05

Sent Pkts. Drop.: N-06

Rec. Pkt. Err.: N-07

Sent Pkt. Err.: N-08

Receiving Util.: N-09

Sending Util.: N-10

From To

Figure 4.13: Time span statistics of the 434 systems given by [From,To) markers in the
format day.month, visualized with a box plot.

Evaluation 87

0 1.0 106 2.0 106 3.0 106 4.0 106

CPU Idle: H-01
CPU System: H-02

CPU Load: H-03
CPU User: H-04

CPU IO Wait: H-05
Page Faults: H-06

Mem. Avail. %: H-07
Mem. Avail.: H-08
Mem. Used: H-09
Swap Avail.: H-10
Swap Used: H-11
Disk Avail.: D-01
Disk Used: D-02

Disk Avail. %: D-03
Read Bytes: D-04

Written Bytes: D-05
Read Ops.: D-06
Write Ops.: D-07
Read Time: D-08
Write Time: D-09

Util. Time: D-10
Queue Length: D-11

Inodes Avail. %: D-12
Inodes Total: D-13

Bytes Rec.: N-01
Bytes Sent: N-02
Rec. Pkts.: N-03
Sent Pkts.: N-04

Rec. Pkts. Drop.: N-05
Sent Pkts. Drop.: N-06

Rec. Pkt. Err.: N-07
Sent Pkt. Err.: N-08

Receiving Util.: N-09
Sending Util.: N-10

#Data Points

Figure 4.14: Time series data point statistics of the 434 systems, visualized with a box plot.
Detailed information is available in Table 4.6.

88 Time-Series-based Event Prediction

ID #Sys. Total µ σ min p50 max

H-01 434 189.59 · 106 0.44 · 106 0.61 · 106 4209 0.21 · 106 4.21 · 106

H-02 434 189.44 · 106 0.44 · 106 0.61 · 106 4209 0.21 · 106 4.21 · 106

H-03 325 123.21 · 106 0.38 · 106 0.57 · 106 21 0.20 · 106 4.11 · 106

H-04 434 189.60 · 106 0.44 · 106 0.61 · 106 4209 0.21 · 106 4.21 · 106

H-05 325 122.34 · 106 0.38 · 106 0.56 · 106 21 0.18 · 106 4.11 · 106

H-06 434 190.37 · 106 0.44 · 106 0.62 · 106 4209 0.21 · 106 4.21 · 106

H-07 434 190.55 · 106 0.44 · 106 0.62 · 106 4209 0.21 · 106 4.21 · 106

H-08 434 190.44 · 106 0.44 · 106 0.62 · 106 4209 0.21 · 106 4.21 · 106

H-09 434 190.22 · 106 0.44 · 106 0.62 · 106 4209 0.21 · 106 4.21 · 106

H-10 364 130.19 · 106 0.36 · 106 0.50 · 106 6 0.17 · 106 3.13 · 106

H-11 364 130.18 · 106 0.36 · 106 0.50 · 106 6 0.17 · 106 3.13 · 106

D-01 431 760.11 · 106 1.76 · 106 3.07 · 106 7361 0.63 · 106 28.01 · 106

D-02 431 757.96 · 106 1.76 · 106 3.04 · 106 7361 0.63 · 106 27.62 · 106

D-03 417 686.05 · 106 1.65 · 106 2.97 · 106 7361 0.57 · 106 28.01 · 106

D-04 423 708 · 106 1.67 · 106 3.07 · 106 773 0.53 · 106 28.01 · 106

D-05 423 704.69 · 106 1.67 · 106 3.02 · 106 773 0.52 · 106 27.62 · 106

D-06 423 704.02 · 106 1.66 · 106 3.07 · 106 773 0.52 · 106 28.02 · 106

D-07 423 700.59 · 106 1.66 · 106 3.04 · 106 773 0.52 · 106 28.01 · 106

D-08 423 83.18 · 106 0.20 · 106 0.35 · 106 7 59391 2.71 · 106

D-09 423 406.37 · 106 0.96 · 106 1.61 · 106 773 0.39 · 106 18.30 · 106

D-10 423 670.60 · 106 1.59 · 106 3 · 106 773 0.49 · 106 27.98 · 106

D-11 426 738.34 · 106 1.73 · 106 3.10 · 106 7419 0.61 · 106 28.01 · 106

D-12 298 543.16 · 106 1.82 · 106 3.26 · 106 1331 0.58 · 106 27.62 · 106

D-13 298 549.43 · 106 1.84 · 106 3.38 · 106 1331 0.58 · 106 27.84 · 106

N-01 432 233.72 · 106 0.54 · 106 0.75 · 106 5019 0.27 · 106 5.06 · 106

N-02 432 233.83 · 106 0.54 · 106 0.75 · 106 5019 0.26 · 106 5.06 · 106

N-03 426 224.05 · 106 0.53 · 106 0.72 · 106 5019 0.26 · 106 5.06 · 106

N-04 426 224.02 · 106 0.53 · 106 0.72 · 106 5019 0.26 · 106 5.06 · 106

N-05 426 224.09 · 106 0.53 · 106 0.72 · 106 5019 0.26 · 106 5.06 · 106

N-06 426 224.23 · 106 0.53 · 106 0.72 · 106 5019 0.26 · 106 5.06 · 106

N-07 426 224.24 · 106 0.53 · 106 0.72 · 106 5019 0.26 · 106 5.06 · 106

N-08 426 224.32 · 106 0.53 · 106 0.72 · 106 5019 0.26 · 106 4.94 · 106

N-09 382 163.57 · 106 0.43 · 106 0.62 · 106 25 0.19 · 106 4.61 · 106

N-10 382 163.39 · 106 0.43 · 106 0.62 · 106 25 0.20 · 106 4.61 · 106

Table 4.6: Time series data point statistics of the 434 systems, where #Sys. represents the
actual number of systems that provide the particular metric. µ = average, σ = standard
deviation, pi = i% percentile, min = minimum, max = maximum.

Evaluation 89

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Sending Util.: N-10

Receiving Util.: N-09

Sent Pkt. Err.: N-08

Rec. Pkt. Err.: N-07

Sent Pkts. Drop.: N-06

Rec. Pkts. Drop.: N-05

Sent Pkts.: N-04

Rec. Pkts.: N-03

Bytes Sent: N-02

Bytes Rec.: N-01

Inodes Total: D-13

Inodes Avail. %: D-12

Queue Length: D-11

Util. Time: D-10

Write Time: D-09

Read Time: D-08

Write Ops.: D-07

Read Ops.: D-06

Written Bytes: D-05

Read Bytes: D-04

Disk Avail. %: D-03

Disk Used: D-02

Disk Avail.: D-01

Swap Used: H-11

Swap Avail.: H-10

Mem. Used: H-09

Mem. Avail.: H-08

Mem. Avail. %: H-07

Page Faults: H-06

CPU IO Wait: H-05

CPU User: H-04

CPU Load: H-03

CPU System: H-02

CPU Idle: H-01

Normalized by Systems Normalized by Components

Figure 4.15: Time series data point completeness (in percent) of the 434 systems, normalized
across all systems and all components, respectively.

90 Time-Series-based Event Prediction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Day

CPU Idle: H-01
CPU System: H-02

CPU Load: H-03
CPU User: H-04

CPU IO Wait: H-05
Page Faults: H-06

Mem. Avail. %: H-07
Mem. Avail.: H-08
Mem. Used: H-09
Swap Avail.: H-10
Swap Used: H-11
Disk Avail.: D-01
Disk Used: D-02

Disk Avail. %: D-03
Read Bytes: D-04

Written Bytes: D-05
Read Ops.: D-06
Write Ops.: D-07
Read Time: D-08
Write Time: D-09

Util. Time: D-10
Queue Length: D-11

Inodes Avail. %: D-12
Inodes Total: D-13

Bytes Rec.: N-01
Bytes Sent: N-02
Rec. Pkts.: N-03
Sent Pkts.: N-04

Rec. Pkts. Drop.: N-05
Sent Pkts. Drop.: N-06

Rec. Pkt. Err.: N-07
Sent Pkt. Err.: N-08

Receiving Util.: N-09
Sending Util.: N-10

Normalized by Systems

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Day

Normalized by Components

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 4.16: Time series data point completeness per day (in percent) of the 434 systems,
normalized across all systems and all components, respectively.

Evaluation 91

N-
01

: B
yt

es
 R

ec
.

N-
03

: R
ec

. P
kt

s.
N-

05
: R

ec
. P

kt
s.

Dr
op

.
N-

07
: R

ec
. P

kt
. E

rr.
N-

06
: S

en
t P

kt
s.

Dr
op

.
N-

04
: S

en
t P

kt
s.

N-
08

: S
en

t P
kt

. E
rr.

N-
02

: B
yt

es
 S

en
t

D-
11

: Q
ue

ue
 L

en
gt

h
D-

01
: D

isk
 A

va
il.

D-
02

: D
isk

 U
se

d
H-

07
: M

em
. A

va
il.

 %
H-

06
: P

ag
e

Fa
ul

ts
H-

09
: M

em
. U

se
d

H-
08

: M
em

. A
va

il.
D-

10
: U

til
. T

im
e

D-
04

: R
ea

d
By

te
s

H-
04

: C
PU

 U
se

r
H-

01
: C

PU
 Id

le
D-

06
: R

ea
d

Op
s.

D-
07

: W
rit

e
Op

s.
H-

02
: C

PU
 S

ys
te

m
D-

05
: W

rit
te

n
By

te
s

D-
03

: D
isk

 A
va

il.
 %

D-
12

: I
no

de
s A

va
il.

 %
D-

13
: I

no
de

s T
ot

al
H-

03
: C

PU
 L

oa
d

H-
05

: C
PU

 IO
 W

ai
t

D-
09

: W
rit

e
Ti

m
e

H-
11

: S
wa

p
Us

ed
H-

10
: S

wa
p

Av
ai

l.
N-

09
: R

ec
ei

vi
ng

 U
til

.
N-

10
: S

en
di

ng
 U

til
.

D-
08

: R
ea

d
Ti

m
e

fffa0
5140d
3ab01
8c0f5

18664
7aec8
8d439
84fc8

681a9
4bc29
c79e8
e6137
e0237
fee65
0c778
fa9ca

38840
17689
a591c
1a9c7
0b59f
48cb1
0301c
27215
098f6
f2a72
5933f
bf1ae
1211e
4c4d8
3f50a
3b71c
00e08
cebfe

8d6a8
e7f12
ae544
f157c
89af2
d2a45
c302f
c59bf

546a6
55156
53d14
e1e79
9fde9
d131e
29aa0
e296c
775c9
e60c8
64205
fd007
149d9
fc7b0
c2e65
c177e
1399d
b43f4
fdb91
73696
028d2
5828b
e39e1
2d77d
e6239
cd085
ec56e
7e75b
78560
80f28
a8519
0998d
3cdda
f4397
5edf5
a48c6
6d65e
b5a03
3a854
64ea8
d2318
ab963
7105e
24cc3
23916
88cb1
7f590
54003
30bc5
38d4a
f356e
0f8d4
5910a
38a31
dcc49
86437
729ab
44cb7

System

M
et

ri
c

N-
02

: B
yt

es
 S

en
t

N-
01

: B
yt

es
 R

ec
.

D-
11

: Q
ue

ue
 L

en
gt

h
D-

02
: D

isk
 U

se
d

D-
01

: D
isk

 A
va

il.
N-

05
: R

ec
. P

kt
s.

Dr
op

.
N-

08
: S

en
t P

kt
. E

rr.
N-

06
: S

en
t P

kt
s.

Dr
op

.
N-

07
: R

ec
. P

kt
. E

rr.
N-

03
: R

ec
. P

kt
s.

N-
04

: S
en

t P
kt

s.
D-

06
: R

ea
d

Op
s.

D-
04

: R
ea

d
By

te
s

D-
05

: W
rit

te
n

By
te

s
D-

07
: W

rit
e

Op
s.

H-
07

: M
em

. A
va

il.
 %

H-
08

: M
em

. A
va

il.
H-

06
: P

ag
e

Fa
ul

ts
H-

09
: M

em
. U

se
d

H-
01

: C
PU

 Id
le

H-
02

: C
PU

 S
ys

te
m

H-
04

: C
PU

 U
se

r
D-

03
: D

isk
 A

va
il.

 %
D-

10
: U

til
. T

im
e

N-
09

: R
ec

ei
vi

ng
 U

til
.

N-
10

: S
en

di
ng

 U
til

.
D-

09
: W

rit
e

Ti
m

e
D-

13
: I

no
de

s T
ot

al
D-

12
: I

no
de

s A
va

il.
 %

H-
03

: C
PU

 L
oa

d
H-

05
: C

PU
 IO

 W
ai

t
H-

11
: S

wa
p

Us
ed

H-
10

: S
wa

p
Av

ai
l.

D-
08

: R
ea

d
Ti

m
e

f52c1
6e737
eafe7
c107b
eface

e3840
35f83
cd1d8
7eeca
b0749
8bd0f
051dc
9b73a
967aa
f9a5c
ac35c
8f6a8
b5057
26cdd
de81a
4b602
cbb22
b0849
467a9
f9b15
a834f
35137
d6a2a
1550a
6761a
bfc7e

1d512
8baa8
49f8a
c9d19
1a176
32a35
307a7
65fa0
88280
d153f
262b1
15d15
930bc
cbce5
54b04
3a2a0
8309a
93d88
31864
ffae3

4c9a8
49cd4
7d8e6
b6554
3451f
10013
6ea71
17953
a374f
5857a
ca15b
bec9c
7d046
fba22
a0ff6

baeae
59c5f
9cdfd
3fbb9
ec4ae
96d89
3b7b1
95e02
bcb4f

58a0a
2d151
2d7d8
ab514
21b8a
40399
961df
27398
a7dce
9af50
c4036

ffcc9
c1282
d5d31
1115a
4f9ea

73821
3d43a
876fd
4ffde

e741a
e2895
65fbd
c29ea
e8fe5

System

M
et

ri
c

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
(a) Time series data point completeness per system (in percent) of the 200 systems S1 = {s1, . . . s200}
out of all 434 systems S = {s1, . . . s434}, i.e., S1 ⊂ S, first sorted by the most complete system (top to
bottom) and then by the most complete time series metric (left to right).

92 Time-Series-based Event Prediction

D-
02

: D
isk

 U
se

d
D-

01
: D

isk
 A

va
il.

D-
11

: Q
ue

ue
 L

en
gt

h
N-

01
: B

yt
es

 R
ec

.
N-

02
: B

yt
es

 S
en

t
N-

05
: R

ec
. P

kt
s.

Dr
op

.
N-

03
: R

ec
. P

kt
s.

N-
08

: S
en

t P
kt

. E
rr.

N-
04

: S
en

t P
kt

s.
N-

07
: R

ec
. P

kt
. E

rr.
N-

06
: S

en
t P

kt
s.

Dr
op

.
D-

06
: R

ea
d

Op
s.

D-
04

: R
ea

d
By

te
s

D-
05

: W
rit

te
n

By
te

s
D-

07
: W

rit
e

Op
s.

H-
07

: M
em

. A
va

il.
 %

H-
09

: M
em

. U
se

d
H-

06
: P

ag
e

Fa
ul

ts
H-

08
: M

em
. A

va
il.

H-
02

: C
PU

 S
ys

te
m

H-
01

: C
PU

 Id
le

H-
04

: C
PU

 U
se

r
D-

03
: D

isk
 A

va
il.

 %
D-

10
: U

til
. T

im
e

D-
09

: W
rit

e
Ti

m
e

N-
09

: R
ec

ei
vi

ng
 U

til
.

N-
10

: S
en

di
ng

 U
til

.
H-

11
: S

wa
p

Us
ed

H-
10

: S
wa

p
Av

ai
l.

D-
12

: I
no

de
s A

va
il.

 %
D-

13
: I

no
de

s T
ot

al
H-

03
: C

PU
 L

oa
d

H-
05

: C
PU

 IO
 W

ai
t

D-
08

: R
ea

d
Ti

m
e

689d6
8d469
7b0f8
fa2e4
63ea5
17e2e
e7caa
98344
580a3
4354d
4e3ec
ce7e6
6860f
0c6f6
58fc4

44e3e
575f8
ac694
8629d
4d8d2
e436f
ae4c5
dae38
a931a
f7173
8158e
97b5e
d8e82
3df6d
e4983
f00e5
6d4e1
2477d
32276
40fc2

46323
d3440
85dee
bb590
d103e
587f1
bd069
80604
54ede
3c35e
94414
f3ce8

2280d
e3c36
0bd3e
76a99
dcf33
5bf2c
208c6
d7340
12583
94be7
fcbc8

16dbc
9c73e
3ab53
371cc
7c1a3
5fe23
c6f74
f5247
6fa90
de105
77986
5aef2
b4bda
3a128
2c76b
efd91
7863d
7284e
3f712
b3f35
f87d8
ad76c
c4a3a
a76b7
ec409
ca2bc
9ecf4

5701e
d47d2
83f49
54265
7b768
0adda
2a4b5
ed4d8
e09d4
47b2a
f9f9a

b03ca
b9866
946bb
14c1a

System

M
et

ri
c

D-
01

: D
isk

 A
va

il.
D-

02
: D

isk
 U

se
d

D-
11

: Q
ue

ue
 L

en
gt

h
D-

03
: D

isk
 A

va
il.

 %
N-

02
: B

yt
es

 S
en

t
N-

01
: B

yt
es

 R
ec

.
N-

07
: R

ec
. P

kt
. E

rr.
N-

08
: S

en
t P

kt
. E

rr.
N-

04
: S

en
t P

kt
s.

N-
03

: R
ec

. P
kt

s.
N-

06
: S

en
t P

kt
s.

Dr
op

.
N-

05
: R

ec
. P

kt
s.

Dr
op

.
H-

08
: M

em
. A

va
il.

H-
09

: M
em

. U
se

d
H-

07
: M

em
. A

va
il.

 %
H-

02
: C

PU
 S

ys
te

m
H-

04
: C

PU
 U

se
r

H-
01

: C
PU

 Id
le

H-
06

: P
ag

e
Fa

ul
ts

D-
04

: R
ea

d
By

te
s

D-
05

: W
rit

te
n

By
te

s
D-

06
: R

ea
d

Op
s.

D-
07

: W
rit

e
Op

s.
D-

10
: U

til
. T

im
e

N-
10

: S
en

di
ng

 U
til

.
N-

09
: R

ec
ei

vi
ng

 U
til

.
H-

10
: S

wa
p

Av
ai

l.
H-

11
: S

wa
p

Us
ed

D-
09

: W
rit

e
Ti

m
e

D-
13

: I
no

de
s T

ot
al

D-
12

: I
no

de
s A

va
il.

 %
H-

03
: C

PU
 L

oa
d

H-
05

: C
PU

 IO
 W

ai
t

D-
08

: R
ea

d
Ti

m
e

897a5
e36fc

576eb
3f8b8
8a093
a1ef9
85a2f
39ea8
386d0
1bb6d
0a115
c7033
228bc
70054
7af10
31298
91a45
dc384
05f03
b96c8
7aa09
002ff

719e4
0f842
27451
adbc7
d02b4
77924
81dfc
377c9
bc175
3e016
0a0d8
e8615
e57e8
ccaed
ef1d3
23944
1a2dc
3d6b8
4f1b9
45332
52e04
218ac
e8f09
be54c
62060
3b5b9
7c7c6
90042
ce484
77832
a4f2e
f9a63
ccc41
569c1
b259d
83e21
e6c98
f18b8
e98e2
42753

92ffc
e5e39
8151d
f5d50
658d4
897b9
64e53
e69ac
986b9
14ba0
0f83f

63733
fc916
af224
14c5f

a4235
e37d1
bfc3d
6c7fb
bea6c
68589
5b6bf
fd8ec
edca5
d2e62
8087f
905b1

2f0fc
1aa2e
32c29
b6e11
eb008
5c73e
e6e7d
188fa
aa64f
f53cc

ac5dd

System

M
et

ri
c

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
(b) Time series data point completeness per system (in percent) of the 200 systems S2 = {s201, . . . s400}
out of all 434 systems S = {s1, . . . s434}, i.e., S2 ⊂ S, first sorted by the most complete system (top to
bottom) and then by the most complete time series metric (left to right).

Evaluation 93

D-
02

: D
isk

 U
se

d
D-

01
: D

isk
 A

va
il.

D-
11

: Q
ue

ue
 L

en
gt

h
D-

03
: D

isk
 A

va
il.

 %
H-

08
: M

em
. A

va
il.

H-
06

: P
ag

e
Fa

ul
ts

H-
04

: C
PU

 U
se

r
H-

07
: M

em
. A

va
il.

 %
H-

01
: C

PU
 Id

le
H-

09
: M

em
. U

se
d

D-
04

: R
ea

d
By

te
s

D-
07

: W
rit

e
Op

s.
D-

06
: R

ea
d

Op
s.

D-
05

: W
rit

te
n

By
te

s
H-

11
: S

wa
p

Us
ed

H-
02

: C
PU

 S
ys

te
m

H-
10

: S
wa

p
Av

ai
l.

D-
10

: U
til

. T
im

e
N-

01
: B

yt
es

 R
ec

.
N-

02
: B

yt
es

 S
en

t
D-

09
: W

rit
e

Ti
m

e
D-

13
: I

no
de

s T
ot

al
D-

12
: I

no
de

s A
va

il.
 %

H-
03

: C
PU

 L
oa

d
H-

05
: C

PU
 IO

 W
ai

t
N-

03
: R

ec
. P

kt
s.

N-
04

: S
en

t P
kt

s.
N-

06
: S

en
t P

kt
s.

Dr
op

.
N-

05
: R

ec
. P

kt
s.

Dr
op

.
N-

08
: S

en
t P

kt
. E

rr.
N-

07
: R

ec
. P

kt
. E

rr.
N-

09
: R

ec
ei

vi
ng

 U
til

.
N-

10
: S

en
di

ng
 U

til
.

D-
08

: R
ea

d
Ti

m
e

4417a
219d9
9082a

cf5fc
17328
d97ba
29a0a
5aa6e
22bbb
ad119
86b02
e1659
50a9b
288a4
1d982
2ddfe
4f6b9

System

M
et

ri
c

D-
02

: D
isk

 U
se

d
D-

01
: D

isk
 A

va
il.

D-
11

: Q
ue

ue
 L

en
gt

h
D-

03
: D

isk
 A

va
il.

 %
D-

04
: R

ea
d

By
te

s
D-

05
: W

rit
te

n
By

te
s

D-
06

: R
ea

d
Op

s.
D-

07
: W

rit
e

Op
s.

D-
10

: U
til

. T
im

e
D-

09
: W

rit
e

Ti
m

e
H-

07
: M

em
. A

va
il.

 %
H-

06
: P

ag
e

Fa
ul

ts
H-

09
: M

em
. U

se
d

H-
02

: C
PU

 S
ys

te
m

H-
01

: C
PU

 Id
le

H-
04

: C
PU

 U
se

r
H-

08
: M

em
. A

va
il.

N-
01

: B
yt

es
 R

ec
.

N-
02

: B
yt

es
 S

en
t

D-
08

: R
ea

d
Ti

m
e

H-
11

: S
wa

p
Us

ed
H-

10
: S

wa
p

Av
ai

l.
N-

07
: R

ec
. P

kt
. E

rr.
N-

05
: R

ec
. P

kt
s.

Dr
op

.
N-

06
: S

en
t P

kt
s.

Dr
op

.
N-

04
: S

en
t P

kt
s.

N-
08

: S
en

t P
kt

. E
rr.

N-
03

: R
ec

. P
kt

s.
N-

09
: R

ec
ei

vi
ng

 U
til

.
N-

10
: S

en
di

ng
 U

til
.

D-
13

: I
no

de
s T

ot
al

D-
12

: I
no

de
s A

va
il.

 %
H-

03
: C

PU
 L

oa
d

H-
05

: C
PU

 IO
 W

ai
t

860c4
07a75
e27cd
0aa63
55c5b
d5eaa
93841
35a4b
fe542
ac02f

7b692
311bd
78e49
293c3
53323
6505e
11919

System

M
et

ri
c

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
(c) Time series data point completeness per system (in percent) of the 34 systems S3 = {s401, . . . s434}
out of all 434 systems S = {s1, . . . s434}, i.e., S3 ⊂ S, first sorted by the most complete system (top to
bottom) and then by the most complete time series metric (left to right).

Figure 4.17: Time series data point completeness per system (in percent) of the 434 systems,
first sorted by the most complete system (top to bottom) and then by the most complete time
series metric (left to right).

4.6.1 Clustering

As introduced in the approach in Section 4.4, we want to create more sophisticated multi-
system prediction models based on some sort of clustering. We decided to start with a simple
clustering by inspecting the entity count properties of the 96 systems, i.e., the number of
services, hosts, disks and networks. For the purpose of clustering, we thus created feature
vectors using these four values for each system and applied t-SNE to obtain a two-dimensional
visualization of the entity counts, which is shown in Figure 4.18.10 We can see that clustering
based on the number of services and number of disks seems to be a promising start, since high
service as well as disk counts (indicated by the yellow color) form decent clusters.

#Services #Disks #Networks #Hosts

Figure 4.18: t-SNE visualization (perplexity = 20) of the entity counts of the 96 systems,
tinted by the number of entities. Yellow tones indicate high entity counts, purple low entity
counts.

With these observations in mind, we therefore crafted the following manual rules to extract
four clusters:

10Since entity counts can have substantial outliers for very large systems, we clipped values bigger than the
90% percentile when tinting the resulting t-SNE data in order to get more usable colored plots.

94 Time-Series-based Event Prediction

C1 (entity-heavy)
C2 (service-heavy)
C3 (disk-heavy)
C4 (entity-light)

Figure 4.19: t-SNE visualization (perplexity = 20) of the entity counts of the 96 systems,
tinted by the assigned cluster based on the four manual rules.

• C1 (entity-heavy): The first cluster contains all systems that fulfill s ≥ median(S) ∧ d ≥
median(D), where s is the number of services, d the number of disks, and median(S)
and median(D) the median number of services and disks across all systems, respectively.

• C2 (service-heavy): The second cluster contains all systems that fulfill s ≥ median(S) ∧
d < median(D).

• C3 (disk-heavy): The third cluster contains all systems that fulfill s < median(S) ∧ d ≥
median(D).

• C4 (entity-light): The fourth cluster contains the remaining systems, i.e., all systems
that fulfill s < median(S) ∧ d < median(D).

The system-cluster assignment of these four clusters is shown in Figure 4.19. Regarding the
cluster distribution, clusters C1 and C4 each contain 34 systems (35.4% of all 96 systems),
whereas clusters C2 and C3 each contain 14 systems (14.6%).

4.6.2 Balanced Scenario

The first goal was to identify whether predictions in a multi-system environment can theoreti-
cally work in the first place. To this end, we created various balanced datasets (number of
positive/event samples is equal to the number of negative/non-event samples). As mentioned
earlier, our preprocessing framework is the main driver for creating these datasets, so we list
the most important configuration settings here:

• We export data from all 96 systems over the entire observation period of 20 days, where
the services are the main component type since the slowdown events occur on these
entities.

• We use per-event sampling with a balanced ratio.

• For negative samples, we only select services where no event occurred.

• The balancing is applied to a per-system basis, so every system has equally many positive
and negative samples.

• The missing data point mode is set to linear interpolation.

• If entire time series are missing, we use NaN values as a replacement.

Evaluation 95

• We discard NaN values in both the aggregation and combination functions with thresholds
of 0.5 and 0.35, respectively, i.e., if there are fewer than 50% and 35% missing data
points, the NaN values are discarded before the functions are applied. The 35% for the
combination functions are chosen in a way that, for example, combining three entities
where one does not have any data (all NaN) still results in a useful output.

• As an initial evaluation test, we set the lead time to 0, meaning that we want to predict
events that follow right after the data in the observation windows.

• Each time series of each individual entity is standardized before extracting data with
the observation windows.

• Finally, we create observation windows for all 34 time series metrics, each of which
has the following eleven aggregation functions: minimum, maximum, average, standard
deviation, 25% percentile, median (= 50% percentile), 75% percentile, skewness, kurtosis,
slope of the fitted regression line and Pearson correlation. The corresponding combination
functions are the minimum for the minimum aggregation function, the maximum for the
maximum aggregation function and the median for the remaining aggregation functions.
Each feature vector in the created output CSV thus has 34 · 11 = 374 entries.

In total, we created six configurations, which all have the above settings in common and only
differ in the size of the observation windows, where we chose 5min, 10min, 15min, 30min,
45min and 60min (based on the suggestions from domain experts from our industry partner).

Unfortunately, our minimum events requirement does not mean that the selected systems
have a high data completeness, so we had to additionally post-process the resulting CSV files
returned by the framework. First, we discarded all columns, i.e., feature vector entries, which
consisted of ≥ 99% NaN values: 365 out of the 374 columns remained. Next, we removed all
purely NaN-rows, i.e., feature vectors/samples without any actual data, and all remaining NaN
values were set to 0. Since both positive and negative samples (rows) might be removed in
this step, the initially balanced dataset might become unbalanced. Therefore, we re-sampled
on a per-system basis, where we randomly dropped positive or negative samples (depending
on which was the majority class) until the class distribution was equal again in each system.
Of course, dropping positive samples can result in the fact that some systems do no longer
fulfill our minimum events requirement, so we had to filter the dataset again and only keep
those systems which still had at least 50 events. After this filtering step, each of the six
CSV files ultimately contained 57 systems with a total of 1336411 balanced samples. This
also affected our four system clusters: Clusters C1 was reduced to 23 systems (40.4% of all
57 systems), cluster C1 to 10 systems (17.5%), cluster C2 to 11 systems (19.3%) and cluster
C4 to 13 systems (22.8%)

After the post-processing, we prepared the data for training and testing a supervised
machine learning algorithm, where we opted for the default scikit-learn implementation [131]
of the random forest model with 100 trees and no depth limit. We applied a randomly shuffled
80/20 train-test split on each of the six datasets, thereby ensuring that the class balance (per
system) is maintained in both splits. Afterwards, we trained our naive multi-system model,
the clustered multi-system models and the single-system models as follows:

• Naive multi-system model mnaive (short:12 m): The naive model simply uses the training
data of all 57 systems for model fitting. However, systems can differ in size, so we

11More precisely, due to how the aggregation functions and the threshold-based discarding of NaN values
work, the 45min dataset contained 13366 samples and the 60min dataset 13368 samples.

12The short form is used in all following figures and tables.

96 Time-Series-based Event Prediction

decided to apply a system balancing on the training set, where we randomly dropped
pairs of positive and negative samples (in order to keep the class balance) until every
system had equally many samples. Such a system balancing is useful to avoid that the
machine learning model tries to generalize only using the data of larger systems while
ignoring smaller systems (system overfitting). Of course, this reduces the available data
even further. In our case, the smallest system had 50 events (50 positive samples), i.e.,
100 total samples given the equal class balance. With a training split of 80% and the
57 systems, we thus got a training set size of 57 · 100 · 0.8 = 4560 samples.

• Clustered multi-system models mCi ∈Mclustered (short: mCi): We have four clusters, so
the first thing we did was to group the training data according to the system-cluster
assignment. Again, to avoid system overfitting, we then applied the above mentioned
system balancing on these four clustered training datasets. Cluster C1 resulted in
1840 samples, cluster C2 in 880 samples, cluster C3 in 902 samples and cluster C4 in
1040 samples. In sum, slightly more samples are available for training compared to
the dataset of the naive multi-system model, which is to be expected since the system
balancing is based on the system with the lowest number of samples, and this number
can be higher in the different cluster datasets, meaning that in some clusters, not as
many samples have to be dropped.

• Single-systems models ms ∈Msingle (short: Ms): In this case, the procedure is straight-
forward. There are 57 systems, so we trained 57 single-system models with their
corresponding training data. In contrast to the multi-system models, no system balanc-
ing must be performed since we train each system individually, which means that system
overfitting is not possible here.

In the testing phase, the test data is split into the 57 systems, and then the models which
were trained with the corresponding systems are evaluated. The naive multi-system model
is evaluated on the test data of all 57 systems (since it was trained on all 57 systems). The
clustered multi-system models are evaluated on those test data subsets where the same systems
were used for training. The single system models are evaluated on the test data of the
corresponding system. The test data itself is not changed, so the naive multi-system model,
the clustered multi-system models and the single-system models are evaluated on exactly
the same data, which means that each of the three model kinds yields exactly 57 prediction
results (one for each system). These results are presented in Figure 4.20 with details listed in
Table 4.7, grouped by the six different observation window sizes.

The results indicate that the single-system models Ms evidently performed the best in the
majority of the cases, which is to be expected, as the data within a system tends to be more in
unison compared to data of different systems. With the exception of the model mC2 , we can
also observe that the clustered multi-system models mCi generally performed better than the
naive multi-system model m, meaning that our simple entity-based clustering did indeed have
a positive effect on the prediction quality. Interestingly, the different observation window sizes
do not seem to have a big impact. Table 4.8 shows the evaluation metrics averaged across all
tested models, revealing that the averages lie very close to each other. To determine whether
these results are statistically significantly different, we conducted Wilcoxon signed-rank tests
with a significance level of α = 0.01 for all observation window combinations, i.e., comparing
5min to 10min, 5min to 15min, etc., which is shown in Figure 4.21. With the exception of
the 5min option, the tests confirmed that the different observation window sizes did indeed
not affect the prediction quality in most cases, only 33/90 comparisons are truly different
(23 of them can be attributed to the 5min window), but even then, the absolute differences are
negligible (cf. Table 4.8). This might be a bit surprising at first, but a potential explanation

Evaluation 97

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ACC

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

TPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

PPV

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

FPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

F1

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

MCC

(a) Evaluation metrics for the 5min observation windows (cf. Table 4.7a for details).

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ACC

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

TPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

PPV
m

m
C 1

m
C 2

m
C 3

m
C 4 M
s

FPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

F1

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

MCC

(b) Evaluation metrics for the 10min observation windows (cf. Table 4.7b for details).

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ACC

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

TPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

PPV

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

FPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

F1

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

MCC

(c) Evaluation metrics for the 15min observation windows (cf. Table 4.7c for details).

98 Time-Series-based Event Prediction

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ACC

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

TPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

PPV

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

FPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

F1

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

MCC

(d) Evaluation metrics for the 30min observation windows (cf. Table 4.7d for details).

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ACC

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

TPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

PPV
m

m
C 1

m
C 2

m
C 3

m
C 4 M
s

FPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

F1

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

MCC

(e) Evaluation metrics for the 45min observation windows (cf. Table 4.7e for details).

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ACC

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

TPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

PPV

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

FPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

F1

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

MCC

(f) Evaluation metrics for the 60min observation windows (cf. Table 4.7f for details).

Figure 4.20: Evaluation metrics for different observation windows after running the models
(m = naive multi-system model, mCi = clustered multi-system model, Ms = set of all single-
system models). Detailed information is available in Table 4.7.

Evaluation 99

E S m mC1 mC2 mC3 mC4 Ms

A
C
C

µ 0.82 0.85 0.80 0.87 0.82 0.90
σ 0.11 0.08 0.11 0.08 0.12 0.08
min 0.59 0.73 0.62 0.74 0.63 0.69
p10 0.67 0.74 0.67 0.77 0.67 0.78
p25 0.72 0.78 0.75 0.81 0.70 0.86
p50 0.81 0.85 0.79 0.86 0.84 0.92
p75 0.90 0.91 0.83 0.93 0.92 0.96
p90 0.94 0.94 0.94 0.96 0.94 1.00
max 1.00 0.98 1.00 1.00 0.95 1.00

T
P
R

µ 0.82 0.87 0.80 0.89 0.86 0.92
σ 0.13 0.08 0.16 0.12 0.10 0.08
min 0.44 0.70 0.58 0.59 0.68 0.60
p10 0.64 0.77 0.59 0.82 0.71 0.82
p25 0.73 0.81 0.64 0.84 0.82 0.89
p50 0.86 0.86 0.83 0.91 0.88 0.93
p75 0.92 0.94 0.90 0.96 0.92 1.00
p90 1.00 0.97 1.00 1.00 0.99 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00

P
P
V

µ 0.82 0.85 0.80 0.86 0.80 0.89
σ 0.12 0.09 0.11 0.09 0.13 0.09
min 0.58 0.67 0.62 0.72 0.62 0.64
p10 0.67 0.73 0.71 0.75 0.64 0.76
p25 0.71 0.77 0.73 0.80 0.69 0.84
p50 0.83 0.85 0.80 0.83 0.82 0.91
p75 0.90 0.93 0.86 0.92 0.91 0.96
p90 1.00 0.96 0.90 1.00 0.93 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00

F
P
R

µ 0.19 0.16 0.20 0.15 0.23 0.12
σ 0.14 0.11 0.11 0.11 0.16 0.11
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.04 0.08 0.00 0.07 0.00
p25 0.10 0.07 0.13 0.09 0.10 0.04
p50 0.18 0.16 0.22 0.12 0.19 0.09
p75 0.31 0.22 0.28 0.24 0.33 0.16
p90 0.38 0.28 0.31 0.27 0.42 0.26
max 0.53 0.47 0.38 0.35 0.50 0.50

F
1

µ 0.82 0.85 0.79 0.87 0.83 0.90
σ 0.11 0.08 0.12 0.09 0.11 0.08
min 0.56 0.74 0.62 0.69 0.65 0.67
p10 0.68 0.75 0.64 0.78 0.69 0.79
p25 0.73 0.78 0.71 0.82 0.71 0.86
p50 0.82 0.85 0.80 0.86 0.85 0.92
p75 0.91 0.91 0.84 0.93 0.92 0.96
p90 0.94 0.94 0.95 0.95 0.94 1.00
max 1.00 0.98 1.00 1.00 0.95 1.00

M
C
C

µ 0.64 0.71 0.60 0.74 0.64 0.80
σ 0.21 0.16 0.23 0.16 0.23 0.16
min 0.18 0.47 0.23 0.49 0.26 0.39
p10 0.35 0.51 0.35 0.55 0.36 0.57
p25 0.46 0.55 0.50 0.63 0.40 0.73
p50 0.63 0.70 0.60 0.73 0.69 0.85
p75 0.81 0.83 0.66 0.86 0.85 0.92
p90 0.88 0.88 0.89 0.92 0.88 1.00
max 1.00 0.96 1.00 1.00 0.90 1.00

(a) 5min observation window statistics.

E S m mC1 mC2 mC3 mC4 Ms

A
C
C

µ 0.83 0.88 0.81 0.86 0.84 0.91
σ 0.11 0.07 0.10 0.06 0.13 0.08
min 0.58 0.70 0.66 0.76 0.60 0.65
p10 0.68 0.79 0.67 0.80 0.70 0.82
p25 0.75 0.82 0.78 0.81 0.75 0.86
p50 0.84 0.88 0.82 0.86 0.84 0.92
p75 0.91 0.94 0.85 0.91 0.94 0.96
p90 0.94 0.95 0.91 0.96 0.97 1.00
max 1.00 0.98 1.00 0.96 1.00 1.00

T
P
R

µ 0.84 0.87 0.78 0.88 0.90 0.92
σ 0.14 0.09 0.19 0.11 0.11 0.08
min 0.45 0.60 0.50 0.67 0.60 0.58
p10 0.60 0.75 0.50 0.71 0.82 0.80
p25 0.74 0.83 0.64 0.83 0.85 0.90
p50 0.87 0.89 0.84 0.91 0.92 0.94
p75 0.95 0.94 0.92 0.97 1.00 0.98
p90 1.00 0.96 0.97 1.00 1.00 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00

P
P
V

µ 0.83 0.88 0.83 0.86 0.81 0.90
σ 0.11 0.08 0.10 0.09 0.14 0.09
min 0.58 0.75 0.72 0.74 0.60 0.62
p10 0.66 0.77 0.75 0.75 0.65 0.79
p25 0.77 0.82 0.78 0.79 0.70 0.85
p50 0.84 0.89 0.79 0.87 0.82 0.92
p75 0.91 0.95 0.90 0.93 0.94 0.98
p90 0.98 0.97 1.00 0.96 0.99 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00

F
P
R

µ 0.18 0.12 0.16 0.15 0.22 0.11
σ 0.14 0.08 0.10 0.12 0.17 0.10
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.02 0.03 0.00 0.04 0.01 0.00
p25 0.08 0.05 0.09 0.06 0.07 0.02
p50 0.17 0.11 0.19 0.15 0.19 0.09
p75 0.23 0.19 0.23 0.23 0.39 0.15
p90 0.36 0.24 0.25 0.30 0.41 0.22
max 0.67 0.26 0.27 0.36 0.47 0.47

F
1

µ 0.83 0.87 0.80 0.87 0.85 0.91
σ 0.11 0.08 0.13 0.07 0.12 0.08
min 0.56 0.67 0.59 0.75 0.60 0.67
p10 0.66 0.79 0.60 0.77 0.74 0.82
p25 0.74 0.83 0.76 0.84 0.79 0.86
p50 0.84 0.89 0.82 0.87 0.85 0.93
p75 0.91 0.94 0.86 0.91 0.94 0.96
p90 0.94 0.96 0.91 0.95 0.97 1.00
max 1.00 0.98 1.00 0.96 1.00 1.00

M
C
C

µ 0.66 0.75 0.63 0.74 0.69 0.82
σ 0.21 0.14 0.20 0.12 0.25 0.15
min 0.17 0.41 0.33 0.53 0.20 0.31
p10 0.38 0.57 0.35 0.62 0.41 0.65
p25 0.50 0.65 0.55 0.66 0.53 0.73
p50 0.69 0.77 0.66 0.73 0.69 0.85
p75 0.83 0.88 0.71 0.83 0.87 0.92
p90 0.88 0.91 0.82 0.91 0.94 1.00
max 1.00 0.96 1.00 0.92 1.00 1.00

(b) 10min observation window statistics.

100 Time-Series-based Event Prediction

E S m mC1 mC2 mC3 mC4 Ms

A
C
C

µ 0.83 0.86 0.79 0.87 0.84 0.90
σ 0.10 0.08 0.11 0.06 0.11 0.08
min 0.55 0.71 0.63 0.77 0.63 0.68
p10 0.70 0.76 0.69 0.79 0.72 0.81
p25 0.77 0.80 0.72 0.85 0.77 0.86
p50 0.84 0.88 0.78 0.86 0.84 0.93
p75 0.91 0.93 0.84 0.90 0.92 0.96
p90 0.95 0.94 0.94 0.93 0.96 1.00
max 1.00 0.98 1.00 0.96 1.00 1.00

T
P
R

µ 0.83 0.86 0.81 0.90 0.90 0.92
σ 0.13 0.10 0.17 0.06 0.10 0.09
min 0.48 0.60 0.52 0.82 0.63 0.60
p10 0.64 0.74 0.61 0.82 0.83 0.80
p25 0.75 0.78 0.68 0.86 0.87 0.89
p50 0.85 0.88 0.86 0.91 0.92 0.93
p75 0.93 0.94 0.95 0.92 0.96 1.00
p90 1.00 0.99 1.00 0.96 1.00 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00

P
P
V

µ 0.84 0.87 0.78 0.86 0.82 0.90
σ 0.11 0.08 0.10 0.09 0.12 0.09
min 0.55 0.70 0.66 0.72 0.63 0.65
p10 0.70 0.78 0.70 0.75 0.66 0.80
p25 0.77 0.82 0.72 0.78 0.73 0.83
p50 0.84 0.86 0.75 0.87 0.82 0.92
p75 0.93 0.94 0.82 0.91 0.91 0.97
p90 1.00 0.96 0.90 0.95 0.99 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00

F
P
R

µ 0.17 0.14 0.22 0.16 0.21 0.11
σ 0.12 0.09 0.11 0.12 0.16 0.10
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.04 0.11 0.04 0.01 0.00
p25 0.06 0.06 0.17 0.08 0.10 0.02
p50 0.15 0.12 0.25 0.13 0.19 0.08
p75 0.25 0.17 0.30 0.27 0.31 0.18
p90 0.33 0.26 0.33 0.28 0.42 0.23
max 0.53 0.33 0.33 0.36 0.47 0.43

F
1

µ 0.83 0.86 0.79 0.87 0.85 0.91
σ 0.10 0.08 0.13 0.05 0.10 0.08
min 0.54 0.71 0.58 0.78 0.63 0.70
p10 0.69 0.74 0.66 0.81 0.76 0.81
p25 0.77 0.80 0.72 0.86 0.79 0.87
p50 0.84 0.88 0.80 0.87 0.85 0.93
p75 0.90 0.93 0.85 0.90 0.93 0.96
p90 0.95 0.94 0.95 0.93 0.96 1.00
max 1.00 0.98 1.00 0.95 1.00 1.00

M
C
C

µ 0.67 0.73 0.60 0.74 0.70 0.81
σ 0.20 0.15 0.23 0.11 0.21 0.15
min 0.10 0.43 0.26 0.55 0.27 0.38
p10 0.41 0.54 0.38 0.60 0.47 0.63
p25 0.55 0.61 0.44 0.71 0.55 0.73
p50 0.69 0.76 0.57 0.73 0.69 0.87
p75 0.83 0.85 0.70 0.80 0.86 0.93
p90 0.90 0.88 0.89 0.87 0.93 1.00
max 1.00 0.96 1.00 0.92 1.00 1.00

(c) 15min observation window statistics.

E S m mC1 mC2 mC3 mC4 Ms

A
C
C

µ 0.84 0.87 0.78 0.87 0.86 0.91
σ 0.10 0.09 0.13 0.06 0.11 0.08
min 0.52 0.70 0.58 0.75 0.67 0.65
p10 0.72 0.73 0.61 0.79 0.75 0.83
p25 0.76 0.84 0.70 0.85 0.80 0.87
p50 0.85 0.89 0.80 0.89 0.83 0.93
p75 0.91 0.92 0.83 0.91 0.98 0.96
p90 0.97 0.97 0.94 0.92 1.00 0.99
max 1.00 1.00 1.00 0.96 1.00 1.00

T
P
R

µ 0.83 0.85 0.79 0.90 0.90 0.92
σ 0.14 0.11 0.20 0.06 0.11 0.08
min 0.37 0.60 0.42 0.82 0.60 0.67
p10 0.65 0.74 0.60 0.85 0.83 0.82
p25 0.77 0.81 0.64 0.85 0.86 0.89
p50 0.84 0.85 0.82 0.91 0.91 0.94
p75 0.94 0.94 0.94 0.93 1.00 1.00
p90 1.00 0.96 1.00 1.00 1.00 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00

P
P
V

µ 0.85 0.88 0.77 0.86 0.84 0.90
σ 0.11 0.09 0.12 0.10 0.12 0.09
min 0.52 0.71 0.62 0.71 0.68 0.64
p10 0.71 0.75 0.62 0.77 0.70 0.81
p25 0.78 0.83 0.72 0.79 0.76 0.87
p50 0.85 0.89 0.76 0.85 0.79 0.92
p75 0.93 0.94 0.84 0.94 1.00 0.96
p90 1.00 1.00 0.90 1.00 1.00 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00

F
P
R

µ 0.16 0.11 0.22 0.16 0.18 0.10
σ 0.12 0.09 0.11 0.12 0.14 0.10
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.11 0.00 0.00 0.00
p25 0.06 0.06 0.15 0.06 0.00 0.04
p50 0.14 0.10 0.26 0.17 0.23 0.08
p75 0.23 0.17 0.29 0.25 0.27 0.15
p90 0.33 0.21 0.32 0.27 0.30 0.22
max 0.47 0.30 0.38 0.36 0.42 0.42

F
1

µ 0.83 0.87 0.77 0.88 0.87 0.91
σ 0.11 0.09 0.15 0.05 0.11 0.07
min 0.43 0.67 0.50 0.77 0.64 0.67
p10 0.70 0.73 0.60 0.80 0.78 0.82
p25 0.77 0.83 0.69 0.86 0.80 0.88
p50 0.85 0.89 0.79 0.90 0.85 0.93
p75 0.91 0.92 0.85 0.91 0.98 0.96
p90 0.97 0.97 0.95 0.92 1.00 0.99
max 1.00 1.00 1.00 0.95 1.00 1.00

M
C
C

µ 0.68 0.74 0.57 0.76 0.73 0.82
σ 0.20 0.17 0.26 0.12 0.22 0.15
min 0.03 0.41 0.18 0.51 0.34 0.31
p10 0.45 0.46 0.23 0.59 0.52 0.67
p25 0.53 0.68 0.41 0.71 0.59 0.76
p50 0.70 0.79 0.60 0.79 0.68 0.87
p75 0.83 0.85 0.68 0.82 0.97 0.91
p90 0.94 0.94 0.89 0.86 1.00 0.98
max 1.00 1.00 1.00 0.92 1.00 1.00

(d) 30min observation window statistics.

Evaluation 101

E S m mC1 mC2 mC3 mC4 Ms

A
C
C

µ 0.85 0.88 0.81 0.87 0.86 0.91
σ 0.10 0.08 0.13 0.08 0.12 0.08
min 0.57 0.72 0.58 0.71 0.58 0.67
p10 0.71 0.75 0.68 0.74 0.76 0.82
p25 0.79 0.83 0.71 0.84 0.79 0.88
p50 0.88 0.91 0.84 0.89 0.86 0.93
p75 0.91 0.93 0.90 0.93 0.94 0.96
p90 0.96 0.97 0.94 0.95 0.99 1.00
max 1.00 1.00 1.00 0.96 1.00 1.00

T
P
R

µ 0.84 0.87 0.82 0.87 0.88 0.92
σ 0.15 0.09 0.19 0.10 0.14 0.09
min 0.37 0.68 0.42 0.71 0.47 0.60
p10 0.64 0.74 0.60 0.73 0.79 0.82
p25 0.77 0.83 0.70 0.82 0.87 0.89
p50 0.88 0.85 0.88 0.87 0.89 0.94
p75 0.94 0.95 0.93 0.93 1.00 1.00
p90 1.00 0.99 1.00 1.00 1.00 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00

P
P
V

µ 0.85 0.90 0.81 0.88 0.84 0.91
σ 0.10 0.09 0.12 0.10 0.13 0.08
min 0.61 0.69 0.62 0.67 0.61 0.67
p10 0.72 0.78 0.70 0.75 0.72 0.83
p25 0.79 0.86 0.71 0.84 0.76 0.86
p50 0.86 0.92 0.79 0.92 0.86 0.93
p75 0.92 0.95 0.89 0.94 0.94 1.00
p90 1.00 1.00 0.94 1.00 1.00 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00

F
P
R

µ 0.15 0.11 0.19 0.13 0.17 0.09
σ 0.10 0.10 0.11 0.13 0.13 0.09
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.05 0.00 0.00 0.00
p25 0.08 0.05 0.13 0.06 0.06 0.00
p50 0.13 0.09 0.23 0.09 0.15 0.08
p75 0.21 0.12 0.25 0.18 0.27 0.14
p90 0.26 0.20 0.28 0.26 0.33 0.19
max 0.47 0.37 0.35 0.43 0.35 0.37

F
1

µ 0.84 0.88 0.81 0.87 0.86 0.91
σ 0.11 0.08 0.15 0.08 0.13 0.08
min 0.46 0.72 0.50 0.73 0.53 0.67
p10 0.68 0.77 0.65 0.75 0.78 0.82
p25 0.79 0.82 0.71 0.83 0.81 0.89
p50 0.88 0.91 0.85 0.89 0.86 0.93
p75 0.90 0.93 0.90 0.93 0.94 0.96
p90 0.96 0.97 0.95 0.95 0.99 1.00
max 1.00 1.00 1.00 0.96 1.00 1.00

M
C
C

µ 0.70 0.77 0.63 0.75 0.72 0.83
σ 0.19 0.16 0.26 0.16 0.23 0.15
min 0.15 0.44 0.18 0.45 0.17 0.33
p10 0.42 0.51 0.37 0.47 0.54 0.64
p25 0.60 0.66 0.42 0.69 0.60 0.77
p50 0.75 0.82 0.69 0.78 0.71 0.87
p75 0.83 0.87 0.79 0.86 0.88 0.93
p90 0.92 0.94 0.89 0.91 0.98 1.00
max 1.00 1.00 1.00 0.92 1.00 1.00

(e) 45min observation window statistics.

E S m mC1 mC2 mC3 mC4 Ms

A
C
C

µ 0.84 0.88 0.81 0.88 0.86 0.92
σ 0.10 0.09 0.13 0.06 0.11 0.08
min 0.60 0.70 0.62 0.79 0.63 0.65
p10 0.71 0.73 0.65 0.79 0.75 0.82
p25 0.79 0.81 0.71 0.82 0.79 0.88
p50 0.86 0.90 0.83 0.91 0.86 0.94
p75 0.92 0.95 0.91 0.92 0.95 0.96
p90 0.95 0.98 0.94 0.95 0.99 1.00
max 1.00 1.00 1.00 0.96 1.00 1.00

T
P
R

µ 0.84 0.87 0.82 0.90 0.89 0.93
σ 0.14 0.11 0.19 0.07 0.11 0.09
min 0.42 0.60 0.50 0.76 0.60 0.67
p10 0.67 0.73 0.60 0.80 0.79 0.81
p25 0.79 0.84 0.68 0.87 0.86 0.89
p50 0.88 0.88 0.85 0.91 0.91 0.95
p75 0.95 0.95 1.00 0.94 1.00 1.00
p90 1.00 1.00 1.00 1.00 1.00 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00

P
P
V

µ 0.84 0.88 0.80 0.87 0.84 0.91
σ 0.11 0.09 0.11 0.09 0.12 0.08
min 0.60 0.71 0.67 0.72 0.64 0.64
p10 0.70 0.74 0.67 0.78 0.70 0.81
p25 0.78 0.82 0.70 0.80 0.76 0.88
p50 0.86 0.91 0.81 0.88 0.86 0.92
p75 0.92 0.94 0.86 0.94 0.91 0.98
p90 1.00 1.00 0.90 1.00 1.00 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00

F
P
R

µ 0.16 0.12 0.20 0.14 0.18 0.09
σ 0.12 0.10 0.11 0.11 0.13 0.09
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.11 0.00 0.00 0.00
p25 0.09 0.05 0.14 0.07 0.10 0.02
p50 0.13 0.09 0.21 0.13 0.15 0.08
p75 0.24 0.18 0.25 0.21 0.26 0.14
p90 0.34 0.28 0.32 0.28 0.33 0.20
max 0.48 0.32 0.38 0.36 0.42 0.38

F
1

µ 0.84 0.87 0.81 0.88 0.86 0.92
σ 0.11 0.09 0.14 0.06 0.11 0.08
min 0.53 0.67 0.57 0.79 0.62 0.67
p10 0.70 0.74 0.63 0.80 0.78 0.82
p25 0.78 0.82 0.71 0.83 0.80 0.88
p50 0.86 0.89 0.83 0.91 0.86 0.94
p75 0.92 0.95 0.92 0.92 0.95 0.97
p90 0.96 0.98 0.95 0.95 0.99 1.00
max 1.00 1.00 1.00 0.96 1.00 1.00

M
C
C

µ 0.69 0.76 0.63 0.77 0.72 0.83
σ 0.20 0.18 0.26 0.13 0.22 0.16
min 0.20 0.41 0.26 0.59 0.27 0.31
p10 0.43 0.46 0.30 0.60 0.53 0.64
p25 0.59 0.63 0.43 0.65 0.58 0.77
p50 0.73 0.79 0.66 0.82 0.71 0.88
p75 0.84 0.89 0.84 0.85 0.90 0.93
p90 0.91 0.96 0.89 0.91 0.98 1.00
max 1.00 1.00 1.00 0.92 1.00 1.00

(f) 60min observation window statistics.

Table 4.7: Statistics S of the evaluation metrics E for different observation windows after
running the models (m = naive multi-system model, mCi = clustered multi-system model, Ms

= set of all single-system models). µ = average, σ = standard deviation, pi = i% percentile,
min = minimum, max = maximum. Bold = best results, underlined = second best results.

102 Time-Series-based Event Prediction

could be that the time series values leading up to a slowdown event are shaped in such a
way that important characteristics can be extracted with all of our chosen window sizes.13

Moreover, this indicates that the characteristics appear to be present right up to the time of
the event, since otherwise, the 5min observation window would not have performed as well.14

E 5min 10min 15min 30min 45min 60min

ACC 0.85± 0.10 0.86± 0.10 0.86± 0.09 0.87± 0.10 0.87± 0.10 0.87± 0.10
TPR 0.87± 0.12 0.87± 0.12 0.87± 0.12 0.87± 0.13 0.87± 0.13 0.88± 0.12
PPV 0.85± 0.11 0.86± 0.10 0.86± 0.10 0.87± 0.10 0.88± 0.10 0.87± 0.10
FPR 0.17± 0.13 0.15± 0.12 0.15± 0.12 0.14± 0.11 0.13± 0.10 0.14± 0.11
F1 0.85± 0.10 0.86± 0.10 0.86± 0.10 0.87± 0.10 0.87± 0.10 0.87± 0.10
MCC 0.71± 0.20 0.73± 0.19 0.73± 0.19 0.74± 0.19 0.75± 0.19 0.75± 0.19

Table 4.8: Average ± standard deviation of the evaluation metrics E across all models,
grouped by the observation windows.

5m
in

 v
s.

10
m

in

5m
in

 v
s.

15
m

in

5m
in

 v
s.

30
m

in

5m
in

 v
s.

45
m

in

5m
in

 v
s.

60
m

in

10
m

in
 v

s.
15

m
in

10
m

in
 v

s.
30

m
in

10
m

in
 v

s.
45

m
in

10
m

in
 v

s.
60

m
in

15
m

in
 v

s.
30

m
in

15
m

in
 v

s.
45

m
in

15
m

in
 v

s.
60

m
in

30
m

in
 v

s.
45

m
in

30
m

in
 v

s.
60

m
in

45
m

in
 v

s.
60

m
in

ACC

TPR

PPV

FPR

F1

MCC

Figure 4.21: Statistical significance matrix when comparing the average evaluation metrics
of the different window sizes as specified in Table 4.8. Red-colored cells indicate that for
window sizes Xmin vs. Ymin, the results of window size Xmin are statistically significantly
worse compared to those of window size Ymin (Wilcoxon signed-rank test, α = 0.01). Worse
means that all metrics except the false positive rate (FPR) are lower. For the FPR, worse
means that the results are higher since the FPR is a lower-is-better metric.

With accuracies (ACC), recall (TPR), precision (PPV) and F1 scores close to 90%,
Matthews correlation coefficients (MCC) around 0.75 and acceptably low false positive rates
(FPR) below 15%, we concluded that event prediction in a multi-system environment does
yield promising initial results. Hence, we continued with the actual scenario that is to be
expected in a real-world setting, namely dealing with unbalanced data, as events can be seen
as anomalies which happen much less often compared to the normal state of operation, leading
to considerably more negative samples as well as new challenges.

13As a simple example, assume that there are large spikes in some time series just before an event occurrence,
which is (sufficiently) captured by the aggregation functions such as the maximum, average or the slope of all
of the chosen observation window sizes.

14The 5min observation window configuration did perform slightly worse than the other window sizes, but as
mentioned above, with an average absolute difference of ≤ 0.04, it is negligible.

Evaluation 103

4.6.3 Unbalanced Scenario

In the previous scenario, we assumed that events and non-events occurred equally frequently,
which, of course, is an unrealistic assumptions since service slowdown events happen much
more rarely.15 Therefore, we cannot directly reuse the preprocessing framework configuration
settings from before that apply per-event sampling with a balanced ratio because the test
dataset would then be balanced. We thus need to separate the configurations for extracting
the training data (still balanced to properly train the random forest model) from the ones
for extracting the testing data (unbalanced), which, in turn, means that we need to specify
the train-test split in advance. One option would be to use, for example, the first 80% of
the available data for training and the following 20% for testing, but this could potentially
introduce bias in case there are differences in the shapes of the time series, for instance, due
to working days vs. weekends. To solve this problem, we split the entire observation period
into day-sized chunks, which can then be used for a day-based cross-validation, where always
one day is used for testing and all remaining days for training. As mentioned in Section 4.5
and shown in Figure 4.16, the data completeness is significantly lower in the last two days,
so we decided to exclude them and only use the first 18 days of the export to avoid that
entire day chunks only contain missing data and thus become useless for model evaluation.
With the settled train-test split, we now list the configuration changes regarding the test
data, the training configurations are exactly the same as introduced in the balanced scenario.
Specifically, the testing configurations differ in the following:

• Instead of per-event sampling, we employ slide-through sampling, which represents the
actual sampling process that can be expected in a production environment. Since this
sampling procedure is applied to all service entities, it renders the specification of the
negative sampling source (use only services where no event occurred) obsolete.

• Given the slide-through sampling, three more config settings must be specified: the initial
sampling offset, the step size and the prediction window size. We opted for an offset of 0
to not miss any events (missing data can be discarded afterwards in the post-processing
step), and a step size and prediction window size of both 60 to avoid overlaps. In a
production environment, this would mean that we get data batches every 60 minutes and
then have to predict whether an event occurs at some point in time within the following
60 minutes. To refer to this specific configuration, we will use the identifier ST-60-60
(slide-through sampling, 60min step size, 60min prediction window).

A keen reader might have noticed that the last setting leads to a varying lead time
between 0 and 60 minutes since, given the fixed sampling point, the event might happen
immediately (lead time 0) or at the very end of the prediction window (lead time 60).
This makes the prediction task much more difficult, which we will see in the following
evaluation results.

As the different observation window sizes from the evaluation experiments in the balanced
scenario did not yield dramatically different values, we decided to start our investigation of
the unbalanced test set with a 30min observation window. For comparability reasons, we used
the same 57 systems.

In the post-processing phase, we applied the same steps as in the balanced setting for the
training data, meaning that we discarded columns (feature vector entries) and rows (feature

15From Table 4.5, we can already see that in 90% of all systems, there are only ten services where events
occurred, compared to the 415 non-event services, and on these few event-services, only roughly 110 events
happened over the course of our 20 days’ worth of export data.

104 Time-Series-based Event Prediction

vectors/samples) based on the number of NaN values, and we re-sampled the data to achieve a
system-wise class balance again. The post-processing of the testing data is analogous, except
for the class balancing, which we skipped since we need to preserve the class imbalance to
appropriately model a real-world scenario.

The training and testing phase differs because we now have separate datasets. We ran
an 18-fold day-based cross-validation as illustrated in Figure 4.22, meaning that we have
18 individual evaluations (18 iterations iti), where always one day is used for testing and the
remaining 17 are used for training the machine learning model. We again used a random
forest classifier with 100 trees and no depth limit, and evaluated our three different model
kinds, namely the naive multi-system model m, the clustered multi-system models mCi and
the set of single-system models Ms. After running the cross-validation for each model kind, we
grouped the prediction results by the systems, yielding 18 confusion matrices for each system.
We then summed the corresponding entries of these 18 matrices to obtain single confusion
matrix storing the result for a system just like in the balanced scenario above, which allows us
to calculate the various evaluation metrics on a per-system basis. The results are presented in
Figure 4.23 with details listed in Table 4.9.

it1

it2

it17

it18

…

= Train: 17 days
(per-event sampling, balanced)

= Test: 1 day
(slide-through sampling, unbalanced)

18 days split into:

Figure 4.22: Illustration of the 18-fold day-based cross-validation.

It is obvious that the results from the real-world evaluation are significantly worse when
compared to the balanced scenario. Since we are dealing with unbalanced data, metrics such as
the accuracy (ACC) or true positive rate (TPR) can be misleading and should not be viewed
individually but only in conjunction with other metrics. For instance, we might conclude that
the single-system models Ms appear to be reasonably promising judging by the ACC and
TPR with median values of 87% and 64%, respectively. However, when also looking at, e.g.,
the positive predictive values (precision; PPV), we immediately see that these models did not
perform very well with a median value of only 2%. If we are interested in a single descriptive
metric, then the Matthews Correlation Coefficient (MCC) is the most appropriate one, as it is
robust against data imbalance. Unfortunately, not a single model performed well enough to be
considered usable in practice. Both the median and average MCCs of each of the evaluated
models are all ≤ 0.13, with an average MCC of about 0.09 when merged across all models,
which is only slightly better than a purely random prediction. The clustered multi-system
models mC3 and mC4 , and the single-system models appear to be the best among the different
model kinds, however, the absolute values are still far too low.

As hinted in the slide-through sampling configuration settings above, one problem could
be that we have a prediction window size of 60min, resulting in varying lead times (cf.

Evaluation 105

E S m mC1 mC2 mC3 mC4 Ms

A
C
C

µ 0.83 0.88 0.80 0.85 0.79 0.84
σ 0.09 0.06 0.10 0.08 0.11 0.11
min 0.64 0.73 0.59 0.73 0.62 0.49
p10 0.71 0.80 0.71 0.76 0.66 0.69
p25 0.77 0.84 0.75 0.79 0.70 0.79
p50 0.85 0.90 0.80 0.83 0.79 0.87
p75 0.90 0.92 0.84 0.93 0.90 0.93
p90 0.92 0.94 0.89 0.94 0.91 0.94
max 0.97 0.97 0.96 0.96 0.94 0.99

T
P
R

µ 0.48 0.52 0.41 0.56 0.52 0.57
σ 0.23 0.21 0.17 0.22 0.24 0.27
min 0.02 0.16 0.19 0.19 0.16 0.00
p10 0.19 0.28 0.27 0.29 0.23 0.18
p25 0.31 0.38 0.30 0.44 0.38 0.35
p50 0.47 0.53 0.40 0.51 0.51 0.64
p75 0.63 0.67 0.46 0.71 0.76 0.77
p90 0.80 0.73 0.58 0.77 0.80 0.89
max 0.99 1.00 0.77 0.95 0.86 1.00

P
P
V

µ 0.04 0.03 0.01 0.05 0.09 0.05
σ 0.07 0.09 0.01 0.03 0.09 0.11
min 0.00 0.00 0.00 0.00 0.01 0.00
p10 0.00 0.00 0.00 0.01 0.02 0.00
p25 0.00 0.00 0.00 0.03 0.04 0.01
p50 0.01 0.01 0.01 0.04 0.04 0.02
p75 0.04 0.02 0.01 0.07 0.11 0.06
p90 0.09 0.05 0.01 0.09 0.23 0.11
max 0.37 0.43 0.02 0.10 0.27 0.73

F
P
R

µ 0.16 0.12 0.20 0.15 0.20 0.16
σ 0.08 0.06 0.10 0.08 0.11 0.11
min 0.03 0.03 0.04 0.04 0.05 0.01
p10 0.07 0.06 0.11 0.06 0.09 0.06
p25 0.09 0.08 0.16 0.07 0.09 0.07
p50 0.15 0.10 0.20 0.17 0.21 0.13
p75 0.23 0.16 0.25 0.21 0.29 0.19
p90 0.28 0.20 0.29 0.24 0.32 0.32
max 0.36 0.27 0.41 0.27 0.39 0.52

F
1

µ 0.06 0.05 0.01 0.09 0.13 0.08
σ 0.10 0.12 0.01 0.06 0.11 0.13
min 0.00 0.00 0.00 0.01 0.01 0.00
p10 0.00 0.00 0.00 0.01 0.03 0.00
p25 0.01 0.01 0.01 0.05 0.07 0.01
p50 0.02 0.01 0.01 0.07 0.08 0.03
p75 0.08 0.04 0.02 0.12 0.19 0.11
p90 0.15 0.10 0.03 0.16 0.31 0.19
max 0.53 0.60 0.04 0.17 0.33 0.84

M
C
C

µ 0.08 0.09 0.03 0.13 0.12 0.11
σ 0.10 0.13 0.03 0.09 0.08 0.14
min -0.03 0.00 0.00 0.00 0.02 -0.02
p10 0.01 0.01 0.00 0.03 0.03 0.00
p25 0.02 0.03 0.01 0.06 0.04 0.02
p50 0.04 0.04 0.02 0.11 0.11 0.07
p75 0.12 0.10 0.04 0.18 0.17 0.18
p90 0.18 0.18 0.06 0.26 0.23 0.24
max 0.59 0.64 0.11 0.28 0.26 0.85

Table 4.9: Statistics S of the evaluation metrics E for the unbalanced test data (config
ST-60-60) with 30min observation windows after running the models (m = naive multi-system
model, mCi = clustered multi-system model, Ms = set of all single-system models). µ =
average, σ = standard deviation, pi = i% percentile, min = minimum, max = maximum.
Bold = best results, underlined = second best results.

106 Time-Series-based Event Prediction

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ACC

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

TPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

PPV

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

FPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

F1

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

MCC

Figure 4.23: Evaluation metrics for the unbalanced test data (config ST-60-60) with 30min
observation windows after running the models (m = naive multi-system model, mCi = clustered
multi-system model, Ms = set of all single-system models). Detailed information is available
in Table 4.9.

Section 4.3.2.3). For example, imagine some slide-through sampling timestamp t and two
events at timestamps t+ 10 and t+ 54. Both events fall into the 60min prediction window
(t+ 10 < t+ 60 and t+ 54 < t+ 60), but the lead times (10min and 54min) are significantly
different. Our random forest models, on the other hand, were trained with a fixed lead
time of zero (using per-event sampling). Naturally, the first idea that comes to mind is
to simply extract the testing dataset with a zero lead time as well. However, this causes
unavoidable issues. If we were to do that, i.e., setting the prediction window size to zero16

(resulting in a lead time of zero), then the question would arise which step size to choose.
Keeping the 60min step size would mean that we only look at the very first minute and
ignore the subsequent 59 minutes. Assuming that events occur randomly according to a
uniform distribution, we would thus miss about 59

60 ≈ 98% of all events. The logical next
step would then be to reduce the step size, for example, down to the minimum of 1min. In
this case, we would not have the problem of missing events since we slide through every
possible timestamp in the observation period and check whether an event occurred at this
timestamp. While this seems to be the ideal solution, it unfortunately only shifts the problem
to the observation windows because they would now severely overlap. For instance, given the
30min observation windows, we would create a sample at timestamp ti using the preceding
30 time series data points xti = (xti−30 , xti−29 , . . . , xti−1). Assume that an event happened at
this timestamp ti, so we would label the sample as positive. With the step size of 1min, we
would then proceed to timestamp ti+1 and again create a sample with the preceding 30 data
points xti+1 = (xti+1−30 , xti+1−29 , . . . , xti+1−1) = (xti−29 , xti−28 , . . . , xti). We can directly see
that 29 values of xti and xti+1 are identical, resulting in an overlap of 29

30 ≈ 97%. If no event
occurred at timestamp ti+1, the sample would be a negative one, which would mean that we
created two differently labeled samples that share 97% of the same data. A machine learning
model would then nearly always predict both samples as either positive or negative. This leads
to the question if appropriate sampling choices actually exist to escape from our predicament,
which we discuss in more detail in Section 4.7.

16Recall that a prediction window of size zero is a special case, where a sample is only classified as positive if
an event occurred exactly at this sample’s timestamp (cf. Section 4.3.2.3)

Evaluation 107

With the problems above in mind, we at least wanted to evaluate two alternative testing
datasets to see whether different settings result in better or worse predictions. To this end, we
changed the slide-through sampling to a step size of 30min together with a prediction window
of 30min in the first config ST-30-30 to reduce the varying lead times by 50% compared to
the 60min configuration. For the second config ST-30-5, we again employed a step size of
30min but with a prediction window of only 5min, thereby accepting to lose events (the last
25 minutes are ignored in each step) but decreasing the variation in lead times even further.
The results of both configurations are presented in Figure 4.24 with details listed in Table 4.10.

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ACC
m

m
C 1

m
C 2

m
C 3

m
C 4 M
s

TPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

PPV

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

FPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

F1

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

MCC

(a) Evaluation metrics for config ST-30-30 (cf. Table 4.10a for details).

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ACC

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

TPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

PPV

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

FPR
m

m
C 1

m
C 2

m
C 3

m
C 4 M
s

F1

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

MCC

(b) Evaluation metrics for config ST-30-5 (cf. Table 4.10b for details).

Figure 4.24: Evaluation metrics for the unbalanced test data obtained via different slide-
through sampling configurations with 30min observation windows after running the models (m
= naive multi-system model, mCi = clustered multi-system model,Ms = set of all single-system
models). Detailed information is available in Table 4.10.

The results reveal that the reduced lead time variation in the two new unbalanced testing
configurations did not improve the predictions. In fact, both configs led to even worse results:
The median and average MCCs of each of the evaluated models of configs ST-30-30 and
ST-30-5 are all ≤ 0.09 and ≤ 0.05, respectively, compared to the previous 0.13 of config ST-
60-60. Merged across all models, we get an average MCC of about 0.07 and 0.03, respectively,
compared to the previous 0.09.

108 Time-Series-based Event Prediction

E S m mC1 mC2 mC3 mC4 Ms

A
C
C

µ 0.83 0.87 0.80 0.84 0.79 0.84
σ 0.08 0.06 0.10 0.08 0.11 0.11
min 0.64 0.73 0.59 0.73 0.61 0.52
p10 0.71 0.78 0.71 0.75 0.69 0.69
p25 0.76 0.84 0.76 0.79 0.71 0.80
p50 0.83 0.89 0.81 0.82 0.77 0.86
p75 0.90 0.92 0.83 0.91 0.91 0.92
p90 0.92 0.95 0.89 0.93 0.91 0.94
max 0.97 0.96 0.96 0.95 0.93 0.98

T
P
R

µ 0.51 0.51 0.45 0.59 0.53 0.58
σ 0.22 0.22 0.17 0.22 0.26 0.27
min 0.04 0.08 0.24 0.23 0.09 0.00
p10 0.23 0.20 0.31 0.32 0.18 0.21
p25 0.35 0.39 0.33 0.47 0.37 0.36
p50 0.52 0.53 0.42 0.55 0.54 0.60
p75 0.65 0.65 0.51 0.74 0.75 0.80
p90 0.82 0.72 0.67 0.82 0.82 0.89
max 0.99 1.00 0.79 0.94 0.83 1.00

P
P
V

µ 0.02 0.02 0.00 0.02 0.05 0.03
σ 0.04 0.05 0.00 0.02 0.05 0.06
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.01 0.02 0.00
p50 0.01 0.00 0.00 0.02 0.02 0.01
p75 0.02 0.01 0.01 0.04 0.08 0.03
p90 0.05 0.03 0.01 0.04 0.13 0.06
max 0.20 0.24 0.01 0.05 0.15 0.43

F
P
R

µ 0.17 0.13 0.20 0.16 0.20 0.16
σ 0.08 0.06 0.10 0.08 0.11 0.11
min 0.03 0.04 0.04 0.05 0.07 0.02
p10 0.07 0.05 0.11 0.07 0.09 0.06
p25 0.10 0.08 0.17 0.09 0.09 0.08
p50 0.17 0.11 0.19 0.18 0.23 0.13
p75 0.24 0.16 0.24 0.21 0.29 0.20
p90 0.29 0.22 0.29 0.25 0.30 0.31
max 0.36 0.27 0.41 0.27 0.39 0.48

F
1

µ 0.04 0.03 0.01 0.05 0.08 0.05
σ 0.06 0.08 0.01 0.03 0.08 0.09
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.01 0.01 0.00
p25 0.00 0.00 0.00 0.03 0.03 0.01
p50 0.01 0.01 0.01 0.04 0.04 0.02
p75 0.04 0.02 0.01 0.07 0.15 0.06
p90 0.08 0.05 0.01 0.08 0.21 0.11
max 0.33 0.39 0.02 0.09 0.22 0.60

M
C
C

µ 0.06 0.06 0.03 0.09 0.09 0.08
σ 0.07 0.10 0.02 0.06 0.07 0.10
min -0.01 0.00 0.00 0.01 -0.01 -0.04
p10 0.00 0.01 0.01 0.01 0.02 0.00
p25 0.02 0.02 0.01 0.05 0.03 0.02
p50 0.04 0.03 0.02 0.08 0.09 0.05
p75 0.09 0.07 0.03 0.14 0.11 0.12
p90 0.13 0.12 0.04 0.19 0.18 0.18
max 0.43 0.48 0.08 0.19 0.24 0.65

(a) Config ST-30-30 statistics.

E S m mC1 mC2 mC3 mC4 Ms

A
C
C

µ 0.83 0.87 0.80 0.84 0.79 0.84
σ 0.08 0.06 0.10 0.08 0.11 0.11
min 0.64 0.73 0.59 0.73 0.61 0.51
p10 0.71 0.78 0.71 0.75 0.70 0.68
p25 0.76 0.84 0.76 0.79 0.71 0.80
p50 0.83 0.89 0.81 0.82 0.77 0.87
p75 0.90 0.92 0.83 0.91 0.91 0.92
p90 0.93 0.95 0.89 0.93 0.91 0.94
max 0.97 0.96 0.96 0.95 0.93 0.97

T
P
R

µ 0.51 0.57 0.48 0.63 0.52 0.62
σ 0.29 0.25 0.25 0.30 0.28 0.30
min 0.00 0.10 0.12 0.09 0.00 0.00
p10 0.14 0.25 0.19 0.10 0.10 0.18
p25 0.29 0.43 0.33 0.62 0.49 0.39
p50 0.50 0.57 0.49 0.68 0.53 0.71
p75 0.73 0.78 0.64 0.75 0.63 0.87
p90 0.92 0.86 0.77 1.00 0.82 0.92
max 1.00 1.00 0.92 1.00 1.00 1.00

P
P
V

µ 0.00 0.00 0.00 0.00 0.01 0.00
σ 0.01 0.00 0.00 0.00 0.01 0.01
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.00 0.01 0.00
p75 0.00 0.00 0.00 0.01 0.01 0.01
p90 0.01 0.01 0.00 0.01 0.02 0.01
max 0.03 0.01 0.00 0.01 0.05 0.04

F
P
R

µ 0.17 0.13 0.20 0.16 0.21 0.16
σ 0.08 0.06 0.10 0.08 0.11 0.11
min 0.03 0.04 0.04 0.05 0.07 0.03
p10 0.07 0.05 0.11 0.07 0.09 0.06
p25 0.10 0.08 0.17 0.09 0.09 0.08
p50 0.17 0.11 0.19 0.18 0.23 0.13
p75 0.24 0.16 0.24 0.21 0.30 0.20
p90 0.29 0.22 0.29 0.25 0.30 0.32
max 0.36 0.27 0.41 0.27 0.39 0.49

F
1

µ 0.01 0.00 0.00 0.01 0.02 0.01
σ 0.01 0.01 0.00 0.01 0.03 0.01
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.01 0.01 0.00
p75 0.01 0.00 0.00 0.01 0.03 0.01
p90 0.02 0.01 0.00 0.02 0.03 0.02
max 0.06 0.02 0.00 0.02 0.10 0.07

M
C
C

µ 0.02 0.02 0.01 0.04 0.04 0.03
σ 0.03 0.03 0.01 0.03 0.04 0.04
min -0.02 0.00 0.00 -0.01 -0.01 -0.03
p10 0.00 0.00 0.00 -0.01 0.00 0.00
p25 0.00 0.01 0.00 0.02 0.01 0.01
p50 0.02 0.01 0.01 0.05 0.04 0.03
p75 0.04 0.03 0.02 0.06 0.04 0.05
p90 0.06 0.07 0.03 0.07 0.10 0.08
max 0.12 0.10 0.03 0.08 0.12 0.16

(b) Config ST-30-5 statistics.

Table 4.10: Statistics S of the evaluation metrics E for the unbalanced test data obtained via
different slide-through sampling configurations with 30min observation windows after running
the models (m = naive multi-system model, mCi = clustered multi-system model, Ms = set
of all single-system models). µ = average, σ = standard deviation, pi = i% percentile, min =
minimum, max = maximum. Bold = best results, underlined = second best results.

Evaluation 109

These underwhelming results made us think about additional reasons why our models did
not perform well, and we concluded that also the training phase can indirectly suffer from the
data imbalance. Indirectly means that we do train the models appropriately with balanced
data, but this data itself might not be adequately representative of the true data distribution,
which is heavily influenced by the class imbalance. Our training configuration specifies that
we randomly extract a negative sample for every positive sample (per-event sampling with a
balanced ratio). If the events are rare, we obtain a very limited number of positive samples,
which, in turn, leads to equally few negative samples as well. This can be problematic, as
these few negative samples might only represent a small part of the actual, true negative
data distribution. Figure 4.25 visualizes this problem with a two-dimensional dataset. In the
example, suppose we have a negative to positive class imbalance ratio of 99% to 1% and all
available negative data is shown in the left plot (Negative). Due to this severe imbalance, we
only sample 1

99 ≈ 1% of all available negative data (middle plot), which does not accurately
represent the original moon-shaped data distribution. However, if we sample more negative
data such as, for instance, 40% (right plot), then the original data distribution can indeed
be approximated, meaning that we cover many more important characteristics compared to
the 1%. As we still require balanced data to train our machine learning models, we cannot
simply adapt the balancing ratio. We thus need a way to increase the number of positive
samples, which, in turn, results in sampling more negative data. This can be achieved with
oversampling, where we utilize data augmentation.

Negative 1% 40%

Figure 4.25: Sampling the moon-shaped negative data (left) with 1% (middle) compared to
40% (right), resulting in an incorrect/useless distribution approximation in the first case and
an acceptable/usable approximation in the second case.

It might at first seem counterintuitive that the class imbalance ratio is affected by the
sampling configuration, since the number of events throughout the observation period does
not change. However, depending on the slide-through config settings, we might potentially not
include every event (e.g., the prediction window is smaller than the step size, so some events
are missed), or we get increasingly more negative samples the smaller the step size becomes
(e.g., step size and prediction window size x compared to x

2 yields twice as many negative
samples in the latter case, while the number of positive samples remains the same).

In our test datasets, config ST-60-60 leads to an extreme imbalance with 99.76% negative
samples and only 0.24% positive samples. Configs ST-30-30 and ST-30-5 then even worsen
the situation with 99.88% to 0.12% (twice the amount of negative samples) and 99.98% to
0.02% (missing approximately a fifth of all events), respectively.17 Data augmentation can help
us in addressing this imbalance by creating additional positive samples in the training data.

17However, the ST-30-5 config can be ignored here because the low class imbalance comes from missing
events (prediction window is smaller than the step size), which is not the case in our training configurations
that employ per-event sampling where all events are recorded.

110 Time-Series-based Event Prediction

However, care must be taken to not arbitrarily alter the available positive samples, as it could
happen that a sample is changed too much, thereby losing its original data characteristics or,
in the worst case, even becoming similar to negative samples. A moderate augmentation is
thus preferable, so we decided to apply time warping (cf. Section 4.3.2.4) with three knots and
a small standard deviation of 0.05 in order not to distort our positive samples too much. In
addition to the original sample, we set the number of augmentations to 250, meaning that
we create 250 times more positive samples and, in turn, 250 times more negative samples
in our per-event sampled training data. We chose this number based on the above test
dataset imbalance statistics of the ST-60-60 config, where 250 additional positive samples per
event then result in a new negative to positive ratio of 61.9% to 38.1%, and we thus sample
38.1
61.9 ≈ 61.6% of the negative data, for which a much better data distribution approximation
can be expected (cf. Figure 4.25). We exported new training data using the same training
configurations as described above but with the addition of augmenting the positive samples.
We refer to these configurations as ST-X-Y-augmented (slide-through sampling, Xmin step
size, Ymin prediction window, augmented training data). Afterwards, we trained our models
again with this new data and evaluated them on the test datasets. The results are presented
in Figure 4.26 with details listed in Table 4.11.

Unfortunately, augmenting the training data led to even worse results. While the accuracies
(ACC) and the false positive rates (FPR) are close to perfect (100% and 0%, respectively),
this is merely due to the fact that our models simply predicted the negative class in nearly
all cases, all other metrics are the exact opposite. If all samples are predicted as negative,
the evaluation metrics PPV and MCC cannot even be computed (division by zero), in which
case we use zero as a fallback value. The median and average MCCs of each of the evaluated
models of configs ST-60-60-augmented, ST-30-30-augmented and ST-30-5-augmented are all
≤ 0.07 (0.13 without augmentation), ≤ 0.05 (0.09 without augmentation) and ≤ 0.02 (0.05
without augmentation), respectively. Merged across all models, we get an average MCC of
about 0.05 (0.09 without augmentation), 0.04 (0.07 without augmentation) and 0.02 (0.03
without augmentation).

Two questions arise from all the previous observations. First, can events be predicted
with the slide-through sampling approach at all? Second, why are the results in the balanced
scenario so much better? To answer both questions, we will introduce synthetic data and then
discuss the imbalance problem once more upon revisiting the balanced data.

4.6.4 Synthetic Data

To analyze the impact of our slide-through sampling technique, the idea is to create synthetic
data where we know that events can be predicted from the time series data because we change
the corresponding series in the time window in front of the event. Since the unbalanced
scenario already caused problems when evaluating our single-system models, we thus created
a single synthetic system for this investigation, covering an export period of five days with the
following characteristics and setup:

• Components: The system consists of 50 services, each running on a single host (i.e.,
50 hosts in total). One to three disks and networks can be connected to a host, which
are chosen randomly based on a uniform distribution. The services are the entities where
synthetic events occur.

Evaluation 111

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ACC

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

TPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

PPV

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

FPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

F1

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

MCC

(a) Evaluation metrics for config ST-60-60-augmented (cf. Table 4.11a for details).

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ACC

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

TPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

PPV

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

FPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

F1

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

MCC

(b) Evaluation metrics for config ST-30-30-augmented (cf. Table 4.11b for details).

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ACC

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

TPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

PPV

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

FPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

F1

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

MCC

(c) Evaluation metrics for config ST-30-5-augmented (cf. Table 4.11c for details).

Figure 4.26: Evaluation metrics for the unbalanced test data obtained via different slide-
through sampling configurations with 30min observation windows after running the models (m
= naive multi-system model, mCi = clustered multi-system model,Ms = set of all single-system
models) that were trained with augmented data (cf. Table 4.11 for details).

112 Time-Series-based Event Prediction

E S m mC1 mC2 mC3 mC4 Ms

A
C
C

µ 0.98 1.00 1.00 0.99 0.94 0.98
σ 0.04 0.00 0.00 0.01 0.08 0.05
min 0.78 0.99 0.99 0.97 0.74 0.72
p10 0.98 0.99 0.99 0.98 0.83 0.97
p25 0.99 1.00 1.00 0.98 0.93 0.99
p50 0.99 1.00 1.00 0.99 0.98 0.99
p75 1.00 1.00 1.00 0.99 0.99 1.00
p90 1.00 1.00 1.00 0.99 0.99 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00

T
P
R

µ 0.04 0.06 0.00 0.05 0.09 0.08
σ 0.13 0.20 0.00 0.12 0.18 0.20
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.00 0.00 0.00
p75 0.00 0.03 0.00 0.03 0.03 0.04
p90 0.08 0.09 0.00 0.09 0.26 0.27
max 0.90 0.96 0.00 0.40 0.61 1.00

P
P
V

µ 0.08 0.08 0.00 0.10 0.15 0.09
σ 0.20 0.18 0.00 0.18 0.30 0.17
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.00 0.00 0.00
p75 0.00 0.07 0.00 0.09 0.08 0.12
p90 0.26 0.24 0.00 0.16 0.68 0.26
max 1.00 0.75 0.00 0.62 0.83 0.75

F
P
R

µ 0.00 0.00 0.00 0.00 0.02 0.01
σ 0.01 0.00 0.00 0.00 0.05 0.03
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.00 0.00 0.00
p75 0.00 0.00 0.00 0.00 0.01 0.00
p90 0.00 0.00 0.00 0.00 0.02 0.01
max 0.10 0.01 0.00 0.01 0.18 0.23

F
1

µ 0.04 0.06 0.00 0.04 0.06 0.06
σ 0.13 0.18 0.00 0.07 0.12 0.14
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.00 0.00 0.00
p75 0.00 0.04 0.00 0.05 0.06 0.06
p90 0.09 0.14 0.00 0.10 0.20 0.19
max 0.81 0.84 0.00 0.23 0.39 0.85

M
C
C

µ 0.04 0.06 0.00 0.05 0.06 0.07
σ 0.13 0.18 0.00 0.08 0.14 0.14
min -0.03 0.00 0.00 0.00 -0.03 -0.01
p10 0.00 0.00 0.00 0.00 -0.01 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.00 0.00 0.00
p75 0.00 0.05 0.00 0.06 0.06 0.07
p90 0.13 0.16 0.00 0.16 0.21 0.21
max 0.81 0.84 0.00 0.25 0.46 0.86

(a) Config ST-60-60-augmented statistics.

E S m mC1 mC2 mC3 mC4 Ms

A
C
C

µ 0.99 1.00 1.00 0.99 0.96 0.99
σ 0.03 0.00 0.00 0.00 0.06 0.04
min 0.83 0.99 1.00 0.99 0.77 0.74
p10 0.99 0.99 1.00 0.99 0.91 0.98
p25 0.99 1.00 1.00 0.99 0.96 0.99
p50 1.00 1.00 1.00 0.99 0.99 1.00
p75 1.00 1.00 1.00 1.00 0.99 1.00
p90 1.00 1.00 1.00 1.00 1.00 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00

T
P
R

µ 0.04 0.06 0.00 0.06 0.08 0.08
σ 0.13 0.20 0.00 0.14 0.16 0.19
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.01 0.00 0.00
p75 0.01 0.02 0.00 0.04 0.03 0.05
p90 0.14 0.08 0.00 0.09 0.24 0.34
max 0.91 0.96 0.00 0.47 0.52 1.00

P
P
V

µ 0.05 0.06 0.00 0.05 0.11 0.05
σ 0.13 0.13 0.00 0.06 0.23 0.09
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.05 0.00 0.00
p75 0.01 0.06 0.00 0.09 0.06 0.07
p90 0.19 0.22 0.00 0.10 0.50 0.15
max 0.60 0.45 0.00 0.17 0.67 0.45

F
P
R

µ 0.00 0.00 0.00 0.00 0.02 0.01
σ 0.01 0.00 0.00 0.00 0.05 0.03
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.00 0.00 0.00
p75 0.00 0.00 0.00 0.00 0.00 0.00
p90 0.00 0.00 0.00 0.00 0.02 0.01
max 0.11 0.01 0.00 0.01 0.19 0.23

F
1

µ 0.04 0.05 0.00 0.03 0.05 0.05
σ 0.10 0.13 0.00 0.05 0.09 0.10
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.01 0.00 0.00
p75 0.01 0.02 0.00 0.06 0.03 0.05
p90 0.09 0.13 0.00 0.07 0.13 0.15
max 0.60 0.61 0.00 0.17 0.32 0.62

M
C
C

µ 0.04 0.05 0.00 0.04 0.05 0.05
σ 0.11 0.14 0.00 0.06 0.10 0.11
min -0.01 0.00 0.00 0.00 -0.01 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.02 0.00 0.00
p75 0.01 0.03 0.00 0.06 0.04 0.05
p90 0.10 0.14 0.00 0.07 0.13 0.16
max 0.63 0.65 0.00 0.21 0.36 0.66

(b) Config ST-30-30-augmented statistics.

Evaluation 113

E S m mC1 mC2 mC3 mC4 Ms

A
C
C

µ 1.00 1.00 1.00 1.00 0.98 0.99
σ 0.02 0.01 0.00 0.00 0.05 0.03
min 0.88 0.97 1.00 0.99 0.81 0.76
p10 1.00 1.00 1.00 1.00 0.97 0.99
p25 1.00 1.00 1.00 1.00 0.99 1.00
p50 1.00 1.00 1.00 1.00 1.00 1.00
p75 1.00 1.00 1.00 1.00 1.00 1.00
p90 1.00 1.00 1.00 1.00 1.00 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00

T
P
R

µ 0.04 0.05 0.00 0.09 0.05 0.06
σ 0.13 0.16 0.00 0.21 0.11 0.16
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.00 0.00 0.00
p75 0.00 0.02 0.00 0.07 0.00 0.05
p90 0.10 0.10 0.00 0.12 0.17 0.13
max 0.78 0.78 0.00 0.71 0.37 1.00

P
P
V

µ 0.01 0.03 0.00 0.01 0.02 0.01
σ 0.07 0.07 0.00 0.02 0.04 0.04
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.00 0.00 0.00
p75 0.00 0.00 0.00 0.02 0.00 0.01
p90 0.02 0.06 0.00 0.02 0.05 0.04
max 0.52 0.26 0.00 0.06 0.14 0.30

F
P
R

µ 0.00 0.00 0.00 0.00 0.02 0.01
σ 0.02 0.01 0.00 0.00 0.05 0.03
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.00 0.00 0.00
p75 0.00 0.00 0.00 0.00 0.00 0.00
p90 0.00 0.00 0.00 0.00 0.02 0.01
max 0.11 0.03 0.00 0.01 0.19 0.24

F
1

µ 0.02 0.02 0.00 0.02 0.02 0.01
σ 0.07 0.04 0.00 0.02 0.05 0.03
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.00 0.00 0.00
p75 0.00 0.00 0.00 0.03 0.00 0.01
p90 0.03 0.05 0.00 0.04 0.07 0.05
max 0.49 0.15 0.00 0.07 0.16 0.15

M
C
C

µ 0.02 0.02 0.00 0.02 0.02 0.02
σ 0.07 0.04 0.00 0.04 0.05 0.04
min -0.01 0.00 0.00 0.00 -0.01 -0.01
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.00 0.00 0.00
p75 0.00 0.01 0.00 0.04 0.00 0.02
p90 0.04 0.09 0.00 0.07 0.07 0.06
max 0.49 0.17 0.00 0.12 0.16 0.17

(c) Config ST-30-5-augmented statistics.

Table 4.11: Statistics S of the evaluation metrics E for the unbalanced test data obtained via
different slide-through sampling configurations with 30min observation windows after running
the models (m = naive multi-system model, mCi = clustered multi-system model, Ms =
set of all single-system models) that were trained with augmented data. µ = average, σ =
standard deviation, pi = i% percentile, min = minimum, max = maximum. Bold = best
results, underlined = second best results.

114 Time-Series-based Event Prediction

• Time series metrics: Hosts are assigned the metric H-01 (CPU idle), disks the metric
D-03 (disk available) and networks the metric N-09 (receiving utilization). Analogously
to the real data, all these metrics are percentages and thus their values are within the
interval [0, 100].

• Time series data: The creation of the actual time series data is done via signals, where a
signal determines the shape of the time series that is associated with a specific entity
and metric. Given a set of candidate signals, we then randomly (uniform distribution)
select one for each such entity and metric. Table 4.12 presents an overview of the signals,
including a short description and representative example time series in Figure 4.27. Each
time series has a resolution of one minute.

Metric Signal Description Example

H-01 noise_const Constant signal with noise. Figure 4.27a
noise_sinus Periodic sinus-shaped signal with noise. Figure 4.27b

D-03
noise_trend Negative linear trend signal with noise. Figure 4.27c
curves Random curve-shaped signal. Figure 4.27d
saw Periodic saw-shaped signal. Figure 4.27e

N-09 pulse Signal with random pulses (sharp spikes). Figure 4.27f
noise_rect Periodic rectangle-shaped signal with noise. Figure 4.27g

Table 4.12: The set of candidate signals for each metric, including a reference to an example
time series (cf. Figure 4.27) that was created with the corresponding signal.

• Events: This is the most important part since the events and their effects on the time
series form the basis of the event prediction. Every time an event occurs on a service,
the time series of the connected host, disk and network entities are affected as specified
in Table 4.13. We chose the effects in a way that multiple lengths and offsets are present
in the data, so we can investigate the impact on the observation windows as well as the
different slide-through step sizes and prediction windows. Furthermore, the magnitudes
allow a clear distinction between normal data and event-affected data. Events are
configured to happen on 50% of all services (50 · 50% = 25), and per service, 50 events
occur at random timestamps (uniform distribution). For our five-day export, this means
that we recorded 25 · 50 = 1250 events in total.

With the synthetic system ready to be studied, the next step is to create all necessary
configurations. Again, separate training and testing configurations are required due to the
different sampling techniques, so we applied our day-based cross-validation once more, i.e.,
always four days are used for training and the remaining day for testing. First, we decided to
run a per-event-based testing config to see how well our approach performs theoretically. We
used the same configuration settings as in the unbalanced scenario (cf. Section 4.6.2), minus
all multi-system-related settings, as we only need to evaluate our single synthetic system.
Here, we expect near perfect results since the synthetic events and their effects on the time
series are clearly visible, and thus, our approach should easily be able to distinguish between
negative and positive per-event samples. Table 4.14 lists the evaluation metrics after running
the random forest classifiers (100 trees, no depth limit).

Clearly, the results are indeed perfect or very close to perfect. In fact, none of the
observation window runs predicted even a single false positive, and the maximum number of
false negatives was four for the 60min observation window configuration. Moreover, similarly

Evaluation 115

Metric Effect Description Example

H-01 peak A rectangular peak of either length 10 and
magnitude 100 with offset 0, or length 15 and
magnitude 20 with offset 10 (chosen randomly based
on a uniform distribution).

Figure 4.27h

D-03 warp A signal change of length 30 based on magnitude
warping (cf. Section 4.3.2.4) with 10 knots and a
standard deviation (magnitude) of 3 with offset 0 or
offset 15 (chosen randomly based on a uniform
distribution).

Figure 4.27i

N-09 peak A rectangular peak of length 5 and magnitude 100
with offset 0.

Figure 4.27j

Table 4.13: Signal change effects for each metric in case of an event occurrence, including a
reference to an example of events affecting a concrete time series. The offset describes the
time span between an event occurrence and the end of the “effect impact window”, which has a
size of length. For example, offset 10 and length 15 mean that we go back 10 minutes from the
event timestamp, and then the preceding 15 minutes (effect impact window) of the affected
time series data are altered. The magnitude indicates how much the time series is changed.

E 5min 10min 15min 30min 45min 60min

ACC 1.0000 1.0000 0.9996 0.9996 0.9992 0.9984
TPR 1.0000 1.0000 0.9992 0.9992 0.9984 0.9968
PPV 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
FPR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
F1 1.0000 1.0000 0.9996 0.9996 0.9992 0.9984
MCC 1.0000 1.0000 0.9992 0.9992 0.9984 0.9968

Table 4.14: Evaluation metrics E of the balanced per-event testing data, grouped by the
observation windows.

116 Time-Series-based Event Prediction

00 03 06 09 12 15 18 21 00
0

25

50

75

100

(a) Example of signal noise_const.

00 03 06 09 12 15 18 21 00
0

25

50

75

100

(b) Example of signal noise_sinus.

00 03 06 09 12 15 18 21 00
0

25

50

75

100

(c) Example of signal noise_trend.

00 03 06 09 12 15 18 21 00
0

25

50

75

100

(d) Example of signal curves.

00 03 06 09 12 15 18 21 00
0

25

50

75

100

(e) Example of signal saw.

00 03 06 09 12 15 18 21 00
0

25

50

75

100

(f) Example of signal pulse.

00 03 06 09 12 15 18 21 00
0

25

50

75

100

(g) Example of signal noise_rect.

00 03 06 09 12 15 18 21 00
0

25

50

75

100

(h) Example of effect peak, where multiple events
occurred (affected metric signal: noise_sinus).

00 03 06 09 12 15 18 21 00
0

25

50

75

100

(i) Example of effect warp, where multiple events
occurred (affected metric signal: saw).

00 03 06 09 12 15 18 21 00
0

25

50

75

100

(j) Example of effect peak, where multiple events
occurred (affected metric signal: noise_rect).

Figure 4.27: Examples of time series that were created with the corresponding signals as
listed in Table 4.12 (4.27a to 4.27g), and examples showing how events influence the time
series with their effects (4.27h to 4.27j). The x-axis indicates the hours of the day in 24h
format, e.g., 15 means 15:00 (3pm).

Evaluation 117

to the real-world results, we can see that the different observation windows apparently did not
influence the prediction quality, which indicates that all window sizes were able to capture
our synthetic event effects. Naturally, other synthetic data could yield a different outcome,
but this would require a much more in-depth evaluation. However, this is not the focus of
this section, as we actually want to investigate how the slide-through sampling performs in a
known and controlled environment.

The main analysis is then achieved with various slide-through sampling configurations. To
get a good overview, we decided to evaluate the full cross product of step sizes and prediction
windows over the following 13 options: {1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60}. This means
that we create 13 · 13 = 169 slide-through configurations, ranging from ST-1-118 to ST-60-60
with all possible combinations. Together with our six observation window sizes, we thus have
to run 6 · 169 = 1014 individual configurations, all with a five-day cross-validation. Figure 4.28
shows the Matthews correlation coefficient (MCC) values that were achieved when running all
these testing configurations, grouped by the observation windows. The results for the other
evaluation metrics can be found in the appendix (cf. Section C.2 on p. 223).

Before going into detail, it must be noted that we also tested configurations that potentially
do not capture all events or count the same event multiple times. The former is the case
when the prediction window size is smaller than the step size (problem already introduced
in Section 4.6.3). The latter occurs if it is the other way around, i.e., the step size is smaller
than the prediction window size, which leads to parts of the prediction window data being
visited multiple times. However, as we can see in the MCC plots, the step size parameter
evidently does not really impact the results. The prediction window size, on the other hand,
is much more important, as are the observation windows. In our synthetic scenario, using
5min prediction windows yielded the best evaluation metric scores, and the 5min observation
windows (followed by 15min) outperformed the other options. Unfortunately, it is now apparent
that the slide-through sampling approach is not ideal for the task of event prediction. Given
that we started from a near perfect prediction in the per-event case, we now dropped down
to an MCC maximum of about 0.65, a loss of a formidable amount of 0.35. While an MCC
of 0.65 is not too bad in its own right, we have to remember that the raw testing data is
not different than the training data, i.e., the time series and events, including their effects,
are the same. This means that we have a limited predictive capability despite the fact that
the synthetic data should be (almost) perfectly predictable, as demonstrated in the per-event
testing configurations.

We also discussed the potential problem of having an underrepresented negative class
distribution in the training data, where oversampling techniques such as data augmentation can
help. Since we have considerably more events that occur in our synthetic scenario (1250 events
in five days in a single system), this issue is much less relevant, as chances are high that selecting
a negative sample for every positive sample already results in a sufficient approximation of the
negative class distribution. Nevertheless, we decided to run the 1014 testing configurations two
more times, where the random forest models were trained with augmented data, in the first run
with five additional augmentations and in the second run with ten additional augmentations.
As augmentation function, we used time warping once more with the same parameters as
in the real-world scenario (three knots, standard deviation of 0.05). The MCC results for
the 5min observation windows in comparison to the non-augmented data are presented in
Figure 4.29. The results for the remaining observation windows as well as all other evaluation
metrics can be found in the appendix (cf. Section C.2 on p. 223).

18As introduced earlier, ST-X-Y represents a slide-through (ST) sampling configuration with a step size of X
and a prediction window size of Y.

118 Time-Series-based Event Prediction

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(a) MCC for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(b) MCC for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(c) MCC for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(d) MCC for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(e) MCC for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(f) MCC for the 60min observation windows.

Figure 4.28: MCC for different observation window sizes after running slide-through sampling
testing configurations with varying step sizes and prediction window sizes. Yellow tones indicate
better values, purple worse values.

Evaluation 119

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(a) MCC for the 5min observation windows when trained with no augmentation (left) vs. 5-times
augmented data (right).

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(b) MCC for the 5min observation windows when trained with no augmentation (left) vs. 10-times
augmented data (right).

Figure 4.29: MCC for the 5min observation windows after running slide-through sampling
testing configurations with varying step sizes and prediction window sizes, achieved with
models that were trained with 5-times and 10-times augmented data in comparison to the
non-augmented data. Yellow tones indicate better values, purple worse values.

120 Time-Series-based Event Prediction

As expected, augmenting the data did not significantly change the prediction performance,
indicating that the negative samples in the training data were already sufficient in the
non-augmented case. To double check, we also evaluated the per-event sampling testing
configurations, which resulted in the same (near perfect) predictions as well.

4.6.5 Balanced Scenario Revisited

We now know that the slide-through sampling approach is not optimal, but the results obtained
in the unbalanced scenario are significantly worse than those in the balanced scenario. Given
the initial, balanced results, we would have expected at least slightly better unbalanced
results, even when accounting for the approach’s drawbacks. Recall that we had an MCC of
roughly 0.75 in the balanced scenario compared to 0.03 up to 0.09 in the unbalanced scenario
(depending on the concrete slide-through config). If we are conservative and round these values
to 0.7 and 0.05, then this leads to a drop of 0.7− 0.05 = 0.65. From the synthetic evaluation,
we can infer that the suboptimal slide-through sampling costs us at least 0.35, so let us again
assume a more conservative value of 0.4. We subtract this “expected loss” from the original 0.7,
which yields 0.7− 0.4 = 0.3 and thus a smaller drop of 0.3− 0.05 = 0.25. However, an MCC of
0.3 is still much better than our actually obtained 0.05, or, alternatively, there is still a drop
of 0.25. Considering that augmenting the data resulted in even worse evaluation metrics, it
might be that in the original, balanced scenario (balanced per-event sampling), we just were
rather “lucky” with the randomly sampled data. Specifically, a possibility could have been
that our random negative samples not only did not approximate the negative data distribution
very well (cf. Figure 4.25), but also could, coincidentally, be separated/distinguished from
the event samples comparatively easily. To check whether this was indeed the case, we
decided to run the same 18-day cross-validation as introduced earlier,19 but this time, with
both the training as well as the testing configurations set to per-event sampling. As the
observation window size, we used 30 minutes. We refer to this configuration as PE (per-event
sampling). Furthermore, we performed another evaluation where we ran the same training
and testing configurations but with augmented training data. We refer to this configuration as
PE-augmented (per-event sampling, augmented training data). This second experiment should
reveal by how far the approximation of the negative sampling distribution was off. Figure 4.30
shows the cross-validated results of the two configs PE and PE-augmented with details listed
in Table 4.15.

From the outcome of the first config (PE), we can clearly see that the new results are worse
compared to our initial results. With the exception of the false positive rate (FPR) which
increased only marginally, all metrics dropped by roughly between 0.1 and 0.3. When merged
across all models, the new average MCC is around 0.4, which is about 0.3 lower than before
(0.7), indicating that we were indeed “lucky” with our initial random sampling that led to
quite promising first results. We now also get a much improved MCC estimation when taking
the “expected loss” from the slide-through sampling approach into account. Here, we have a
per-event MCC of about 0.4, and if we subtract this “expected loss” (based on the synthetic
evaluation, we again assume the same conservative value of 0.4 from above), we then get an
MCC estimation of 0.4− 0.4 = 0, which is much more in line with our actually obtained 0.05.

Finally, when analyzing the results of the second config (PE-augmented), we can conclude
two things. First, as expected due to the enormous class imbalance, our initial approximation
of the negative data distribution was indeed lacking, as the evaluation metrics changed
significantly when augmenting the training data. Second, and more importantly, it seems that

19Since we use the day-based cross-validation, we again discard the last two days of the export (the two least
complete days) to avoid “empty” days, i.e., days where no or almost no events occurred.

Evaluation 121

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ACC

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

TPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

PPV

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

FPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

F1

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

MCC

(a) Evaluation metrics for config PE (cf. Table 4.15a for details).

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

ACC

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

TPR

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

PPV

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

FPR
m

m
C 1

m
C 2

m
C 3

m
C 4 M
s

F1

m
m

C 1
m

C 2
m

C 3
m

C 4 M
s

MCC

(b) Evaluation metrics for config PE-augmented (cf. Table 4.15b for details).

Figure 4.30: Evaluation metrics for the balanced test data obtained via different per-event
sampling configurations with 30min observation windows after running the models (m =
naive multi-system model, mCi = clustered multi-system model, Ms = set of all single-system
models). Detailed information is available in Table 4.15.

122 Time-Series-based Event Prediction

E S m mC1 mC2 mC3 mC4 Ms

A
C
C

µ 0.69 0.72 0.68 0.75 0.67 0.74
σ 0.13 0.12 0.09 0.11 0.17 0.15
min 0.27 0.53 0.52 0.62 0.35 0.47
p10 0.54 0.61 0.60 0.65 0.49 0.54
p25 0.61 0.64 0.64 0.67 0.57 0.63
p50 0.67 0.67 0.68 0.73 0.63 0.74
p75 0.79 0.79 0.72 0.83 0.80 0.87
p90 0.87 0.88 0.76 0.87 0.91 0.92
max 0.99 0.99 0.83 0.97 0.93 1.00

T
P
R

µ 0.56 0.56 0.49 0.66 0.59 0.62
σ 0.23 0.22 0.14 0.19 0.24 0.26
min 0.13 0.12 0.32 0.34 0.17 0.02
p10 0.23 0.33 0.36 0.49 0.28 0.24
p25 0.38 0.41 0.40 0.53 0.40 0.40
p50 0.53 0.54 0.46 0.66 0.60 0.65
p75 0.77 0.69 0.57 0.81 0.78 0.86
p90 0.87 0.88 0.62 0.84 0.86 0.91
max 0.99 1.00 0.77 0.96 0.92 1.00

P
P
V

µ 0.70 0.73 0.70 0.75 0.72 0.76
σ 0.18 0.18 0.15 0.21 0.18 0.18
min 0.22 0.32 0.53 0.37 0.33 0.34
p10 0.46 0.48 0.53 0.46 0.51 0.48
p25 0.62 0.64 0.56 0.63 0.66 0.64
p50 0.72 0.74 0.66 0.83 0.74 0.80
p75 0.85 0.85 0.83 0.89 0.84 0.91
p90 0.90 0.93 0.91 0.91 0.93 0.95
max 0.99 1.00 0.91 0.98 0.97 1.00

F
P
R

µ 0.19 0.16 0.17 0.16 0.24 0.15
σ 0.11 0.09 0.10 0.10 0.13 0.11
min 0.01 0.00 0.04 0.02 0.02 0.00
p10 0.08 0.05 0.06 0.08 0.08 0.04
p25 0.12 0.10 0.09 0.11 0.14 0.07
p50 0.17 0.17 0.18 0.15 0.22 0.13
p75 0.23 0.19 0.25 0.19 0.37 0.22
p90 0.34 0.25 0.29 0.29 0.38 0.26
max 0.55 0.36 0.32 0.36 0.42 0.54

F
1

µ 0.60 0.63 0.57 0.69 0.63 0.66
σ 0.20 0.20 0.12 0.18 0.21 0.24
min 0.16 0.17 0.40 0.39 0.23 0.04
p10 0.33 0.43 0.46 0.44 0.38 0.34
p25 0.47 0.48 0.50 0.61 0.50 0.45
p50 0.58 0.63 0.54 0.64 0.64 0.71
p75 0.77 0.77 0.60 0.84 0.79 0.85
p90 0.87 0.87 0.72 0.86 0.90 0.91
max 0.99 0.99 0.81 0.97 0.93 1.00

M
C
C

µ 0.38 0.42 0.34 0.50 0.35 0.48
σ 0.27 0.26 0.17 0.24 0.34 0.30
min -0.45 -0.01 0.04 0.17 -0.28 -0.06
p10 0.09 0.08 0.21 0.18 0.04 0.07
p25 0.16 0.25 0.25 0.36 0.16 0.22
p50 0.35 0.37 0.32 0.45 0.26 0.51
p75 0.59 0.56 0.41 0.67 0.59 0.71
p90 0.75 0.76 0.56 0.73 0.83 0.84
max 0.98 0.99 0.65 0.95 0.86 1.00

(a) Config PE statistics.

E S m mC1 mC2 mC3 mC4 Ms

A
C
C

µ 0.55 0.58 0.55 0.58 0.52 0.57
σ 0.11 0.12 0.08 0.13 0.12 0.12
min 0.35 0.40 0.48 0.39 0.36 0.34
p10 0.45 0.48 0.49 0.45 0.41 0.47
p25 0.49 0.50 0.49 0.48 0.45 0.49
p50 0.52 0.55 0.53 0.57 0.49 0.54
p75 0.62 0.65 0.57 0.70 0.60 0.65
p90 0.70 0.69 0.67 0.73 0.63 0.72
max 0.95 0.98 0.71 0.75 0.82 1.00

T
P
R

µ 0.05 0.08 0.00 0.09 0.09 0.10
σ 0.15 0.21 0.00 0.16 0.18 0.20
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.01 0.00 0.00
p75 0.02 0.02 0.00 0.07 0.05 0.07
p90 0.18 0.26 0.00 0.26 0.27 0.33
max 0.92 0.97 0.00 0.51 0.61 1.00

P
P
V

µ 0.27 0.39 0.00 0.63 0.37 0.40
σ 0.43 0.50 0.00 0.50 0.49 0.48
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 1.00 0.00 0.00
p75 0.75 1.00 0.00 1.00 0.97 1.00
p90 1.00 1.00 0.00 1.00 1.00 1.00
max 1.00 1.00 0.00 1.00 1.00 1.00

F
P
R

µ 0.00 0.00 0.00 0.00 0.00 0.01
σ 0.00 0.00 0.00 0.00 0.01 0.02
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.00 0.00 0.00
p75 0.00 0.00 0.00 0.00 0.00 0.00
p90 0.00 0.00 0.00 0.00 0.01 0.01
max 0.02 0.00 0.00 0.01 0.03 0.14

F
1

µ 0.08 0.11 0.00 0.13 0.13 0.13
σ 0.18 0.24 0.00 0.22 0.24 0.24
min 0.00 0.00 0.00 0.00 0.00 0.00
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.02 0.00 0.00
p75 0.04 0.05 0.00 0.13 0.10 0.13
p90 0.31 0.42 0.00 0.41 0.42 0.50
max 0.96 0.98 0.00 0.67 0.76 1.00

M
C
C

µ 0.08 0.12 0.00 0.14 0.11 0.12
σ 0.17 0.23 0.00 0.19 0.21 0.23
min -0.07 0.00 0.00 0.00 -0.07 -0.14
p10 0.00 0.00 0.00 0.00 0.00 0.00
p25 0.00 0.00 0.00 0.00 0.00 0.00
p50 0.00 0.00 0.00 0.08 0.00 0.00
p75 0.06 0.10 0.00 0.17 0.13 0.19
p90 0.32 0.39 0.00 0.38 0.35 0.41
max 0.91 0.96 0.00 0.57 0.68 1.00

(b) Config PE-augmented statistics.

Table 4.15: Statistics S of the evaluation metrics E for the balanced test data obtained via
different per-event sampling configurations with 30min observation windows after running the
models (m = naive multi-system model, mCi = clustered multi-system model, Ms = set of
all single-system models). µ = average, σ = standard deviation, pi = i% percentile, min =
minimum, max = maximum. Bold = best results, underlined = second best results.

Discussion 123

if we do have a better approximation, the negative and positive samples can no longer be
successfully separated/distinguished. With the average MCC dropping to 0.1 (merged across
all models), even per-event sampling, which does not have the drawbacks of the slide-through
sampling approach, appears to bear no fruit. Ultimately, this might indicate that our initial
hypothesis that we can predict service slowdown events based on infrastructure monitoring
time series might be false, i.e., our multi-system monitoring data might just not contain enough
information required to predict these events. However, much more testing would be necessary
to confirm this statement, preferably also including entirely different approaches (e.g., anomaly
detection) to cancel out any weaknesses and drawbacks that a classical supervised prediction
approach such as ours brings along.

4.7 Discussion

This section covers a discussion of the results from both the real-world and synthetic scenarios.
We also talk about our multi-system event prediction approach and present insights and
lessons learned throughout the course of this project, including the encountered problems and
potential threats to validity.

4.7.1 Lessons Learned

In the following, we present various lessons that we learned and general insights we gained
when applying our approach on both the industrial, real-world data as well as on the synthetic
dataset.

Tool support greatly facilitates the event prediction pipeline. While this might be obvious,
we would still like to explicitly mention the immense workload support that our preprocessing
framework enabled. Having simple configurations that are easy to change and adapt to the
respective needs (e.g., different sampling techniques, balancing settings, time series data
processing, etc.) drastically reduces the amount of time otherwise required for countless
repetitive tasks. This is especially true for our application area, where we had to create
numerous data exports, both for the real-world data and for the synthetic data.

The configuration search space is huge and can incur high computational costs. This is
true for the configs of our preprocessing framework, the post-processing settings and the
hyperparameter options of the selected machine learning models. Making sensible choices is
essential because running every possible combination is computationally infeasible. Even when
carefully picking the configuration settings, this can still quickly lead to many evaluations and
potentially long computational run times, especially when dealing with large amounts of data
such as our multi-system infrastructure monitoring dataset.

Slide-through sampling incurs problems for supervised learning approaches that limit the
predictive capability. Our slide-through sampling approach and, in turn, our event prediction
unfortunately suffer from some inherent drawbacks that cannot easily be fixed (difficult choice
of parameters: overlapping observation windows, dropping events or counting multiples if
the step size and prediction window size do not match). On further reflection, a classical
supervised prediction approach might just not be the best choice when trying to identify and
predict rare events in a multi-system environment. Perhaps anomaly detection techniques
based on time series analysis [99, 101] might be better suited, which could be an interesting
part of future research.

Initial results might be misleading. A thorough initial analysis is essential, since otherwise,
one might be tempted to draw conclusion too quickly. Some might view this as self-evident,

124 Time-Series-based Event Prediction

but even in rigorous environments, mistakes can happen and sometimes potential issues can
be overlooked, which is why we still want to mention it here. In our case, the first prediction
results looked quite promising, so we directly continued with the slide-through sampling
approach without taking a closer look at these results. While the subsequent evaluations
were interesting and insightful, we nevertheless should have done more testing beforehand,
which would have explained some things earlier and saved us a lot of unnecessary work and
frustration, although the proverb “hindsight is easier than foresight” definitely applies here.

4.7.2 Problems and Limitations

The preprocessing framework only supports a limited number of preprocessing options. However,
we carefully integrated all available options to cover a wide range of functionality, which should
suffice for the majority of things the users want to accomplish. Moreover, new configuration
settings that are required to fit more specific needs can easily be integrated. Our focus was
on time-series-based event prediction using sampling techniques, so if the users’ goals do not
match, e.g., just extracting data from the time series without any information about events,
our framework cannot directly be applied since changes and adaptations are necessary.

The next potential problem is the fact that our data export put some strain on the
infrastructure of the different software systems, which could have caused more service events.
However, even if we were responsible for some additional events, the hypothesis that it is
reflected in the infrastructure time series still holds, maybe even more so since those events
were most likely caused due to our own increased load.

As already mentioned in the previous section, the number of configuration settings to
evaluate can be a hard limit. One major factor in this regard are the available hardware
resources we had at our disposal for running all tests on the industrial, real-world data.20 All
exports, preprocessing, post-processing and model training were done on a mobile workstation
with an Intel Core i7-7820HQ 2.9GHz processor with four physical cores and eight threads,
32GB of main memory and a 1TB SSD (solid-state-drive) for storage. While this might not
sound too bad at first, it must be noted that we had to process huge amounts of data, which
quickly caused problems such as too little free disk space,21 out of memory errors22 or very
long running processes.23 Thus, we decided to run only a limited number of carefully chosen
configurations, since we simply could not test more due to resource and time constraints.

All model training in the evaluation section was conducted with a lead time of zero, meaning
that we simply wanted to predict whether an event occurred right after the observation window.
Of course, in a production environment, we would be much more interested in lead times
greater than zero, so system administrators could actually take preventative actions before
an event occurs. Due to the rather poor results, the problems with the approach itself and
limited hardware as well as time resources, we decided not to pursue such configurations any
further, so this remains an open challenge to be studied in future work.

20Due to confidentiality reasons, we could not use any additional resources.
21The compressed InfluxDB time series database alone takes up over 550GB of space, next to all other

necessary applications and data (operating system, various programs and tools, user data). Extracting data
with our preprocessing configs, notably slide-through and augmented datasets, therefore often resulted in
running out of disk space. A solution to this recurring problem was only to delete (parts of) the extracted data
after a successful evaluation. Naturally, in case of any changes to our evaluation pipeline, everything had to be
extracted and run again, which was rather tiresome and tedious, especially considering the long run times.

22For the augmented data with hundreds of millions of individual values, we even had to switch to a 32bit
floating point number representation in order to successfully execute our evaluation pipeline.

23Exporting data with the preprocessing framework often took hours, and evaluating the slide-through
sampling configurations with augmented training data even ran for several days.

Discussion 125

Lastly, a major problem was also the quality and the amount of the available data. Many
time series had missing data and many systems had to be excluded due to too few events,
which severely limited the actually usable data. It is difficult to say whether more data (e.g.,
several months), including more service slowdown events and ideally less missing time series
values, would have impacted the outcome of the study, but it would at least have increased
our confidence in our findings.

4.7.3 Threats to Validity

As already mentioned several times, the slide-through sampling approach is not ideal for
the event prediction application. However, the evaluations in the synthetic scenario show
that some configurations are much better than others, so the configurations we chose in the
real-world scenario might potentially not be the best, i.e., we might have missed some which
could have yielded better results. This threat also extends to all post-processing settings and
to the selected supervised machine learning models. Regarding the latter, in our research
group, Kahlhofer [90] measured the prediction performance using neural networks and achieved
similar results. As pointed out in the previous section, all this would unfortunately require
much more time and thus remains an open issue to be investigated in future work.

Despite the problems that the slide-through sampling introduces, it is the only sensible way
of extracting data in a real-world environment because we do not know the events in advance.
Hence, we cannot apply per-event sampling, even if we acknowledged the class imbalance by
setting an appropriate sampling ratio. This inherent issue strengthens the point we discussed
in the lessons learned, where we came to the conclusion that different approaches (e.g., anomaly
detection) could be more suitable compared to the classical supervised prediction approach.
Note that this problem is still specific to the data structure we analyzed. If, for instance,
events are not based on a single point in time but are rather defined over a time period, the
entire situation changes and everything must be reevaluated.

Independent of the chosen approach, some issues might arise from the infrastructure
monitoring data itself. One question is whether the resolution of one minute is enough or too
coarse. The initial hypothesis was that the service events could be caused by an “accumulative”
effect (build-up), e.g., the free disk space slowly decreases or the memory consumption increases,
causes garbage collections and thus high CPU load, which then ultimately triggers an event.
Such a step-wise accumulation is very likely to occur over an extended period of time rather
than spontaneously. Moreover, the events that are created are based on a heuristic that takes
historic data in minute resolution into account as well, so we are confident that the resolution
of one minute is sufficient. However, there is still the ultimate issue that it is unclear whether
the service slowdowns can even be explained with the available time series data, as the ground
truth is unknown (all the experiments are based on the initial hypothesis). If the data does not
contain such information, there simply are no correct configurations, post-processing options,
machine learning models or approaches in general because we cannot learn from something
that is not there in the first place.

There are also some potential threats concerning our synthetic data. First, the best step
size and prediction window size might only count for this dataset, and these options might also
be a lucky coincident because they possibly simply matched the event distance most closely.
For instance, assume that events started at timestamp 0 and happened every 40 minutes, then
slide-through sampling configurations such as ST-40-Y (replace Y with any prediction window
size) will most likely perform very well since they exactly match the event occurrences, which
is comparable to per-event sampling. However, events are generated randomly based on a
uniform distribution, which mitigates this problem since it is highly improbable that multiple

126 Time-Series-based Event Prediction

events occur exactly the same time period (in the example, 40min) apart. We also applied
cross-validation to make full use of all events in the synthetic data, reducing the probability of
such coincidences even further. A second point of discussion is the interpretation of the results
achieved with unequal step sizes and prediction window sizes, which might potentially impact
the evaluation metrics in a misleading way. In case the step size is larger than the prediction
window size, we miss/skip events. If we skip too many, then only very few remain, where a
single correct or incorrect prediction changes some metrics significantly. For example, assume
the extreme case that we only observe a single event. If we classify this sample correctly
as positive, then the true positive rate (TPR) is at 100%, whereas classifying the sample
as negative results in a TPR of 0%. Albeit not wrong, one must take this situation into
consideration and not blindly choose the configuration settings that achieved the best TPR.
The same is true when inspecting the results obtained with configurations where the step size
is smaller than the prediction window size. Here, we observe more events than there actually
are, since the prediction windows overlap and we thus create more positive samples if an event
occurred within this overlap. Again, this has an impact on the class imbalance, and we have to
be careful not to draw conclusions too prematurely. If we keep both these situations in mind,
inspect all the data and use a robust evaluation metric such as the Matthews Correlation
Coefficient (MCC) as a first guidance, we can start interpreting the results.

The last thing to discuss are the external threats to validity. We only used time series
and special/specific events from our industry partner (service events are created with custom
heuristics), so we cannot really generalize to other settings and domains. The preprocessing
framework as well as the event prediction approach, however, are of general value and thus
could be applied to other domains where a topology, events and time series are available.
However, different results and therefore different conclusions are to be expected since the
outcome is very data dependent.

4.8 Related Work

This section analyzes related work and covers topics ranging from time series processing, to
entire frameworks and tool pipelines, up to classification, detection and prediction systems
which are based on logs or monitoring data. This also includes alternative approaches that
could be interesting to apply in our multi-system environment as well.

4.8.1 Time Series Processing

While research on data processing in preparation for machine learning reaches back quite
a bit in time [19], (big data) time series processing in particular has become more popular
in recent years [60, 100, 66, 196]. There exists some work that does not rely heavily on
preprocessing and feature engineering [91], but in general, approaches that incorporate some
form of processing are widely applied. In the area of data mining, Wilson [193] listed three
main processing techniques that can be used to transform and reduce the dimensionality of
the raw time series data, since raw data is often not directly applicable. The techniques
are piecewise approximation, identification of important points and symbolic representation.
In [125], the authors investigated the classification performance of a neural network model
when trained with a feature-based time series representation, which included the average,
standard deviation, skewness and kurtosis (we go into much more detail on this topic in
Chapter 5). They achieved better results with the processed time series variants. Jansen
et al. [86] predicted machine failures based on multivariate time series, for which they created
a data preprocessing pipeline covering data selection, cleaning, sampling, standardization and

Related Work 127

more. We analyzed all this related work and extracted essential components which we then
integrated into our own preprocessing framework, making adaptations where necessary to fit
more special requirements imposed by our multi-system environment.

4.8.2 Time-Series-based Frameworks

Of course, we are not the first to present work on entire frameworks that incorporate time series
processing. Many sophisticated frameworks have been proposed in literature, some focusing
more on the data processing part itself, while others value time series handling or visualizations,
or present an entire workflow pipeline. However, to the best of our knowledge, none have yet
considered a multi-system environment, especially in combination with a dynamic topology
with connected components and multivariate time series. Similar to their earlier work on a
system for interactive design and control of a time series preprocessing pipeline [16], Bernard
et al. [15] introduced an iterative segmentation workflow that includes an immediate visual
analysis, so users can directly see how different segmentation parameters affect the time
series processing results and make changes accordingly. The segmentation pipeline covers
various steps such as data cleaning, sampling and normalization. The visual-analytics-guided
framework TimeCleanser [71] was primarily designed for cleaning time series data, where the
authors included 39 time-induced data quality problems derived from related work. Users
can see via visual guidance how different processing techniques handle such problems, and
they can also directly apply appropriate fixes. In [168], a data preprocessing framework
for addressing missing values, data cleaning and data reduction with the goal of improving
the prediction accuracy for datasets with missing values was proposed. They evaluated
their approach with data from the area of power grid systems and concluded that using the
framework improved the precision. Frenzel et al. [57] created a web-interface-based framework
for handling time series data, including storage, various preprocessing options, an analysis step
and visualizations. There is also one work that includes the system architecture in contrast
to most other approaches that view a system as a whole or do not connect its individual
components: Hora [135] is an online failure prediction framework which combines a failure
propagation model (taking the system components and their connections into account) with
individual component failure predictors that are based on various internal system metrics (e.g.,
CPU or memory measurements).

4.8.3 More General Frameworks

Of course, time series are not the only type of data that are of interest to researchers. Many
more general frameworks exist that support other data kinds as well and provide other or
extended processing support, some of which could also prove useful for our preprocessing
framework in future work. For instance, Corrales et al. [38] presented DQF4CT as a conceptual
data quality framework in the area of machine learning classification. Together with an
ontology that helps users to select correct data cleaning techniques, the framework provides
a guidance for preprocessing data to address quality issues. In [120], the authors proposed
YALE, a large and flexible framework for various data mining tasks, which is based on so-called
operators that can be arbitrarily combined into operator trees. An operator is a function that
takes defined inputs, performs some actions and returns outputs. The authors provided several
predefined operators that correspond to certain parts of the processing pipeline, including
parsing different data sources, providing several machine learning algorithms, and offering
multiple visualization and preprocessing options (e.g., discretization, filtering, normalization,
sampling or dimensionality reduction). In [118], Merriënboer et al. introduced a two-part
framework for preprocessing data and then training neural networks. The first part is called

128 Time-Series-based Event Prediction

Blocks and provides many preprocessing options such as standardization, data traversal and
more data-specific techniques (e.g., image cropping or n-grams for texts). The second part is
called Fuel, which uses Blocks and trains neural networks on the processed data, including
visualizations and serialization of the results afterwards. TFX [12] is a TensorFlow-based [1]
implementation of a general-purpose machine learning platform that covers many steps and
components of a machine learning pipeline. The framework includes data analysis (statistical
overview of the data), transformations (feature mappings), validation (detecting anomalies
based on expected data that is defined via a so-called schema), model training, model evaluation
and model validation (with automatic comparison of current results to previous model results),
and serving (guidance how to deploy everything to production). A major focus was put on
avoiding glue code, ensuring that the data is correctly applied to the machine learning phase
(e.g., same processing steps for training and testing), and enabling an iterative and continuous
workflow with unified configurations.

4.8.4 Log-Data-based Approaches

Continuing with the field of classification, detection and prediction, we start by presenting
related work that utilizes log data. Fronza et al. [58] used log messages (must include
the performed operation, the severity and the timestamp) in conjunction with Random
Indexing [148] for text processing to train a support vector machine for failure prediction.
They evaluated three months’ worth of log data from six different subsystems of an anonymous
company, preprocessed their data (duplicate removal, dropping entries with missing data) and
tested four support vector machine models: three different kernels and a weighted version to
handle data imbalance. The latter performed better than the rest in terms of true positive
rate (TPR). In [134], the authors presented a framework for system event classification and
prediction based on preprocessed event logs in a large-scale system. The first step was to
process the logs, which included normalization, filtering and the manual labeling of the events
by a system administrator. In the prediction part, they used sequences of log messages with the
goal to find patterns that can lead to events within a specified prediction window. The authors
evaluated their approach on log data from a supercomputer with various machine learning
models as well as different prediction parameter settings (e.g., number of past observations,
lead time or prediction window size), and they reported promising first results. Another failure
prediction based on events in logs was presented in [150]. Here, the authors focused on log
preprocessing to increase the prediction accuracy. They accomplished this goal by extracting
event sequences (time conversions, discarding irrelevant information, assigning identifiers,
and specifying the lead time as well as the data window size) with grouping/clustering and
filtering those sequences afterwards. In the evaluation of a telecommunication system, they
obtained 45% better results with the grouping and filtering approach. Yu et al. [199] compared
the predictive capability of two online failure prediction approaches: period-based (input are
n consecutive intervals of log messages) and event-driven (input are n events). The recorded log
data included the identifier, the message, the affected component, the error code and severity,
and a timestamp. Using a Bayesian-based predictor, they tested the two approaches on data
from a high performance computing (HPC) setup, and they concluded that the period-based
approach was more suitable for long-term predictions (hours up to days), whereas the results of
the event-based approach indicated short-term predictability (minutes). The goal in [43] was
to predict system node failures with short lead times (minutes), again in an HPC environment.
The authors used unmodified log files to train a long short-term memory (LSTM) neural
network, which yielded promising results. Astekin et al. [7] presented a log-based framework for
unsupervised anomaly detection. The log data (timestamp, thread identifier, severity, message,
etc.) is first transformed into a set of selected features, which are then normalized and put

Related Work 129

into an unsupervised machine learning model, which acts as the anomaly detector. The last
step does not require any preceding training, as the normal system behavior is automatically
extracted based on the dominant components in the data (can “explain” the majority of the
data), where outliers can then be considered as anomalous. In the study, the authors opted
for principal component analysis (PCA) as the anomaly detector, and when applied to the
manually labeled dataset introduced in [195], they obtained good results with precision and
recall of about 97.6% and 66.5%, respectively.

4.8.5 Monitoring-Data-based Approaches

Similar to our setup, the approaches listed here operate on monitoring data to predict or
detect different kinds of data in software systems. However, it must be noted that despite
the similarity in the utilized data (monitoring metrics), the tasks and, more importantly, the
events of interest are often significantly different, which emphasizes that the results can be
very dependent on the concrete application domain. Williams et al. [190] developed a tool
called Tiresias, a combination of a threshold-based anomaly detection and failure prediction
heuristics. As data, the authors used low-level performance metrics such as CPU usage, free
memory, context switches or sent packets over networks, which are collected at every node of
the system. Before failures can be predicted, their approach requires fault-free runs of the
system under test in order to model the normal behavior. In the evaluation, a system with
three nodes was tested with manually injected failures (e.g., memory leaks or packet losses),
which Tiresias was able to identify with false positive rates (FPR) as low as 2.5%. In [4], the
authors inspected program crash faults. They introduced forced crashes by thread exhaustion
(increasing the number of threads) and memory exhaustion (allocating more memory), and
then extracted feature vectors from a set of metrics such as CPU workload, response time,
disk usage or number of threads. Various machine learning techniques were applied to identify
the system state (green = OK, orange = 10min before crash, red = 5min before crash) of a
fixed test system with three servers. Bodik et al. [20] used performance metrics of servers
of a data center for performance crisis identification. Several metrics (e.g., CPU load) are
collected in epochs of x minutes, which are then summarized via quantiles and classified
as cold, normal or hot based on a comparison to past, normal data. The results are then
called fingerprints, optionally with reduced metrics due to a feature selection process. To
identify performance crises, multiple fingerprints are grouped and then checked for their cold,
normal or hot status. The authors evaluated their approach on four months of metric data
exported from a production system, where the performance crises were manually labeled by
a human operator. They tested different versions (e.g., all metrics vs. selected metrics) and
reported good results. As already mentioned earlier, Hora [135] is an architecture-aware online
failure prediction system. Metrics such as CPU or memory utilization are collected at the
level of components, which are then used to incorporate component-based failure probabilities
alongside a failure propagation path through the system. Sharma et al. [164] presented
CloudPD to detect performance problems and faults in cloud environments. They collected
various virtual machine and host metrics (e.g., page faults, context switches, latency, CPU
and memory utilization or cache misses) and automatically created events based on models
for normal behavior, where such events may indicate the presence of a problem or anomaly.
Their problem determination engine in conjunction with their problem diagnosis engine can
then be used to identify and classify anomalies. In [207], the authors described an approach
on detecting performance anomalies at the task level in a black-box manner. Historic data
is used to model the normal operating behavior patterns via unsupervised machine learning.
As data, they used fine-grained thread-level metrics such as the command line parameters
of applications, process identifiers, CPU time information, IO and network information, and

130 Time-Series-based Event Prediction

the CPU consumption of the thread. In the online detection phase, new data is then checked
against these normal patterns and anomalies are reported in case of deviations, which can
then be exactly pinpointed due to the fine resolution up to the individual task level. The
authors manually introduced known anomalies (e.g., high CPU or memory consumption at
specific points in time) in a two-server setup and reported high precision and recall rates. Tan
et al. [175] used host performance metrics such as CPU and memory utilization for an adaptive
online anomaly prediction system called ALERT. Depending on the platform, ALERT collects
data from between 20 and 66 different metrics, which are the main driver of the anomaly
detector. This detector labels the data as normal, anomaly and alert using decision trees
as supervised learning models, and afterwards, clusters of common execution contexts are
created and trained individually. 250 IBM servers were used in the evaluation, where the
authors manually injected faults (e.g., memory leaks or infinite loops). ALERT yielded better
prediction results than three other models they trained for comparison purposes. In [128],
Ozcelik and Yilmaz presented work on how predictions can be improved when viewing the
system under test as a white box (rather than a black box) by recording additional data
with hardware counters and a minimal amount of software instrumentation. Lan et al. [99]
introduced an unsupervised approach for automatically detecting system anomalies. First,
data transformation is applied to handle large and inhomogeneous data (e.g., CPU, memory,
IO or network metrics) from different sources. Afterwards, the feature extraction techniques
principal component analysis (PCA) and independent component analysis are used to reduce
the dimensionality, the results of which are then the input for an unsupervised model that
extracts the normal behavior and can thus detect outliers via deviations. In the evaluation, the
authors manually injected system faults that their approach could successfully identify in many
cases. Dean et al. [47] also used unsupervised learning in conjunction with performance metrics
(e.g., CPU, memory, disk and network metrics) to predict anomalies. Their unsupervised
models of choice were Self Organizing Maps (SOM), which map high dimensional input (the
metrics feature vector) into a low dimensional space. While no labels are necessary, the
approach requires a training phase with data from a normal, fault-free system execution to
properly initialize the SOM. The authors evaluated their implementation on various real-world
distributed systems and achieved a TPR of up to 98% as well as an FPR of 1.7% with a lead
time of up to 47 seconds.

4.8.6 Reliability Prediction

There also exists the area of reliability prediction regarding both hardware and software,
which deals with (potentially) long-term predictions by utilizing previous, historic failures
themselves rather than log or monitoring data. It would be interesting to see whether such
approaches could also work in our multi-system environment. Fu and Xu [59] predicted
the time-between-failure (TBF) by using information of temporal and spatial correlation of
previous failures in an HPC environment. The correlation data and failure data, which is
called the failure signature, are then the input for an (arbitrary) prediction algorithm. In [31],
the goal was to predict the TBF of cars with the help of a support vector machine. Time
series data of turbo chargers were additionally used in combination with the miles-to-failure
of the engines of cars. Staying in the vehicular transportation domain, Fink et al. [55] used
neural networks on 3.5 years’ worth of railway turnout degradation data to make long-term
predictions up to 6.5 months. The work in [5] presents details on how the TBF can be forecast
using autoregressive integrated moving average (ARIMA) models. They predicted the TBF
of 16 real-world software systems. Jaiswal and Malhotra [85] used various machine learning
techniques such as neural networks and support vector machines to predict both cumulative
failures as well as the TBF of five real-world datasets. Begum and Dohi [13] also investigated

Outlook 131

the prediction of the cumulative number of failures in the early stages of software testing.
They trained neural networks to predict failures up to 20 days. A comparison of the long-term
predictive capabilities between software reliability (growth) models and data-driven models,
i.e., machine-learning-based models, was presented in [130]. They evaluated the models on
eight different datasets, which were later also tested with improved data-driven models [106,
107].

4.9 Outlook

There are various open issues and challenges we could tackle in future work. For example,
we could test many more configurations using our own approach. While the results from
our evaluation were underwhelming, different configuration settings and different machine
learning models (including hyperparameter tuning) could still offer more detailed insights.
However, the most obvious task would be to apply different approaches in the multi-system
event prediction/detection setting. As mentioned earlier, anomaly detection techniques [99,
47, 101, 207] could be a promising start. Moreover, service slowdowns are not the only events
our industry partner collects. Multiple other event types exist, so it would be interesting
to investigate how well all those other events can be predicted or detected. We could then
also gather more data, both in the sense of longer system observation periods (to address the
significant class imbalance and obtain a higher absolute number of events) as well as more
time series metrics (currently limited to host, disk and network metrics).

Given the results from our evaluation and considering the possibility that the data might
not contain enough information to explain and thus predict service slowdowns, we decided
to not pursue the event prediction any further. Instead, we thought about how we could
minimize or perhaps avoid this uncertainty altogether, and we concluded that utilizing just
the time series themselves without the events would be the ideal next step in analyzing our
multi-system setting. Dropping the events and solely focusing on the time series data also has
the additional benefit of drastically reducing the overall complexity, as we do no longer need
to take the system topologies with all component connections into account. Nonetheless, we
can still investigate many aspects of our multi-system environment, since time series analysis
is a powerful tool on its own. For instance, clustering multi-system time series could reveal
interesting patterns, commonalities and general insights, which is why we decided to focus on
this topic in the last part of our project.

133

Chapter 5

Time Series Clustering

In the final chapter, we introduce an approach on how to cluster multi-system time series
data with the goal to reveal interesting patterns, insights and commonalities across multiple
systems. We start by proposing time series characteristics, i.e., features that can be extracted
from time series, which are then used as input for various unsupervised machine learning
models to cluster the data. Most parts of this chapter are described in [158] and in [152].

5.1 Motivation

Time series are ubiquitous, especially monitoring data in software systems, which continuously
collect data to analyze the system state and behavior. As a consequence, the amount of data
becomes increasingly larger, so automated analyses and tools are required. However, extracting
information from time series is a challenging task, not only because of the huge data quantities
but also because methods often only work within a certain domain or are tailored to specific
systems. Researchers have thus developed a variety of approaches that range from utilizing
features calculated from raw time series to reduce their dimensionality [187, 64, 3, 36, 110]
and their application in numerous domains [191, 82, 101, 62, 113], up to analyzing monitoring
data from real-world software systems [29] and proposing automated machine learning [75] for
classification and regression problems. However, applying clustering algorithms on monitoring
data to extract clusters/groups of similar time series is still an open challenge in research,
especially when the data originates from multiple, different and independent software systems.
We could then develop cluster-specific tools that could be applied in all the systems that are
part of these clusters.

We thus propose an automated time series clustering approach that uses infrastructure
monitoring data from a multi-system environment. The main objective is to find and extract
clusters within the entire time series of a particular monitoring metric, such as all time series
of the available memory or the CPU utilization, where entire means that we inspect the time
series as a whole (in contrast to partial observation windows as we did in the event prediction
chapter). Clustering multi-system data can be a useful technique to identify common patterns
(e.g., spikes, periodicity/seasonality or fluctuations) and to gain general insights, which can, in
turn, be used for further processing, most prominently, for building cluster-specific models and
tools. There are two major benefits. First, there is no longer the need to develop tools for each
system individually. If n systems have some characteristics in common that form the basis for
those tools, then only a single cross-system tool needs to be created instead of n tools. The
second benefit is the fact that we can use data from multiple systems to create a powerful,

134 Time Series Clustering

“global” model.1 For example, one possible application could be a sophisticated, aggregated
forecasting model utilizing time series from multiple systems, where various internal models
are used to best fit a certain time series kind, i.e., one internal forecasting model for each
identified common cross-system pattern [9]. Such a model could then be even further improved
by incorporating automatic method recommendation [11].

Our approach is based on time series features, i.e., we first calculate a set of characteristics/
features from the (entire) raw time series data, which are then used for further processing.
This means that we represent each entire time series with a set of features. For example, given
a time series of length l (l data points), we calculate certain features such as the minimum,
maximum and average, which results in a feature-based time series representation. Here, the
l data points are represented with three features as visualized in Figure 5.1. This feature
calculation is done for all n time series of our dataset. To this end, we collected a variety
of characteristics from literature, but we extend them by providing a human-interpretable
grouping into feature sets that cover distributional, temporal and complexity properties, and
statistical tests of time series. Given labeled datasets, i.e., time series with the known, true
cluster assignments (represented by the labels), we use these features set to first determine
their importance to potentially filter out any non-essential feature sets. The importance is
a measure of how useful and expressive a certain feature is when trying to identify the true
clusters, and our approach relies on the built-in feature importance of the random forest
classifier [24] (cf. Section 2.4.3.4 on p. 20). If we have several different feature sets, we check
how important all individual features are. Using the example from above, it could be that
the three features minimum, maximum and average are less important compared to all the
other features of the different feature sets, so we might drop this particular feature set and
not use it for further processing, thereby reducing our number of feature sets and thus the
number of experiments we have to conduct later (beneficial in terms of computational costs).
After this filtering step, we create so-called methods, which are triplets of the feature set,
optional post-processing of the features, and the clustering model. The labeled datasets are
then used once again for determining the clustering performance of all created methods, i.e.,
for each method, we calculate an external evaluation metric (e.g., adjusted Rand index) using
the true cluster assignments from the labeled data and the cluster assignments predicted by
this method. This yields a ranking of the methods best suited for clustering the provided
data. Finally, we can choose one of the top-performing methods for clustering unlabeled data,
e.g., to find patterns within our multi-system infrastructure monitoring time series. We then
extend our approach by a run-time cost model that allows users to select the best clustering
methods while also taking their run-time costs into consideration. This is a useful addition
since simply always selecting the top method (which could potentially be the most expensive
one in terms of run time) might not be the best choice in an industrial, real-world scenario,
where computations are often outsourced to cloud-computing infrastructures, thereby incurring
additional monetary costs. In the evaluation, we utilize the publicly available UCR time series
archive [45, 44] as well as two real-world multi-system infrastructure monitoring datasets from
our industry partner.

5.2 Data Requirements and Assumptions

Just as it was the case in the two previous chapters, our approach can be applied to all kinds
of datasets as long as certain requirements are fulfilled, although they are much less restrictive
in comparison, since we no longer need topologies or events. In fact, our approach is not

1This idea is analogous to our multi-system event prediction models introduced in Chapter 4, where we
used data from multiple systems in the training phase.

Time Series Characteristics 135

t

Feature Set (3 Features)

Minimum Maximum Average

0.9 2.1 1.6

Raw Time Series Feature-based Representation

Figure 5.1: Example calculating a set of three features (minimum, maximum, average) of
the (entire) raw time series data to create a feature-based representation.

limited to the software or hardware domain but can in principle be applied everywhere, as we
only require time series. However, there are still some assumptions. While time series can
have different lengths, they should be evenly spaced (cf. Section 2.3.4 on p. 11) because some
features we calculate rely on this property. Of course, if users provide their own features that
are independent of the spacing, any type of time series may be used, so this is optional. A
hard requirement is that labeled data must be available in addition to the unlabeled data that
should ultimately be clustered. In order for the approach to yield the best results, both the
labeled as well as unlabeled data should come from the same domain, ideally, where the labeled
data has the same labels that should be retrieved from the unlabeled data (e.g., via manual
labeling or historic data). Often, such labeled data is not available in real-world scenarios or
expensive to get, so we provide two alternatives. In the first alternative, we assume that there
are different time series “sources” that are still from the same domain. A source determines
how its time series are shaped and which properties and characteristics they have, and different
sources should be sufficiently diverging. All sources can yield unlabeled time series since the
labels are automatically determined by simply assigning the respective source as label, i.e., all
time series of source A are assigned the label A, all time series of source B are assigned the
label B, etc. For example, in the area of infrastructure monitoring, two such sources could
be the CPU utilization metric and the metric measuring the free disk space, and all time
series of the CPU metric (first source) would be assigned the label CPU and all time series
of the disk metric (second source) would be assigned the label disk. The example shown in
Figure 5.2 illustrates this automatic label assignment. In the second alternative, no additional
data needs to be provided at all, and solely publicly available labeled data such as the UCR
time series archive is used instead. We discuss all the advantages and drawbacks in Section 5.6
and Section 5.7, where we also go into detail regarding the labeled data requirement.

5.3 Time Series Characteristics

Our approach operates on feature-based time series, so we carefully created our own time
series characteristics (TSC) collection. As shown in Figure 5.1, features are used instead of
the raw data points to represent the (entire) time series, and a feature can be any function
that takes the raw data as input and yields a feature value as output (e.g., very simple
features could be the minimum, maximum or average, and more complex features could be
autocorrelation or statistical tests). In our careful selection of features, we focused on avoiding
excessive complexity (e.g., features that require entire models to be trained), on keeping
run-time costs manageable, and on choosing a representative and diverse subset of features
that capture different time series properties. We collected several features/characteristics
used throughout the literature [187, 64, 114, 82, 36, 35, 8] and dropped redundant, highly
complex and computationally expensive ones, e.g., coefficients of an ARIMA model [81], sample

136 Time Series Clustering

t

t

t

t

t t

CPU

CPU

CPU

Time Series Labels

disk

disk

disk

Time Series Labels

Metric CPU Metric disk

Figure 5.2: Example of the automatic label assignment based on two unlabeled time series
sources: the metric CPU and the metric disk. All time series of a source/metric are assigned
the corresponding metric name as label, which results in the labeled dataset.

entropy [144] or Teräsvirta et al.’s neural network linearity test [178]. We then grouped the
remaining features based on which properties of the time series they represent, i.e., the “domain”
of the features. Table 5.1 lists the final selection of 43 base features, assigned to the following
four main groups, including more detailed subgroups:2

• Distributional features independent of the temporal structure of the data, i.e., viewing
the time series as a set of unrelated values, e.g., various global statistics (cf. Table 5.1a).

• Temporal features representing the temporal structure and dependency of the data, e.g.,
periodicity, correlation or trends (cf. Table 5.1b).

• Complexity features measuring the “randomness” of a time series (can be time-dependent
as well), e.g., entropy, flats or peaks (cf. Table 5.1c).

• Test features based on statistical tests for time series, e.g., unit root or stationarity tests
(cf. Table 5.1d).

Besides improving understandability, these groups allow us to investigate certain aspects of a
time series. For instance, an engineer only interested in time-independent characteristics could
simply use the distributional feature set.

Some features are parameterizable, for example, the features of the distributional dispersion
blockwise subgroup have a block size parameter b, where a time series is first separated into
multiple consecutive, non-overlapping blocks of size b. Another example is the lags parameter l
of the autocorrelation feature that specifies with how many lags l the correlation should be

2Our implementation of the selected time series characteristics is publicly available at https://github.
com/cdl-mevss-m3/Time-Series-Characteristics.

https://github.com/cdl-mevss-m3/Time-Series-Characteristics
https://github.com/cdl-mevss-m3/Time-Series-Characteristics

Time Series Characteristics 137

S
u
b
gr

ou
p

Feature Description

D
is
p

kurtosis Measure of tailedness.
skewness Measure of asymmetry.
shift [210] Mean minus the median of those values that are smaller

than the mean.

D
is
pB lumpiness [82] Variance of the variances of blocks.

stability [82] Variance of the means of blocks.

D
up

lic
at
es

normalized_duplicates_max Number of duplicates that have the maximum value of the
data.

normalized_duplicates_min Number of duplicates that have the minimum value of the
data.

percentage_of_reoccurring_datapoints Number of unique duplicates compared to the number of
unique values.

percentage_of_reoccurring_values Number of duplicates compared to the length of the data.
percentage_of_unique_values Number of unique values compared to the length of the data.

D
is
tr
ib
ut
io
n

quantile Threshold below which x% of the ordered values of the data
are, giving a hint on the distribution.

ratio_beyond_r_sigma Ratio of values that are more than a factor r · σ away from
the mean.

ratio_large_standard_deviation Ratio between the standard deviation and the (max−min)
range of the data (based on the “range rule of thumb” [139]).

(a) Distributional features distributed among four subgroups: dispersion (Disp), dispersion blockwise
(DispB), duplicates and distribution.

S
u
b
gr

ou
p

Feature Description

D
is
p mean_abs_change Average absolute difference of two consecutive values.

mean_second_derivative_central Measure of the rate of change.

D
is
pB level_shift [82] Maximum difference in mean between consecutive blocks.

variance_change [82] Maximum difference in variance between consecutive blocks.

Si
m

hurst [79] Measure of long-term memory of a time series, related to
auto-correlation.

autocorrelation Correlation of a signal with a lagged version of itself.

Fr
eq

periodicity Power (intensity) of specified frequencies in the signal (based
on the periodogram [162]).

agg_periodogram Results of user-defined aggregation functions (e.g., fivenum)
calculated on the periodogram [162].

L
in
ea
ri
ty

linear_trend_slope Measure of linearity: slope.
linear_trend_rvalue2 Measure of linearity: r2 (coefficient of determination).
agg_linear_trend_slope Variance-aggregated slopes of blocks.
agg_linear_trend_rvalue2 Mean-aggregated r2 of blocks.
c3 [159] Measure of non-linearity (originally from the physics

domain).
time_reversal_asymmetry_statistic [160] Asymmetry of the time series if reversed, which can be a

measure of non-linearity.

(b) Temporal features distributed among five subgroups: dispersion (Disp), dispersion blockwise
(DispB), similarity (Sim), frequency (Freq) and linearity.

138 Time Series Clustering
S
u
b
gr

ou
p

Feature Description

E
nt
ro
py

binned_entropy Fast entropy estimation based on equidistant bins.
kullback_leibler_score (KL score) [82] Maximum difference of KL divergences between consecutive

blocks, where the KL divergence is a measure of how two
probability distributions differ [96].

index_of_kullback_leibler_score [82] Relative location where the maximum KL score was found.

C
om

p

cid_ce [10] Measure of complexity invariance.
permutation_analysis (custom) Measure of complexity through permutation. Details for this

custom feature are provided in the appendix in Section D.1.
swinging_door_compression_rate [25] Compression ratio of the signal under a given error

tolerance ε.

F
la
tn
es
s

normalized_crossing_points Number of times a time series crosses the mean line (based
on fickleness [114]).

normalized_above_mean Number of values that are higher than the mean.
normalized_below_mean Number of values that are lower than the mean.
normalized_longest_strike_above_mean Relative length of the longest series of consecutive values

above the mean.
normalized_longest_strike_below_mean Relative length of the longest series of consecutive values

below the mean.
flat_spots [82] Maximum run-length of values when divided into

quantile-based bins.

P
ea
ks

normalized_number_peaks Number of peaks, where a peak of support n is defined as a
value which is bigger than its n left and n right neighbors.

step_changes [103] Number of times the time series significantly shifts its value
range.

(c) Complexity features distributed among four subgroups: entropy, complexity miscellaneous (Comp),
flatness and peaks.

S
u
b
gr

ou
p

Feature Description

-
adf [51] Augmented Dickey-Fuller (ADF) test for unit root presence.
kpss [97] Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for

stationarity.

(d) Statistical test features without any further subgroups.

Table 5.1: Features of our time series characteristics (TSC), distributed among four main
groups and 13 subgroups. Features without an explicit reference all refer to [36, 35].

Approach 139

Group Subgroup #BF #PF

Distributional

Dispersion 3 3
Dispersion blockwise 2 10
Duplicates 5 5
Distribution 3 16

Temporal

Dispersion 2 2
Dispersion blockwise 2 10
Similarity 2 17
Frequency 2 17
Linearity 6 44

Complexity

Entropy 3 13
Complexity miscellaneous 3 5
Flatness 6 15
Peaks 2 8

Statistical Tests - 2 2

Table 5.2: Time series characteristics (TSC): number of base features #BF (43 in total) and
number of parameterized features #PF (167 in total with the default parameterization) per
(sub)group.

calculated. Other examples include parameters for thresholds (e.g., parameter r of the ratio_-
beyond_r_sigma feature) or functions (e.g., minimum, maximum and average when calculating
aggregated periodogram statistics with feature agg_periodogram). Parameterizable features
yield results for each parameter value, increasing the total number of features. Given the
43 base features, our default parameterization yields 167 individual feature values, which is
presented in more detail in Table 5.2.

To ensure comparability with other features and to enable easier interpretation, we nor-
malized the selected features. Moreover, the normalization supports clustering, since many
unsupervised models rely on distance measures which are affected by scale (cf. Section 2.4.4
on p. 21), i.e., high-value features would dominate the distance calculation. Some features are
inherently normalized (e.g., all percentages), while others can be normalized by calculating their
theoretical minimum and maximum (e.g., binned_entropy with min = 0 and max = log b,
where b is the number of bins). In a few cases, the normalization can only be done under
the assumption that the data is standardized (zero mean, unit variance), so all time series
are standardized by default beforehand. However, some features are theoretically unbounded
(e.g., skewness or shift) and thus need to be handled differently. We address this problem
with a 2-pass approach, first determining the sample minima and maxima of the dataset of
interest, and then robustly scaling the corresponding features with the 5% percentile as lower
bound and the 95% percentile as upper bound. This ensures that 90% of the data is within
the interval [0, 1] without outliers distorting the results.

5.4 Approach

Our approach can be split into multiple, partially optional stages, where an overview is presented
in Figure 5.3. As mentioned when discussing the data requirements in Section 5.2, we need
both labeled data for choosing the right method and unlabeled data on which we then perform
the actual clustering. A method is a triplet consisting of an unsupervised clustering model, a

140 Time Series Clustering

feature set and potential options how to post-process the feature set. Starting with a collection
of features, we first create various feature sets F = {F1, F2, . . . , Ff} that we want to investigate,
where each set Fi consists of selected features. For example, the TSC groups and subgroups
introduced in the previous section could be such feature sets. Next, we optionally determine
their feature importance using the labeled data in conjunction with a random forest classifier,
where we leverage the random forest’s built-in feature importance (cf. Section 2.4.3.4 on p. 20).
We drop the ones that are irrelevant, yielding filtered feature sets F ′ = {F ′1, F ′2, . . . , F ′f ′}.3
These sets can then optionally be post-processed with so-called variants (examples for variants
are normalizing the features of a set, scaling them to a certain value range or dropping
correlated features). If so, we combine the feature sets with all variants V = {V1, V2, . . . , Vv},
i.e., we create the cross product of F ′×V = {(F ′j , Vk) | j ∈ [1, f ′], k ∈ [1, v]}. To complete our
method triplets, we then combine the results with all unsupervised clustering models M =
{M1,M2, . . . ,Mm} that the users want to run on their data. Again, we create the cross product
of M × F ′ × V = {(Mi, F

′
j , Vk) | i ∈ [1,m], j ∈ [1, f ′], k ∈ [1, v]}, which is the set of method

candidates.4 Utilizing the labeled data once more, we check for every method (Mi, F
′
j , Vk)

how well it performs, i.e., how close the predicted cluster assignments are to the true cluster
assignments that are given by the labels. We can then rank all methods and present the results
to the users, who can choose one of the top-performing methods for clustering the unlabeled
data.

In Figure 5.4, we provide a small example of the all the steps necessary to create the set
of candidate methods. Assume that we have six features f1 to f6 and that we create three
(non-overlapping) feature sets F1 = {f1, f2}, F2 = {f3, f4} and F3 = {f5, f6} that use these
six features. The features could be any valid function that takes the raw time series data
as input and produces some output (the feature value). For instance, feature set F2 could
be {f3, f4} = {minimum,median}, i.e., feature f3 calculates the minimum of the input time
series and feature f4 the median (cf. Figure 5.1). Using the labeled data (five time series), we
calculate the three feature sets and determine their importance utilizing the built-in feature
importance of a random forest classifier (cf. Section 2.4.3.4 on p. 20) to rank the three feature
sets and potentially drop irrelevant/non-important ones (details are presented in Section 5.4.1).
Assume that feature set F1 turned out to be not important, so we drop this set, which results
in the filtered feature sets F ′ = {F2, F3}. We then combine these filtered feature sets with our
two variants V1 (e.g., clipping the features of a set to the range [0, 1]) and V2 (e.g., normalizing
the features of a set). Finally, we also combine our two modelsM1 (e.g., k-means) andM2 (e.g.,
agglomerative hierarchical clustering), which ultimately results in eight candidate methods.

We continue this example by showing the ranking procedure in Figure 5.5. Given the eight
candidate methods, we compare each method with all other methods to see if it performed
equal, similarly, worse or better. Here, the performance is some external evaluation metric
(e.g., adjusted Rand index), which we use to compare the predicted cluster assignments to the
actual, true cluster assignments (details are presented in Section 5.4.3). In the example, a
comparison of the methods (M1, F2, V1) and (M2, F2, V1) is demonstrated. From the labeled
data, we know the true cluster assignments of the five samples/time series. The next step
is to cluster the data (no labels are required) first with method (M1, F2, V1) and then with
method (M2, F2, V1), which both yield the predicted cluster assignments. Since we now have
the predicted as well as the true clustering results, we can use any external evaluation metric
to calculate a score. Here, we use the adjusted Rand index (ARI), which yields 1.0 for the
first method and 0.167 for the second method. Clearly, method (M1, F2, V1) performed better
(higher ARI) than method (M2, F2, V1), which we enter in our so-called diff-matrix that

3If we skip the feature importance and filtering step, F ′ = F .
4If we skip the post-processing, there are no variants, and the method triplets thus become tuples M × F ′.

Approach 141

F
e
a
tu

re
s

F
2

F
f…

F
2

Im
p

o
rt

a
n
c
e

F
f

Im
p

o
rt

a
n
c
e

…

F
1

F
1

Im
p

o
rt

a
n
c
e

Feature Set Importance

F
2

F
f…

F
2
|
V
1

F
2
|
V
2

F
2
|
V
v

F
f
|
V
1

F
f
|
V
2

F
f
|
V
v

V:Variant Combination
V

a
ri

a
n
ts

M
1
|
F
2
|
V
1

M
2
|
F
2
|
V
1

M
m
|
F
2
|
V
1

M
1
|
F
f
|
V
v

M
2
|
F
f
|
V
v

M
m
|
F
f
|
V
v

M
e
th

o
d

s

U
n
la

b
e
le

d
D

a
ta Clustering

R
e
s
u
lt

s

Feature Set Selection

M
o
d

e
ls

……

L
a
b

e
le

d

D
a
ta

… …

…

…

M:Model Combination

F:Feature Set Creation

Method Ranking

M
i
|
F
j
|
V
k

D
ro

p

S
e
le

c
te

d
 M

e
th

o
d

S
e
c
ti

o
n

5
.4

S
e
c
ti

o
n

5
.4

.1
S

e
c
ti

o
n

5
.4

.2
S

e
c
ti

o
n

5
.4

.3
S

e
c
ti

o
n

5
.4

.4

F
ig
u
re

5.
3:

O
ve
rv
ie
w

of
th
e
cl
us
te
ri
ng

ap
pr
oa
ch
.
T
he

ye
llo

w
an

no
ta
ti
on

s
re
fe
r
to

th
e
se
ct
io
ns

de
ta
ili
ng

th
e
co
rr
es
po

nd
in
g
st
ep
s.

T
he

m
et
ho

ds
(M

i,
F
j
,V

k
)
ar
e
di
sp
la
ye
d
as

M i
|F

j|
V k

fo
r
op

ti
m
iz
ed

re
ad

ab
ili
ty
.

142 Time Series Clustering

F
e
a
tu

re
 S

e
t F

1

f
1

f
2

L
a
b

e
l

0
.1

1
.3

A

1
.2

1
.8

A

0
.0

0
.1

B

1
.0

3
.4

B

7
.4

9
.5

B

t tt tt

T
im

e
 S

e
rie

s

AABBB

L
a
b

e
ls

F
e
a
tu

re
 S

e
t F

2

f
3

f
4

L
a
b

e
l

2
.2

2
.3

A

9
.8

5
.2

A

4
.6

6
.3

B

3
.0

3
.0

B

3
.0

3
.1

B

F
e
a
tu

re
 S

e
t F

3

f
5

f
6

L
a
b

e
l

5
.1

4
.9

A

1
.1

0
.9

A

0
.8

1
.4

B

7
.1

6
.7

B

4
.5

0
.0

B

F
e
a
tu

re
 S

e
t Im

p
o
rta

n
c
e

(R
a
n
d

o
m

 F
o
re

s
t B

u
ilt-in

F
e
a
tu

re
 Im

p
o
rta

n
c
e
)

F
e
a
tu

re
 S

e
t C

a
lc

u
la

tio
n

F
2

F
3

F
1

F
e
a
tu

re
-Im

p
o
rta

n
c
e
-R

a
n
k
s
 B

o
x
 P

lo
t

D
ro

p
 F

1

F
e
a
tu

re
 S

e
t S

e
le

c
tio

n

6
 F

e
a
tu

re
s
:

f
1 , f

2 , f
3 , f

4 , f
5 , f

6

F
e
a
tu

re
 S

e
t F

1
=

{
f
1 , f

2 }

F
e
a
tu

re
 S

e
t F

2
=

{
f
3 , f

4 }

F
e
a
tu

re
 S

e
t F

3
=

{
f
5 , f

6 }

F
e
a
tu

re
 S

e
t C

re
a
tio

n

L
a
b

e
le

d
 D

a
ta

F
e
a
tu

re
 S

e
t F

2
=

{
f
3 , f

4 }

F
e
a
tu

re
 S

e
t F

3
=

{
f
5 , f

6 }

E
x
a
m

p
le

: f
3

=
 m

in
im

u
m

2
 V

a
ria

n
ts

:
V

1 , V
2

E
x
a
m

p
le

: V
1

=
c
lip

 to
 [0

, 1
]

V
a
ria

n
t C

o
m

b
in

a
tio

n

F
2 |
V
1

F
2 |
V
2

F
3 |
V
1

F
3 |
V
2

2
 M

o
d

e
ls

:
M

1 , M
2

E
x
a
m

p
le

: M
1

=
k
-m

e
a
n
s

M
o
d

e
l C

o
m

b
in

a
tio

n

M
1 |
F
2 |
V
1

M
1 |
F
2 |
V
2

M
2 |
F
2 |
V
1

M
2 |
F
2 |
V
2

M
1 |
F
3 |
V
1

M
1 |
F
3 |
V
2

M
2 |
F
3 |
V
1

M
2 |
F
3 |
V
2

4
x
 F

e
a
tu

re
 S

e
ts

 +
 V

a
ria

n
ts

8
x
 M

o
d

e
ls

 +
 F

e
a
tu

re
 S

e
ts

 +
 V

a
ria

n
ts

 =
8

 C
a
n

d
id

a
te

 M
e
th

o
d

s

E
x
a
m

p
le

: M
1 |
F
2 |
V
1

=
 k

-m
e
a
n
s
 +

 {
m

in
im

u
m

, m
e
d

ia
n
}

 +
 c

lip
 to

 [0
, 1

]

2
 F

e
a
tu

re
 S

e
ts

F
igu

re
5.4:

E
xam

ple
ofcreating

the
set

of
candidate

m
ethods

w
ith

six
features,three

feature
sets

(tw
o
after

filtering
based

on
their

im
portance),

tw
o
variants

and
tw

o
m
odels,using

a
labeled

datasets
w
ith

five
tim

e
series.

Approach 143

contains all these method comparisons (again, details are presented in Section 5.4.3).5 We can
sort this diff-matrix according to the “best” methods, which is user-specifiable and could, for
instance, be those methods that performed better than the other methods most of the time.
In the example, we can see that after sorting according to this criterion, the top-performing
method is (M1, F2, V1), followed by the next best method (M1, F3, V2), etc. Users can now
select one of these top-performing methods and use it for clustering the unlabeled data.

5.4.1 Determining Feature Set Importance

Using the labeled data, the first step is to investigate the importance of each feature set in
F by analyzing the built-in feature importance after training a random forest classifier (cf.
Section 2.4.3.4 on p. 20) on all individual features from these feature sets. For example, if we
have three feature sets F1 = {f1, f2, f3}, F2 = {f4, f5, f6} and F3 = {f7, f8, f9}, we obtain a
total of nine individual features (f1 to f9) that are then used to train a random forest model.

Once such a random forest is trained, we map its built-in feature importance results to
scale-independent ranks, where rank 1 is the most important feature and the maximum rank is
the least important one, i.e., lower ranks are better. In the above example, a possible feature
importance ordering/ranking (cf. Section 2.4.3.4 on p. 20) of the nine features could be f2 →
f1 → f4 → f3 → f7 → f9 → f8 → f5 → f6 (from most important to least important), and the
corresponding ranks would then be f2 : 1, f1 : 2, f4 : 3, f3 : 4, f7 : 5, f9 : 6, f8 : 7, f5 : 8, f6 : 9
(sorted according to the ranks), or alternatively, f1 : 2, f2 : 1, f3 : 4, f4 : 3, f5 : 8, f6 : 9, f7 :
5, f8 : 7, f9 : 6 (sorted according to the features). We can then collect the feature importance
results of each feature set by combining the ranks of the corresponding features again. For
feature set F1 = {f1, f2, f3}, we obtain the ranks {2, 1, 4}, for F2 = {f4, f5, f6}, we get the
ranks {3, 8, 9} and for F3 = {f7, f8, f9}, the ranks are {5, 7, 6}.

A random forest can be started with different random seeds, which might yield different
results. Therefore, we repeat the training n times (ten runs) with varying seeds to take the
dispersion into account, which thus yields n ranks for each feature. Figure 5.6 shows all the
necessary steps using the example from above. The resulting n-ranks can then be visualized
with box plots, which allow us to easily inspect the performance of the feature sets and help
us in deciding whether to potentially drop some irrelevant sets (resulting in the filtered feature
sets F ′). In the example, assume that the training is repeated ten times, so each feature is
ranked ten times. The individual features are put back into their corresponding feature sets,
which means that F1, F2 and F3 then each consists of 3 · 10 = 30 rank results (three features,
each with ten rank results, cf. Figure 5.6) that can be plotted in a feature-importance-ranks
box plot as shown in Figure 5.7. In the example, feature set F1 appears to be the most
important one, since it has the lowest (i.e., best) ranks on average. On the other hand, feature
set F2 seems to be significantly less important, since it has the highest (i.e., worst) ranks on
average. In this case, we might consider to drop this feature set and exclude it from further
processing, or more formally, F ′ = {F1, F3} ⊂ F . This step is entirely optional and can be
skipped, in which case F ′ = F .

5.4.2 Post-Processing Feature Sets

In some cases, it might be necessary to post-process some of the feature sets, e.g., if they need
to be scaled or otherwise transformed. We accomplish this by so-called variants that define how

5The diff-matrix is actually composed of multiple ARI comparisons based on the clustering results of
multiple subsets of the original, labeled data. For the sake of this simple example, this step was intentionally
skipped in Figure 5.5.

144 Time Series Clustering

M1|F2|V1

M1|F2|V2

M2|F2|V1

M2|F2|V2

M1|F3|V1

M1|F3|V2

M2|F3|V1

M2|F3|V2

8 Candidate Methods Feature Set F2

f3 f4 Label

2.2 2.3 A

9.8 5.2 A

4.6 6.3 B

3.0 3.0 B

3.0 3.1 B

M1|F2|V1

M1|F2|V2

M1|F3|V1

M1|F3|V2

M2|F2|V1

M2|F2|V2

M2|F3|V1

M2|F3|V2

M
1
|
F
2
|
V
1

M
1
|
F
2
|
V
2

M
1
|
F
3
|
V
1

M
1
|
F
3
|
V
2

M
2
|
F
2
|
V
1

M
2
|
F
2
|
V
2

M
2
|
F
3
|
V
1

M
2
|
F
3
|
V
2

M1|F2|V1

M1|F3|V2

M1|F2|V2

M2|F2|V1

M2|F3|V2

M1|F3|V1

M2|F3|V1

M2|F2|V2

M
1
|
F
2
|
V
1

M
1
|
F
3
|
V
2

M
1
|
F
2
|
V
2

M
2
|
F
2
|
V
1

M
2
|
F
3
|
V
2

M
1
|
F
3
|
V
1

M
2
|
F
3
|
V
1

M
2
|
F
2
|
V
2

W
o
rs

t
to

 B
e
s
t

M
e
th

o
d

Sorting
according to
“Best”
Methods

M1|F2|V1

M2|F2|V1

Predicted True

A A

A A

B B

B B

B B

Predicted True

A A

A A

B B

B B

A B

Cluster with

Cluster with

External
Evaluation

Metric (Adjusted
Rand Index)

External
Evaluation

Metric (Adjusted
Rand Index)

F2

f3 f4

2.2 2.3

9.8 5.2

4.6 6.3

3.0 3.0

3.0 3.1

F2

f3 f4

2.2 2.3

9.8 5.2

4.6 6.3

3.0 3.0

3.0 3.1
Score: 1.0

Score: 0.167

Compare

to

M1|F2|V1

M2|F2|V1

Equal?

Similar?

Worse?

Better?

Comparison of all Methods
against each other

Figure 5.5: Example of the method ranking process. given the eight candidate methods and
five labeled time series from the example in Figure 5.4.

Approach 145

f1 f2 f3 Label

0.1 1.3 0.8 A

… (more labeled samples)

0.8 0.9 0.9 Z

Feature Set F1

f4 f5 f6 Label

1.4 0.0 2.3 A

… (more labeled samples)

1.5 0.2 7.8 Z

Feature Set F2

f7 f8 f9 Label

2.6 7.3 0.0 A

… (more labeled samples)

0.5 3.3 0.0 Z

Feature Set F3

Combine All Features

f1 f2 f3 f4 f5 f6 f7 f8 f9 Label

0.1 1.3 0.8 1.4 0.0 2.3 2.6 7.3 0.0 A

… (more labeled samples)

0.8 0.9 0.9 1.5 0.2 7.8 0.5 3.3 0.0 Z

Train Random Forest

f1 f2 f3 f4 f5 f6 f7 f8 f9

Rank 2 1 4 3 8 9 5 7 6

f2 f1 f4 f3 f7 f9 f8 f5 f6

Rank 1 2 3 4 5 6 7 8 9

Feature Importance Ordering/Ranking: f2 f1 f4 f3 f7 f9 f8 f5 f6

Sorted by Rank

Sorted by Features

f1 f2 f3

2 1 4

Ranks of Feature Set F1

f4 f5 f6

3 8 9

Ranks of Feature Set F2

f7 f8 f9

5 7 6

Ranks of Feature Set F3

Run f1 f2 f3

#1 2 1 4

… (8 more runs)

#10 1 2 4

Ranks of Feature Set F1

Run f4 f5 f6

#1 3 8 9

… (8 more runs)

#10 5 9 8

Ranks of Feature Set F2

Run f7 f8 f9

#1 5 7 6

… (8 more runs)

#10 3 7 6

Ranks of Feature Set F3

R
e
p

e
a
t

1
0

 t
im

e
s
 =

 1
0

 R
u
n
s

Figure 5.6: Example of the different steps to obtain the feature importance ranks for three
feature sets F1 = {f1, f2, f3}, F2 = {f4, f5, f6} and F3 = {f7, f8, f9} with a total of nine
individual features. The training of the random forest is repeated ten times (ten runs), thus
resulting in ten ranks per feature at the very end.

146 Time Series Clustering

1 2 3 4 5 6 7 8 9

F1
F2
F3

Figure 5.7: Example of a feature-importance-ranks box plot with three feature sets. The
ranks range from 1 to 90, so these sets have a combined total of 90 individual features.

to post-process a set of features. For example, variants could be normalizing all the features
of a feature set, scaling the feature values to a certain range, dropping correlated features
or even combinations thereof (e.g, first scaling the features and then dropping correlated
ones afterwards). Our approach allows us to define arbitrary variants V , which can even
vary between different feature sets if some of them require specific post-processing. A variant
V ∈ V contains at least one post-processing option (e.g., scaling), but of course, multiple
(consecutive) options are possible (e.g., scaling with dropping afterwards). This step is entirely
optional and can be skipped.

5.4.3 Clustering Labeled Data

Now that we have the feature sets F ′ and their variants V , the last part to complete our method
triplets is the addition of the clustering models M , which yields the set of candidate methods
C = M ×F ′ ×V . Given this set and the labeled data (X,y), where X are all available time
series with their respective labels y (cf. the examples in Figure 5.2 or Figure 5.4), we would like
to know which methods perform best in terms of clustering quality. As already demonstrated
in the example of Figure 5.5, we have labeled data, so we know the true clustering y and can
easily determine the method performance with any kind of external evaluation metric such as
the adjusted Rand index (cf. Section 2.4.4.1 on p. 23).

In order to make a sound comparison between the results of the different methods, we
require n internal datasets I based on the whole data, i.e., I = ((X1,y1), . . . , (Xn,yn)) with
(Xi,yi) ⊂ (X,y), which allow us to check whether the performance differences (if any) between
the candidate methods are statistically significant. The question now is, how to obtain these
internal datasets I. If we are lucky, the full data X might already contain such internal
datasets out of the box. If not, we can easily create them ourselves by repeatedly taking
random subsets of the full data. Consider the example shown in Figure 5.8. The full data
contains 20 labeled time series, and we simply take ten random time series to create an internal
dataset. In the example, we create a total of two internal datasets, i.e., |I| = n = 2. Some time
series of these two random subsets overlap, but this does not matter since every internal dataset
is subsequently processed in isolation (no influence on other datasets or results). Naturally,
the sample size can be chosen arbitrarily and can be either an absolute values (like ten in
our example) or percentage-based (e.g., using 5% of the full data for each internal dataset).
Furthermore, we can also specify to take samples based on the classes/labels of the full data,
for instance, if we want to enforce an equal class distribution in the internal datasets (which is
not the case when we blindly take random samples). Figure 5.9 shows the same example as
above, but now the random time series are selected based on the original class. We take five
samples per class, and since there are two classes (A and B), we obtain 2 · 5 = 10 random
samples in total for each internal dataset. However, the class distribution is now equal, i.e.,
classes A and B are both represented with equally many (five) random samples per internal
dataset.

Approach 147

t

A

t

A

t

A

t

A

t

A

t

A

t

A

t

A

t

A

t

A

t

B

t

B

t

B

t

B

t

B

t

B

t

B

t

B

t

B

t

B

L
a
b

e
le

d
 D

a
ta

𝑿
,𝒚

t

A

t

A

t

A

t

A

t

A

t

A

t

B

t

B

t

B

t

B

In
te

rn
a
l
D

a
ta

s
e
t
𝑿
1
,𝒚

1

t

A

t

A

t

A

t

B

t

B

t

B

t

B

t

B

t

B

t

B

In
te

rn
a
l
D

a
ta

s
e
t
𝑿
2
,𝒚

2

Sampling
Number of internal datasets = 2
Sample size = 10

Figure 5.8: Example of creating two internal datasets (ten random samples per dataset)
from the full data that contains 20 labeled time series, i.e., I = ((X1,y1), (X2,y2)) with
(Xi,yi) ⊂ (X,y).

148 Time Series Clustering

t

A

t

A

t

A

t

A

t

A

t

A

t

A

t

A

t

A

t

A

t

B

t

B

t

B

t

B

t

B

t

B

t

B

t

B

t

B

t

B

L
a
b

e
le

d
 D

a
ta

𝑿
,𝒚

t

A

t

A

t

A

t

A

t

A

t

B

t

B

t

B

t

B

t

B

In
te

rn
a
l
D

a
ta

s
e
t
𝑿
1
,𝒚

1

t

A

t

A

t

A

t

A

t

A

t

B

t

B

t

B

t

B

t

B

In
te

rn
a
l
D

a
ta

s
e
t
𝑿
2
,𝒚

2

Sampling
Number of internal datasets = 2
Sample size per class = 5

𝑿𝐴, 𝒚𝐴 𝑿𝐵, 𝒚𝐵

𝑿1
𝐴, 𝒚1

𝐴 𝑿1
𝐵, 𝒚1

𝐵

𝑿2
𝐴, 𝒚2

𝐴 𝑿2
𝐵, 𝒚2

𝐵

Figure 5.9: Example of creating two internal datasets (each containing five samples of the
two available classes, i.e. 2 · 5 = 10 random samples per dataset) from the full data that
contains 20 labeled time series, i.e., I = ((X1,y1), (X2,y2)) with (Xi,yi) ⊂ (X,y). (XA,yA)
indicates a subset that only contains the time series with labels y = A.

Approach 149

We can then run each of the candidate methods c ∈ C on these internal datasets to get
its n predicted clustering results ŷc, more formally, ∀c ∈ C : ŷc = (c(X1), . . . , c(Xn)) =
(ŷ1c , . . . , ŷnc) with Xi ∈ I and c(Xi) representing the clustering process with candidate
method c on the internal dataset Xi that results in the predicted labels ŷic . A visualization of
this clustering process is shown for a small example in Figure 5.10, where a single method c =
(M1, F2, V1) (feature set F2 consists of two individual features) is used to cluster two internal
datasets (X1,y1) and (X2,y2) with five samples each. For each of the two internal datasets,
we thus get its cluster assignments predicted by this method c, i.e., ŷ1c for the first internal
dataset and ŷ2c for the second internal dataset.

Feature Set F2

f3 f4 Label

2.2 2.3 A

9.8 5.2 A

4.6 6.3 B

3.0 3.0 B

3.0 3.1 B

M1|F2|V1

Predicted True

A A

A A

B B

B B

B B

Cluster with

F2

f3 f4

2.2 2.3

9.8 5.2

4.6 6.3

3.0 3.0

3.0 3.1

Internal
Dataset
𝑿1, 𝒚1

Feature
Calculation

𝑐 = 𝒚1𝑐M1|F2|V1

Repeat for every
Internal Dataset 𝑿𝑖 , 𝒚𝑖

 𝒚2𝑐

Internal
Dataset
𝑿2, 𝒚2

Combine 𝒚𝑐 = 𝒚1𝑐 , 𝒚2𝑐

Figure 5.10: Example of clustering two internal datasets (Xi,yi) using a single method c =
(M1, F2, V1) and their corresponding predicted cluster assignments ŷic .

Once running all methods is completed, we compute their clustering performance by choos-
ing the adjusted Rand index (ARI) as our external evaluation metric.6 For each method c ∈ C,
we thus compare its n predicted clustering results ŷc to their corresponding true clustering la-
bels y and calculate n ARIs ac, more formally, ∀c ∈ C : ac = (ARI(ŷ1c ,y1), . . . ,ARI(ŷnc ,yn))
with ŷic as defined above and yi ∈ I. In Figure 5.11, we extend the above example (cf.
Figure 5.10) to also visualize this clustering performance calculation.

We can then determine whether the ARIs of the different methods are statistically signifi-
cantly different and thus check which methods performed better than others. To this end, we

6We opted for the ARI due to its similarity to the accuracy score, which makes it an intuitive measure.
Naturally, any other external evaluation metric can be selected as well.

150 Time Series Clustering

Method 𝑐 = Predicted Clustering:M1|F2|V1

𝒚Actual, True Clustering:

Internal
Dataset
𝑿1, 𝒚1

Internal
Dataset
𝑿2, 𝒚2

 𝒚𝑐

= ()𝒚1 𝒚2
 𝒚1𝑐 𝒚2𝑐= ()

,

,

ARI 𝒚1𝑐 , 𝒚1
= 1.0

ARI 𝒚2𝑐 , 𝒚2
= 0.167

External Evaluation Metric
(Adjusted Rand Index (ARI))

𝒂𝑐Method 𝑐 = ARI scores: = (),M1|F2|V1

Figure 5.11: Continuing the example of Figure 5.10, the clustering performance evaluation of
method c = (M1, F2, V1) is shown using the adjusted Rand index (ARI) as external evaluation
metric when comparing the true cluster assignments yi of the two internal datasets (Xi,yi) to
the cluster assignments ŷic predicted by method c.

use the Wilcoxon signed-rank test with Pratt’s method for handling zero-differences.7 After-
wards, we compare all possible method combinations, i.e., wilcoxon(ac,ac′) ∀c, c′ ∈ C ∧ c 6= c′.
If there are |C| = m methods (| ∗ | represents the set’s cardinality), we obtain a matrix P of
size m×m containing the p-values of the Wilcoxon tests, where a row represents whether this
method significantly differs from the methods in the columns and vice versa, given some signifi-
cance level α. Since the Wilcoxon test is symmetric, i.e., wilcoxon(ac,ac′) = wilcoxon(ac′ ,ac),
P is symmetric as well (Pij = Pji). In addition, we create a second matrix D with the same
dimensions that stores the median of all non-zero differences of the n ARIs of two methods,
so we not only know if two methods are significantly different but also by how much. Since
the median ARI difference is “sign-symmetric”, i.e., median(ac − ac′) = −median(ac′ − ac),
D is sign-symmetric as well (Dij = −Dji). As an extension of the above example, Fig-
ure 5.12 shows how the p-values of the Wilcoxon tests as well as the median ARI differences
are determined, and how the p-value matrix P and the median difference matrix D are
created. In the example, assume that we have two models M = {M1,M2}, two feature sets
F = {F1, F2} and two variants V = {V1, V2}, which results in a total of eight candidate meth-
ods C = {(Mi, Fj , Vk) | i, j, k ∈ [1, 2]}, so the two matrices P and D thus have a size of 8× 8.
For demonstrating purposes, we compare method c = (M1, F2, V1) to method c′ = (M2, F2, V1).
First, we run a Wilcoxon signed-rank test based on the ARI scores of the two internal datasets,
i.e., wilcoxon(ac,ac′), which results in a p-value of 0.106. Next, we calculate the differences
between these ARI scores, which yields 0.001 for the first internal dataset and −0.062 for
the second internal dataset. Then, we compute the median of these two differences, which
results in −0.031, indicating that method c performed slightly worse than method c′, however,
this value is only considered significant if the p-value is equal to or smaller than the chosen
significance level, i.e., 0.106 ≤ α. We enter both the p-value and the median difference in their
respective matrices P and D, and repeat the same procedure for all other possible method
combinations. The complete matrices are listed in Equation 5.1.8

7The differences are based on the ARI, and the ARI is calculated from the cluster labels, which are ordinal
and hence not unlikely to be the same for two methods, resulting in equal ARIs. We thus use Pratt’s method
to incorporate these zero-differences in the ranking process instead of simply discarding them.

8For identical clustering results of two methods, all differences are zero, so the median ARI difference is
zero as well, and the p-value is NaN (not a number) because the test statistic cannot be computed.

Approach 151

Compare

to

ARI 𝒚1𝑐 , 𝒚1
= 1.0

ARI 𝒚2𝑐 , 𝒚2
= 0.167

𝒂𝑐Method 𝑐 = ARI scores: = (),M1|F2|V1

ARI 𝒚1𝑐′ , 𝒚1
= 0.999

ARI 𝒚2𝑐′ , 𝒚2
= 0.229

𝒂𝑐′Method 𝑐′ = ARI scores: = (),M2|F2|V1

Wilcoxon Signed-Rank Test
wilcoxon 𝒂𝑐 , 𝒂𝑐′

p-Value:
0.106

Median Diff:
–0.031

Diff: 0.001 Diff: –0.062

Calculate Median
Difference

M1|F1|V1

M1|F1|V2

M1|F2|V1 0.106

M1|F2|V2

M2|F1|V1

M2|F1|V2

M2|F2|V1

M2|F2|V2

M
1
|
F
1
|
V
1

M
1
|
F
1
|
V
2

M
1
|
F
2
|
V
1

M
1
|
F
2
|
V
2

M
2
|
F
1
|
V
1

M
2
|
F
1
|
V
2

M
2
|
F
2
|
V
1

M
2
|
F
2
|
V
2

p-Value Matrix 𝑷

M1|F1|V1

M1|F1|V2

M1|F2|V1 –0.031

M1|F2|V2

M2|F1|V1

M2|F1|V2

M2|F2|V1

M2|F2|V2

M
1
|
F
1
|
V
1

M
1
|
F
1
|
V
2

M
1
|
F
2
|
V
1

M
1
|
F
2
|
V
2

M
2
|
F
1
|
V
1

M
2
|
F
1
|
V
2

M
2
|
F
2
|
V
1

M
2
|
F
2
|
V
2

Median Difference Matrix 𝑫

Figure 5.12: Example of comparing method c = (M1, F2, V1) to method c′ = (M2, F2, V1) by
calculating a Wilcoxon signed-rank test to obtain a p-value (0.106) for the p-value matrix P
and by computing the ARI differences (Diff) of the internal datasets to obtain a median
difference (−0.031) for the median difference matrix D.

152 Time Series Clustering

P =

NaN 0.079 0.275 0.322 0.324 0.151 0.203 0.259
0.079 NaN 0.012 0.099 0.020 0.286 0.124 NaN
0.275 0.012 NaN 0.119 0.316 0.073 0.106 0.306
0.322 0.099 0.119 NaN 0.003 0.249 0.271 0.025
0.324 0.020 0.316 0.003 NaN 0.082 0.237 0.108
0.151 0.286 0.073 0.249 0.082 NaN 0.126 0.202
0.203 0.124 0.106 0.271 0.237 0.126 NaN 0.051
0.259 NaN 0.306 0.025 0.108 0.202 0.051 NaN

D =

0.000 −0.155 −0.005 0.106 0.242 0.187 −0.000 −0.197
0.155 0.000 −0.137 0.186 −0.182 −0.132 0.048 0.000
0.005 0.137 0.000 0.130 −0.149 −0.162 −0.031 −0.080
−0.106 −0.186 −0.130 0.000 −0.195 −0.206 0.233 −0.153
−0.242 0.182 0.149 0.195 0.000 0.232 −0.111 −0.133
−0.187 0.132 0.162 0.206 −0.232 0.000 0.125 −0.160

0.000 −0.048 0.031 −0.233 0.111 −0.125 0.000 −0.137
0.197 0.000 0.080 0.153 0.133 0.160 0.137 0.000

(5.1)

However, since analyzing the two raw data matrices is tedious, we propose a combined
visualization that we call diff-matrix, which is shown in Figure 5.13 for the above example,
where we used a significance level of α = 0.1 (for assessing the significance of the p-values
obtained by the Wilcoxon signed-rank tests). To allow an easy comparison of methods, we not
only display all row and column methods (can be omitted for a more compact representation9)
but also encode the cells of this merged matrix with the following color mapping:

• (purple, no number): This cell represents identical clustering results of the row
method ci and the column method cj , which results in two identical ARI vectors, i.e.,
aci = acj , and, in turn, Pij = NaN and Dij = 0. Example: row method (M1, F1, V1)
compared to itself.

• (white, no number): This cell means that the row method ci yielded different
clustering results than the column method cj , but their ARI differences are not statistically
significant, i.e., Pij > α (Dij is irrelevant in this case because it is not significant).
Example: row method (M1, F1, V1) compared to column method (M1, F2, V1).

• x (red, with number x): This cell indicates that the clustering results of the row
method ci resulted in statistically significantly worse ARIs compared to those of column
method cj with a negative median ARI difference of −0.x (x represents the decimal
part10), i.e., Pij ≤ α and Dij = −0.x < 0. Example: row method (M1, F1, V1) compared
to column method (M1, F1, V2).

• x (green, with number x): This cell indicates that the clustering results of the row
method ci resulted in statistically significantly better ARIs compared to those of column
method cj with a positive median ARI difference of 0.x, i.e., Pij ≤ α and Dij = 0.x > 0.
Example: row method (M1, F1, V2) compared to column method (M1, F1, V1).

9Displaying the names of the column methods cj in addition to the row methods ci is not necessary, since
the matrix is symmetric in this regard, i.e., ci = cj ∀i, j ∈ [1,m] ∧ i = j, so we can safely omit the column
labels, which we will later do in the evaluation (cf. Figure 5.26) to show a more compact diff-matrix.

10We use this notation to avoid a cluttered visualization. In the unlikely case that the absolute ARI difference
is ≥ 1, the text in the cell changes to y.x, where y represents the integer part.

Approach 153

M 1
|F

1|
V 1

M 1
|F

1|
V 2

M 1
|F

2|
V 1

M 1
|F

2|
V 2

M 2
|F

1|
V 1

M 2
|F

1|
V 2

M 2
|F

2|
V 1

M 2
|F

2|
V 2

M1|F1|V1
M1|F1|V2
M1|F2|V1
M1|F2|V2
M2|F1|V1
M2|F1|V2
M2|F2|V1
M2|F2|V2

15
15 14 19 18

14 16
19 20 15
18 20 23

16 23
14

15 14

Figure 5.13: Example of a diff-matrix with eight methods. The methods (Mi, Fj , Vk) are
displayed as Mi|Fj|Vk for optimized readability.

Using this diff-matrix, we can now determine which methods performed best. Since “best”
is not a mathematically sound term, we define the best methods as those that are statistically
significantly better most times and have the highest sum of median ARI differences (of these
statistically significant differences) if there is a draw.11 Formally speaking, we calculate a
row-based score si for every row method ci ∈ C as defined in Equation 5.2:

si =
m∑
j=1

xij + yij with

xij =

0 if Pij = NaN ∨ Pij > α,

1 if Pij ≤ α ∧Dij > 0,

−1 if Pij ≤ α ∧Dij < 0.

and yij =

{
0 if Pij = NaN ∨ Pij > α,

Dij if Pij ≤ α.

(5.2)

where m is the number of methods, i.e., m = |C|. For example, method (M1, F1, V1) has a score
of (−1 +−0.15) = −1.15 and method (M1, F1, V2) has a score of (1 + 0.15) + (−1 +−0.14) +
(1 + 0.19) + (−1 +−0.18) = 0.02. With this score, we can then sort all rows/row methods in
descending order, so the best methods are displayed at the top and the worst methods at the
bottom of the diff-matrix. Figure 5.14 shows this sorted diff-matrix for the above example.
Here, we can clearly see that the methods (M2, F1, V1) and (M2, F2, V2) performed well, so we
might choose one of them for the next and final step, which is clustering the unlabeled data.

M 2
|F

1|
V 1

M 2
|F

2|
V 2

M 1
|F

1|
V 2

M 1
|F

2|
V 1

M 2
|F

1|
V 2

M 2
|F

2|
V 1

M 1
|F

1|
V 1

M 1
|F

2|
V 2

M2|F1|V1
M2|F2|V2
M1|F1|V2
M1|F2|V1
M2|F1|V2
M2|F2|V1
M1|F1|V1
M1|F2|V2

18 23 20
14 15

18 14 15 19
14 16

23 16
14

15
20 15 19

Figure 5.14: The same diff-matrix as the example in Figure 5.13 but sorted by the best
methods in descending order.

11If the median ARI difference sum should also happen to be equal, then the methods are considered to be
performing equally well.

154 Time Series Clustering

5.4.4 Clustering Unlabeled Data

The ultimate goal is to find patterns and commonalities within the unlabeled data. Based on
the results from the previous step, we know which methods performed well and thus might be
suited for this task. The straightforward solution is to simply use the best method to cluster the
unlabeled data, but as indicated earlier in the introduction (cf. Section 5.1), other factors could
also be important to consider, such as the interpretability of the used unsupervised machine
learning models or the run-time costs of the methods, which we discuss in the following section.
Regardless of which method the users choose in the end, the unlabeled data is then clustered
and the results can be inspected manually. In addition, we can calculate various statistics,
including the number of identified clusters, their sizes and how the domain of the unlabeled
data can be related to them (e.g., if we cluster multi-system data, interesting statistics are
how the different systems are distributed among the clusters). All the results of clustering the
unlabeled data can then be further used as input for a detailed analysis of the domain to gain
more insights in general, and for the development of cluster-specific models and tools.

5.4.5 Run-Time Cost Model

While we cannot objectively assess the interpretability of clustering models, we can measure
the run-time costs of the methods the users selected. We already know how to get the best
methods in terms of clustering performance, and with the addition of our run-time cost model,
we can then also specify how fast they are. The main goal is to measure how long it takes to
calculate the feature set, to post-process this set using some variant, and how much time is
required to cluster the data with the unsupervised machine learning model. Our first idea was
to create a list of run-time complexity [170] estimates for every possible model, feature set and
variant. However, there are two problems with this approach. First, it is impossible to provide
a complete list, since users can select any kind of models, feature sets and variants, even their
own. Second, in a real-world setting, equal run-time complexities might not always lead to
actually equal run times. While this is not too surprising in general (the primary intention
of complexities is to inform about the run-time behavior with increasing or very large input
sizes), the differences can be quite significant.

For example, consider the four functions defined in Figure 5.15 that are written in the
programming language Python. Each function computes exactly the same output, namely
a list containing n values in ascending order ranging from 0 to n − 1, but the respective
implementations are different. Function 1 (cf. Figure 5.15a) represents the most straightforward
way by simply appending the n individual values one after another in a for-loop. The code of
function 2 (cf. Figure 5.15b) is identical except for the addition of the @jit annotation, which is
part of the Numba package with the goal of compiling Python functions to optimized machine
code [98]. Function 3 (cf. Figure 5.15c) replaces the for-loop with a so-called list comprehension,
which is an optimized Python-intrinsic feature. Lastly, function 4 (cf. Figure 5.15d) creates
the list with the scientific computation package NumPy [73]. If we estimate the asymptotic
run-time complexity using the big-O notation [170], then each of these functions results in
O(n), which means a linear complexity.12 However, the actual run time required to run these
functions differs greatly. To get comparable results, we called each function 10000 times with
n = 1000 and measured the total execution time.13 Table 5.3 lists all measurements. Clearly,

12O(n) thus means that the actual run time is expected to scale linearly with n, e.g., for 2n, we expect all
functions to take twice as long.

13Executed on a machine with an Intel Xeon E3-1245 v3 3.4GHz processor with four physical cores and eight
threads, and 16GB of main memory.

Approach 155

Function 4 is by far the fastest, reducing the actual run time by approximately 79% compared
to Function 1.

def function1(n):
x = []
for i in range(n):

x.append(i)
return x

(a) Function 1: standard for-loop.

from numba import jit

@jit
def function2(n):

x = []
for i in range(n):

x.append(i)
return x

(b) Function 2: compilation with Numba.

def function3(n):
return [i for i in range(n)]

(c) Function 3: list comprehension.

import numpy

def function4(n):
return numpy.arange(n).tolist()

(d) Function 4: implemented with NumPy.

Figure 5.15: Different Python-based implementations for creating a list of n ascending
values.

Function Run-Time
Complexity

Measured
Run Time

Function 1 O(n) ∼ 675ms
Function 2 O(n) ∼ 380ms
Function 3 O(n) ∼ 285ms
Function 4 O(n) ∼ 145ms

Table 5.3: The actual run time in milliseconds required for 10000 executions of the four
functions introduced in Figure 5.15 with an input size of n = 1000.

This is only one example, and other potential issues such as compiler optimizations,
different language-intrinsic features and language mixtures exist. If we want to support users
in choosing methods based on their run-time costs, complexity estimates are therefore not
ideal. Instead, measuring the actual run times seems to be the better and more accurate
option. In our approach, we thus measure how long it takes to compute the feature sets and
variants, and to fit the machine learning models on a concrete machine, which should be the
one used for clustering future data, since otherwise, determining the absolute run time would
not make much sense. Time measurements are often unstable and can vary between executions,
so we robustly measure the average run time by collecting r runs, which results in a set of
measurements R. Given a lower and an upper percentile-based threshold pl and pu, we extract
only the measurements in between and calculate the average thereof as our robust estimate of
the actual run-time cost r̄, which is defined in Equation 5.3:

r̄ =
1

|R′|
∑
r′∈R′

r′ with R′ = {r ∈ R | pl(R) ≤ r ≤ pu(R)} (5.3)

where | ∗ | represents the set’s cardinality and pi is the i% percentile. Now we can measure the
three parts of our method triplet as described in the following:

156 Time Series Clustering

• Feature sets: The run-time cost r̄F of a feature set F ∈ F is the sum of the run time
costs for computing the individual features f ∈ F , given n time series of length t. In this
step, we can choose to enable multi-processing using a specified number of processes,
where the n time series are then distributed accordingly.

• Variants: For each variant V ∈ V and feature set F ∈ F , we determine the run-time
cost r̄V by measuring how long it takes to post-process the n feature vectors that were
computed with F in the previous step.

• Models: For each machine learning model M ∈ M , feature set F ∈ F and variant
V ∈ V , we obtain the run-time cost r̄M by measuring how long it takes to fit the model
on the n post-processed feature vectors that were computed in the previous two steps.

Given a set of candidate methods c ∈ C and labeled data, we can now calculate both
the methods’ clustering performance quality with any kind of external evaluation metric and
their actual run-time costs with r̄c = r̄M + r̄F + r̄V . The results of all evaluated methods
can be visualized with a quality-cost trade-off graph, whose x-axis represents the clustering
quality and the y-axis the run-time costs. In this graph, we can also enable a user-specifiable
lower quality threshold14 qt as well as an upper cost threshold ct, allowing us to extract only
those methods that are relevant considering these thresholds, i.e., those that performed well
and fast enough, more formally, the relevant methods must fulfill ec ≥ qt ∧ r̄c ≤ ct, where
ec is the evaluation metric obtained with method c. Using the same example as introduced
in Section 5.4.3, i.e., eight candidate methods C = {(Mi, Fj , Vk) | i, j, k ∈ [1, 2]}, we present
such a quality-cost trade-off graph in Figure 5.16, where we chose the adjusted Rank index
(ARI) as our external evaluation metric. For demonstration purposes, the actual run-time
costs r̄ are assumed to be in the range of seconds (cf. Run Time [s]). When specifying the two
thresholds of qt = 0.1 (ARI) and ct = 7 (seconds), four out of the eight candidate methods
remain as relevant, of which we can calculate the Pareto front15 that leads to the final set
of three relevant methods as shown in the table next to the graph. We can see that method
(M2, F2, V2) performed best in terms of clustering quality (the best method overall was too
slow and thus filtered out), but when accepting a slight decrease in the ARI score (−0.03),
method (M1, F2, V1) manages to outperform this method by over 21% in run time. Ultimately,
it is then up to the users which of these methods they choose for clustering.

5.5 Data for Evaluation

In the evaluation, we use data from two different sources. The first source is the UCR time
series archive [45, 44], a collection of time series from various domains. The second source are
two independent multi-system infrastructure monitoring time series (IMTS) datasets from our
industry partner, whose structure we already described in Section 2.3.4 on p. 11.

5.5.1 UCR Archive

The UCR time series archive covers a wide array of domains and different types of time series,
ranging from electrical device measurements, image classification, ECG and motion data to
sensor data as well as simulated data from various areas. The archive consists of 128 labeled
datasets, each of which is split into a training and test set that share the same number of

14In case the external evaluation metric is a lower-is-better value, an upper quality threshold must be used.
15The Pareto front is the set of best possible methods considering both the quality and run-time cost, where

neither property can be improved any more without worsening at least one of them.

Data for Evaluation 157

0.0 0.2 0.4 0.6
ARI

4

6

8

10

12

Ru
n

Ti
m

e
[s

]

qt

ct

Model Feature
Set Variant ARI Run

Time [s]

M2 F2 V2 0.487 6.612
M2 F1 V2 0.485 5.757
M1 F2 V1 0.463 5.211

Figure 5.16: Quality-cost trade-off graph example with eight methods. The lower quality
threshold (qt) of ARI ≥ 0.1 and upper run-time cost threshold (ct) of r̄ ≤ 7s result in four
relevant methods (highlighted with yellow background), whose Pareto front is listed in the
table.

classes/labels and time series lengths.16 Between the different datasets, the number of samples,
classes and time series lengths differ significantly, where an overview is shown in Table 5.4
(the complete information can be found in the appendix in Section D.2 on p. 252).

Statistic µ σ min p10 p25 p50 p75 p90 max

#Train 473.09 1107.39 16 23 53.75 190.50 400 896 8926
#Test 1020.34 2001.83 20 70.30 139 316 870.75 2850 16800
#Classes 8.73 12.03 2 2 2 4 10 24.30 60
Length 534.54 563.05 15 80 144 344 657.75 1378.80 2844

Table 5.4: Various statistics of the 128 UCR datasets, where the # character represents the
number of train/test samples and unique classes, respectively, and Length indicates the time
series length. µ = average, σ = standard deviation, pi = i% percentile, min = minimum, max
= maximum.

5.5.2 IMTS Archive

Our own data archive contains two multi-system IMTS datasets: IMTS1 and IMTS2. The first
one is the same dataset we used in the event prediction approach (cf. Section 4.5 on p. 82), i.e.,
20 days’ worth of exported data from 705 software systems, however, only the time series are of
interest. Since entire time series are now the input for our approach (rather than the previous
observation window subsequences), we wanted them to represent full cycles of a working week
to capture any weekly patterns, i.e., each time series should record entire weeks. Within the
20 export days, there are two such full cycles, resulting in a dataset of 14 days that range
from 22.01.2018 00:00 UTC (Coordinated Universal Time) to 04.02.2018 23:59 UTC. Given
the resolution of one minute, each time series of IMTS1 thus has 20160 data points. IMTS2
is similar, as the same data was collected but for different systems (eight Dynatrace-internal
systems) and for a different observation period (28 days, ranging from 15.07.2019 00:00 UTC
to 11.08.2019 23:59 UTC). Given the same one-minute resolution, each time series of IMTS2
thus has 40320 data points. Unfortunately, both IMTS datasets are unlabeled, so we had

16There is also a version where some datasets have varying lengths. However, we plan to run the clustering
models on the raw data as well, so we use the length-adjusted data.

158 Time Series Clustering

to fall back to the first alternative as specified in our data requirements and assumptions
in Section 5.2, which states that for unlabeled data, we should provide sufficiently different
time series “sources”. This can easily be achieved with our different metrics that are listed in
Table 2.2 on p. 12. Each such metric can be considered a time series source as long as we do
not choose metrics that are too similar, such as the CPU system utilization metric together
with the CPU user utilization. We thus decided to only use a specific subset of our 34 time
series metrics, namely the following seven: CPU Idle (H-01), CPU IO Wait (H-05), Page Faults
(H-06), Memory Available % (H-07), Disk Available % (D-03), Read Bytes (D-04) and Bytes
Received (N-01). Since we already knew from the data exploration in the previous chapter that
many data points of the time series are missing (cf. Figure C.6 on p. 228), we excluded all those
series that had less than 99.9% data points available and linearly interpolated the remaining
missing values. As practically constant and stagnant time series are not of interest to us17

and such series would only reduce the differences between our time series metric sources,18

we additionally dropped all those series with ≥ 99% equal values. If too few time series for a
specific metric remain, the entire metric is dropped.

Ultimately, IMTS1 contains 32867 time series for five (out of the selected seven) metrics
from 615 systems, and IMTS2 contains 8216 time series for six metrics from eight systems,
where a breakdown is presented in Table 5.5, and detailed statistics on a per-system basis
are shown in Figure 5.17 (Table 5.6) and Figure 5.18 (Table 5.7), respectively. Especially
for IMTS1, the statistics reveal that the majority of the systems only provide around ten
time series per metric on average and that there are a few large systems with hundreds of
series. While this imbalance was an issue in the event prediction approach (system balancing
necessary), the system distribution is irrelevant here, since our clustering approach solely relies
on time series and the system sizes thus no longer have any impact.

IMTS1 IMTS2

ID: Metric #TS #Sys. #TS #Sys.

H-01: CPU Idle 7113 606 1274 8
H-05: CPU IO Wait - - 680 7
H-06: Page Faults 3361 437 680 6
H-07: Memory Available % 7176 608 1356 8
D-03: Disk Available % 8220 503 2259 7
D-04: Read Bytes - - 1967 7
N-01: Bytes Received 6997 568 - -

Total 32867 615 8216 8

Table 5.5: Number of individual time series (#TS) and number of systems (#Sys.) for each
collected metric and both IMTS datasets. The - character means that no time series of this
particular metric are present (due to data requirements and filtering).

5.5.3 UCR and IMTS Datasets

Now that we have established the raw data sources, the last step is to create the actual
datasets that are going to be the input for our clustering method selection approach in the
following evaluation. As described in Section 5.4.3, we need n internal, labeled datasets I

17They can easily be detected and filtered out without the need for clustering.
18For example, it can happen that a time series of the available disk space metric is identical to a time series

of the disk read metric in case the disk is not used throughout the observation period.

Data for Evaluation 159

100 101 102

#Time Series

CPU Idle: H-01
Page Faults: H-06

Mem. Avail. %: H-07
Disk Avail. %: D-03

Bytes Rec.: N-01

Figure 5.17: IMTS1: System-based time series count statistics, visualized with a box plot
on a logarithmic scale. Detailed information is available in Table 5.6.

ID #Sys. µ σ min p10 p25 p50 p75 p90 max

H-01 606 11.74 19.49 1 1 2 5 11 29 179
H-06 437 7.69 12.54 1 1 2 4 8 17.4 102
H-07 608 11.80 19.53 1 1 2 5 11.25 29 179
D-03 503 16.34 28.32 1 1 3 7 18 41 294
N-01 568 12.32 20.43 1 1 2 5 12 33.3 179

Table 5.6: IMTS1: System-based time series count statistics. #Sys. represents the number
of systems. µ = average, σ = standard deviation, pi = i% percentile, min = minimum, max
= maximum.

101 102 103

#Time Series

CPU Idle: H-01
CPU IO Wait: H-05
Page Faults: H-06

Mem. Avail. %: H-07
Disk Avail. %: D-03

Read Bytes: D-04

Figure 5.18: IMTS2: System-based time series count statistics, visualized with a box plot
on a logarithmic scale. Detailed information is available in Table 5.7.

ID #Sys. µ σ min p10 p25 p50 p75 p90 max

H-01 8 159.25 334.52 2 5.5 10.75 36 85.75 385 980
H-05 7 97.14 197.70 3 3.6 4.50 24 51 260.6 542
H-06 6 113.33 212.60 2 4.5 10.25 21.5 69.50 314 543
H-07 8 169.50 366.65 2 5.5 10.75 33 87.50 406.7 1071
D-03 7 322.71 638.33 4 7.6 12.50 76 202.50 890.4 1749
D-04 7 281 548.59 5 5.6 8.50 57 193.50 786.4 1501

Table 5.7: IMTS2: System-based time series count statistics. #Sys. represents the number
of systems. µ = average, σ = standard deviation, pi = i% percentile, min = minimum, max
= maximum.

160 Time Series Clustering

to compute the diff-matrices. For the UCR data, this is straightforward, since the 128 UCR
datasets already fulfill this requirement (n = 128). We can even combine both the train and
test samples because clustering is unsupervised, and hence, no separate test set is needed.
The IMTS data, on the other hand, is unlabeled and does not have such internal datasets out
of the box. However, we can now use the fact that we have sufficiently different time series
sources given by the monitoring metrics, which allows us to create labeled data ourselves. To
this end, for all time series xk ∈Xk of a metric/time series kind k, we assign the metric itself
as class label, i.e., ∀xk ∈Xk : y = k, which yields the metric class label vector yk for all time
series Xk (this procedure is exactly the same as shown in the example of Figure 5.2 for time
series kinds CPU and disk). This procedure is repeated for all m metrics K = {kj | j ∈ [1,m]}
(e.g., for the example of Figure 5.2, K = {CPU, disk}), and then we merge everything into
a single dataset, more formally, X = (Xk | k ∈ K) and y = (yk | k ∈ K). We now have
the labeled data (X,y), from which we can easily extract the required internal datasets
via sampling as already discussed in Section 5.4.3. We accomplish this by randomly taking
r time series from each metric k (if r is equal across all k ∈ K, we obtain a balanced dataset;
cf. Figure 5.9 which exactly shows this procedure for two classes/metrics A and B, i.e.,
K = {A,B}), or alternatively, we can also use a sampling fraction s ∈ (0, 1] to retain the
original metric distribution (thereby obtaining an equally unbalanced dataset if the original
data was unbalanced). To sufficiently represent the original data, we repeat this sampling step
n times, which yields n internal datasets I, more formally, I = (samplei(X,y) | i ∈ [1, n])
with sample(X,y) = (rnd(Xk,yk, r) | ∀k ∈ K), where the function rnd represents taking
r random samples from (Xk,yk) (cf. Figure 5.9 with n = Number of internal datasets = 2
and r = Sample size per class = 5). Figure 5.19 illustrates this procedure of creating such
internal, labeled datasets. The idea behind this approach is the hypothesis that the clustering
method candidates should at least be able to separate the different metrics again.19 If they
fail to do so, we expect a bad performance when trying to cluster the unlabeled data as well.

For our IMTS data, we set the sampling quantity r to 100 and the number of internal
datasets n to 30.20 This resulted in 30 internal IMTS1 datasets, where each dataset contains
m · r = 5 · 100 = 500 time series, since IMTS1 consists of five metrics and we sample each
metric 100 times. Analogously, we also created 30 internal IMTS2 datasets, each of which
has m · r = 6 · 100 = 600 samples, since IMTS2 consists of six metrics. To make even more
use of the UCR data, we can apply the same procedure there as well. If we consider the
128 individual UCR datasets as our time series sources and drop all internal labels (each
UCR dataset thus becoming comparable to our unlabeled metrics), we can again create a
merged, labeled dataset, where we now assign the dataset names as class labels, analogous
to using the metrics as class labels as we did when processing the IMTS data. For creating
the internal datasets, we used a sampling fraction of s = 0.05 = 5% and set the number of
internal datasets n again to 30. Our new, merged UCR dataset thus has 30 internal datasets
(an example of how such an internal dataset could look like is shown in Figure 5.20), each of
which has

∑
u∈U s · |Xu| =

∑
u∈U 0.05 · |Xu| = 9555 samples (i.e., 5% of each of the 128 UCR

datasets), where U is the set set of all 128 UCR datasets and |Xu| represents the number of
time series in Xu.21 Table 5.8 summarizes all four datasets for the evaluation, and Figure 5.20
shows examples of how the first of the n internal datasets could look like for each of these four
datasets.

19This is precisely the reason why we added the requirement of sufficiently different time series sources,
since otherwise, telling them apart after having merged the data becomes significantly more difficult, thereby
possibly limiting the validity of the labeled clustering results (diff-matrices).

20Different parameter settings might be necessary to sufficiently represent other data.
21This is the result after joining both the train Xu

train and test samples Xu
test into a combined Xu, and then

calculating the sample fraction based on this combined data for each UCR dataset u ∈ U . The exact number
of train and test samples can be found in the appendix in Table D.1 on p. 255.

Data for Evaluation 161

𝐴
𝑘1

𝒙1
𝑘1

𝒚𝑘1𝑿𝑘1

𝒙2
𝑘1

𝒙
𝑿𝑘1
𝑘1

⋮

𝑘1

𝑘1

𝑘1

⋮

𝑘2

𝒙1
𝑘2

𝒚𝑘2𝑿𝑘2

𝒙2
𝑘2

𝒙
𝑿𝑘2
𝑘2

⋮

𝑘2

𝑘2

𝑘2

⋮

𝑘𝑚

𝒙1
𝑘𝑚

𝒚𝑘𝑚𝑿𝑘𝑚

𝒙2
𝑘𝑚

𝒙
𝑿𝑘𝑚
𝑘𝑚

⋮

𝑘𝑚

𝑘𝑚

𝑘𝑚

⋮

𝑘1

𝒙1
𝑘1

𝑿𝑘1

𝒙2
𝑘1

𝒙
𝑿𝑘1
𝑘1

⋮

𝑘2

𝒙1
𝑘2

𝑿𝑘2

𝒙2
𝑘2

𝒙
𝑿𝑘2
𝑘2

⋮

𝑘𝑚

𝒙1
𝑘𝑚

𝑿𝑘𝑚

𝒙2
𝑘𝑚

𝒙
𝑿𝑘𝑚
𝑘𝑚

⋮

U
n
la

b
e
le

d
 D

a
ta

 f
o
r

M
e
tr

ic
s

𝐾
=

𝑘 𝑗
|
𝑗
∈

1
,𝑚

M
e
rg

e
d

,
L
a
b

e
le

d
 D

a
ta

 (
𝑿
,𝒚
)

Sampling

𝐴
𝑘1

𝒚1
𝑘1𝑿1

𝑘1

𝑘2

𝒚1
𝑘2𝑿1

𝐵

𝑘𝑚

𝑿1
𝑘𝑚

In
te

rn
a
l
D

a
ta

s
e
t

1
 (
𝑿
1
,𝒚

1
)

𝒙𝑎1
𝑘1

𝒙𝑏1
𝑘1

⋮

𝑘1

𝑘1

⋮

𝒙𝑎1
𝑘2

𝒙𝑏1
𝑘2

⋮

𝑘2

𝑘2

⋮

𝒙𝑎1
𝑘𝑚

𝒙𝑏1
𝑘𝑚

⋮

𝑘𝑚

𝑘𝑚

⋮

𝐴
𝑘1

𝒚𝑛
𝑘1𝑿𝑛

𝑘1

𝑘2

𝒚𝑛
𝑘2𝑿𝑛

𝑘2

𝑘𝑚

𝒚𝑛
𝑘𝑚𝑿𝑛

𝑘𝑚

…

In
te

rn
a
l
D

a
ta

s
e
t
𝑛
(𝑿

𝑛
,𝒚

𝑛
)

𝑛

𝒙𝑎𝑛
𝑘1

𝒙𝑏𝑛
𝑘1

⋮

𝑘1

𝑘1

⋮

𝒙𝑎𝑛
𝑘2

𝒙𝑏𝑛
𝑘2

⋮

𝑘2

𝑘2

⋮

𝒙𝑎𝑛
𝑘𝑚

𝒙𝑏𝑛
𝑘𝑚

⋮

𝑘𝑚

𝑘𝑚

⋮

…

…

…

…

𝒚1
𝑘𝑚

Map time series 𝒙
to metric label 𝑘

Figure 5.19: Illustration of creating merged, labeled data (X,y) from a set of unlabeled time
series metrics K, followed by extracting n internal, labeled datasets (Xi,yi) via repeatedly
taking random samples. Xk represents all time series of metric k (and Xk

i a random subset
thereof), |Xk| its number of time series and xkl its l-th (single/individual) time series. For
the internal datasets (Xi,yi), ai and bi indicate random indices. Depending on whether an
absolute number of samples r or a relative sampling fraction s was chosen in the sampling
step, there are a total of r or s · |Xk

i | such indices per metric k.

162 Time Series Clustering

Dataset n #Samples #Classes

UCR 128 varying varying
UCR-merged 30 9555 128
IMTS1 30 500 5
IMTS2 30 600 6

Table 5.8: UCR and IMTS datasets for the evaluation, where n is the number of the internal
datasets I, and #Samples and #Classes represent the number of samples (time series) and
classes in each such internal dataset, respectively. The varying number of samples and classes
of the 128 internal UCR datasets can be looked up in the appendix in Table D.1 on p. 255.

t

H-01

t

H-01

t

H-01

t

H-06

t

H-06

t

H-06

IM
T
S

1
:
In

te
rn

a
l
D

a
ta

s
e
t

#
1

𝑿
1
,𝒚

1

… (2 more classes)

t

N-01

t

N-01

t

N-01

… … …

t

ACSF1

t

ACSF1

t

ACSF1

t

Adiac

t

Adiac

t

Adiac

U
C

R
-m

e
rg

e
d

:
In

te
rn

a
l

D
a
ta

s
e
t

#
1

𝑿
1
,𝒚

1

… (125 more classes)

t

Yoga

t

Yoga

t

Yoga
… … …

t

0

t

0

t

0

t

1

t

1

t

1

U
C

R
:
In

te
rn

a
l
D

a
ta

s
e
t

#
1

𝑿
A
C
S
F
1
,𝒚

A
C
S
F
1

… (for dataset ACSF1:
8 more classes)

t

9

t

9

t

9

… … …

t

H-01

t

H-01

t

H-01

t

H-05

t

H-05

t

H-05

IM
T
S

2
:
In

te
rn

a
l
D

a
ta

s
e
t

#
1

𝑿
1
,𝒚

1

… (3 more classes)

t

D-04

t

D-04

t

D-04

… … …

Figure 5.20: Examples of how the first of the n internal datasets could look like for each of
the four datasets listed in Table 5.8. The time series are just for demonstrating purposes and
do not look like this in the actual dataset.

Evaluation 163

5.6 Evaluation

Before evaluating our clustering method selection approach on the above datasets, we first
present results regarding our time series characteristics to show their usefulness and ability
to extract meaningful properties, i.e., that they can indeed be used for clustering and also
classification tasks.

5.6.1 Time Series Characteristics

We conducted three experiments to show that our time series characteristics (TSC) are not
just a random and arbitrary selection of time series features. Specifically, we tested their
capability to classify time series, i.e., to train a classical supervised machine learning model on
a training set and evaluate it on the corresponding test set, and to cluster time series using
an unsupervised machine learning model. In both cases, we used the raw time series data as
well as the feature set catch22 [110] (containing 22 selected features) to compare to our TSC.
catch22 was already shown to perform well on the UCR datasets, so we decided to evaluate the
TSC on the same data. Lastly, we present how our TSC groups can be useful to inspect the
data of the classes/clusters. The results of these experiments are summarized in the following:

• Classification: The UCR datasets are already split into training and test sets, so we
can directly train a supervised machine learning model, where we opted for the default
scikit-learn implementation [131] of the random forest classifier with 100 trees and no
depth limit. As input, we used the raw time series data, the features calculated with
catch22 and the features calculated with our TSC, and we did not perform any post-
processing (i.e., no variants), which resulted in the three methods rf|raw, rf|catch22
and rf|tsc (rf is short for random forest). Figure 5.21 shows their accuracy (ACC)
scores for the 128 UCR datasets, where the method on the y-axis is compared to the
method on the x-axis. The diagonal line from bottom left to top right serves as a visual
guide to check whether the y-axis method performed better (data point is above the
diagonal) or worse than the x-axis method (data point is below the diagonal). If one
method is statistically significantly better across all 128 datasets (Wilcoxon signed-rank
test, significance level α = 0.01), the corresponding half of the diagonal is highlighted
with a yellow background.

0.0 0.2 0.4 0.6 0.8 1.0
rf | catch22

0.0

0.2

0.4

0.6

0.8

1.0

rf
| r

aw

0.0 0.2 0.4 0.6 0.8 1.0
rf | raw

0.0

0.2

0.4

0.6

0.8

1.0

rf
| t

sc

0.0 0.2 0.4 0.6 0.8 1.0
rf | catch22

0.0

0.2

0.4

0.6

0.8

1.0

rf
| t

sc

Figure 5.21: Accuracy (ACC) score comparisons when classifying the 128 UCR datasets
using three different methods (random forest with raw time series data, catch22 features and
TSC features). The yellow highlighted background in the upper left part indicates that the
method on the y-axis performed statistically significantly better than the method on the x-axis.

164 Time Series Clustering

The results clearly show that our selected TSC set work well when classifying the UCR
datasets, outperforming both the methods that are based on the raw time series data as
well as the catch22 features. However, it must be noted that the primary goal of catch22
was not to get the best classification results, but rather to find a small set of merely
22 features that still provide good performance while reducing the required computation
time drastically [110].

• Clustering: This task is arguably more difficult than classification since we now no longer
know the true classes of the datasets, and there are no separate training and test sets
any more. As mentioned in Section 5.5.3, we can thus combine the UCR train and test
data, allowing us to leverage a larger amount of data. Using this combined data, we
evaluated the clustering performance with the default scikit-learn implementation [131]
of the k-means algorithm, where we set its number of classes/clusters k to the number of
classes of the corresponding UCR datasets (cf. column #C in Table D.1 on p. 255). As
input, we again used the raw time series data, the features calculated with catch22 and
the features calculated with our TSC, and we did not perform any post-processing (i.e.,
no variants), which resulted in the three methods kmeans|raw, kmeans|catch22 and
kmeans|tsc. Figure 5.22 shows their adjusted Rand index (ARI) scores for the 128 UCR
datasets, where the plot information is exactly the same as in the above classification
case.

0.0 0.2 0.4 0.6 0.8 1.0
kmeans | catch22

0.0

0.2

0.4

0.6

0.8

1.0

km
ea

ns
 |

ra
w

0.0 0.2 0.4 0.6 0.8 1.0
kmeans | raw

0.0

0.2

0.4

0.6

0.8

1.0

km
ea

ns
 |

ts
c

0.0 0.2 0.4 0.6 0.8 1.0
kmeans | catch22

0.0

0.2

0.4

0.6

0.8

1.0
km

ea
ns

 |
ts

c

Figure 5.22: ARI comparisons when clustering the 128 UCR datasets using three different
methods (k-means with raw time series data, catch22 features and TSC features). The yellow
highlighted background in the upper left part indicates that the method on the y-axis performed
statistically significantly better than the method on the x-axis.

Again, our TSC work well when clustering the UCR datasets, where we outperform
catch22 once more and obtain equally good results compared to clustering based on the
raw time series data. In contrast to the raw data, however, the TSC provide the benefit
that we can inspect various properties of the different time series classes/clusters, which
we present in the last experiment.

• Class/Cluster inspection: We designed our TSC in a way that users can analyze certain
time series properties by inspecting the feature values of the different groups and
subgroups. If we have classes for a given dataset (either the true classes or the ones we
obtained via our clustering methods), we can visualize their (sub)group feature values
and easily compare them to each other. Since the TSC features are all robustly scaled
(90% of the feature values are within the interval [0, 1]), we can also see which (sub)groups
are more pronounced. In Figure 5.23, the feature values of all TSC subgroups (including
the test group because this group does not have any subgroups) for the two-class UCR
dataset BirdChicken are shown (the TSC group names on the right of the plot are

Evaluation 165

abbreviations of the form g_subgroup_b, where g is the first letter of the main group
and b represents the blockwise subgroups). In this dataset, for instance, we can observe
that the frequency, flatness and test groups yield rather low values for all time series,
whereas the similarity and miscellaneous complexity groups result in near maximum
values. The class differences are mainly between the distributional dispersion, blockwise
temporal dispersion and entropy groups.

0.5 0.0 0.5 1.0 1.5 2.0

Cl
as

s 1
 (n

 =
 2

0)
Cl

as
s 2

 (n
 =

 2
0)

d_dispersion
d_dispersion_b
d_distribution
d_duplicates
t_dispersion
t_dispersion_b
t_similarity
t_frequency
t_linearity
c_entropy
c_complexity
c_flatness
c_peaks
test

Figure 5.23: The feature values of the TSC (sub)groups for the two classes 1 and 2 of the
UCR dataset BirdChicken. The respective class sizes are denoted by n. Abbreviations: d =
distributional, t = temporal, c = complexity, b = blockwise.

Using such a visualization, we can gain more insights into the feature value distribution
across the different classes/clusters and can also easily compare both the classes as well
as the individual TSC groups themselves to each other.

5.6.2 Clustering Method Selection

The evaluation of our clustering method selection with the two UCR and two IMTS datasets
follows the same steps presented in the approach, i.e., we first determine the importance of
the feature sets we selected, continue with various post-processing options, create our set of
candidate methods and then cluster the labeled data to get the ranked list of those methods
that performed best. Finally, we use one of these methods to cluster our unlabeled multi-system
infrastructure monitoring data. Regarding the selected feature sets F , we decided to use the
TSC subgroups, the main groups and all groups combined (the set of all TSC features), i.e.,
a total of 13 + 4 + 1 = 18 TSC feature sets. To compare our TSC to an established feature
set from related work, we also integrated catch22 [110] (as already introduced in the previous
section) into our clustering method selection approach. In the last part of the evaluation, we
also show the run-time cost model when applied to the UCR datasets.

166 Time Series Clustering

5.6.2.1 Determining Feature Set Importance

The first step is the feature set importance evaluation of our TSC (sub)groups22 and the
catch22 feature set. To this end, we trained a random forest with 100 trees and no depth
limit (default scikit-learn implementation [131]), and we repeated this training n = 10 times.
There are 167 TSC features (distributed among four main groups and 13 subgroups) and
22 features from catch22, which means that there are a total of 189 features and, in turn,
189 possible ranks. Figure 5.24 shows the feature-importance-ranks box plot, where we can
infer the importance of our TSC groups (the abbreviations are the same as discussed above in
Section 5.6.1) and the catch22 feature set for the respective datasets.

We can see that none of the groups truly outshines another. Some appear to be slightly
more/less important but often also contain the worst/best ranks, and there are differences
among the datasets as well, so we might not want to drop any of them here. However, we
might also consider to only take the two IMTS datasets into account if we want our approach
to focus more on the IMTS data rather than the IMTS and the UCR data, in which case
the test group could be dropped due to its lowest importance. Since dropping feature sets
is mainly beneficial with respect to computational costs (fewer feature sets lead to fewer
method candidates) and our main goal is finding clusters in our multi-system data with the
computational costs being less relevant, we decided not to drop any feature sets at this point
and to use all of them in the next steps, i.e., F ′ = F .

5.6.2.2 Post-Processing Feature Sets

As mentioned in Section 5.3, we robustly scale some TSC features in the normalization process,
which can still occasionally lead to potentially large outliers outside the range of [0, 1]. Since
many clustering algorithms rely on the distance between the different feature values and
are thus affected by scale (and, in turn, affected by outliers), we post-process the values of
each individual feature with the following three variants, whose effects are also visualized in
Figure 5.25:

• clip01 : Clips the values to [0, 1].

• clipTan: Scales each value v with tanh(2·v−1)
2·(tanh(1)+1) . This is a non-linear transformation which

continuously reduces the spacing between values the larger those values become. Outlier
values with a magnitude of 2 or more (i.e., < −2 or > 3) will effectively be trimmed to
the interval [−0.1565, 1.1565].

• clipLog : Scales each value v above 1 with 1 + log10(v) and each value v below 0 with
− log10(|v|+1). The logarithm is not bound, so the scaled values are additionally clipped
to [−3, 4], which occurs for |v| ≥ 10000, i.e., extreme outliers. In contrast to clipTan,
values between [0, 1] stay exactly the same, i.e., the spacing is non-linearly reduced only
for values outside this range.

The features from catch22 are not normalized, so we scale the values of each individual
feature as follows:

• minmax : Scales the values to [0, 1] (normalization).

• robust : Robustly scales the values using the 5% percentile as lower bound and the
95% percentile as upper bound.

22With the exception of the group test which does not have any subgroups, the subgroups are sufficient to
get an overview, since the main groups and the entire TSC set are just aggregations thereof.

Evaluation 167

1 21 42 63 84 105 126 147 168 189

d_dispersion

d_dispersion_b

d_duplicates

d_distribution

t_dispersion

t_dispersion_b

t_similarity

t_frequency

t_linearity

c_entropy

c_complexity

c_flatness

c_peaks

test

catch22

UCR UCR-merged IMTS1 IMTS2

Figure 5.24: Feature-importance-ranks box plot of the TSC (sub)groups and catch22 feature
set with a total of 189 features and thus 189 ranks, grouped by the four datasets. Abbreviations:
d = distributional, t = temporal, c = complexity, b = blockwise.

168 Time Series Clustering

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50 Original
clip01
clipTan
clipLog

Figure 5.25: Example of the effect of the three TSC clipping variants clip01, clipTan and
clipLog on the Original values in the range [−0.5, 1.5].

Finally, the post-processing function drop omits features with only one unique value and
features with an absolute Pearson correlation coefficient ≥ 0.95.

For the TSC groups, we now create eight variants Vtsc: no post-processing, dropping, all
three TSC clipping options and all three clipping options with additional dropping afterwards.
For the catch22 feature set, we create six variants Vcatch22: no post-processing, dropping, both
catch22 scaling options and both scaling options with additional dropping afterwards. We have
18 TSC feature sets and the catch22 feature set, which results in a total of 18 · 8 + 1 · 6 = 150
feature-set-variant combinations as input for the next step.

5.6.2.3 Clustering Labeled Data

This is the main step of the clustering method selection approach, where we obtain the ranked
list of all candidate methods we want to evaluate. With the completed feature sets F and
variants V from the previous steps, the last part of the method triplets are the unsupervised
clustering models M , where we decided to use the following five models due to their ability
to scale well with large datasets and because they have already been successfully applied in
numerous domains:

• k-means: Default scikit-learn implementation [131] with a fixed number of clusters and
a fixed random state for reproducibility.

• BIRCH: Default scikit-learn implementation [131] with a fixed number of clusters.

• Linkage: Agglomerative hierarchical clustering using the default SciPy implementation
linkage [185] with a fixed number of clusters, Euclidean distance metric and Ward’s
linkage criteria for the distance calculation between clusters.

• Linkage weighted: Same as the linkage model above but with the weighted average
linkage criteria instead of Ward’s criteria.

• Linkage weighted cosine: Same as the linkage weighted model above but with the Cosine
distance metric instead of the Euclidean distance.

We set the number of clusters to the number of classes of the corresponding datasets, which are
listed in Table 5.8 under #Classes. Now we can complete our candidate methods. First, we

Evaluation 169

create all TSC-based methods with M × Ftsc × Vtsc, which results in 5 · 18 · 8 = 720 methods.
Second, we create all catch22-based methods with M × Fcatch22 × Vcatch22, which results in
5 ·1 ·6 = 30 methods. Third, we also create raw-based methods to see how well clustering based
on the raw time series data fares against the feature-based methods. To this end, we added
five additional methods (each of the five models with the raw data as input). In total, the
evaluation of the four labeled datasets thus comprises a total of 720 + 30 + 5 = 755 candidate
methods, and we set the significance level α to 0.01 when calculating the diff-matrices.

Due to this large number of methods, we cannot visualize the entire 755 × 755-sized
diff-matrices. Therefore, we first filter the matrices to only keep the best variant of each
method, where “best” is defined by the row-based score introduced in Equation 5.2. This
reduces the size from 755 to 95, of which we then display the top 25 methods. Figure 5.26
shows the diff-matrices for our four datasets, each containing the best 25 methods in descending
order, i.e., the best-performing method is the first row. To get more compact diff-matrix
representations, the column method names are omitted (they are identical to the corresponding
row method names when mirrored along the main diagonal of the matrices).

The results reveal several interesting aspects. For example, all five clustering models appear
among the top 25 methods in every dataset, and the default linkage model generally performed
better than its weighted and weighted cosine counterparts. The catch22 feature set managed
to get into the top 25 methods, but it was outperformed by various TSC (sub)groups, most
notably by the entire TSC feature set (tsc), which generally performed best (top-ranked feature
set in UCR and UCR-merged, sixth best in IMTS1 and second best in IMTS1). However, we
can also see that some TSC groups yielded comparable or even better results than the entire
TSC feature set despite (significantly) fewer features. For instance, the distributional group
(34 features) was the top-ranked feature set in both IMTS datasets and thus beat the full
tsc set (167 features), which can be a determining factor if computational costs are relevant.
Raw-based clustering evidently did not work when applied on our IMTS datasets,23 in contrast
to the UCR datasets, where the methods utilizing raw time series managed to perform nearly
as well as the TSC-based methods. Some readers might conclude that the variants of all
methods seem arbitrary and mixed. This is because the differences in the variants are actually
rather small in most cases, which is not visible in these reduced matrices. As an example of
such a case, Figure 5.27 shows the variant differences of the three selected models k-means,
BIRCH and (standard) linkage within the distributional feature set for all four datasets (again,
the column variants are omitted to get more compact matrix representations). In all datasets
but UCR-merged, we can clearly see that the no-post-processing variant and the drop variant
generally performed worse than the other variants. However, among these other variants,
the differences are often either rather small (absolute median ARI-difference ≤ 0.05 in the
majority of cases) or entirely insignificant. With a few exceptions, this observation can be
made throughout all different datasets, models and feature sets, where the full list of all
possible variant differences can be found in the appendix in Section D.3.1 on p. 255.

Finally, we must choose a method that we will use to cluster the unlabeled data. Just like
in the feature set importance part, we must decide which of the diff-matrices we take into
consideration for choosing this method, although the choice here has a much greater impact,
since it now is not only related to the computational costs but also to the actual clustering
performance. The type of both the evaluated datasets and the future data, which we intend
to cluster, heavily influences this selection decision. We have two general datasets (UCR and
UCR-merged) and two domain-specific datasets (IMTS1 and IMTS2). If we seek a more general
solution, we might consider all four datasets, for example, if we expect the future data and its

23In the full, unfiltered diff-matrices, the highest-ranked raw-based method only lies at position 459/755 for
IMTS1 and 360/755 for IMTS2.

170 Time Series Clustering

l | tsc | log
k | tsc | 01_d
l | temporal | 01
k | temporal | 01
b | tsc | 01_d
l | raw |
k | raw |
b | raw |
k | t_linearity | tan
k | catch22 | r
l | t_linearity |
k | t_similarity | 01
b | temporal | tan
k | d_distribution |
k | distributional | 01
l | d_distribution |
l | catch22 | m
l | distributional | 01_d
lwc | catch22 | r
l | t_similarity |
b | t_linearity | 01
k | c_flatness |
l | c_flatness | 01_d
k | complexity | 01
lw | tsc | tan

01 02 02 03 03 02 03 03 03 04 03 04 05 04 05 05 06 04
01 02 02 02 02 03 03 02 03 03 03 04 04 04 04 06 06 04

01 02 02 02 01 02 01 04 03 02 03 03 04 04 04 05 04
01 01 01 02 02 01 01 02 02 02 02 03 03 03 04 04 05 03

02 01 01 01 02 01 02 03 02 03 03 02 03 03
00 01 01 01 02 02 02 02 03 01

01 02 02 02 02 02 01
01 02 01 02 03 00

02 02 01 01 01 02 02 03 02
02 02 02 01 01
03 02 02 02 02 02 02 01
03 02 02 02 00 01 01
02 03 01 01 01 01 01
03 03 02 01 01 02
03 02 01 02 01 01 01 01
03 03 04 02 02
04 03 03 02 01
03 03 02 02 02 01
04 04 03 03 03 01 01
05 04 03 03 02 02 02 01
04 04 04 03 03 02 02 02 01
05 04 04 04 03 02 02 01 02
05 06 04 04 02 02 02 02 02 02
06 06 05 05 03 03 02 03 03 01 02 01 01 01
04 04 04 03 03 01 01 00 02 01 01 01 01 02 01

(a) Diff-matrix for dataset UCR.

lw | tsc | 01
lwc | raw |
lwc | tsc | 01
b | tsc | d
b | complexity | 01_d
lw | temporal | 01
l | tsc |
lw | distributional | 01
lwc | distributional | 01
b | distributional | 01
l | distributional | d
lw | complexity | log_d
k | tsc |
b | t_similarity |
b | c_entropy |
b | temporal | 01
lwc | complexity | d
l | temporal | d
lwc | c_entropy | d
k | distributional | d
l | t_dispersion_b |
lw | t_linearity | 01
b | catch22 | m
l | c_entropy | tan_d
k | c_entropy | d

18 21 24 25 25 25 28 27 27 27 27 29 29 27 29 29 30 30 30 30 31 31 31 32
18 05 05 06 07 07 09 09 09 10 10 10 10 10 09 10 11 11 12 12 13 12 13
21 04 04 04 05 06 07 08 08 08 09 08 09 08 10 10 09 11 12 12 11 12 13
24 05 04 02 02 04 04 04 04 04 04 04 05 05 06 06 06 07 08 08 08 08
25 05 04 04 03 04 03 04 04 05 05 05 06 06 05 06 07 07 06 07
25 06 04 03 03 03 04 04 03 04 04 04 05 06 05 06 06 06 06 07
25 07 05 02 02 02 03 03 02 03 03 04 04 05 05 05 06 06 06 07
28 07 06 02 03 03 02 04 03 03 03 05 05 05 06
27 09 07 04 04 03 03 03 02 04 04 04 04 04
27 09 08 04 03 03 02 02 04 02 03 04 04 04 04
27 09 08 04 04 03 02 02 02 02 03 03 04 04 04
27 10 08 04 03 04 03 02 02 02 03 03 04 04 04
29 10 09 04 04 04 03 02 02 02 03 03 03 03 04
29 10 08 04 04 03 02 03 02 03 04 03 04
27 10 09 04 05 04 03 03 01 02 02 03 03 03 04
29 10 08 05 05 04 03 03 01 02 02 03 03 02 04
29 09 10 05 05 04 04 02 02 01 02
30 10 10 06 06 05 04 04 03 02 02 02 02 01 01 01 02 01 02
30 11 09 06 06 06 05 03 03 04 02 02 02 02
30 11 11 06 05 05 05 03 02 02 02 02 02 03 02 02 01 01 02
30 12 12 07 06 06 05 03 04 03 03 03 03 02 02 02 02
31 12 12 08 07 06 06 05 04 04 03 03 03 03 03 03 02 01
31 13 11 08 07 06 06 05 04 04 04 04 03 04 03 03 02 01
31 12 12 08 06 06 06 05 04 04 04 04 03 03 03 02 01 01 01
32 13 13 08 07 07 07 06 04 04 04 04 04 04 04 04 02 02 02 02 02

(b) Diff-matrix for dataset UCR-merged.

Evaluation 171

k | distributional | log
l | distributional | log_d
l | complexity | 01
k | complexity | 01
b | complexity | log
l | c_peaks |
b | distributional | tan_d
k | c_peaks |
k | tsc | log_d
b | tsc | log_d
k | c_flatness | 01_d
lwc | c_peaks |
l | tsc | log_d
lwc | catch22 | r
lwc | distributional | 01
lw | distributional | 01
lw | c_peaks |
l | c_flatness |
k | catch22 | r_d
lwc | complexity | 01
k | d_distribution | tan
l | d_distribution | tan
l | catch22 | r
k | d_duplicates |
k | t_similarity | log

02 03 03 03 05 05 06 09 10 10 08 10 11 11 12 15 13 14 15 14 15 16 17 17
02 03 05 08 07 09 06 07 10 09 11 11 11 12 13 13 14 14 16 15
03 02 05 07 07 06 06 08 08 09 11 10 11 11 12 13 13 13 13
03 03 05 06 07 05 08 08 08 08 10 10 11 12 10 12 12 13 13
03 02 05 06 08 06 06 08 07 08 11 11 11 10 10 12 12 13 14
05 04 05 06 06 05 06 08 08 08 09 09 10 09 10 11 13 12
05 03 03 05 04 06 04 07 07 08 08 09 09 09 10 11 11
06 05 02 03 02 03 04 05 04 05 05 05 07 08 08 08 09 08 10 11 11 11
09 08 05 05 05 04 03 03 03 04 05 07 05 06 07 08 08 08
10 07 07 06 06 05 03 04 03 03 05 05 05 06 07 07 07
10 09 07 07 08 06 05 05 02 03 04 04 04 05 05 06 06
08 06 06 05 06 06 04 05 05 05 06 07 08 08
10 07 06 08 06 05 04 05 03 05 05 04 05 07 07
11 10 08 08 08 06 06 05 03 03 03 04 04 04 05
11 09 08 08 07 08 04 05 05 06
12 11 09 08 08 08 07 07 03 03 04 04 04
15 11 11 10 11 08 07 08 04 02 03 03
13 11 10 10 11 09 08 08 05 03 03 05 04 03
14 12 11 11 11 09 08 08 07 05 04 05 03 03 03 03
15 13 11 12 10 10 09 09 05 05 04 05
14 13 12 10 10 09 09 08 06 05 04 05 05 03 02
15 14 13 12 12 10 09 10 07 06 05 06 04 04
16 14 13 12 12 11 10 11 08 07 05 07 05 04 04
17 16 13 13 13 13 11 11 08 07 06 08 07 04 05 04 03 04 03
17 15 13 13 14 12 11 11 08 07 06 08 07 05 06 04 03 03 03 02

(c) Diff-matrix for dataset IMTS1.

k | distributional | 01_d
l | distributional | 01_d
b | tsc | tan_d
k | tsc | log_d
l | tsc | 01_d
l | complexity |
k | complexity | 01
b | distributional | tan_d
b | complexity | log
l | c_peaks |
k | c_peaks | tan
l | c_flatness |
k | c_flatness | 01_d
lwc | c_peaks | 01_d
lw | c_peaks |
lw | distributional | 01_d
b | temporal | 01_d
lwc | catch22 | r
l | temporal | tan_d
k | c_complexity |
l | d_distribution | tan
k | d_distribution | tan
k | t_similarity | 01
l | t_similarity |
l | c_complexity |

03 03 03 06 06 08 07 08 10 10 10 12 09 09 12 13 14 13 14 13 14 14 14
02 03 06 06 06 08 09 10 10 10 10 08 09 12 12 12 14 13 13 13 13 14

03 03 04 05 05 06 07 07 07 09 07 07 09 10 10 10 10 11 11 11 11
03 02 02 04 05 05 05 07 07 07 09 06 05 10 10 10 10 10 11 11 11 11
03 03 03 04 04 05 05 07 07 07 09 08 06 09 10 11 10 11 11 11 10 11
06 06 03 02 03 03 04 03 04 04 05 05 06 07 08 08 08 08 08 08 08
06 06 04 04 04 01 02 02 03 05 02 02 07 06 06 06 07 06 07 07 07
08 06 05 05 04 03 03 03 05 03 05 06 07 05 06 07 06 06 06
07 08 05 05 05 03 02 03 03 06 05 05 06 07 06 07 06 07
08 09 06 05 05 03 01 02 04 05 05 04 06 05 06 06 05
10 10 07 07 07 04 02 03 03 03 03 03 04 04 04 04 04
10 10 07 07 07 03 02 03 02 03 03 03 04 04 04 05 04
10 10 07 07 07 04 03 03 03 02 03 02 03 04 03 03 04 04
12 10 09 09 09 04 05 05 03 03 02 03 02
09 08 07 06 08 05 02 03 05
09 09 07 05 06 05 02
12 12 09 10 09 06 07 05 06 04
13 12 10 10 10 07 06 06 05 05 03 03 03
14 12 10 10 11 08 06 07 05 05 03 03 02
13 14 10 10 10 08 06 05 06 04 03 03 03
14 13 10 10 11 08 07 06 07 06 04 04 04
13 13 11 11 11 08 06 07 06 05 04 04 03 03
14 13 11 11 11 08 07 06 07 06 04 04 03 02
14 13 11 11 10 08 07 06 06 06 04 05 04 03
14 14 11 11 11 08 07 06 07 05 04 04 04 02 05

(d) Diff-matrix for dataset IMTS2.

Figure 5.26: Diff-matrices for all datasets, sorted by the 25 best methods. Abbreviations:
models: k = k-means, b = BIRCH, l(w)(c) = linkage (weighted) (cosine); feature sets (cf.
Section 5.6.1): d = distributional, t = temporal, c = complexity, b = blockwise; variants:
empty = no post-processing, 01 = clip01, tan = clipTan, log = clipLog, m = minmax, r =
robust, d = drop, v_d = variant with drop. Omitted column methods = row methods.

172 Time Series Clustering

01
01_d
log

log_d
tan

tan_d
d

01 01 01 01 00 00
01 00 00 00 00 01
01 01
01 00 01
01 00 01
00 00 01
00 00 00

01 01 01 01 01 00

kmeans | distributional

01
01_d
log

log_d
tan

tan_d
d

02 01 01 01 02 02
02 00 00 03
01 01
01 00 00 01
01 00 00 00 01
02 00 00 02
02 00 02

03 01 01 01 02 02

birch | distributional

01
01_d
log

log_d
tan

tan_d
d

01 01 01
01 01
01 01
01 01

01
01
01

01 01 01 01 01 01

linkage | distributional

(a) Variant differences for dataset UCR and feature set distributional.

01
01_d
log

log_d
tan

tan_d
d

05 05 04 05 05 06
05 00 01 01 05
05 00 01 01 00 05
04 01 01 02 04
05 01 01 01 04
05 01 01 01 06
06 01 00 02 01 06

05 05 04 04 06 06

kmeans | distributional

01
01_d
log

log_d
tan

tan_d
d

12 10 09 07 08 07
12 02 05 03 04 13
10 03 03 11
09 02 03 10
07 05 03 08
08 03 02 09
07 04 03 03 02 08

13 11 10 08 09 08

birch | distributional

01
01_d
log

log_d
tan

tan_d
d

04 05 04 04 05 05
04 01 01 01 01 05
05 01 01 01 05
04 01 01 02 02 04
04 01 01 02 02 04
05 01 02 02 06
05 01 01 02 02 06

05 05 04 04 06 06

linkage | distributional

(b) Variant differences for dataset UCR-merged and feature set distributional.

01
01_d
log

log_d
tan

tan_d
d

01
00 03

03
00 01 04

04
01 03

04
01 03 03 04 04 03 04

kmeans | distributional

01
01_d
log

log_d
tan

tan_d
d

08 08 05 08 06 10 08
08 15
08 15
05 04 11
08 03 15
06 03 05 11
10 04 05 16
08 15 15 11 15 11 16

birch | distributional

01
01_d
log

log_d
tan

tan_d
d

05 04
04 04

05 04 05
03

04 04 03 05
05 05 03

03

linkage | distributional

(c) Variant differences for dataset IMTS1 and feature set distributional.

01
01_d
log

log_d
tan

tan_d
d

05 10 04 08 04 10
05 05 04 04 07
10 05 06 02 05 11
04 06 04 05 05
08 04 02 04 03 09
04 05 03 05 05
10 04 05 05 11

07 11 05 09 05 11

kmeans | distributional

01
01_d
log

log_d
tan

tan_d
d

21 26 19 23 21 27
21 03 04 22
26 03 06 03 05 27
19 06 06 20
23 03 04 24
21 05 06 21
27 04 06 04 06 27

22 27 20 24 21 27

birch | distributional

01
01_d
log

log_d
tan

tan_d
d

06 11 05 09 04 09 02
06 06 02 03 04
11 06 06 02 06 09
05 06 05 06
09 02 02 05 02 06
04 06 02 04 02
09 03 06 04 07
02 04 09 06 02 07

linkage | distributional

(d) Variant differences for dataset IMTS2 and feature set distributional.

Figure 5.27: Variant differences for all datasets of the three models k-means (left), BIRCH
(middle) and linkage (right) in combination with the distributional feature set. Abbreviations:
empty = no post-processing, 01 = clip01, tan = clipTan, log = clipLog, d = drop, v_d =
variant with drop. Omitted column variants = row variants.

Evaluation 173

domain to be different or more general as well. In our case, however, the goal is to find clusters
within the same infrastructure monitoring data that we used to create the two IMTS datasets,
so we decided to choose a method that particularly performed well on IMTS1 and IMTS2,
i.e., one of the top-ranked methods in Figure 5.26c and Figure 5.26d, respectively. As already
discussed above, the distributional feature set achieved the highest scores, and regarding the
clustering model, we opted for the linkage model because it performed nearly equally well
as the k-means model (the differences are negligible), but it comes with the advantage that
we can use a dendrogram for visualizing the cluster hierarchy, which is immensely helpful
when determining the number of clusters. For choosing the variant, we can look at the variant
differences of the linkage model in combination with the distributional feature set, which
we already presented in Figure 5.27c for IMTS1 and Figure 5.27d for IMTS2. Clearly, the
no-post-processing variant and the drop variant performed worse, followed by the three clipping
variants, and the best results were achieved with the three clipping options when additionally
combined with the drop variant. Among the latter three, the differences are minimal, so we
selected the variant 01_d (clipping to [0, 1] and dropping correlated features afterwards) due
to its simplicity compared to its logarithm-based and tangent-based counterparts. Our final
method for clustering the unlabeled data is thus linkage|distributional|clip01_drop.

5.6.2.4 Clustering Unlabeled Data

We can now finally cluster the unlabeled data, which is our ultimate goal. For instance, we
might be interested in the clusters within the CPU Idle (H-01) metric. We thus applied
our selected method on the 7113 time series of the IMTS1 dataset, which we collected from
606 different systems. In Figure 5.28a, the truncated dendrogram (50 splits) is shown, with
which we could identify three main clusters,24 where a representative time series sample is
plotted next to the dendrogram for each cluster. Moreover, the cluster sizes n are shown
next to these time series. We also provide the cluster averages, i.e., for each cluster, the
average µ of all n time series, which are displayed in Figure 5.28b. The results indicate that
the three clusters comprise time series that are particularly active (cluster 1), those that
have distinct patterns and shapes such as trends and seasonality (cluster 2), and those that
appear to have many (potentially significant) spikes (cluster 3). The authors of [204] and [142]
manually observed such a threefold classification as well, but in our case, this distinction is
within a single metric. The cluster sizes are different but without any major outliers: The
largest cluster 1 has 2934 time series (41%), cluster 2 has 2622 time series (37%) and the
smallest cluster 3 has 1557 time series (22%). More interesting are the multi-system statistics:
In cluster 1, there are time series from 443 systems (73%), cluster 2 contains 422 systems
(70%) and cluster 3 contains 352 systems (58%). We can also calculate the cluster-overlap
distribution: 194 systems (32%) appear in only a single cluster, whereas the time series of
213 systems (35%) are distributed among two clusters, and the remaining 199 systems span all
three clusters. The Venn diagram [184] in Figure 5.28c shows these statistics in more detail.
Overall, these are interesting findings since we successfully identified three main CPU clusters
and obtained their system distributions, which we could now use for developing cluster-based
tools and models that could then be applied in the multi-system environment.

We present another example, where we clustered the 7176 time series of the Memory
Available % (H-07) metric of the IMTS1 dataset. Again, we could identify three main clusters,
albeit of different types. Figure 5.29 shows that cluster 3 still represents spiked data, but
clusters 1 and 2 both contain distinctly shaped time series, where those of cluster 2 appear to

24More (detailed) clusters can be obtained by cutting the dendrogram at a lower distance threshold (x-axis).
Our primary focus was to get a general overview, so we deliberately tried to extract (few) main clusters.

174 Time Series Clustering

02550
(57)
(83)
(74)
(112)
(62)
(152)
(83)
(139)
(97)
(89)
(49)
(181)
(43)
(79)
(162)
(20)
(75)
(164)
(79)
(103)
(159)
(76)
(51)
(72)
(258)
(77)
(167)
(372)
(646)
(181)
(217)
(152)
(110)
(193)
(198)
(307)
(152)
(186)
(72)
(126)
(64)
(71)
(438)
(103)
(100)
(63)
(48)
(220)
(161)
(170)

4

2

0

Cl
us

te
r 1

(n
 =

 2
93

4)

2

0

Cl
us

te
r 2

(n
 =

 2
62

2)

20

10

0

Cl
us

te
r 3

(n
 =

 1
55

7)

(a) Dendrogram (left) and representative time series (right) for the three identified clusters.

1.0

0.5

0.0

Cl
us

te
r 1

(n
 =

 2
93

4)

1.0

0.5

0.0

Cl
us

te
r 2

(n
 =

 2
62

2)

1.0

0.5

0.0

Cl
us

te
r 3

(n
 =

 1
55

7)

(b) Cluster time series averages.

Evaluation 175

60
90

104

44

80
29

199

Cluster 1
(n = 2934)

Cluster 2
(n = 2622)

Cluster 3
(n = 1557)

(c) Venn diagram showing the distribution of the 606 systems.

Figure 5.28: Various results obtained when clustering the 7113 CPU Idle (H-01) series of the
IMTS1 dataset into three clusters. The respective cluster sizes are denoted by n, and all time
series contain 20160 data points (two weeks in one-minute resolution, ranging from 22.01.2018
00:00 UTC to 04.02.2018 23:59 UTC).

be much smoother. Furthermore, the cluster sizes are now significantly different: Cluster 1
consists of 1755 series (25%), in contrast to clusters 2 and 3 that contain 4895 (68%) and only
526 time series (7%), respectively. We thus decided to split the clusters further by cutting the
dendrogram at a lower distance threshold, which ultimately resulted in a new clustering with a
total of six clusters.25 In Figure 5.30, the corresponding dendrogram (with representative time
series) and the six cluster time series averages are shown. The new cluster 6 represents the
same 526 spiked time series as previously cluster 3, but the five new clusters covering the other
6650 series allow more insights into the previously rather similarly looking clusters 1 and 2.
For instance, we can see that the new clusters 4 and 5 contain time series with a downward
slope, clusters 1 and 3 appear to have more pronounced seasonal or periodic patterns, and
cluster 2 can be interpreted as the remainder without any significant characteristics (white
noise signal), which is comparable to cluster 6 but without the spikes.

Increasing the number of clusters does not always help, as the following example shows.
We first separated the 2259 time series of the Disk Available % (D-03) metric of the IMTS2
dataset into two clusters, whose time series averages are displayed in Figure 5.31. Clearly,
the two cluster do not seem to be much different, so we again checked different numbers
of clusters up to six, where the final dendrogram (with representative time series) and the
six cluster averages are shown in Figure 5.32. Clusters 2, 4 and 6 are distinct (to a certain
degree), but the other three clusters still exhibit hardly any differences. Using other features
than the distributional ones, for example, all of our TSC features, can yield better results, as
already the first three main clusters look significantly different, which is shown in Figure 5.33.
Possible reasons behind this is the fact that we did not have perfect historical data available
when selecting our method (we created the labeled data ourselves), so deviations and cluster
differences are to be expected. Furthermore, just like the distributional features, the TSC
group was among the top-performing feature sets as well, so its performance here is not too
surprising. Lastly, since clustering is highly dependent on the data, it could easily be the case
that some distinctive characteristics of this particular unlabeled dataset can only be captured
using the entire set of TSC features.

25We consecutively tried lower distance threshold to create four, five and lastly six clusters, where the results
of the latter looked most promising.

176 Time Series Clustering

02550
(65)
(33)
(58)
(22)
(86)
(26)
(30)
(54)
(70)
(38)
(44)
(185)
(88)
(116)
(277)
(246)
(477)
(247)
(301)
(421)
(99)
(312)
(33)
(59)
(30)
(55)
(178)
(334)
(100)
(88)
(276)
(245)
(379)
(82)
(267)
(38)
(137)
(76)
(78)
(44)
(124)
(77)
(73)
(109)
(90)
(121)
(323)
(320)
(46)
(99)

0

5

Cl
us

te
r 1

(n
 =

 1
75

5)

5

0

Cl
us

te
r 2

(n
 =

 4
89

5)

0

10

20

Cl
us

te
r 3

(n
 =

 5
26

)

(a) Dendrogram (left) and representative time series (right) for the three identified clusters.

0.0

0.5

Cl
us

te
r 1

(n
 =

 1
75

5)

0.0

0.5

Cl
us

te
r 2

(n
 =

 4
89

5)

0.0

0.5

Cl
us

te
r 3

(n
 =

 5
26

)

(b) Cluster time series averages.

Figure 5.29: Various results obtained when clustering the 7176 Memory Available % (H-07)
series of the IMTS1 dataset into three clusters. The respective cluster sizes are denoted by n,
and all time series contain 20160 data points (two weeks in one-minute resolution, ranging
from 22.01.2018 00:00 UTC to 04.02.2018 23:59 UTC).

Evaluation 177

02550
(65)
(33)
(34)
(24)
(22)
(28)
(58)
(11)
(15)
(30)
(19)
(35)
(25)
(45)
(38)
(20)
(24)
(87)
(98)
(88)
(55)
(43)
(18)
(120)
(58)
(99)
(64)
(182)
(243)
(101)
(133)
(247)
(137)
(164)
(237)
(87)
(97)
(99)
(110)
(202)
(8)
(25)
(59)
(30)
(55)
(48)
(60)
(46)
(24)
(168)
(93)
(73)
(100)
(23)
(65)
(153)
(123)
(142)
(103)
(92)
(139)
(148)
(82)
(38)
(229)
(18)
(20)
(41)
(36)
(11)
(49)
(37)
(39)
(48)
(30)
(23)
(21)
(49)
(22)
(14)
(39)
(45)
(32)
(73)
(109)
(17)
(24)
(36)
(13)
(121)
(42)
(48)
(130)
(103)
(29)
(101)
(112)
(78)
(46)
(99)

2

0

2

Cl
us

te
r 1

(n
 =

 1
25

8)

5

0

Cl
us

te
r 2

(n
 =

 4
97

)

2

0

2

Cl
us

te
r 3

(n
 =

 2
00

4)

2

0

2

Cl
us

te
r 4

(n
 =

 9
54

)

2

0

2

Cl
us

te
r 5

(n
 =

 1
93

7)

0

10

20

Cl
us

te
r 6

(n
 =

 5
26

)

(a) Dendrogram (left) and representative time series (right) for the six newly identified clusters.

178 Time Series Clustering

0.5

0.0

0.5

Cl
us

te
r 1

(n
 =

 1
25

8)

0.5

0.0

0.5

Cl
us

te
r 2

(n
 =

 4
97

)

0.5

0.0

0.5

Cl
us

te
r 3

(n
 =

 2
00

4)

0.5

0.0

0.5

Cl
us

te
r 4

(n
 =

 9
54

)

0.5

0.0

0.5
Cl

us
te

r 5
(n

 =
 1

93
7)

0.5

0.0

0.5

Cl
us

te
r 6

(n
 =

 5
26

)

(b) Cluster time series averages.

Figure 5.30: Various results obtained when clustering the 7176 Memory Available % (H-07)
series of the IMTS1 dataset into six new clusters. The respective cluster sizes are denoted by
n, and all time series contain 20160 data points (two weeks in one-minute resolution, ranging
from 22.01.2018 00:00 UTC to 04.02.2018 23:59 UTC).

Evaluation 179

1.0

0.5

0.0

0.5

Cl
us

te
r 1

(n
 =

 1
99

0)

1.0

0.5

0.0

0.5

Cl
us

te
r 2

(n
 =

 2
69

)

Figure 5.31: Cluster time series averages for the two identified clusters within the 2259 Disk
Available % (D-03) series of the IMTS2 dataset. The respective cluster sizes are denoted by n,
and all time series contain 40320 data points (four weeks in one-minute resolution, ranging
from 15.07.2019 00:00 UTC to 11.08.2019 23:59 UTC).

In conclusion, we showed that clustering using one of the top-performing methods from the
labeled data evaluation yielded promising results and interesting insights for various unlabeled
datasets (the results for all remaining datasets (cf. Table 5.5) can be found in the appendix in
Section D.3.2 on p. 255). Our approach is based on a full model selection [132] with machine
learning models, feature sets and post-processing variants, and is then applied to the problem
of clustering, i.e., unsupervised machine learning, which has not yet been a strong focus in
research. Furthermore, we presented clustering results of infrastructure monitoring data from a
real-world, multi-system environment, where, to the best of our knowledge, we are among the
first to present such detailed insights. These results could then be the basis for the development
of cluster-specific tools, thereby leveraging our multi-system environment, where we could not
only benefit from (sufficient) data of different systems but also from the fact that such tools
could potentially be applied to all systems that are part of the corresponding clusters.

5.6.2.5 Run-Time Cost Model

If users are not only interested in the clustering quality but also in the computational costs
of the evaluated candidate methods, they can additionally utilize our run-time cost model.
In our approach, we measure the absolute run-time costs, so all following results are highly
dependent on the concrete machine used for clustering. We decided to only present the UCR
dataset here, which suffices to show that our run-time cost model can successfully be used to
investigate both the clustering quality as well as the computational costs. For our candidate
methods, we opted for the same five clustering models introduced in Section 5.6.2.3, which
we evaluated on both the raw time series data as well as on feature-based representations.
As feature sets, we decided to run all of our TSC groups with their eight variants listed in
Section 5.6.2.2, i.e., we created 5 · 18 · 8 = 720 feature-based methods.26 In combination with
the five raw-based methods, we thus evaluated a total of 725 methods.

Our approach requires to specify the number of repeated runs r as well as both the lower and
upper percentile-based thresholds pl and pu to determine the robust run-time measurement r̄
for each method. To get reliable results, we set them to r = 30, ql = 10% and qu = 90%

26The feature set catch22 from the previous evaluation only works on Unix-based systems. Unfortunately, no
such system was available at the time of testing, which is the reason why catch22 is not evaluated here.

180 Time Series Clustering

020
(4)
(18)
(5)
(4)
(3)
(6)
(11)
(8)
(9)
(5)
(6)
(12)
(16)
(6)
(12)
(10)
(5)
(22)
(7)
(3)
(20)
(6)
(23)
(9)
(22)
(4)
(13)
(16)
(63)
(12)
(69)
(23)
(31)
(39)
(60)
(10)
(14)
(8)
(21)
(85)
(97)
(63)
(14)
(28)
(8)
(70)
(9)
(15)
(12)
(19)
(54)
(25)
(37)
(27)
(11)
(47)
(12)
(3)
(5)
(4)
(4)
(5)
(63)
(9)
(3)
(10)
(5)
(3)
(15)
(12)
(43)
(17)
(18)
(8)
(8)
(19)
(9)
(25)
(20)
(14)
(37)
(58)
(45)
(4)
(36)
(57)
(29)
(40)
(16)
(28)
(33)
(18)
(19)
(22)
(15)
(47)
(19)
(119)
(15)
(12)

2

0

Cl
us

te
r 1

(n
 =

 8
85

)

7.5

5.0

2.5

0.0

Cl
us

te
r 2

(n
 =

 1
18

)

2

0

2

Cl
us

te
r 3

(n
 =

 7
73

)

0

1

Cl
us

te
r 4

(n
 =

 2
14

)

4

2

0

Cl
us

te
r 5

(n
 =

 1
44

)

15

10

5

0

Cl
us

te
r 6

(n
 =

 1
25

)

(a) Dendrogram (left) and representative time series (right) for the six newly identified clusters.

Evaluation 181

1

0

1

Cl
us

te
r 1

(n
 =

 8
85

)

1

0

1

Cl
us

te
r 2

(n
 =

 1
18

)

1

0

1

Cl
us

te
r 3

(n
 =

 7
73

)

1

0

1

Cl
us

te
r 4

(n
 =

 2
14

)

1

0

1

Cl
us

te
r 5

(n
 =

 1
44

)

1

0

1
Cl

us
te

r 6
(n

 =
 1

25
)

(b) Cluster time series averages.

Figure 5.32: Various results obtained when clustering the 2259 Disk Available % (D-03)
series of the IMTS2 dataset into six new clusters. The respective cluster sizes are denoted by
n, and all time series contain 40320 data points (four weeks in one-minute resolution, ranging
from 15.07.2019 00:00 UTC to 11.08.2019 23:59 UTC).

182 Time Series Clustering

02550
(100)
(40)
(78)
(38)
(40)
(21)
(32)
(62)
(41)
(62)
(46)
(33)
(34)
(20)
(18)
(31)
(34)
(155)
(58)
(15)
(47)
(21)
(14)
(76)
(49)
(35)
(28)
(11)
(34)
(21)
(23)
(18)
(15)
(61)
(60)
(44)
(70)
(15)
(95)
(15)
(30)
(23)
(16)
(53)
(51)
(51)
(82)
(124)
(48)
(71)

2

0

2

Cl
us

te
r 1

(n
 =

 1
25

4)

2

0

Cl
us

te
r 2

(n
 =

 4
91

)

1

0

1

Cl
us

te
r 3

(n
 =

 5
14

)

(a) Dendrogram (left) and representative time series (right) for the three identified clusters.

1

0

1

Cl
us

te
r 1

(n
 =

 1
25

4)

1

0

1
Cl

us
te

r 2
(n

 =
 4

91
)

1

0

1

Cl
us

te
r 3

(n
 =

 5
14

)

(b) Cluster time series averages.

Figure 5.33: Various results obtained when clustering the 2259 Disk Available % (D-03)
series of the IMTS2 dataset into three clusters using the entire set of TSC features instead
of the distributional feature set. The respective cluster sizes are denoted by n, and all time
series contain 40320 data points (four weeks in one-minute resolution, ranging from 15.07.2019
00:00 UTC to 11.08.2019 23:59 UTC).

Discussion 183

(average of the middle 80% of 30 measurements). As the clustering quality evaluation metric,
we once again used the adjusted Rand index (ARI). All evaluation runs were executed on a
machine with an Intel Xeon E3-1245 v3 3.4GHz processor with four physical cores and eight
threads, and 16GB of main memory. The implementations were written in Python 3.6.10,
where the required libraries had the following versions: SciPy 1.4.1 [185] for the linkage model,
scikit-learn 0.22.1 [131] for the implementations of k-means, BIRCH and the ARI metric,
pandas 1.0.3 [140, 117] and NumPy 1.18.1 [73] for general data handling, joblib 1.14.1 [176]
for parallel execution contexts, and tsfresh 0.15.1 [35], nolds 0.5.2 [151] and arch 4.13 [167] for
our TSC implementation.27

Figure 5.34 shows the results of all 725 methods for four selected UCR datasets via the
quality-cost trade-off graphs, where all run times are measured in seconds. Each dataset is
specified with the number of samples n it contains, i.e., the number of individual time series,
and how many data points t such a time series consists of. This allows us to quickly see how
fast the different methods executed with respect to the input data size, which can be seen
in both the graph and its corresponding table that contains the Pareto front methods. For
demonstration purposes, we set up some quality and cost thresholds28 to focus our search for
the best methods only on the relevant methods. For example, we can drastically reduce the
methods down to 20 for dataset ElectricDevices (cf. Figure 5.34a), and the Pareto front further
reduces them to eleven. These eleven methods are then the methods of interest, and we can
now analyze how well they performed in terms of clustering quality and computational costs.
If we select the complexity feature set, we get the best ARI but at the cost of the highest run
time. If we can live with a small decrease in clustering performance, the entropy group yields
much lower run times, especially if we opt for the k-means model. We might also choose the
blockwise distributional dispersion feature set in combination with the k-means model, which
has the lowest ARI but is significantly faster in return. Regarding run-time performance, the
variants do not matter much (differences around 0.02 seconds). The other three UCR datasets
yield comparable results (with different relevant methods) and can be interpreted analogously.
Ultimately, it is up to the users whether quality or run-time cost is more important and which
methods they choose in the end.

5.7 Discussion

In this section, we initially discuss some general aspects and then continue with the lessons we
learned while working on this project. Afterwards, we list problems and limitations of our
approach and finish with potential threats to validity.

The first point of discussion is the creation of our feature sets. We proposed the time series
characteristics (TSC) groups and subgroups, but of course, any kind of feature sets can be
used. For example, we could create our own sets based on the TSC features in combination
with their feature importance. Rather than redistributing the feature importance results
back to their original TSC groups to obtain their merged importance, we could also simply
use the n most important individual features and form a new feature set, which would then
contain a mixture of features from various TSC groups. In this case, we would lose the group
assignment that we carefully contrived, but if one is not interested in these groupings, then
such an importance-based feature set could be an interesting idea for future work.

27See also https://github.com/cdl-mevss-m3/Time-Series-Characteristics.
28In our case, we selected arbitrary thresholds. Of course, in a real-world scenario, these thresholds should

be chosen based on specific quality and performance criteria.

https://github.com/cdl-mevss-m3/Time-Series-Characteristics

184 Time Series Clustering

0.0 0.1 0.2 0.3 0.4
ARI

0

100

200

300

400

Ru
n

Ti
m

e
[s

]

qt

ct

M Feature Set Variant ARI RT [s]

l complexity 0.353 98.246
l c_entropy 01_d 0.325 44.098
k c_entropy log_d 0.320 35.511
l d_dispersion_b log 0.318 15.296
l d_dispersion_b 01 0.316 15.274
l t_dispersion_b 01 0.314 14.489
k t_dispersion_b tan_d 0.310 6.548
k t_dispersion_b tan 0.310 6.528
k d_dispersion_b log 0.308 6.383
k d_dispersion_b 01_d 0.307 6.381
k d_dispersion_b 01 0.307 6.361

(a) Quality-cost trade-off graph for UCR dataset ElectricDevices (number of samples n = 16637, time
series length t = 96). The lower quality threshold (qt) of ARI ≥ 0.3 and upper run-time cost threshold
(ct) of r̄ ≤ 100s result in 20 relevant methods (highlighted with yellow background), whose Pareto
front (eleven methods) is listed in the table.

0.0 0.1 0.2 0.3 0.4 0.5
ARI

0

1

2

3

4

5

Ru
n

Ti
m

e
[s

]

qt

ct

M Feature Set Variant ARI RT [s]

k temporal d 0.488 1.381
l t_dispersion_b log 0.457 0.140
l c_flatness 01 0.442 0.126
l c_flatness 0.442 0.126

(b) Quality-cost trade-off graph for UCR dataset FaceFour (number of samples n = 112, time series
length t = 350). The lower quality threshold (qt) of ARI ≥ 0.4 and upper run-time cost threshold
(ct) of r̄ ≤ 2s result in 13 relevant methods (highlighted with yellow background), whose Pareto front
(four methods) is listed in the table.

Discussion 185

0.0 0.1 0.2 0.3 0.4
ARI

0

5

10

15

20

25

30

35

Ru
n

Ti
m

e
[s

]

qt

ct

M Feature Set Variant ARI RT [s]

b temporal 01_d 0.395 10.868
b t_linearity log 0.393 3.354
b t_linearity 01 0.369 3.288

(c) Quality-cost trade-off graph for UCR dataset FiftyWords (number of samples n = 905, time series
length t = 270). The lower quality threshold (qt) of ARI ≥ 0.35 and upper run-time cost threshold (ct)
of r̄ ≤ 15s result in 13 relevant methods (highlighted with yellow background), whose Pareto front
(three methods) is listed in the table.

0.0 0.2 0.4
ARI

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ru
n

Ti
m

e
[s

]

qt

ct

M Feature Set Variant ARI RT [s]

k t_similarity 01_d 0.516 4.019
b t_linearity 0.488 0.608
lw t_linearity 01 0.362 0.533

(d) Quality-cost trade-off graph for UCR dataset ItalyPowerDemand (number of samples n = 1096,
time series length t = 24). The lower quality threshold (qt) of ARI ≥ 0.25 and upper run-time cost
threshold (ct) of r̄ ≤ 5s result in twelve relevant methods (highlighted with yellow background), whose
Pareto front (three methods) is listed in the table.

Figure 5.34: Quality-cost trade-off graphs and corresponding tables listing the Pareto front
of the 725 evaluated methods for various UCR datasets. In the tables, M and RT are short
for Model and Run Time. All run times are measured in seconds.

186 Time Series Clustering

Another point is the fact that our diff-matrix does not show the absolute evaluation metric,
e.g., the actual adjusted Rand index (ARI), so we do not know how well the methods performed
in absolute terms but only in comparison to each other. While we could easily provide an
additional table or figure that shows these absolute scores, we argue that this is not necessary
at that stage. The primary goal of the diff-matrix is to show differences between methods
to determine which ones performed better and which ones worse. Knowing the absolute
evaluation metric would not change this ranking. Furthermore, the absolute scores are of little
use, unless the labeled data contains the same clusters (e.g., historic data) that we seek in
the unlabeled data, which could then serve as a performance estimate that we expect for this
unlabeled data.

Lastly, we note that clustering is not limited to the data we used in selecting the best
methods. In principle, we can use all kinds of data, since we did not train any model where the
test data must match accordingly, e.g., such as in prediction and classification tasks. However,
we should choose to cluster at least similar data (same domain, equally long time series), or
otherwise, the selected method would lose significance. In other words, if we try to cluster
completely different data than we used in the method selection process, we can no longer
assume that the best-performing methods should also work here.

5.7.1 Lessons Learned

In the following, we present various lessons that we learned and general insights we gained
when applying our approach on the UCR and IMTS datasets.

Clustering is feasible and beneficial in a multi-system environment. This is arguably the
core lesson as clustering was the primary goal of our work. We showed that using time series
characteristics enables us to extract useful cross-system clusters, which can then be the input
for more detailed analyses and multi-system tool development. For example, we could develop
a sophisticated multi-system forecasting and baselining model (for modeling the default time
series behavior), where our findings can be a valuable starting point. For instance, given
the results shown in Figure 5.28, we could create three specific models for the three default
behaviors and continue to integrate forecasting models, each designed to best fit the time series
of the respective clusters [9]. Such a tool could then be used throughout the different systems
without having to explicitly develop a separate tool for each of the hundreds of software
systems. Another possibility would be to create simple models for those systems which reside
only within a single cluster, as can be extracted from the Venn diagram in Figure 5.28c.

Features outperform raw data in terms of clustering quality. For the IMTS datasets, the
results in Figure 5.26c and Figure 5.26d clearly indicate the superiority of feature-based time
series clustering. Of course, raw-based clustering can work for other datasets such as the UCR
time series archive (cf. Figure 5.26a and Figure 5.26b), where the best raw method was only
outperformed by the full TSC group and the temporal group. Moreover, clustering raw data can
potentially lead to significantly longer run times due to no dimensionality reduction, especially
for longer time series. Consider the length of the feature vectors used by the various machine
learning models: Given the IMTS2 dataset, for example, the vector of the distributional group
has a length of 34, compared to 40320 of the raw vector. However, it must be noted that
the computational costs heavily depend on the selected clustering models and the (possibly
expensive) features that should be calculated. Our run-time cost model can be helpful in this
regard to obtain a concrete assessment.

Feature groups help to understand time series/cluster properties. Our TSC groups (cf.
Table 5.1) assist engineers in quickly analyzing properties of time series or even entire clusters.
For the UCR dataset BirdChicken, for example, Figure 5.23 immediately reveals which groups

Discussion 187

have a high impact and which ones are less important, and we can easily determine the
differences and variances between classes/clusters. In contrast, simply having an unorganized
set of features (or raw data altogether) is far less convenient and requires engineers to put
much more time into gaining valuable insights from the results.

Finding the best methods requires domain as well as run-time cost considerations. With
the countless number of machine learning models and their parameterizations, time series
features and post-processing options that are at our disposal, running all possible combinations
is infeasible. We thus have to limit what we apply our approach on, which heavily depends
on both the domain of the data as well as on the ultimately chosen models and features. In
our case, we only chose five clustering models in combination with selected sets of features
(TSC groups, catch22, raw data), and we still ended up with 755 methods that we needed to
evaluate. Our approach includes the analysis of feature importance, which can be helpful to
potentially drop some irrelevant feature sets. However, there is no guarantee that any feature
sets can be excluded in this step, so the initial choice of models and features is still essential
to keep the run times manageable, even more so if (unlike in our evaluation) computational
costs are critical, especially with increasingly large data sizes or changes in data patterns and
characteristics that require a reevaluation.

5.7.2 Problems and Limitations

The requirement of labeled data can be problematic when such data is not available, which,
unfortunately, is often the case in real-world scenarios. As mentioned in the approach and
evaluation, we do provide alternatives to cope with this issue (generating labeled datasets
ourselves by merging different time series sources, using publicly available labeled datasets),
but as next steps, we should focus on an approach that can work solely with unlabeled data.
Instead of the supervised random forest feature importance, we could look into unsupervised
feature selection [53, 173], and we could replace the external evaluation metrics with internal
evaluation metrics (cf. Section 2.4.4.1 on p. 23). On the other hand, this does come with
additional challenges such as no longer knowing the ground truth, which makes the comparison
of methods more difficult.

Our current approach is computationally expensive, since we need to run the full set of
candidate methods on all selected datasets. This limits the overall capabilities because, for
example, if we have limited hardware resources, we simply cannot include more models or
different model parameterizations due to excessive run times, even if we wanted to. The
concept of meta-learning [133, 183], whose goal is to learn from previous performances and
transfer the results to new data and settings, could be a promising topic in future work.

Three limitations must be considered when using our run-time cost model approach. First,
the run times are only valid on the specific machine they were measured on, which means
that this machine should then also be the one where future data is expected to be clustered.
Otherwise, the run-time costs can be misleading.29 The second point is the fact that measuring
the run times of all candidate methods takes a significant amount of time itself, especially
since we require multiple executions due to our robust measurement strategy. However, this
can be done offline until a reevaluation is necessary. Lastly, the run-time cost model only
measures how long it takes to cluster the entire data batch and not how long it takes to assign
a new sample to an existing clustering (which is not even possible for some clustering models,
such as the hierarchical clustering algorithms). Hence, it is important what the users want to

29They might still be relatively comparable, i.e., judging which methods executed slower/faster than others,
but even this is limited when the hardware and software components are different (parallelization, available
memory, operating system, library versions).

188 Time Series Clustering

accomplish. If they just want to get clusters for a batch of data, e.g., every one or two weeks,
then this is perfectly fine. If they want to repeatedly cluster incoming time series, then the
run-time cost model is possibly not applicable anymore because we would most likely use a
clustering model that can be updated (e.g., k-means) to avoid re-clustering the entire data
every time a new time series comes in. In such a case, the run-time measurements are not
valid anymore because we would now need the time to update the model rather than the time
it takes to cluster the entire data. We could extend our run-time cost model in future work to
also support such a scenario.

5.7.3 Threats to Validity

We use a supervised random forest for selecting feature sets as guidance for the unsupervised
clustering. We argue that the most informative features selected by the random forest should
be informative for the clustering as well, since it tries to find those features that best separate
the labels, i.e., the clusters. This is essentially the same idea in the unsupervised approach,
where, for instance, some distance measure is used for separating the clusters, and clearly
separable features should be clearly separable in distance as well. In the majority of the cases,
our evaluation results support this claim when cross-analyzing the feature importance ranks
in Figure 5.24 and the diff-matrices in Figure 5.26. For instance, the feature group temporal
similarity was ranked as important for the UCR-merged dataset, and it was then among the
top-performing methods (cf. Figure 5.26b). However, there are a few, scattered exceptions,
so we should look into alternative feature importance assessments, such as incorporating
unsupervised feature selection algorithms as already mentioned above.

Relying on the labeled data for the method ranking with respect to how our labeled
datasets are created is another point of discussion. In the preparation phase, we merged the
time series of different monitoring metrics and assigned labels according to these metrics to
obtain our IMTS datasets. Two arguments against this procedure could be that the metrics are
too similar, and that we then try to identify clusters within a single metric and not the merged,
multiple metrics. We already discussed parts of this earlier (cf. Section 5.5), where we pointed
out that we deliberately selected drastically different metrics precisely to avoid the issue of
similar metrics that would indeed be problematic, since they are much more difficult to separate
again. Regarding the second argument, we emphasize that we only want to identify those
methods that should at least be able to separate the merged (sufficiently different) metrics, i.e.,
we try to find methods with a good “separation capability” or “pattern/cluster identification
ability”, which we expect to also work when clustering the unlabeled, single-metric data. Other
than that, there are no connections to the labeled, multi-metric data. Most notably, no
form of model training takes place, where we would then apply such a trained model on the
single-metric data afterwards. Naturally, the ideal scenario would be the access to already
(manually) labeled, historic data of exactly the same type as the unlabeled data that we want
to automatically cluster, in which case we would not need the merged, multi-metric dataset in
the first place.

The selected models, features and variants represent not only a limitation but also a possible
threat to validity, since we might have excluded some combinations that could potentially have
performed much better and/or yielded different results. The variants are the least important
part, as we showed in the evaluation that there are only small differences (if any) in most cases.
For the features, we gathered a carefully chosen set of time series characteristics (TSC) from
literature that cover various properties (represented by our groups and subgroups), and we
compared them to a state-of-the-art feature set (catch22), which corroborated their classification
as well as clustering performance. Thus, we are confident that our TSC groups are sufficient,

Related Work 189

especially when considering that merely adding more features does not necessarily result in
significantly improved performance [110]. Regarding the clustering models, we opted for a
reduced set of five models (k-means, BIRCH and agglomerative clustering in three variations).
We chose these models because they have successfully been applied throughout related work
and because of their scalability when clustering large quantities of data. Nonetheless, many
more clustering algorithms exist, and also hyperparameter tuning can make a drastic difference,
both of which we should evaluate and investigate in future work.

Lastly, we discuss external threats to validity. Our main evaluation was performed on
the two IMTS datasets, i.e., industrial monitoring data from our industry partner, so the
results are not generally applicable since they heavily depend on the domain, characteristics
and properties of this data. Hence, we cannot assume that the clustering methods identified
by our automatic method ranking approach can be used for clustering arbitrary time series
data. However, we additionally showed that the approach can work with other data than our
IMTS datasets as well, namely when clustering data from the UCR archive, which contains
time series from a variety of domains. While there were some overlaps (e.g., the full TSC
feature set performed well in all datasets), the UCR evaluation also resulted in some different,
top-ranked methods (e.g., methods based on the raw data or other TSC groups), i.e., methods
more suited for the UCR data. Considering this comprehensive and diverse evaluation of both
the IMTS and the UCR data, we are confident that our approach can be applied in different
scenarios and environments as well.

5.8 Related Work

Clustering is a large and active field of research, so we focus on the most relevant topics.
We start with features and characteristics that can be extracted from time series, continue
with automatic clustering selection approaches, then present work on analyzing real-world,
industrial (software) systems, and lastly, we talk about literature related to run-time costs.

5.8.1 Features for Time Series

Clustering and classifying time series has caught the interest of many researchers, both
regarding raw-based as well as feature-based approaches [3]. In 2006, Wang et al. [187]
presented 13 features for clustering time series. Their feature set included trend, seasonality,
periodicity, serial correlation, skewness, kurtosis, chaos, non-linearity and self-similarity, which
they calculated for both raw and trend plus seasonally adjusted data. The authors of [64]
introduced a large collection of time series analysis operations containing about 1000 distinct
features (over 9000 with different parameterizations) to identify structures within a diverse
set of time series data across multiple domains. Two of these authors then continued with
this work by applying the features in a classification scenario using 20 UCR time series
datasets [63], and they published their Matlab-based framework hctsa for calculating those
features [62]. Fulcher then also presented an overview of feature-based time series analysis [61].
Since the thousands of features of hctsa can be confusing and computationally expensive, the
authors of catch22 [110] reduced them to a set of 22 minimally redundant features, which still
provide a strong classification performance, based on the UCR datasets. They decreased the
computational time by a factor of 1000, while only reducing the average classification accuracy
by about 7% and obtaining equally good results as Hyndman et al. [82]. Christ et al. [36, 35]
presented the Python-based framework tsfresh, whose goal is to extract over 60 time series
features (more than 1200 with different parameterizations). Another collection of features for
classification purposes was introduced by Baldan and Benítez [8]. Besides listing a total of

190 Time Series Clustering

41 different features, the authors also assigned them to two groups (ten complexity measures
such as entropy, and 31 representative features such as autocorrelation and linearity) to aid
interpretability. While this is a step in the right direction, we provide a full grouping into
four main time series properties, which we split into even more detailed subgroups that allow
us to analyze and utilize specific properties and characteristics. Furthermore, we selected a
diverse and representative set of time series features based on multiple literature sources that
already showed their effectiveness, all without being overwhelmed by thousands of features
with respect to data analysis complexity as well as computational costs.

5.8.2 Automatic Clustering Selection

In this section, we discuss automatic filtering and selection approaches of both models, features
and combinations thereof. Three of the above research groups not only introduced a set of
features but also included a feature selection process. Wang et al. [187] proposed a greedy
forward search for feature selection, tested their approach on the (old) UCR datasets, two
synthetic datasets and a real-world dataset, and reported good clustering results. Fulcher
et al. [64] filtered their 9000 features by removing redundant ones with the help of k-medoids
clustering (similar to k-means but with medoids as cluster centroids), where they managed to
reduce the number of features to 200 with a negligible increase in variance when clustering
a mixed set of time series data. Christ et al. [36, 35] added an automatic feature selection
based on statistical tests and labeled data. The problem of choosing the right algorithm for
a given task was already formulated in 1976 by Rice, who called it the algorithm selection
problem [143]. In the machine learning community, this was translated into a more general
model selection problem, and much research focused on creating automated machine learning
(AutoML) pipelines, which incorporate data cleaning, feature selection, model selection and
hyperparameter optimization [75]. However, these tools are designed for classification and
regression tasks, which means they are not applicable to clustering problems. Nevertheless,
some experiments have been conducted with respect to the unsupervised model selection. In the
area of gene expression data, the authors of [87] investigated the effect of 15 distance measures
(ten correlation-based, four standard distance-based, five tailored to short gene time series)
and four clustering models (k-medoids, three hierarchical variants) on 52 microarray datasets,
containing both labeled and unlabeled data. For the former, they used the adjusted Rand
index (ARI) for evaluating the performance, and for the unlabeled data, they calculated the
Silhouette score. Mori et al. [123] automatically selected the best among five distance/similarity
measures by training a classifier on the characteristics of labeled time series databases (e.g.,
number of time series, global shift and trend), given the performance of 15 parameterizations
of k-medoids and four hierarchical clustering variants. They evaluated their approach using
45 UCR datasets and 555 synthetic datasets. In contrast, our approach identifies and ranks
the best raw-based as well as feature-based clustering methods, i.e., we investigate clustering
algorithms, features and variants (post-processing) as a full model selection approach [132].

5.8.3 Analysis of Industrial Systems

The majority of literature regarding the analysis of industrial, real-world (software) systems
can be found in the area of workload characterization [29]. Much work focuses on the public
trace datasets from Google [83, 141] (25 million tasks running on 12500 hosts over a period
of one month in five-minute resolution) and Alibaba [70] (for the 2017 trace: 1300 machines
over a period of twelve hours in different resolutions), and many researchers and practitioners
evaluate their own (often private) datasets. However, to the best of our knowledge, no work
contains such detailed feature-based clustering as proposed in this thesis.

Related Work 191

5.8.3.1 Statistical Analysis

The following work mostly focuses on presenting statistical results, which provide detailed
insights into global data characteristics. In [17], thousands of servers from different data
centers hosting numerous enterprise-sized customers were analyzed. They extracted two years
of monitoring data covering CPU, memory, disk, file system and network metrics, and, among
others, presented various statistics such as total average resource utilization, average utilization
across the 2-year period (monthly resolution), including groupings into customers or data
center locations (countries). The work in [18] is an extension, where they focused on resource
characterization of CPU, memory and disk metrics, and presented detailed statistical insights
including cumulative distribution functions as well as correlations between resources. The
authors of [166] analyzed data in five-minute resolution collected from two traces, one with
1250 virtual machines (VMs) over a period of one month, and another one with 500 VMs
over a period of three months. The data traces included various CPU-, memory-, disk- and
network-related metrics. They included several statistical evaluations, ranging from global
measures (mean, median, standard deviation, etc.) and multiple cumulative distribution
functions to evolution over time and correlation analyses to check resource dependencies.
In [109], the Alibaba trace data was analyzed and various results, ranging from CPU and
memory plots for each individual machine to merged utilization evolving over time, were
presented. The paper presented in [39] characterizes the workload from Microsoft Azure.
These characteristics were used for learning and prediction, which could then be utilized by
resource manager systems, e.g., for sophisticated scheduling. Di et al. [50] investigated the
differences between cloud and grid workloads by using the Google cluster trace and data from
multiple grid/HPC (high performance computing) systems. They presented various job-related
statistics and also global analyses on CPU and memory usage. Zhang et al. [203] also analyzed
the Google cluster trace data and studied global statistics on CPU, memory and disk metrics
for each compute cluster.

5.8.3.2 Applied Clustering

We continue with work on real-world systems where some sort of clustering was applied.
Thalheim et al. [179] presented Sieve with the goal to get actionable insights from various time
series metrics (CPU, memory, disk and network, etc.) that were collected from components
of a distributed system. The framework consists of a metrics reduction part and a metrics
dependency extractor. For each system component, k-Shape clustering [129] is applied in the
reduction part on the raw data to create groups of similar time series. A representative metric is
picked from each such group, which is the input for the extraction part. Based on experiments
on the authors’ applications, they stated that seven clusters per component were enough,
considering that each component provided up to 300 different metrics. Besides global statistical
evaluations, the authors of [88] also investigated clustering based on CPU and memory metrics
of the server machines in the Alibaba trace data. Using k-means, they could identify seven
different machine types. Streiffer et al. [174] proposed the tool Minerva, whose main purpose
is clustering time series that were collected from components of a microservice-based system,
extracting causality and finally making predictions of time series to detect anomalies. In the
clustering step, the authors grouped all metrics into similar clusters with k-Shape. Afterwards,
only the cluster centroids were used for subsequent processing, which drastically reduced
computational costs. Canali and Lancellotti [30] also utilized cluster representatives to limit
the amount of their data, which comprised eleven infrastructure monitoring metrics (CPU,
memory, disk, network) of 110 VMs in five-minute resolution. For each VM, the authors first
calculated the correlation between all its time series and then applied k-means clustering to

192 Time Series Clustering

obtain groups of similar VMs based on these correlation values. The authors of [92] also created
clusters of similar VMs using CPU utilization time series data with the goal to predict the
workload of individual VMs. In contrast to many other papers, they did not use unsupervised
machine learning but proposed a new co-clustering algorithm which determines similar VMs
according to the variation-based consistency measure. They evaluated their approach on the
data of 1212 VMs and identified 98 co-clusters, of which 65 were predictable. Xue et al. [197]
introduced PROST, a tool to predict workload time series that were collected from large-scale
data centers. To reduce the amount of data before the prediction, clustering is first performed
on the raw time series (either with dynamic time warping or correlation-based clustering),
followed by removing multicollinearity to obtain a set of representative signature series. The
goal of Sibyl [208] is host load prediction, but again, to reduce dimensionality beforehand
and drop irrelevant metrics, the authors used k-Shape to create clusters of similar time series
from a total of 17 different monitoring metrics of 176 machines. Using k-means, the authors
of [165] determined workload clusters within two datasets (CPU, memory, disk, network for
the trace in [166], and task duration, CPU, memory, disk for the Google trace data), which
they then set as ground truth for workload classification. Gupta et al. [72] combined system
log information and performance metrics for anomaly detection. They first detected context
patterns (states of a machine) with k-means and the log data, which they separated further by
identifying metric patterns, for which they used a modified k-means algorithm that clusters
metrics based on the similarity of their top k components obtained by a principal component
analysis. Shortly before the release of Google’s large trace data, Chen et al. [34] analyzed a
smaller subset (only 375 minutes available, monitored metrics only contain used CPU cores and
memory per task). They could extract eight job clusters based on 14 normalized characteristics
(including extracted statistics on used CPU cores, memory and the memory-core-ratio). As
an extension of [50], Di et al. [49] applied an optimized k-means algorithm on the Google
trace data on the granularity of applications. Besides clustering task events according to
their task statistics, they also identified workload clusters using the mean CPU workload
and mean memory workload. The majority of the above work utilizes clustering based on
the raw time series data. We, on the other hand, additionally provide an in-depth clustering
based on features and present detailed results of several infrastructure monitoring time series
from multiple, independent software systems, where we also focus on statistics specifically
addressing this multi-system environment.

5.8.4 Run-time Costs

While there exist numerous approaches on improving the efficiency of existing algorithms,
models and feature calculations themselves, the explicit comparison of the run-time costs
in combination with clustering quality of a set of candidate methods as we propose in this
thesis has not yet been focused on. However, meta-learning [133, 183], i.e., learning from
previous performances and transferring the results to new scenarios, has caught the interest
of some researchers. For example, the authors of [23] proposed the Adjusted Ratio of Ratios
(ARR) metric that ranks algorithms based on their accuracy as well as run-time costs,
which they then incorporated into a meta-learning approach for selecting learning algorithms.
Later, Abdulrahman et al. [2] presented further improvements to exclude redundant and
non-competitive algorithms. Hutter et al. [80] created so-called empirical performance models
for predicting the run time of various machine learning algorithms and their parameterizations,
given various input feature sizes and sample sizes. Since our current run-time cost model requires
a full evaluation of all methods and all datasets, meta-learning seems to be a promising topic
in future work, where we could predict both the clustering quality as well as the computational
costs, which would significantly speed up our approach.

Outlook 193

5.9 Outlook

There are many ways how we could improve our feature-based time series clustering selection
approach. As already mentioned in the discussion section (cf. Section 5.7), the most pressing
matter would be the adaptation to purely unlabeled data, i.e., changing our supervised feature
importance as well as external evaluation metric diff-matrix comparison to techniques that do
not require labeled data. Moreover, we could test much more methods, namely by analyzing
different hyperparameters of the clustering models and, more generally, by evaluating further
unsupervised algorithms (based on features as well as raw time series data), so we get even
better insights into how well each method performs and which ones work best for the data
of interest. Since increasing the number of methods naturally increases the time required for
their evaluation, a logical next step would be to look into meta-learning as discussed above,
which would also greatly benefit our current run-time cost model. The run-time cost model
itself could also be extended to support online clustering updates in addition to the offline
batch processing. With this outlook, we conclude the third and final part of this thesis.

195

Chapter 6

Conclusion

In this thesis, we presented our work on three major topics in the area of a multi-system
environment (provided by our industry partner Dynatrace), where each system is independent
of each other and consists of various components where data such as events, component
properties and time series are collected. Analyzing such multi-system data can potentially
yield advantages and reveal interesting insights, which includes coping with insufficient single-
system data, combining and merging data across multiple systems, and identifying common
multi-system patterns. Despite these promising benefits, research on data analysis and error
analytics in such a multi-system environment is still lacking, which is why the main focus of
this thesis was the analysis of multi-system data.

Our first part covered a topology-driven process crash analysis approach, where we investi-
gated how process crash events and software technologies running on these processes could be
related. To this end, we recorded how often such technologies crashed during their lifetime
and how often they did not crash, which is stored in our so-called software technology tuples.
Afterwards, we aggregated the results of all recorded systems and ranked the tuples based on a
custom metric that rewards tuples that crashed often and in many systems. Leveraging crash
properties such as the occurred exception, we analyzed the top-ranked tuples by grouping
the tuples’ crashes first according to the selected property and then the systems where the
crashes occurred. This revealed common crash properties across multiple systems, where fixing
a potentially common root cause could benefit all affected systems. Our evaluation of over one
year’s worth of monitoring data from 500 software systems yielded promising results. However,
we did not have access to more detailed crash properties (e.g., library versions or stack traces)
to enhance our approach.

Therefore, we decided to include the time series data in the second part of the thesis, where
we introduced a multi-system event prediction approach. We wanted to investigate if certain
performance-related events (service slowdowns) can be explained by infrastructure monitoring
time series (CPU, memory, disk and network metrics), which, in turn, would mean that such
events could be predicted solely based on these time series. We thus developed a sophisticated
data preprocessing framework to extract the complex multi-system event and time series data,
and then we trained various (single- and multi-system) supervised machine learning models
using data from 57 different software systems covering a monitoring period of 20 days. In the
testing phase, we started with a first (balanced) evaluation to see whether the service slowdown
event prediction can work in the first place. After promising initial results, we continued with
real-world testing scenarios with drastically unbalanced data, where we observed a significant
drop in prediction performance. Further investigations (data augmentation and synthetic
data) revealed that our event prediction approach unfortunately suffers from an upper bound

196 Conclusion

performance limit when applied within such real-world testing scenarios, and that our initial
experiments already yielded poor results when addressing the data imbalance, indicating the
possibility that the infrastructure monitoring time series might just not contain enough or the
right information to explain service slowdowns.

In the third and last part of the thesis, we thus decided to drop the events and to solely
focus on the time series data. We presented a feature-based time series clustering approach,
whose main objective is to rank a set of candidate methods, where a method represents a triplet
of an unsupervised clustering model, a feature set and options how to post-process the features.
We also introduced our own feature sets, namely the time series characteristics (TSC), where
we carefully collected various features from related work and assigned them to groups according
to which properties of time series they represent. Given labeled datasets, our approach yields
so-called diff-matrices, where we can easily visualize how well all candidate methods performed
in comparison to each other, which allows us to select one of the best-performing methods
for clustering the unlabeled data. In the evaluation, we included both the UCR time series
archive as well as two infrastructure monitoring time series datasets from our industry partner
(one with over 30000 time series from over 600 different software systems over the period of
two weeks, the other with over 8000 time series from eight Dynatrace-internal systems over a
period of four weeks), and we obtained several promising and interesting results, especially
when analyzing the system distribution within the discovered clusters. As an addendum, we
also presented a run-time cost model, where users can not only choose the best-ranked methods
according to the clustering quality but also to their run-time costs, which is often important
in real-world scenarios.

There are still plenty of different topics and challenges in our multi-system environment
waiting to be discovered and researched, but this would simply go beyond the scope of a single
project. With this closing remark, we thus conclude this thesis.

197

Appendix A

Background

In this appendix chapter, we provide additional information regarding the background chapter
presented in Chapter 2 on p. 5.

A.1 Feature Importance

Here, we provide the complete feature importance calculation for the example we presented
in Figure 2.9 on p. 22, i.e., ten samples characterized with three features f1, f2 and f3. For
convenience, the decision tree is also shown in Figure A.1 below.

gini = 0.0
samples = 2
value = [0, 2]

class = B

gini = 0.0
samples = 2
value = [2, 0]

class = A

gini = 0.0
samples = 3
value = [3, 0]

class = A

f3 <= 74.0
gini = 0.5

samples = 4
value = [2, 2]

class = A

gini = 0.0
samples = 3
value = [0, 3]

class = B

f3 <= 56.0
gini = 0.408
samples = 7
value = [5, 2]

class = A

f1 <= 71.0
gini = 0.5

samples = 10
value = [5, 5]

class = A

Figure A.1: The same example of a decision tree after fitting ten samples as shown in
Figure 2.9 on p. 22.

The default scikit-learn implementation [131] calculates each feature importance for non-leaf
nodes as defined in Equation A.1, which is the weighted impurity decrease [177]:

Nt

N
·
(
impurity− NtR

Nt
· impurityR −

NtL

Nt
· impurityL

)
(A.1)

198 Background

“where N is the total number of samples, Nt is the number of samples at the current node,
NtL is the number of samples in the left child, and NtR is the number of samples in the right
child.” [177]. In the example, the impurity is the Gini importance. Given this formula and the
decision tree in Figure A.1, we can now calculate the importance of each of the three features
(N = 10 since we have ten samples in total):

• f1: This features appears in only a single node of the tree (the root node), and the
feature importance thus evaluates to:

10

10
·
(

0.5− 7

10
· 0.408− 3

10
· 0.0

)
= 0.2144

• f2: This feature was not selected by the decision tree at all, so it automatically gets an
importance value of 0.

• f3: This feature appears in two nodes of the tree, so we calculate the importance for
each node as follows:

node1 =
7

10
·
(

0.408− 4

7
· 0.5− 3

7
· 0.0

)
= 0.0856

node2 =
4

10
·
(

0.5 − 2

4
· 0.0− 2

4
· 0.0

)
= 0.2

The aggregated feature importance evaluates to 0.0856 + 0.2 = 0.2856.

The final step is normalizing the features to achieve a total importance of one, i.e., we divide
each feature by the total sum of all feature importance values, which is 0.2144+0+0.2856 = 0.5
for features f1, f2 and f3. The normalized feature importance values thus result in 0.2144

0.5 ≈ 0.43
for feature f1, 0

0.5 = 0 for feature f2 and 0.2856
0.5 ≈ 0.57 for feature f3.

199

Appendix B

Topology-driven Crash Analysis

In this appendix chapter, we provide additional results and figures that allow more detailed
insights into the data, the approach and the evaluation presented in Chapter 3 on p. 37.

B.1 Data Exploration

This section covers additional information and figures for the raw data we had at our disposal
for evaluating our tuple-crash analysis approach.

In Figure B.1, the total number of raw, annotated (cf. Table 3.2 on p. 41) 1-tuples and
2-tuples across the 15 months of export data before the tuple merging step are shown, more
formally, the tuple count is

∑
s∈S |Ts|, where |Ts| is the size of the set of annotated tuples of

system s, and S represents the set of all systems.

Ja
nu

ar
y

20
17

Fe
br

ua
ry

 2
01

7

M
ar

ch
 2

01
7

Ap
ril

 2
01

7

M
ay

 2
01

7

Ju
ne

 2
01

7

Ju
ly

 2
01

7

Au
gu

st
 2

01
7

Se
pt

em
be

r 2
01

7

Oc
to

be
r 2

01
7

No
ve

m
be

r 2
01

7

De
ce

m
be

r 2
01

7

Ja
nu

ar
y

20
18

Fe
br

ua
ry

 2
01

8

M
ar

ch
 2

01
8

105

106

#1-Tuples #2-Tuples

Figure B.1: The total number of created but not yet merged 1-tuples and 2-tuples, i.e., the
raw, annotated tuples for each month, displayed on a logarithmic scale.

Figure B.2 shows the histograms for all the one-week exports of the 15 months (cf. Table 3.5
on p. 46), which indicate the distribution of the crashes (x-axis) across the different systems
(y-axis, logarithmic scale). We can see that the crash count is comparatively low in most
systems, with a few (heavy) outliers, i.e., we have right-skewed/positively skewed distributions.

200 Topology-driven Crash Analysis

0 100 200 300 400
100

101

102

#S
ys

te
m

s

#Crashes
#Crashes for ST-Processes

(a) Export January 2017: Histogram showing the distribution of 788 crashes and the filtered 192 crashes
of processes with at least one software technology across 149 systems.

0 200 400 600 800
100

101

102

#S
ys

te
m

s

#Crashes
#Crashes for ST-Processes

(b) Export February 2017: Histogram showing the distribution of 3201 crashes and the filtered
387 crashes of processes with at least one software technology across 203 systems.

0 200 400 600 800 1000 1200
100

101

102

#S
ys

te
m

s

#Crashes
#Crashes for ST-Processes

(c) Export March 2017: Histogram showing the distribution of 4027 crashes and the filtered 2253 crashes
of processes with at least one software technology across 185 systems.

0 200 400 600 800 1000 1200 1400
100

101

102

#S
ys

te
m

s

#Crashes
#Crashes for ST-Processes

(d) Export April 2017: Histogram showing the distribution of 6103 crashes and the filtered 1967 crashes
of processes with at least one software technology across 216 systems.

Data Exploration 201

0 100 200 300 400
100

101

102

#S
ys

te
m

s
#Crashes
#Crashes for ST-Processes

(e) Export May 2017: Histogram showing the distribution of 2216 crashes and the filtered 1154 crashes
of processes with at least one software technology across 233 systems.

0 1000 2000 3000 4000 5000 6000 7000 8000
100

101

102

#S
ys

te
m

s

#Crashes
#Crashes for ST-Processes

(f) Export June 2017: Histogram showing the distribution of 13300 crashes and the filtered 11390 crashes
of processes with at least one software technology across 319 systems.

0 500 1000 1500 2000 2500 3000 3500 4000
100

101

102

#S
ys

te
m

s

#Crashes
#Crashes for ST-Processes

(g) Export July 2017: Histogram showing the distribution of 9159 crashes and the filtered 2476 crashes
of processes with at least one software technology across 318 systems.

0 250 500 750 1000 1250 1500 1750
100

101

102

#S
ys

te
m

s

#Crashes
#Crashes for ST-Processes

(h) Export August 2017: Histogram showing the distribution of 10466 crashes and the filtered
5550 crashes of processes with at least one software technology across 430 systems.

202 Topology-driven Crash Analysis

0 500 1000 1500 2000 2500
100

101

102

#S
ys

te
m

s

#Crashes
#Crashes for ST-Processes

(i) Export September 2017: Histogram showing the distribution of 12353 crashes and the filtered
7653 crashes of processes with at least one software technology across 514 systems.

0 1000 2000 3000 4000 5000
100

101

102

#S
ys

te
m

s

#Crashes
#Crashes for ST-Processes

(j) Export October 2017: Histogram showing the distribution of 24266 crashes and the filtered
16682 crashes of processes with at least one software technology across 591 systems.

0 1000 2000 3000 4000 5000 6000 7000
100

101

102

#S
ys

te
m

s

#Crashes
#Crashes for ST-Processes

(k) Export November 2017: Histogram showing the distribution of 31662 crashes and the filtered
25872 crashes of processes with at least one software technology across 675 systems.

0 1000 2000 3000 4000 5000 6000 7000 8000
100

101

102

#S
ys

te
m

s

#Crashes
#Crashes for ST-Processes

(l) Export December 2017: Histogram showing the distribution of 46648 crashes and the filtered
42056 crashes of processes with at least one software technology across 734 systems.

Data Exploration 203

0 20 40 60 80 100 120 140
100

101

102

103

#S
ys

te
m

s

#Crashes
#Crashes for ST-Processes

(m) Export January 2018: Histogram showing the distribution of 1160 crashes and the filtered
1015 crashes of processes with at least one software technology across 819 systems.

0 20 40 60 80 100 120 140
100

101

102

103

#S
ys

te
m

s

#Crashes
#Crashes for ST-Processes

(n) Export February 2018: Histogram showing the distribution of 1482 crashes and the filtered
1314 crashes of processes with at least one software technology across 931 systems.

0 1000 2000 3000 4000 5000 6000
100

101

102

103

#S
ys

te
m

s

#Crashes
#Crashes for ST-Processes

(o) Export March 2018: Histogram showing the distribution of 48421 crashes and the filtered
42882 crashes of processes with at least one software technology across 879 systems.

Figure B.2: Crash distribution histograms of the dataset exports in Table 3.5 on p. 46, each
with the number of systems displayed on a logarithmic scale. The # character represents
the number of systems and crashes. ST-Processes are processes with at least one software
technology.

204 Topology-driven Crash Analysis

B.2 Evaluation Results

From Figure B.3 to Figure B.17, the five top-ranked 1-tuples and their crash groups for the
class name property are shown for all our one-week exports of the 15 months. In each plot, up
to a maximum of eleven crash groups are displayed (ten plus one for missing property entries),
and all groups are shown, even if the crashes occurred only in a single system (in contrast to
the plots in Figure 3.5 on p. 50). Regarding the labels of the groups, Exception is abbreviated
to Exc, and excessively long names are shortened by only showing the last few characters (e.g.,
the label name . . . icationServices.CantStartSingleInstanceExc in Figure B.12c) to provide
more readable plots.

0 10 20 30 40
Number of Crashes

System.NullReferenceExc
System.Threading.ThreadStateExc

missing
clr, fullclr, 4.0.30319 [1]

(a) Export January 2017: The 1st-ranked 1-tuple with a total of 45 crashes.

0 2 4 6 8 10 12 14
Number of Crashes

System.NullReferenceExc
System.Threading.ThreadStateExc

missing
clr, fullclr, 4.6.1087 [2]

(b) Export January 2017: The 2nd-ranked 1-tuple with a total of 17 crashes.

0 2 4 6 8 10 12 14
Number of Crashes

System.NullReferenceExc
System.Threading.ThreadStateExc

missing
dotnet, .net framework, 4.6.1087 [3]

(c) Export January 2017: The 3rd-ranked 1-tuple with a total of 17 crashes.

0 2 4 6 8 10 12 14
Number of Crashes

System.NullReferenceExc
System.Threading.ThreadStateExc

System.IO.IOExc
System.Runtime.Serialization.SerializationExc

System.ArgumentExc
missing

iis_app_pool, null, 8.5.9600 [4]

(d) Export January 2017: The 4th-ranked 1-tuple with a total of 24 crashes.

0 5 10 15 20
Number of Crashes

System.NullReferenceExc
missing

dotnet, .net framework, 4.7.2114 [5]

(e) Export January 2017: The 5th-ranked 1-tuple with a total of 24 crashes.

Figure B.3: Export January 2017: The top five 1-tuples for the class name crash property.

Evaluation Results 205

0 5 10 15 20 25 30 35 40
Number of Crashes

NHibernate.StaleStateExc
System.Runtime.CallbackExc

System.Runtime.Serialization.SerializationExc
System.ObjectDisposedExc

System.Data.SqlClient.SqlExc
missing

System.AppDomainUnloadedExc
clr, fullclr, 4.0.30319 [1]

(a) Export February 2017: The 1st-ranked 1-tuple with a total of 71 crashes.

0 10 20 30 40 50
Number of Crashes

NHibernate.StaleStateExc
System.Runtime.CallbackExc

System.Runtime.Serialization.SerializationExc
System.Threading.ThreadStateExc

System.Security.SecurityExc
missing

System.ArgumentExc
iis_app_pool, null, 8.5.9600 [2]

(b) Export February 2017: The 2nd-ranked 1-tuple with a total of 72 crashes.

0 5 10 15 20 25 30 35 40
Number of Crashes

System.Runtime.CallbackExc
missing

System.AppDomainUnloadedExc
clr, fullclr, 4.7.2114 [3]

(c) Export February 2017: The 3rd-ranked 1-tuple with a total of 58 crashes.

0 5 10 15 20 25 30 35 40
Number of Crashes

System.Runtime.CallbackExc
missing

System.AppDomainUnloadedExc
dotnet, .net framework, 4.7.2114 [4]

(d) Export February 2017: The 4th-ranked 1-tuple with a total of 58 crashes.

0 2 4 6 8 10 12
Number of Crashes

NHibernate.StaleStateExc
System.Runtime.Serialization.SerializationExc

missing
dotnet, .net framework, 4.6.1590 [5]

(e) Export February 2017: The 5th-ranked 1-tuple with a total of 14 crashes.

Figure B.4: Export February 2017: The top five 1-tuples for the class name crash property.

0 5 10 15 20 25 30 35
Number of Crashes

System.ArgumentOutOfRangeExc
System.AppDomainUnloadedExc

System.Data.SqlClient.SqlExc
System.Runtime.CallbackExc

missing
clr, fullclr, 4.0.30319 [1]

(a) Export March 2017: The 1st-ranked 1-tuple with a total of 58 crashes.

206 Topology-driven Crash Analysis

0 5 10 15 20 25 30
Number of Crashes

System.ArgumentOutOfRangeExc
System.NullReferenceExc

System.AppDomainUnloadedExc
System.Runtime.CallbackExc

missing
clr, fullclr, 4.7.2114 [2]

(b) Export March 2017: The 2nd-ranked 1-tuple with a total of 46 crashes.

0 5 10 15 20 25 30
Number of Crashes

System.ArgumentOutOfRangeExc
System.NullReferenceExc

System.AppDomainUnloadedExc
System.Runtime.CallbackExc

missing
dotnet, .net framework, 4.7.2114 [3]

(c) Export March 2017: The 3rd-ranked 1-tuple with a total of 46 crashes.

0 5 10 15 20
Number of Crashes

System.ArgumentOutOfRangeExc
System.NullReferenceExc

System.AppDomainUnloadedExc
System.Runtime.CallbackExc

missing
dotnet, .net framework, 4.7.2117 [4]

(d) Export March 2017: The 4th-ranked 1-tuple with a total of 39 crashes.

0 5 10 15 20 25
Number of Crashes

System.FormatExc
System.ArgumentExc

System.Runtime.CallbackExc
missing

iis_app_pool, null, 8.5.9600 [5]

(e) Export March 2017: The 5th-ranked 1-tuple with a total of 41 crashes.

Figure B.5: Export March 2017: The top five 1-tuples for the class name crash property.

0 20 40 60 80 100 120 140
Number of Crashes

System.IO.FileNotFoundExc
System.Threading.ThreadStateExc

System.AggregateExc
System.ObjectDisposedExc

missing
clr, fullclr, 4.0.30319 [1]

(a) Export April 2017: The 1st-ranked 1-tuple with a total of 158 crashes.

0 20 40 60 80 100
Number of Crashes

System.AppDassemblyName: <invalid>
System.Threading.ThreadAbortExc

System.Reflection.TargetInvocationExc
System.ArgumentExc

System.Threading.ThreadStateExc
System.OutOfMemoryExc

System.AccessViolationExc
missing

System.AppDomainUnloadedExc
asp.net, null, 3.5.1 [2]

(b) Export April 2017: The 2nd-ranked 1-tuple with a total of 260 crashes.

Evaluation Results 207

0 20 40 60 80 100
Number of Crashes

System.AppDassemblyName: <invalid>
System.Threading.ThreadAbortExc

System.Reflection.TargetInvocationExc
System.ArgumentExc

System.Threading.ThreadStateExc
System.OutOfMemoryExc

System.AccessViolationExc
missing

System.AppDomainUnloadedExc
wcf, null, 3.5.1 [3]

(c) Export April 2017: The 3rd-ranked 1-tuple with a total of 259 crashes.

100 101 102

Number of Crashes

System.AppDassemblyName: <invalid>
System.Reflection.TargetInvocationExc

...untime.InteropServices.InvalidComObjectExc
System.ArgumentExc

System.Threading.ThreadAbortExc
System.Threading.ThreadStateExc

System.OutOfMemoryExc
System.AccessViolationExc

missing
System.AppDomainUnloadedExc

clr, fullclr, 2.0.50727 [4]

(d) Export April 2017: The 4th-ranked 1-tuple with a total of 624 crashes.

100 101 102

Number of Crashes

System.AppDassemblyName: <invalid>
System.Reflection.TargetInvocationExc

...untime.InteropServices.InvalidComObjectExc
System.ArgumentExc

System.Threading.ThreadAbortExc
System.Threading.ThreadStateExc

System.OutOfMemoryExc
System.AccessViolationExc

missing
System.AppDomainUnloadedExc

dotnet, .net framework, 3.5.1 [5]

(e) Export April 2017: The 5th-ranked 1-tuple with a total of 624 crashes.

Figure B.6: Export April 2017: The top five 1-tuples for the class name crash property.

100 101 102

Number of Crashes

System.AccessViolationExc
System.AggregateExc

System.ComponentModel.Win32Exc
System.Net.WebExc

System.NullReferenceExc
System.Threading.ThreadStateExc

System.ObjectDisposedExc
missing

clr, fullclr, 4.0.30319 [1]

(a) Export May 2017: The 1st-ranked 1-tuple with a total of 167 crashes.

0 10 20 30 40 50 60 70 80
Number of Crashes

System.Threading.ThreadStateExc
System.Runtime.InteropServices.COMExc

System.IO.IOExc
missing

iis_app_pool, null, 7.5.7600 [2]

(b) Export May 2017: The 2nd-ranked 1-tuple with a total of 89 crashes.

208 Topology-driven Crash Analysis

0 10 20 30 40 50 60 70
Number of Crashes

System.Threading.ThreadStateExc
System.OutOfMemoryExc

System.AppDomainUnloadedExc
System.Runtime.InteropServices.COMExc

System.IO.IOExc
System.Threading.ThreadAbortExc

missing
clr, fullclr, 2.0.50727 [3]

(c) Export May 2017: The 3rd-ranked 1-tuple with a total of 96 crashes.

0 10 20 30 40 50 60
Number of Crashes

System.Threading.ThreadStateExc
System.OutOfMemoryExc

System.AppDomainUnloadedExc
System.Runtime.InteropServices.COMExc

missing
asp.net, null, 3.5.1 [4]

(d) Export May 2017: The 4th-ranked 1-tuple with a total of 76 crashes.

0 10 20 30 40 50 60
Number of Crashes

System.Threading.ThreadStateExc
System.OutOfMemoryExc

System.AppDomainUnloadedExc
System.Runtime.InteropServices.COMExc

missing
wcf, null, 3.5.1 [5]

(e) Export May 2017: The 5th-ranked 1-tuple with a total of 76 crashes.

Figure B.7: Export May 2017: The top five 1-tuples for the class name crash property.

100 101 102

Number of Crashes

System.Security.SecurityExc
System.Security.VerificationExc

System.AggregateExc
System.InvalidOperationExc

System.NullReferenceExc
System.Runtime.CallbackExc

System.OutOfMemoryExc
System.Data.SqlClient.SqlExc

System.ObjectDisposedExc
System.Threading.ThreadStateExc

missing
clr, fullclr, 4.0.30319 [1]

(a) Export June 2017: The 1st-ranked 1-tuple with a total of 332 crashes.

100 101 102

Number of Crashes

System.AggregateExc
System.NullReferenceExc

System.Security.SecurityExc
System.Runtime.CallbackExc

System.OutOfMemoryExc
System.Threading.ThreadStateExc

missing
clr, fullclr, 4.7.2114 [2]

(b) Export June 2017: The 2nd-ranked 1-tuple with a total of 203 crashes.

Evaluation Results 209

100 101 102

Number of Crashes

System.AggregateExc
System.NullReferenceExc

System.Security.SecurityExc
System.Runtime.CallbackExc

System.OutOfMemoryExc
System.Threading.ThreadStateExc

missing
dotnet, .net framework, 4.7.2114 [3]

(c) Export June 2017: The 3rd-ranked 1-tuple with a total of 203 crashes.

0 10 20 30 40 50 60 70
Number of Crashes

System.AppDomainUnloadedExc
System.Security.SecurityExc

System.Security.VerificationExc
System.AccessViolationExc

System.Runtime.CallbackExc
System.OutOfMemoryExc
System.NullReferenceExc

System.Threading.ThreadStateExc
missing

iis_app_pool, null, 8.5.9600 [4]

(d) Export June 2017: The 4th-ranked 1-tuple with a total of 109 crashes.

0 10 20 30 40 50
Number of Crashes

System.AggregateExc
System.NullReferenceExc

System.Security.SecurityExc
System.OutOfMemoryExc

System.Runtime.CallbackExc
System.Threading.ThreadStateExc

missing
wcf, null, 4.7.2114 [5]

(e) Export June 2017: The 5th-ranked 1-tuple with a total of 63 crashes.

Figure B.8: Export June 2017: The top five 1-tuples for the class name crash property.

100 101 102

Number of Crashes

System.BadImageFormatExc
System.Messaging.MessageQueueExc

System.InvalidOperationExc
System.Data.SqlClient.SqlExc

System.ObjectDisposedExc
System.OutOfMemoryExc

System.ArgumentExc
System.Web.HttpExc

System.Xml.Xsl.XslTransformExc
System.TypeInitializationExc

missing
clr, fullclr, 4.0.30319 [1]

(a) Export July 2017: The 1st-ranked 1-tuple with a total of 331 crashes.

210 Topology-driven Crash Analysis

100 101 102

Number of Crashes

System.BadImageFormatExc
System.InvalidOperationExc

System.NullReferenceExc
System.Runtime.Serialization.SerializationExc

System.Security.SecurityExc
System.Threading.ThreadStateExc

System.ComponentModel.Win32Exc
System.OutOfMemoryExc

System.Web.HttpExc
System.TypeInitializationExc

missing
clr, fullclr, 4.7.2114 [2]

(b) Export July 2017: The 2nd-ranked 1-tuple with a total of 379 crashes.

100 101 102

Number of Crashes

System.BadImageFormatExc
System.InvalidOperationExc

System.NullReferenceExc
System.Runtime.Serialization.SerializationExc

System.Security.SecurityExc
System.Threading.ThreadStateExc

System.ComponentModel.Win32Exc
System.OutOfMemoryExc

System.Web.HttpExc
System.TypeInitializationExc

missing
dotnet, .net framework, 4.7.2114 [3]

(c) Export July 2017: The 3rd-ranked 1-tuple with a total of 379 crashes.

100 101 102

Number of Crashes

System.InvalidOperationExc
System.NullReferenceExc

System.Runtime.Serialization.SerializationExc
System.Security.SecurityExc

System.ComponentModel.Win32Exc
System.OutOfMemoryExc

System.ObjectDisposedExc
System.Web.HttpExc

System.TypeInitializationExc
missing

clr, fullclr, 4.7.2117 [4]

(d) Export July 2017: The 4th-ranked 1-tuple with a total of 320 crashes.

100 101 102

Number of Crashes

System.InvalidOperationExc
System.NullReferenceExc

System.Runtime.Serialization.SerializationExc
System.Security.SecurityExc

System.ComponentModel.Win32Exc
System.OutOfMemoryExc

System.ObjectDisposedExc
System.Web.HttpExc

System.TypeInitializationExc
missing

dotnet, .net framework, 4.7.2117 [5]

(e) Export July 2017: The 5th-ranked 1-tuple with a total of 320 crashes.

Figure B.9: Export July 2017: The top five 1-tuples for the class name crash property.

Evaluation Results 211

100 101 102 103

Number of Crashes

...untime.InteropServices.InvalidComObjectExc
System.InvalidProgramExc

System.Net.WebExc
System.Runtime.CallbackExc

System.OutOfMemoryExc
System.IO.IOExc

System.ObjectDisposedExc
System.Runtime.Serialization.SerializationExc

System.Data.SqlClient.SqlExc
missing

System.TypeInitializationExc
clr, fullclr, 4.0.30319 [1]

(a) Export August 2017: The 1st-ranked 1-tuple with a total of 2274 crashes.

100 101 102

Number of Crashes

System.InvalidProgramExc
System.Runtime.Serialization.SerializationExc

System.OutOfMemoryExc
System.TypeInitializationExc

missing
iis_app_pool, null, 7.5.7600 [2]

(b) Export August 2017: The 2nd-ranked 1-tuple with a total of 586 crashes.

101 102

Number of Crashes

System.IO.IOExc
System.Net.WebExc

System.Runtime.CallbackExc
System.NullReferenceExc
System.OutOfMemoryExc

System.Runtime.Serialization.SerializationExc
System.TypeInitializationExc

missing
clr, fullclr, 4.7.2114 [3]

(c) Export August 2017: The 3rd-ranked 1-tuple with a total of 723 crashes.

101 102

Number of Crashes

System.IO.IOExc
System.Net.WebExc

System.Runtime.CallbackExc
System.NullReferenceExc
System.OutOfMemoryExc

System.Runtime.Serialization.SerializationExc
System.TypeInitializationExc

missing
dotnet, .net framework, 4.7.2114 [4]

(d) Export August 2017: The 4th-ranked 1-tuple with a total of 723 crashes.

100 101 102

Number of Crashes

...untime.InteropServices.InvalidComObjectExc
System.Net.WebExc

System.Runtime.CallbackExc
System.IO.IOExc

System.OutOfMemoryExc
System.ObjectDisposedExc

System.TypeInitializationExc
missing

dotnet, .net framework, 4.7.2117 [5]

(e) Export August 2017: The 5th-ranked 1-tuple with a total of 496 crashes.

Figure B.10: Export August 2017: The top five 1-tuples for the class name crash property.

212 Topology-driven Crash Analysis

100 101 102 103

Number of Crashes

System.NullReferenceExc
System.InvalidOperationExc

System.Runtime.CallbackExc
System.IO.IOExc

System.ObjectDisposedExc
System.Security.VerificationExc

System.AggregateExc
System.TypeInitializationExc

System.Data.Entity.Infrastructure.DbUpdateExc
System.Data.SqlClient.SqlExc

missing
clr, fullclr, 4.0.30319 [1]

(a) Export September 2017: The 1st-ranked 1-tuple with a total of 2656 crashes.

100 101 102 103

Number of Crashes

IBM.XMS.XMSExc
System.NullReferenceExc
System.OutOfMemoryExc

System.Runtime.CallbackExc
System.IO.IOExc

System.TypeInitializationExc
missing

iis_app_pool, null, 7.5.7600 [2]

(b) Export September 2017: The 2nd-ranked 1-tuple with a total of 1370 crashes.

100 101 102

Number of Crashes

System.Threading.ThreadAbortExc
System.BadImageFormatExc

System.OutOfMemoryExc
System.AggregateExc

System.Runtime.CallbackExc
System.IO.IOExc

System.TypeInitializationExc
System.Data.Entity.Infrastructure.DbUpdateExc

missing
clr, fullclr, 4.7.2114 [3]

(c) Export September 2017: The 3rd-ranked 1-tuple with a total of 441 crashes.

100 101 102

Number of Crashes

System.NullReferenceExc
System.Threading.ThreadAbortExc

System.BadImageFormatExc
System.OutOfMemoryExc

System.AggregateExc
System.Runtime.CallbackExc

System.IO.IOExc
System.TypeInitializationExc

System.Data.Entity.Infrastructure.DbUpdateExc
missing

dotnet, .net framework, 4.7.2114 [4]

(d) Export September 2017: The 4th-ranked 1-tuple with a total of 442 crashes.

Evaluation Results 213

100 101 102

Number of Crashes

System.Messaging.MessageQueueExc
System.OutOfMemoryExc

System.Runtime.CallbackExc
System.Runtime.Serialization.SerializationExc

System.InvalidOperationExc
System.Security.VerificationExc

System.TypeInitializationExc
System.Data.SqlClient.SqlExc

missing
dotnet, .net framework, 4.5.2 [5]

(e) Export September 2017: The 5th-ranked 1-tuple with a total of 216 crashes.

Figure B.11: Export September 2017: The top five 1-tuples for the class name crash property.

100 101 102 103

Number of Crashes

System.Net.WebExc
System.IO.IOExc

System.ObjectDisposedExc
System.UnauthorizedAccessExc
System.Security.VerificationExc

System.AggregateExc
COSOrderProvider.Excs.UnlockCOSOrderExc

System.TypeInitializationExc
System.Data.SqlClient.SqlExc

System.Reflection.TargetInvocationExc
missing

clr, fullclr, 4.0.30319 [1]

(a) Export October 2017: The 1st-ranked 1-tuple with a total of 1841 crashes.

0 20 40 60 80 100 120
Number of Crashes

System.ObjectDisposedExc
System.Runtime.Serialization.SerializationExc

System.AccessViolationExc
System.OutOfMemoryExc

System.AggregateExc
System.NullReferenceExc

System.IO.IOExc
System.UnauthorizedAccessExc
System.Security.VerificationExc

System.TypeInitializationExc
missing

iis_app_pool, null, 8.5.9600 [2]

(b) Export October 2017: The 2nd-ranked 1-tuple with a total of 270 crashes.

100 101 102

Number of Crashes

...exceptionMessage: The crashType: exception
...icationServices.CantStartSingleInstanceExc

System.Messaging.MessageQueueExc
System.NullReferenceExc
System.OutOfMemoryExc

System.Runtime.CallbackExc
System.Runtime.Serialization.SerializationExc

System.Data.SqlClient.SqlExc
System.Security.VerificationExc

System.TypeInitializationExc
missing

dotnet, .net framework, 4.5.2 [3]

(c) Export October 2017: The 3rd-ranked 1-tuple with a total of 299 crashes.

214 Topology-driven Crash Analysis

100 101 102

Number of Crashes

System.BadImageFormatExc
System.Exc

System.ObjectDisposedExc
System.NullReferenceExc

System.Web.HttpExc
System.Net.WebExc

System.IO.IOExc
System.TypeInitializationExc

missing
clr, fullclr, 4.7.2114 [4]

(d) Export October 2017: The 4th-ranked 1-tuple with a total of 610 crashes.

100 101 102

Number of Crashes

System.Configuration.ConfigurationErrorsExc
System.ObjectDisposedExc

System.Runtime.Serialization.SerializationExc
System.Threading.ThreadAbortExc

System.Exc
System.OutOfMemoryExc

System.Web.HttpExc
System.Runtime.CallbackExc
System.TypeInitializationExc

System.AppDomainUnloadedExc
missing

iis_app_pool, null, 7.5.7600 [5]

(e) Export October 2017: The 5th-ranked 1-tuple with a total of 429 crashes.

Figure B.12: Export October 2017: The top five 1-tuples for the class name crash property.

100 101 102 103

Number of Crashes

System.Runtime.CallbackExc
System.Security.VerificationExc

System.OutOfMemoryExc
System.Security.SecurityExc

System.IO.IOExc
System.Reflection.TargetInvocationExc

System.Net.WebExc
System.UnauthorizedAccessExc

System.TypeInitializationExc
System.Data.SqlClient.SqlExc

missing
clr, fullclr, 4.0.30319 [1]

(a) Export November 2017: The 1st-ranked 1-tuple with a total of 3994 crashes.

100 101 102 103

Number of Crashes

System.InvalidProgramExc
System.Runtime.Serialization.SerializationExc

System.Threading.ThreadAbortExc
System.Web.HttpExc

System.AccessViolationExc
System.OutOfMemoryExc

System.Runtime.CallbackExc
System.AppDomainUnloadedExc

System.TypeInitializationExc
missing

iis_app_pool, null, 7.5.7600 [2]

(b) Export November 2017: The 2nd-ranked 1-tuple with a total of 1513 crashes.

Evaluation Results 215

100 101 102

Number of Crashes

System.Threading.ThreadStateExc
System.BadImageFormatExc

System.Data.SqlClient.SqlExc
System.Web.HttpExc

System.NullReferenceExc
System.Runtime.CallbackExc

System.Data.Entity.Infrastructure.DbUpdateExc
System.OutOfMemoryExc

System.Security.SecurityExc
System.TypeInitializationExc

missing
dotnet, .net framework, 4.7.2117 [3]

(c) Export November 2017: The 3rd-ranked 1-tuple with a total of 576 crashes.

100 101 102 103

Number of Crashes

System.Web.HttpExc
System.Runtime.CallbackExc

System.Data.Entity.Infrastructure.DbUpdateExc
System.NullReferenceExc
System.OutOfMemoryExc

System.Security.SecurityExc
System.IO.IOExc

System.Net.WebExc
System.TypeInitializationExc

missing
System.Data.SqlClient.SqlExc

clr, fullclr, 4.7.2114 [4]

(d) Export November 2017: The 4th-ranked 1-tuple with a total of 1924 crashes.

100 101 102

Number of Crashes

System.Threading.ThreadStateExc
System.BadImageFormatExc

System.Data.SqlClient.SqlExc
System.Web.HttpExc

System.NullReferenceExc
System.Runtime.CallbackExc

System.Data.Entity.Infrastructure.DbUpdateExc
System.OutOfMemoryExc

System.Security.SecurityExc
System.TypeInitializationExc

missing
clr, fullclr, 4.7.2117 [5]

(e) Export November 2017: The 5th-ranked 1-tuple with a total of 570 crashes.

Figure B.13: Export November 2017: The top five 1-tuples for the class name crash property.

100 101 102 103

Number of Crashes

System.NullReferenceExc
System.Data.EntityExc

System.Data.Entity.Infrastructure.DbUpdateExc
System.Data.SqlClient.SqlExc

System.ComponentModel.Win32Exc
System.Security.SecurityExc

System.Runtime.Serialization.SerializationExc
System.Net.WebExc

System.TypeInitializationExc
System.Reflection.TargetInvocationExc

missing
clr, fullclr, 4.0.30319 [1]

(a) Export December 2017: The 1st-ranked 1-tuple with a total of 3540 crashes.

216 Topology-driven Crash Analysis

100 101 102

Number of Crashes

System.ObjectDisposedExc
System.Runtime.Serialization.SerializationExc

System.TypeLoadExc
System.Web.HttpExc

System.Threading.ThreadStateExc
System.Runtime.CallbackExc

System.OutOfMemoryExc
System.IO.IOExc

System.AppDomainUnloadedExc
System.TypeInitializationExc

missing
iis_app_pool, null, 7.5.7600 [2]

(b) Export December 2017: The 2nd-ranked 1-tuple with a total of 947 crashes.

100 101 102 103

Number of Crashes

System.ServiceModel.CommunicationExc
System.AggregateExc

System.Runtime.InteropServices.SEHExc
System.IO.IOExc

System.ObjectDisposedExc
System.NullReferenceExc

System.Security.SecurityExc
System.Runtime.Serialization.SerializationExc

System.TypeInitializationExc
System.Reflection.TargetInvocationExc

missing
clr, fullclr, 4.7.2117 [3]

(c) Export December 2017: The 3rd-ranked 1-tuple with a total of 2409 crashes.

100 101 102 103

Number of Crashes

System.ServiceModel.CommunicationExc
System.AggregateExc

System.Runtime.InteropServices.SEHExc
System.IO.IOExc

System.ObjectDisposedExc
System.NullReferenceExc

System.Security.SecurityExc
System.Runtime.Serialization.SerializationExc

System.TypeInitializationExc
System.Reflection.TargetInvocationExc

missing
dotnet, .net framework, 4.7.2117 [4]

(d) Export December 2017: The 4th-ranked 1-tuple with a total of 2409 crashes.

100 101 102

Number of Crashes

System.Data.SqlClient.SqlExc
System.NullReferenceExc

System.ServiceModel.CommunicationExc
System.Threading.ThreadStateExc

System.UnauthorizedAccessExc
System.Web.HttpExc

System.ObjectDisposedExc
System.Security.SecurityExc

System.Runtime.Serialization.SerializationExc
System.TypeInitializationExc

missing
wcf, null, 4.7.2117 [5]

(e) Export December 2017: The 5th-ranked 1-tuple with a total of 586 crashes.

Figure B.14: Export December 2017: The top five 1-tuples for the class name crash property.

Evaluation Results 217

0 20 40 60 80 100 120 140
Number of Crashes

System.Data.EntityExc
System.IndexOutOfRangeExc

System.OutOfMemoryExc
System.ServiceModel.CommunicationExc

System.NullReferenceExc
System.Runtime.Serialization.SerializationExc

System.Security.SecurityExc
missing

System.TypeInitializationExc
clr, fullclr, 4.0.30319 [1]

(a) Export January 2018: The 1st-ranked 1-tuple with a total of 228 crashes.

0 10 20 30 40 50 60
Number of Crashes

System.Security.SecurityExc
missing

System.TypeInitializationExc
clr, fullclr, 4.7.2117 [2]

(b) Export January 2018: The 2nd-ranked 1-tuple with a total of 106 crashes.

0 10 20 30 40 50 60
Number of Crashes

System.Security.SecurityExc
missing

System.TypeInitializationExc
dotnet, .net framework, 4.7.2117 [3]

(c) Export January 2018: The 3rd-ranked 1-tuple with a total of 106 crashes.

0 10 20 30 40 50 60
Number of Crashes

System.Security.SecurityExc
missing

System.TypeInitializationExc
wcf, null, 4.7.2117 [4]

(d) Export January 2018: The 4th-ranked 1-tuple with a total of 101 crashes.

0 5 10 15 20 25 30 35 40
Number of Crashes

System.Security.SecurityExc
missing

System.TypeInitializationExc
clr, fullclr, 4.7.2114 [5]

(e) Export January 2018: The 5th-ranked 1-tuple with a total of 61 crashes.

Figure B.15: Export January 2018: The top five 1-tuples for the class name crash property.

100 101 102

Number of Crashes

System.IO.FileNotFoundExc
System.ServiceModel.FaultExc

System.InvalidOperationExc
System.OutOfMemoryExc

System.ArgumentOutOfRangeExc
System.Security.SecurityExc

System.Runtime.Serialization.SerializationExc
System.NullReferenceExc

System.ComponentModel.Win32Exc
System.TypeInitializationExc

missing
clr, fullclr, 4.0.30319 [1]

(a) Export February 2018: The 1st-ranked 1-tuple with a total of 362 crashes.

218 Topology-driven Crash Analysis

0 10 20 30 40 50 60 70
Number of Crashes

Olf.NativeAccess.Util.OExc
System.InvalidOperationExc
System.Security.SecurityExc

System.NullReferenceExc
missing

System.TypeInitializationExc
clr, fullclr, 4.7.2117 [2]

(b) Export February 2018: The 2nd-ranked 1-tuple with a total of 175 crashes.

0 10 20 30 40 50 60 70
Number of Crashes

Olf.NativeAccess.Util.OExc
System.InvalidOperationExc
System.Security.SecurityExc

System.NullReferenceExc
missing

System.TypeInitializationExc
dotnet, .net framework, 4.7.2117 [3]

(c) Export February 2018: The 3rd-ranked 1-tuple with a total of 175 crashes.

0 20 40 60 80 100 120 140
Number of Crashes

System.TypeInitializationExc
missing

windows_system, null, null [4]

(d) Export February 2018: The 4th-ranked 1-tuple with a total of 137 crashes.

0 10 20 30 40 50 60 70
Number of Crashes

System.InvalidOperationExc
System.Security.SecurityExc

missing
System.TypeInitializationExc

wcf, null, 4.7.2117 [5]

(e) Export February 2018: The 5th-ranked 1-tuple with a total of 87 crashes.

Figure B.16: Export February 2018: The top five 1-tuples for the class name crash property.

100 101 102 103 104

Number of Crashes

System.ObjectDisposedExc
System.OutOfMemoryExc

System.Exc
System.IO.FileNotFoundExc

...nication.UserUnitMapClientCommunicationExc
System.Reflection.TargetInvocationExc

System.NullReferenceExc
System.Runtime.Serialization.SerializationExc

System.FormatExc
System.TypeInitializationExc

missing
clr, fullclr, 4.0.30319 [1]

(a) Export March 2018: The 1st-ranked 1-tuple with a total of 14848 crashes.

Evaluation Results 219

101 102 103

Number of Crashes

Oracle.ManagedDataAccess.Client.OracleExc
System.Security.SecurityExc

System.Net.Http.HttpRequestExc
System.ObjectDisposedExc

System.NullReferenceExc
System.OutOfMemoryExc

System.Web.HttpExc
...nication.UserUnitMapClientCommunicationExc

System.TypeInitializationExc
System.Runtime.Serialization.SerializationExc

missing
dotnet, .net framework, 4.7.2117 [2]

(b) Export March 2018: The 2nd-ranked 1-tuple with a total of 2491 crashes.

101 102 103

Number of Crashes

Oracle.ManagedDataAccess.Client.OracleExc
System.Security.SecurityExc

System.Net.Http.HttpRequestExc
System.ObjectDisposedExc

System.NullReferenceExc
System.OutOfMemoryExc

System.Web.HttpExc
...nication.UserUnitMapClientCommunicationExc

System.TypeInitializationExc
System.Runtime.Serialization.SerializationExc

missing
clr, fullclr, 4.7.2117 [3]

(c) Export March 2018: The 3rd-ranked 1-tuple with a total of 2488 crashes.

100 101 102 103

Number of Crashes

System.AggregateExc
System.OutOfMemoryExc

System.Web.HttpExc
System.IO.IOExc

System.Runtime.Serialization.SerializationExc
System.IO.FileNotFoundExc

System.AppDomainUnloadedExc
System.NullReferenceExc

System.Reflection.TargetInvocationExc
System.TypeInitializationExc

missing
iis_app_pool, null, 7.5.7600 [4]

(d) Export March 2018: The 4th-ranked 1-tuple with a total of 1604 crashes.

100 101 102

Number of Crashes

System.IO.IOExc
System.TypeLoadExc

System.AccessViolationExc
System.NullReferenceExc

System.InvalidOperationExc
System.Net.Http.HttpRequestExc

System.ObjectDisposedExc
...nication.UserUnitMapClientCommunicationExc

System.TypeInitializationExc
System.Runtime.Serialization.SerializationExc

missing
iis_app_pool, null, 8.5.9600 [5]

(e) Export March 2018: The 5th-ranked 1-tuple with a total of 1413 crashes.

Figure B.17: Export March 2018: The top five 1-tuples for the class name crash property.

221

Appendix C

Time-Series-based Event Prediction

In this appendix chapter, we provide additional results and figures that allow more detailed
insights into the data, the approach and the evaluation presented in Chapter 4 on p. 63.

C.1 Data Exploration

This section covers additional information and figures for the raw data we had at our disposal
for evaluating our multi-system event prediction approach. Since the data was all collected in
the year 2018, we omit this information in all dates and times below to ease readability. To
avoid overloaded and skewed box plot visualizations, outlier values are deliberately hidden in
the majority of the cases, and corresponding data tables provide additional information.

In Figure C.1, the average number of different components per system is shown for all the
available 705 systems. Table C.1 provides more detailed insights, including the total number
of components (cf. column Total). Directly following is the average number of component
connections, which is shown in Figure C.2 and Table C.2. In the table, we can see that the
maximum number of observed disk-to-host connections is three, which is one of the extremely
rare cases as briefly mention in Section 2.3.2 on p. 8. In fact, the entire dataset contains four
such cases, which is only 0.0036% of all disk-to-host connections.

0 50 100 150 200 250 300 350

#Services
#Hosts
#Disks

#Networks

Figure C.1: Component count statistics of the 705 systems, visualized with a box plot.
Detailed information is available in Table C.1.

In 434 out of the 705 systems, 17733 slowdown events occurred on 2084 services. The
system-averaged event count and number of services (all services, services where events occurred,
services where no events occurred) for these 434 systems have already been presented in the
main evaluation (cf. Figure 4.12 on p. 84 and Table 4.5 on p. 84).

The system-averaged available observation periods [From,To) of the 34 time series metrics
are displayed in Figure C.3 for all the 705 systems. In Figure C.4, the average number of time
series data points per system is shown for each metric (details are listed in Table C.3). In total,

222 Time-Series-based Event Prediction

Component
Type Total µ σ min p10 p25 p50 p75 p90 max

#Services 161414 228.96 806.05 0 7 19 53 163 387.8 12245
#Hosts 42703 60.57 442.75 1 2 4 11 28 78.6 10934
#Disks 111978 158.83 538.59 0 3 7 25 91 280.2 6025
#Networks 138405 196.32 2256.03 0 2 4 12 35 112.6 52097

Table C.1: Component count statistics of the 705 systems. µ = average, σ = standard
deviation, pi = i% percentile, min = minimum, max = maximum.

0 1 2 3 4 5

Service to #Hosts
Disk to #Hosts

Network to #Hosts
Host to #Services

Host to #Disks
Host to #Networks

Figure C.2: Connection count statistics of the 705 systems, visualized with a box plot.
Detailed information is available in Table C.2.

Connection Type µ σ min p10 p25 p50 p75 p90 max

Service to #Hosts 1.52 3.88 0 0 1 1 1 3 419
Disk to #Hosts 1 0.02 0 1 1 1 1 1 3
Network to #Hosts 0.89 0.31 0 0 1 1 1 1 1
Host to #Services 5.75 59.05 0 0 0 0 2 9 5671
Host to #Disks 2.63 28.97 0 0 0 1 2 4 2873
Host to #Networks 2.88 132.98 0 0 0 1 1 1 14734

Table C.2: Connection count statistics of the 705 systems. µ = average, σ = standard
deviation, pi = i% percentile, min = minimum, max = maximum.

Evaluation Results 223

the entire observation period contains about 18 billion individual time series data points. Their
actual completeness per metric is shown in Figure C.5, once with system-based normalization
(the average completeness for all components within a system, i.e., the completeness per system,
is averaged across all systems) and once with component-based normalization (the completeness
per component is averaged across all components). Figure C.6 covers the completeness for each
of the 20 export days. Finally, Figure C.7 even shows the completeness for each individual
system out of all the 705 systems (due to confidentiality, all systems are represented via a
5-digit hash code), where the results are first sorted by the most complete system (top to
bottom across both columns) and then by the most complete time series metric (left to right),
which means that systems with higher time series data availability are at the upper left and
less complete ones are at the lower right (cf. system 07628 in Figure C.7a vs. system 11919 in
Figure C.7d).

C.2 Evaluation Results

This section covers the remaining evaluation metrics obtained from our synthetic system by
running the 169 different slide-through sampling configurations with six observation window
sizes, as detailed in Section 4.6.4 on p. 110. The accuracy (ACC) is shown in Figure C.8, the
true positive rate (TPR) in Figure C.9, the positive predictive values (PPV) in Figure C.10,
the false positive rate (FPR) in Figure C.11 and the F1 score in Figure C.12. The results
for the augmented training data are also listed here, including the full results regarding the
MCC metric. Starting with the 5-times augmented data, the ACC is shown in Figure C.13,
the TPR in Figure C.14, the PPV in Figure C.15, the FPR in Figure C.16, the F1 score in
Figure C.17 and the MCC in Figure C.18. Continuing with the 10-times augmented data, the
ACC is shown in Figure C.19, the TPR in Figure C.20, the PPV in Figure C.21, the FPR in
Figure C.22, the F1 score in Figure C.23 and the MCC in Figure C.24.

224 Time-Series-based Event Prediction

19
.0

1.
20

.0
1.

21
.0

1.
22

.0
1.

23
.0

1.
24

.0
1.

25
.0

1.
26

.0
1.

27
.0

1.
28

.0
1.

29
.0

1.
30

.0
1.

31
.0

1.
01

.0
2.

02
.0

2.
03

.0
2.

04
.0

2.
05

.0
2.

06
.0

2.
07

.0
2.

08
.0

2.

CPU Idle: H-01

CPU System: H-02

CPU Load: H-03

CPU User: H-04

CPU IO Wait: H-05

Page Faults: H-06

Mem. Avail. %: H-07

Mem. Avail.: H-08

Mem. Used: H-09

Swap Avail.: H-10

Swap Used: H-11

Disk Avail.: D-01

Disk Used: D-02

Disk Avail. %: D-03

Read Bytes: D-04

Written Bytes: D-05

Read Ops.: D-06

Write Ops.: D-07

Read Time: D-08

Write Time: D-09

Util. Time: D-10

Queue Length: D-11

Inodes Avail. %: D-12

Inodes Total: D-13

Bytes Rec.: N-01

Bytes Sent: N-02

Rec. Pkts.: N-03

Sent Pkts.: N-04

Rec. Pkts. Drop.: N-05

Sent Pkts. Drop.: N-06

Rec. Pkt. Err.: N-07

Sent Pkt. Err.: N-08

Receiving Util.: N-09

Sending Util.: N-10

From To

Figure C.3: Time span statistics of the 705 systems given by [From,To) markers in the
format day.month, visualized with a box plot.

Evaluation Results 225

0 0.5 106 1.0 106 1.5 106 2.0 106 2.5 106 3.0 106 3.5 106 4.0 106

CPU Idle: H-01
CPU System: H-02

CPU Load: H-03
CPU User: H-04

CPU IO Wait: H-05
Page Faults: H-06

Mem. Avail. %: H-07
Mem. Avail.: H-08
Mem. Used: H-09
Swap Avail.: H-10
Swap Used: H-11
Disk Avail.: D-01
Disk Used: D-02

Disk Avail. %: D-03
Read Bytes: D-04

Written Bytes: D-05
Read Ops.: D-06
Write Ops.: D-07
Read Time: D-08
Write Time: D-09

Util. Time: D-10
Queue Length: D-11

Inodes Avail. %: D-12
Inodes Total: D-13

Bytes Rec.: N-01
Bytes Sent: N-02
Rec. Pkts.: N-03
Sent Pkts.: N-04

Rec. Pkts. Drop.: N-05
Sent Pkts. Drop.: N-06

Rec. Pkt. Err.: N-07
Sent Pkt. Err.: N-08

Receiving Util.: N-09
Sending Util.: N-10

#Data Points

Figure C.4: Time series data point statistics of the 705 systems, visualized with a box plot.
Detailed information is available in Table C.3.

226 Time-Series-based Event Prediction

ID #Sys. Total µ σ min p50 max

H-01 704 290.51 · 106 0.41 · 106 0.80 · 106 4148 0.17 · 106 12.12 · 106

H-02 704 290.36 · 106 0.41 · 106 0.80 · 106 4148 0.17 · 106 12.13 · 106

H-03 533 203.11 · 106 0.38 · 106 0.82 · 106 19 0.14 · 106 11.71 · 106

H-04 704 290.45 · 106 0.41 · 106 0.80 · 106 4148 0.17 · 106 12.12 · 106

H-05 533 201.97 · 106 0.38 · 106 0.82 · 106 19 0.14 · 106 11.71 · 106

H-06 704 291.11 · 106 0.41 · 106 0.80 · 106 4148 0.17 · 106 12.12 · 106

H-07 704 291.20 · 106 0.41 · 106 0.80 · 106 4148 0.17 · 106 12.12 · 106

H-08 704 291.19 · 106 0.41 · 106 0.80 · 106 4148 0.17 · 106 12.12 · 106

H-09 704 291.01 · 106 0.41 · 106 0.80 · 106 4148 0.17 · 106 12.12 · 106

H-10 586 197.81 · 106 0.34 · 106 0.71 · 106 6 0.13 · 106 12.12 · 106

H-11 586 197.80 · 106 0.34 · 106 0.71 · 106 6 0.13 · 106 12.12 · 106

D-01 697 1108.71 · 106 1.59 · 106 3.20 · 106 4689 0.48 · 106 33.30 · 106

D-02 697 1105.76 · 106 1.59 · 106 3.18 · 106 4689 0.48 · 106 33.30 · 106

D-03 667 995.56 · 106 1.49 · 106 2.93 · 106 14 0.46 · 106 28.01 · 106

D-04 689 1039.14 · 106 1.51 · 106 3.16 · 106 72 0.40 · 106 30.41 · 106

D-05 689 1035.32 · 106 1.50 · 106 3.12 · 106 72 0.40 · 106 30.41 · 106

D-06 689 1029.35 · 106 1.49 · 106 3.15 · 106 72 0.40 · 106 30.41 · 106

D-07 689 1025.98 · 106 1.49 · 106 3.13 · 106 72 0.40 · 106 30.42 · 106

D-08 683 108.74 · 106 0.16 · 106 0.31 · 106 7 45565 2.71 · 106

D-09 683 591.50 · 106 0.87 · 106 1.65 · 106 14 0.29 · 106 18.30 · 106

D-10 684 971.38 · 106 1.42 · 106 2.93 · 106 14 0.39 · 106 27.98 · 106

D-11 687 1071.49 · 106 1.56 · 106 3.07 · 106 14 0.47 · 106 28.01 · 106

D-12 481 811.75 · 106 1.69 · 106 3.24 · 106 14 0.49 · 106 27.62 · 106

D-13 481 817.99 · 106 1.70 · 106 3.32 · 106 14 0.49 · 106 27.84 · 106

N-01 700 380.14 · 106 0.54 · 106 1.16 · 106 5019 0.21 · 106 15.31 · 106

N-02 700 380.69 · 106 0.54 · 106 1.17 · 106 5019 0.21 · 106 15.76 · 106

N-03 686 357.96 · 106 0.52 · 106 1.06 · 106 7 0.21 · 106 14.97 · 106

N-04 686 356.68 · 106 0.52 · 106 1.03 · 106 7 0.21 · 106 13.96 · 106

N-05 686 356.51 · 106 0.52 · 106 1.03 · 106 7 0.21 · 106 13.96 · 106

N-06 686 356.61 · 106 0.52 · 106 1.04 · 106 7 0.21 · 106 13.96 · 106

N-07 686 357.15 · 106 0.52 · 106 1.04 · 106 7 0.21 · 106 13.95 · 106

N-08 686 356.48 · 106 0.52 · 106 1.03 · 106 7 0.21 · 106 13.50 · 106

N-09 603 266.21 · 106 0.44 · 106 0.98 · 106 2 0.16 · 106 13.37 · 106

N-10 603 266 · 106 0.44 · 106 0.98 · 106 2 0.16 · 106 13.48 · 106

Table C.3: Time series data point statistics of the 705 systems, where #Sys. represents the
actual number of systems that provide the particular metric. µ = average, σ = standard
deviation, pi = i% percentile, min = minimum, max = maximum.

Evaluation Results 227

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Sending Util.: N-10

Receiving Util.: N-09

Sent Pkt. Err.: N-08

Rec. Pkt. Err.: N-07

Sent Pkts. Drop.: N-06

Rec. Pkts. Drop.: N-05

Sent Pkts.: N-04

Rec. Pkts.: N-03

Bytes Sent: N-02

Bytes Rec.: N-01

Inodes Total: D-13

Inodes Avail. %: D-12

Queue Length: D-11

Util. Time: D-10

Write Time: D-09

Read Time: D-08

Write Ops.: D-07

Read Ops.: D-06

Written Bytes: D-05

Read Bytes: D-04

Disk Avail. %: D-03

Disk Used: D-02

Disk Avail.: D-01

Swap Used: H-11

Swap Avail.: H-10

Mem. Used: H-09

Mem. Avail.: H-08

Mem. Avail. %: H-07

Page Faults: H-06

CPU IO Wait: H-05

CPU User: H-04

CPU Load: H-03

CPU System: H-02

CPU Idle: H-01

Normalized by Systems Normalized by Components

Figure C.5: Time series data point completeness (in percent) of the 705 systems, normalized
across all systems and all components, respectively.

228 Time-Series-based Event Prediction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Day

CPU Idle: H-01
CPU System: H-02

CPU Load: H-03
CPU User: H-04

CPU IO Wait: H-05
Page Faults: H-06

Mem. Avail. %: H-07
Mem. Avail.: H-08
Mem. Used: H-09
Swap Avail.: H-10
Swap Used: H-11
Disk Avail.: D-01
Disk Used: D-02

Disk Avail. %: D-03
Read Bytes: D-04

Written Bytes: D-05
Read Ops.: D-06
Write Ops.: D-07
Read Time: D-08
Write Time: D-09

Util. Time: D-10
Queue Length: D-11

Inodes Avail. %: D-12
Inodes Total: D-13

Bytes Rec.: N-01
Bytes Sent: N-02
Rec. Pkts.: N-03
Sent Pkts.: N-04

Rec. Pkts. Drop.: N-05
Sent Pkts. Drop.: N-06

Rec. Pkt. Err.: N-07
Sent Pkt. Err.: N-08

Receiving Util.: N-09
Sending Util.: N-10

Normalized by Systems

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Day

Normalized by Components

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure C.6: Time series data point completeness per day (in percent) of the 705 systems,
normalized across all systems and all components, respectively.

Evaluation Results 229

N-
01

: B
yt

es
 R

ec
.

N-
05

: R
ec

. P
kt

s.
Dr

op
.

N-
03

: R
ec

. P
kt

s.
N-

04
: S

en
t P

kt
s.

N-
07

: R
ec

. P
kt

. E
rr.

N-
02

: B
yt

es
 S

en
t

N-
06

: S
en

t P
kt

s.
Dr

op
.

N-
08

: S
en

t P
kt

. E
rr.

D-
11

: Q
ue

ue
 L

en
gt

h
D-

01
: D

isk
 A

va
il.

H-
07

: M
em

. A
va

il.
 %

H-
06

: P
ag

e
Fa

ul
ts

H-
09

: M
em

. U
se

d
D-

02
: D

isk
 U

se
d

H-
04

: C
PU

 U
se

r
H-

01
: C

PU
 Id

le
H-

08
: M

em
. A

va
il.

H-
02

: C
PU

 S
ys

te
m

D-
10

: U
til

. T
im

e
D-

04
: R

ea
d

By
te

s
D-

06
: R

ea
d

Op
s.

D-
05

: W
rit

te
n

By
te

s
D-

07
: W

rit
e

Op
s.

D-
03

: D
isk

 A
va

il.
 %

H-
03

: C
PU

 L
oa

d
H-

05
: C

PU
 IO

 W
ai

t
D-

12
: I

no
de

s A
va

il.
 %

D-
13

: I
no

de
s T

ot
al

H-
11

: S
wa

p
Us

ed
H-

10
: S

wa
p

Av
ai

l.
N-

09
: R

ec
ei

vi
ng

 U
til

.
N-

10
: S

en
di

ng
 U

til
.

D-
09

: W
rit

e
Ti

m
e

D-
08

: R
ea

d
Ti

m
e

07628
fffa0

5140d
63b6d
c5a6d
3ab01
8c0f5

18664
7aec8
76081
a3732
8d439
84fc8

d0476
681a9
4bc29
acee0
c79e8
e6137
e0237
fee65
0c778
fa9ca

8b3b1
38840
58c80
17689
a591c
2ad2a
4c91b
1a9c7
00359
0b59f
48cb1
bb554
0301c
63d3b
27215
098f6
f2a72
5933f
a4fab
bf1ae
1211e
4c4d8
3f50a
3b71c
00e08
c1ca6
9dc3d
c16f7

21d64
cebfe

92a4e
8d6a8
e7f12
ae544
f157c
89af2
81295
d2a45
c302f

427e4
31aa4
c59bf

546a6
237f3
55156
53d14
e1e79
9fde9
d131e
fa98b
85f0d
eee7b
1d09a
29aa0
e296c
775c9
f15de
e60c8
64205
fd007
e9c01
cc0f0

149d9
fc7b0
c2e65
c177e
727a6
1399d
b43f4
fdb91
73696
fcca0

028d2
5828b
e39e1
2d77d
e6239

System

M
et

ri
c

D-
01

: D
isk

 A
va

il.
D-

11
: Q

ue
ue

 L
en

gt
h

N-
01

: B
yt

es
 R

ec
.

N-
03

: R
ec

. P
kt

s.
N-

06
: S

en
t P

kt
s.

Dr
op

.
N-

07
: R

ec
. P

kt
. E

rr.
N-

08
: S

en
t P

kt
. E

rr.
N-

05
: R

ec
. P

kt
s.

Dr
op

.
N-

04
: S

en
t P

kt
s.

D-
02

: D
isk

 U
se

d
N-

02
: B

yt
es

 S
en

t
H-

08
: M

em
. A

va
il.

H-
06

: P
ag

e
Fa

ul
ts

H-
07

: M
em

. A
va

il.
 %

H-
09

: M
em

. U
se

d
H-

02
: C

PU
 S

ys
te

m
H-

01
: C

PU
 Id

le
H-

04
: C

PU
 U

se
r

D-
04

: R
ea

d
By

te
s

D-
07

: W
rit

e
Op

s.
D-

06
: R

ea
d

Op
s.

D-
05

: W
rit

te
n

By
te

s
D-

10
: U

til
. T

im
e

D-
03

: D
isk

 A
va

il.
 %

D-
09

: W
rit

e
Ti

m
e

H-
03

: C
PU

 L
oa

d
H-

05
: C

PU
 IO

 W
ai

t
D-

12
: I

no
de

s A
va

il.
 %

D-
13

: I
no

de
s T

ot
al

N-
09

: R
ec

ei
vi

ng
 U

til
.

N-
10

: S
en

di
ng

 U
til

.
H-

10
: S

wa
p

Av
ai

l.
H-

11
: S

wa
p

Us
ed

D-
08

: R
ea

d
Ti

m
e

c469d
cd085
f76fe

ec56e
94149
5ff73
55bf4
7e75b
78560
f503f

b6382
4c683
80f28
a8519
0998d
3cdda
f4397
5edf5
a48c6
6d65e
b5a03
3a854
52c17
64ea8
6a2c9
d2318
ab963
7105e
ecd4c
24cc3
23916
88cb1
7f590
a087c
54003
1da8f
30bc5
4f426
38d4a
602ef
f356e
eea63
39eb6
663b4
987ed
727e5
56e36
0f8d4
5910a
fd454
38a31
3c207
dcc49
86437
729ab
44cb7
b5f56
fb735
f52c1

6e633
6e737
eafe7

71a24
c107b
eface

666eb
e3840
214d6
fc2e2

94610
1e6f9
35f83
cd1d8
7eeca
b0749
8bd0f
bc90e
2b3f1
051dc
16f63
9b73a
c4f18

967aa
f9a5c

77595
ac35c
8f6a8
f7648
b5057
26cdd
de81a
4b602
cbb22
b0849
467a9
f9b15
9d81b
a834f
3a93a
35137

System

M
et

ri
c

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
(a) Time series data point completeness per system (in percent) of the 200 systems S1 = {s1, . . . s200}
out of all 705 systems S = {s1, . . . s705}, i.e., S1 ⊂ S, first sorted by the most complete system (top to
bottom) and then by the most complete time series metric (left to right).

230 Time-Series-based Event Prediction

N-
02

: B
yt

es
 S

en
t

N-
01

: B
yt

es
 R

ec
.

D-
02

: D
isk

 U
se

d
D-

01
: D

isk
 A

va
il.

D-
11

: Q
ue

ue
 L

en
gt

h
N-

05
: R

ec
. P

kt
s.

Dr
op

.
N-

08
: S

en
t P

kt
. E

rr.
N-

06
: S

en
t P

kt
s.

Dr
op

.
N-

07
: R

ec
. P

kt
. E

rr.
N-

03
: R

ec
. P

kt
s.

N-
04

: S
en

t P
kt

s.
D-

06
: R

ea
d

Op
s.

D-
04

: R
ea

d
By

te
s

D-
05

: W
rit

te
n

By
te

s
D-

07
: W

rit
e

Op
s.

H-
07

: M
em

. A
va

il.
 %

H-
08

: M
em

. A
va

il.
H-

09
: M

em
. U

se
d

H-
06

: P
ag

e
Fa

ul
ts

H-
01

: C
PU

 Id
le

H-
02

: C
PU

 S
ys

te
m

H-
04

: C
PU

 U
se

r
D-

03
: D

isk
 A

va
il.

 %
D-

10
: U

til
. T

im
e

N-
10

: S
en

di
ng

 U
til

.
N-

09
: R

ec
ei

vi
ng

 U
til

.
D-

09
: W

rit
e

Ti
m

e
H-

11
: S

wa
p

Us
ed

H-
10

: S
wa

p
Av

ai
l.

D-
13

: I
no

de
s T

ot
al

D-
12

: I
no

de
s A

va
il.

 %
H-

03
: C

PU
 L

oa
d

H-
05

: C
PU

 IO
 W

ai
t

D-
08

: R
ea

d
Ti

m
e

9468e
d6a2a
1550a
6761a
bfc7e
f6b99
1d512
8baa8
49f8a
c9d19
1a176
32a35
aa1e5
307a7
65fa0
88280
045c0
0ae53
d153f
262b1
15d15
930bc
69f23
cbce5
54b04
3a2a0
8309a
93d88
31864
ffae3

f294b
4c9a8
49cd4
7d8e6
b6554
3451f
10013
6ea71
2f1ef

17953
a374f
71bcc
cc413
5857a
ca15b
bec9c
35902
7d046
fba22
a0ff6

baeae
c70ff

9bcbb
75df3
59c5f
9cdfd
ac542
3fbb9
ec4ae
96d89
3b7b1
95e02
82461
bcb4f

58a0a
adb75
2d151
2d7d8
d11b3
101dc
ab514
64a98
21b8a
40399
961df
82e24
27398
a7dce
56ac8
5998b
9af50
c4036
88363
88829

ffcc9
c1282
d5d31
1115a
4f9ea

73821
3d43a
876fd
4ffde

e741a
e2895
65fbd
c29ea
e8fe5

689d6
c73b0

System

M
et

ri
c

D-
01

: D
isk

 A
va

il.
D-

02
: D

isk
 U

se
d

D-
11

: Q
ue

ue
 L

en
gt

h
N-

01
: B

yt
es

 R
ec

.
N-

02
: B

yt
es

 S
en

t
N-

05
: R

ec
. P

kt
s.

Dr
op

.
N-

08
: S

en
t P

kt
. E

rr.
N-

07
: R

ec
. P

kt
. E

rr.
N-

06
: S

en
t P

kt
s.

Dr
op

.
N-

04
: S

en
t P

kt
s.

N-
03

: R
ec

. P
kt

s.
D-

06
: R

ea
d

Op
s.

D-
04

: R
ea

d
By

te
s

D-
05

: W
rit

te
n

By
te

s
D-

07
: W

rit
e

Op
s.

H-
09

: M
em

. U
se

d
H-

07
: M

em
. A

va
il.

 %
H-

06
: P

ag
e

Fa
ul

ts
H-

08
: M

em
. A

va
il.

H-
01

: C
PU

 Id
le

H-
02

: C
PU

 S
ys

te
m

H-
04

: C
PU

 U
se

r
D-

03
: D

isk
 A

va
il.

 %
D-

10
: U

til
. T

im
e

D-
09

: W
rit

e
Ti

m
e

N-
10

: S
en

di
ng

 U
til

.
N-

09
: R

ec
ei

vi
ng

 U
til

.
H-

10
: S

wa
p

Av
ai

l.
H-

11
: S

wa
p

Us
ed

H-
03

: C
PU

 L
oa

d
H-

05
: C

PU
 IO

 W
ai

t
D-

13
: I

no
de

s T
ot

al
D-

12
: I

no
de

s A
va

il.
 %

D-
08

: R
ea

d
Ti

m
e

8d469
7b0f8
fa2e4
63ea5
17e2e
e7caa
98344
1ba6b
1d787
580a3
4354d
0142e
4e3ec
ce7e6
6860f
df750
09fc0
f3ac6
0c6f6
58fc4

035e1
44e3e
575f8
ac694
dde2e
7da00
8629d
4d8d2

afcbf
e436f
efc8d

59423
ae4c5
dae38
a931a
70072
f7173
8158e
fca30

97b5e
d8e82
f76db
3df6d
418a2
e4983
3c665
f00e5
6d4e1
2477d
32276
40fc2

46323
d4e1b
d3440
3067f
85dee
bb590
52e01
79c3d
38ddc
d103e
587f1
bd069
cf189

80604
54ede
3c35e
94414
f3ce8

2280d
95cc5
e3c36
0bd3e
76a99
1e68d
4bc74
dcf33
5bf2c
208c6
d7340
12583
67938
c95e9
94be7
a3f78
fcbc8
c9af3
16dbc
9c73e
3ab53
c49fa
371cc
31c40
7c1a3
5fe23
8a7e9
c6f74
f5247
6fa90
a010a

System

M
et

ri
c

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
(b) Time series data point completeness per system (in percent) of the 200 systems S2 = {s201, . . . s400}
out of all 705 systems S = {s1, . . . s705}, i.e., S2 ⊂ S, first sorted by the most complete system (top to
bottom) and then by the most complete time series metric (left to right).

Evaluation Results 231

D-
02

: D
isk

 U
se

d
D-

01
: D

isk
 A

va
il.

D-
11

: Q
ue

ue
 L

en
gt

h
N-

01
: B

yt
es

 R
ec

.
N-

02
: B

yt
es

 S
en

t
N-

06
: S

en
t P

kt
s.

Dr
op

.
N-

07
: R

ec
. P

kt
. E

rr.
N-

08
: S

en
t P

kt
. E

rr.
N-

03
: R

ec
. P

kt
s.

N-
05

: R
ec

. P
kt

s.
Dr

op
.

N-
04

: S
en

t P
kt

s.
D-

03
: D

isk
 A

va
il.

 %
D-

06
: R

ea
d

Op
s.

D-
05

: W
rit

te
n

By
te

s
D-

04
: R

ea
d

By
te

s
D-

07
: W

rit
e

Op
s.

H-
06

: P
ag

e
Fa

ul
ts

H-
09

: M
em

. U
se

d
H-

08
: M

em
. A

va
il.

H-
07

: M
em

. A
va

il.
 %

H-
02

: C
PU

 S
ys

te
m

H-
01

: C
PU

 Id
le

H-
04

: C
PU

 U
se

r
D-

10
: U

til
. T

im
e

D-
09

: W
rit

e
Ti

m
e

N-
10

: S
en

di
ng

 U
til

.
N-

09
: R

ec
ei

vi
ng

 U
til

.
D-

12
: I

no
de

s A
va

il.
 %

D-
13

: I
no

de
s T

ot
al

H-
11

: S
wa

p
Us

ed
H-

10
: S

wa
p

Av
ai

l.
H-

03
: C

PU
 L

oa
d

H-
05

: C
PU

 IO
 W

ai
t

D-
08

: R
ea

d
Ti

m
e

20942
98023
4f529
de105
c293c
ef1eb

77986
5aef2
b4bda
3a128
1aef0
2c76b
258d4
efd91
1ad84
7863d
7284e
3f712
20326
b3f35
e14b9
f87d8
9d32a
ad76c
c4a3a
a76b7
ec409
ca2bc
9ecf4
975c9
5701e
d47d2
83f49
0183c
62f54
5b659
4dfd5
54265
4aa21
7b768
0adda
9d017
d7bc8
2a4b5
ed4d8
e09d4
2844a
47b2a
31261
f9f9a

b03ca
b9866
cc77d
946bb
14c1a
38c95
9d898
897a5
e36fc

576eb
3f8b8
b5e35
8a093
a1ef9

d7953
a6ada
85a2f
13af2
39ea8
386d0
1bb6d
0a115
bfd89
c7033
228bc
70054
7af10
31298
eaf84

50247
91a45
3ad0f
dc384
05f03
b96c8
7aa09
002ff

719e4
0f842
42e90
27451
adbc7
d02b4
4230c
77924
81dfc

2a879
78a9a
377c9
bc175

System

M
et

ri
c

D-
01

: D
isk

 A
va

il.
D-

02
: D

isk
 U

se
d

D-
11

: Q
ue

ue
 L

en
gt

h
N-

02
: B

yt
es

 S
en

t
N-

01
: B

yt
es

 R
ec

.
N-

04
: S

en
t P

kt
s.

N-
07

: R
ec

. P
kt

. E
rr.

N-
03

: R
ec

. P
kt

s.
N-

08
: S

en
t P

kt
. E

rr.
D-

03
: D

isk
 A

va
il.

 %
N-

06
: S

en
t P

kt
s.

Dr
op

.
N-

05
: R

ec
. P

kt
s.

Dr
op

.
H-

07
: M

em
. A

va
il.

 %
H-

08
: M

em
. A

va
il.

H-
09

: M
em

. U
se

d
H-

02
: C

PU
 S

ys
te

m
H-

01
: C

PU
 Id

le
H-

04
: C

PU
 U

se
r

D-
04

: R
ea

d
By

te
s

D-
05

: W
rit

te
n

By
te

s
H-

06
: P

ag
e

Fa
ul

ts
D-

07
: W

rit
e

Op
s.

D-
06

: R
ea

d
Op

s.
D-

10
: U

til
. T

im
e

H-
10

: S
wa

p
Av

ai
l.

H-
11

: S
wa

p
Us

ed
N-

10
: S

en
di

ng
 U

til
.

N-
09

: R
ec

ei
vi

ng
 U

til
.

D-
09

: W
rit

e
Ti

m
e

D-
13

: I
no

de
s T

ot
al

D-
12

: I
no

de
s A

va
il.

 %
H-

03
: C

PU
 L

oa
d

H-
05

: C
PU

 IO
 W

ai
t

D-
08

: R
ea

d
Ti

m
e

9ecd6
327c3
15dd7
3e016
0a0d8
e8615
de348
b4abe
e3f87
0d70e
e57e8
380f4
ccaed
ef1d3
23944
1a2dc
3d6b8
b92e7
4f1b9
40603
45332
52e04
218ac
e8f09
5a742
ed54e
be54c
defa0
3cfc3

62060
3b5b9
7c7c6
90042
a01d6
ce484
8d888
77832
a4f2e

d6238
f9a63
ccc41
569c1
b259d
83e21
e6c98
f18b8
b1993
e98e2
42753
5d9fc

17711
92ffc

ebac8
e5e39
8151d
f5d50
658d4
b677e
b0010
7ae1b
897b9
6be27
64e53
e69ac
212b8
d2761
986b9
1e94c
839e5
14ba0
8147b
0f83f
e3df1
63733
fc916
af224
5cea4
14c5f

026ea
a4235
e37d1
c3f01
bfc3d

ed411
05ac3
fe348
6c7fb
bea6c
68589
5b6bf
1286a
3dadd
4f9cb
79f1a
17e5d
5dc77
f23af
e16df
0207f
68a3b

System

M
et

ri
c

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
(c) Time series data point completeness per system (in percent) of the 200 systems S3 = {s401, . . . s600}
out of all 705 systems S = {s1, . . . s705}, i.e., S3 ⊂ S, first sorted by the most complete system (top to
bottom) and then by the most complete time series metric (left to right).

232 Time-Series-based Event Prediction

D-
01

: D
isk

 A
va

il.
D-

02
: D

isk
 U

se
d

D-
11

: Q
ue

ue
 L

en
gt

h
D-

03
: D

isk
 A

va
il.

 %
H-

09
: M

em
. U

se
d

H-
08

: M
em

. A
va

il.
H-

06
: P

ag
e

Fa
ul

ts
H-

07
: M

em
. A

va
il.

 %
H-

02
: C

PU
 S

ys
te

m
H-

01
: C

PU
 Id

le
H-

04
: C

PU
 U

se
r

D-
07

: W
rit

e
Op

s.
D-

05
: W

rit
te

n
By

te
s

D-
06

: R
ea

d
Op

s.
D-

04
: R

ea
d

By
te

s
H-

11
: S

wa
p

Us
ed

H-
10

: S
wa

p
Av

ai
l.

N-
02

: B
yt

es
 S

en
t

N-
01

: B
yt

es
 R

ec
.

D-
10

: U
til

. T
im

e
N-

04
: S

en
t P

kt
s.

N-
03

: R
ec

. P
kt

s.
N-

08
: S

en
t P

kt
. E

rr.
N-

05
: R

ec
. P

kt
s.

Dr
op

.
N-

06
: S

en
t P

kt
s.

Dr
op

.
N-

07
: R

ec
. P

kt
. E

rr.
D-

09
: W

rit
e

Ti
m

e
H-

03
: C

PU
 L

oa
d

H-
05

: C
PU

 IO
 W

ai
t

N-
10

: S
en

di
ng

 U
til

.
N-

09
: R

ec
ei

vi
ng

 U
til

.
D-

12
: I

no
de

s A
va

il.
 %

D-
13

: I
no

de
s T

ot
al

D-
08

: R
ea

d
Ti

m
e

9161a
31bf1
ff1af

fd8ec
edca5
d2e62
9fd6f
8087f
8ccc8
38fe2
bc239
905b1

2f0fc
74758
c07db
1aa2e
d8fb2
6a07c
12ff9

02706
32c29
7af02
b6e11
944e0
aeea6
eb008
5c73e
e6e7d
1c482
f17bd
188fa
aa64f
f53cc
2f414
ac5dd
4417a
219d9
75e85
76340
97870
9082a

cf5fc
17328
9450b
d97ba
8e1e9
29a0a
5aa6e
39d33
f0552
22bbb
ad119
86b02

System

M
et

ri
c

D-
01

: D
isk

 A
va

il.
D-

02
: D

isk
 U

se
d

D-
11

: Q
ue

ue
 L

en
gt

h
D-

03
: D

isk
 A

va
il.

 %
D-

04
: R

ea
d

By
te

s
D-

05
: W

rit
te

n
By

te
s

D-
07

: W
rit

e
Op

s.
D-

06
: R

ea
d

Op
s.

D-
10

: U
til

. T
im

e
H-

07
: M

em
. A

va
il.

 %
H-

09
: M

em
. U

se
d

H-
06

: P
ag

e
Fa

ul
ts

H-
01

: C
PU

 Id
le

H-
04

: C
PU

 U
se

r
H-

08
: M

em
. A

va
il.

H-
02

: C
PU

 S
ys

te
m

D-
09

: W
rit

e
Ti

m
e

N-
02

: B
yt

es
 S

en
t

N-
01

: B
yt

es
 R

ec
.

H-
11

: S
wa

p
Us

ed
H-

10
: S

wa
p

Av
ai

l.
N-

07
: R

ec
. P

kt
. E

rr.
N-

06
: S

en
t P

kt
s.

Dr
op

.
N-

04
: S

en
t P

kt
s.

N-
03

: R
ec

. P
kt

s.
N-

08
: S

en
t P

kt
. E

rr.
N-

05
: R

ec
. P

kt
s.

Dr
op

.
D-

13
: I

no
de

s T
ot

al
D-

12
: I

no
de

s A
va

il.
 %

D-
08

: R
ea

d
Ti

m
e

H-
03

: C
PU

 L
oa

d
H-

05
: C

PU
 IO

 W
ai

t
N-

09
: R

ec
ei

vi
ng

 U
til

.
N-

10
: S

en
di

ng
 U

til
.

e1659
f9bf0

1891c
4a825
50a9b
c8b4c
1ae25
288a4
1d982
2ddfe
4f6b9
860c4
88f89
2b729
07a75
5a71a
e27cd
b8606
0aa63
55c5b
e1334
d5eaa
93841
87c90
e5d63
e06b7
35a4b
46018
c7699
fe542
ddc4c
ac02f

0216a
3cd75
199b9
1b835
b4b2b
e4e16
ceed2
7d5ba
f50cc

7b692
311bd
6e09d
78e49
a8f66
ebe31
293c3
53323
986c5
6505e
11919

System

M
et

ri
c

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
(d) Time series data point completeness per system (in percent) of the 105 systems S4 = {s601, . . . s705}
out of all 705 systems S = {s1, . . . s705}, i.e., S4 ⊂ S, first sorted by the most complete system (top to
bottom) and then by the most complete time series metric (left to right).

Figure C.7: Time series data point completeness per system (in percent) of the 705 systems,
first sorted by the most complete system (top to bottom) and then by the most complete time
series metric (left to right).

Evaluation Results 233

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(a) ACC for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(b) ACC for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(c) ACC for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(d) ACC for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(e) ACC for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(f) ACC for the 60min observation windows.

Figure C.8: ACC for different observation window sizes after running slide-through sampling
testing configurations with varying step sizes and prediction window sizes. Yellow tones
indicate better values, purple worse values.

234 Time-Series-based Event Prediction

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(a) TPR for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(b) TPR for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(c) TPR for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(d) TPR for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(e) TPR for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(f) TPR for the 60min observation windows.

Figure C.9: TPR for different observation window sizes after running slide-through sampling
testing configurations with varying step sizes and prediction window sizes. Yellow tones
indicate better values, purple worse values.

Evaluation Results 235

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(a) PPV for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(b) PPV for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(c) PPV for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(d) PPV for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(e) PPV for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(f) PPV for the 60min observation windows.

Figure C.10: PPV for different observation window sizes after running slide-through sampling
testing configurations with varying step sizes and prediction window sizes. Yellow tones indicate
better values, purple worse values.

236 Time-Series-based Event Prediction

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(a) FPR for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(b) FPR for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(c) FPR for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(d) FPR for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(e) FPR for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(f) FPR for the 60min observation windows.

Figure C.11: FPR for different observation window sizes after running slide-through sampling
testing configurations with varying step sizes and prediction window sizes. Yellow tones indicate
better values, purple worse values.

Evaluation Results 237

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(a) F1 for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(b) F1 for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(c) F1 for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(d) F1 for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(e) F1 for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(f) F1 for the 60min observation windows.

Figure C.12: F1 for different observation window sizes after running slide-through sampling
testing configurations with varying step sizes and prediction window sizes. Yellow tones
indicate better values, purple worse values.

238 Time-Series-based Event Prediction

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(a) ACC for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(b) ACC for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(c) ACC for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(d) ACC for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(e) ACC for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(f) ACC for the 60min observation windows.

Figure C.13: 5-times augmented data: ACC for different observation window sizes after
running slide-through sampling testing configurations with varying step sizes and prediction
window sizes with models. Yellow tones indicate better values, purple worse values.

Evaluation Results 239

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(a) TPR for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(b) TPR for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(c) TPR for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(d) TPR for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(e) TPR for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(f) TPR for the 60min observation windows.

Figure C.14: 5-times augmented data: TPR for different observation window sizes after
running slide-through sampling testing configurations with varying step sizes and prediction
window sizes with models. Yellow tones indicate better values, purple worse values.

240 Time-Series-based Event Prediction

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(a) PPV for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(b) PPV for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(c) PPV for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(d) PPV for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(e) PPV for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(f) PPV for the 60min observation windows.

Figure C.15: 5-times augmented data: PPV for different observation window sizes after
running slide-through sampling testing configurations with varying step sizes and prediction
window sizes with models. Yellow tones indicate better values, purple worse values.

Evaluation Results 241

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(a) FPR for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(b) FPR for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(c) FPR for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(d) FPR for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(e) FPR for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(f) FPR for the 60min observation windows.

Figure C.16: 5-times augmented data: FPR for different observation window sizes after
running slide-through sampling testing configurations with varying step sizes and prediction
window sizes with models. Yellow tones indicate better values, purple worse values.

242 Time-Series-based Event Prediction

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(a) F1 for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(b) F1 for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(c) F1 for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(d) F1 for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(e) F1 for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(f) F1 for the 60min observation windows.

Figure C.17: 5-times augmented data: F1 for different observation window sizes after running
slide-through sampling testing configurations with varying step sizes and prediction window
sizes with models. Yellow tones indicate better values, purple worse values.

Evaluation Results 243

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(a) MCC for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(b) MCC for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(c) MCC for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(d) MCC for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(e) MCC for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(f) MCC for the 60min observation windows.

Figure C.18: 5-times augmented data: MCC for different observation window sizes after
running slide-through sampling testing configurations with varying step sizes and prediction
window sizes with models. Yellow tones indicate better values, purple worse values.

244 Time-Series-based Event Prediction

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(a) ACC for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(b) ACC for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(c) ACC for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(d) ACC for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(e) ACC for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ACC

(f) ACC for the 60min observation windows.

Figure C.19: 10-times augmented data: ACC for different observation window sizes after
running slide-through sampling testing configurations with varying step sizes and prediction
window sizes with models. Yellow tones indicate better values, purple worse values.

Evaluation Results 245

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(a) TPR for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(b) TPR for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(c) TPR for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(d) TPR for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(e) TPR for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TPR

(f) TPR for the 60min observation windows.

Figure C.20: 10-times augmented data: TPR for different observation window sizes after
running slide-through sampling testing configurations with varying step sizes and prediction
window sizes with models. Yellow tones indicate better values, purple worse values.

246 Time-Series-based Event Prediction

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(a) PPV for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(b) PPV for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(c) PPV for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(d) PPV for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(e) PPV for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PPV

(f) PPV for the 60min observation windows.

Figure C.21: 10-times augmented data: PPV for different observation window sizes after
running slide-through sampling testing configurations with varying step sizes and prediction
window sizes with models. Yellow tones indicate better values, purple worse values.

Evaluation Results 247

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(a) FPR for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(b) FPR for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(c) FPR for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(d) FPR for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(e) FPR for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.00

0.05

0.10

0.15

0.20
FPR

(f) FPR for the 60min observation windows.

Figure C.22: 10-times augmented data: FPR for different observation window sizes after
running slide-through sampling testing configurations with varying step sizes and prediction
window sizes with models. Yellow tones indicate better values, purple worse values.

248 Time-Series-based Event Prediction

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(a) F1 for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(b) F1 for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(c) F1 for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(d) F1 for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(e) F1 for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

F1

(f) F1 for the 60min observation windows.

Figure C.23: 10-times augmented data: F1 for different observation window sizes after
running slide-through sampling testing configurations with varying step sizes and prediction
window sizes with models. Yellow tones indicate better values, purple worse values.

Evaluation Results 249

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(a) MCC for the 5min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(b) MCC for the 10min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(c) MCC for the 15min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(d) MCC for the 30min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(e) MCC for the 45min observation windows.

Prediction Window Size

1 10 20 30 40 50 60 Step Size

1
10

20
30

40
50

60
0.1
0.2
0.3
0.4
0.5
0.6
0.7

MCC

(f) MCC for the 60min observation windows.

Figure C.24: 10-times augmented data: MCC for different observation window sizes after
running slide-through sampling testing configurations with varying step sizes and prediction
window sizes with models. Yellow tones indicate better values, purple worse values.

251

Appendix D

Time Series Clustering

In this appendix chapter, we provide additional results and figures that allow more detailed
insights into the data, the approach and the evaluation presented in Chapter 5 on p. 133.

D.1 Permutation Analysis Feature

One of our time series characteristics is a custom feature that is not taken from related
work, namely permutation_analysis, which is a custom feature that calculates a score based
on permutation. If a time series has certain temporal patterns (e.g., it has a trend or is
periodic), the idea is that we destroy these patterns via permutation, whereas time series
without temporal patterns are not/less affected by the permutation. The score is calculated
by creating equally sized percentile-based thresholds of the time series, where the number of
thresholds can be specified by the user. Then, the data is randomly permuted, and we count
how often continuous signal segments are above these thresholds, which is repeated multiple
times to get a confidence interval.

The example presented in Figure D.1 demonstrates this confidence interval calculation
based on a sinus-shaped time series with 100 data points (cf. Figure D.1a), i.e., a time series
with a distinct temporal pattern. In the example, we set the number of percentile-based
thresholds to 9, which results in the thresholds (10, 20, . . . , 90), where each one represents the
i% percentile of the time series data.1 For instance, Figure D.1b shows the 30% percentile
threshold for the original data. The next step is to count how many continues time series
segments are above this threshold. In the example, we have two such segments: the start
segment of the time series (up until timestamp 15) and the second big segment at the end
(starting from timestamp 40). We repeat this counting for every threshold. Afterwards, we
randomly permute the original time series as shown in Figure D.1c and count again how many
continuous time series segments are above the same thresholds. In the example permutation,
there are a total of 19 such segments. Again, this is done for every threshold. Furthermore,
we repeat the permutation procedure multiple times, which results in multiple counts per
threshold, for which we can then calculate a confidence interval as visualized in Figure D.1d.
The lower and upper bounds of this interval are determined based on the α and 1−α percentiles
of the counts, respectively, where α can be specified by the user. In the example, we repeat
the permutation ten times (ten counts per threshold) and use α = 0.01, i.e., the lower bound is
the 1% percentile of the ten counts and the upper bound the 99% percentile of the ten counts.

1The 0% and 100% thresholds are not used because the entire data either is above or below these two
thresholds, respectively.

252 Time Series Clustering

The last step is then to combine the counts of the original time series with the confidence
interval of the permutation-based counts and calculate our final score, which is shown in
Figure D.1e. The score is the fraction of points outside the confidence interval, where values
towards 1 indicate the presence of temporal patterns. In the example, the nice counts of the
sinus-shaped time series fall zero times into the corresponding confidence interval counts, i.e.,
9
9 are outside the interval, which yields a score of 1.

We also provide a second example in Figure D.2, where we use a random time series
signal (cf. Figure D.2a) instead of the sinus-shape one, i.e., a time series without any temporal
patterns. The new confidence interval and the counts of this original, random time series are
shown in Figure D.2b, where we can see that only a single count (at the 50% threshold) is
outside the interval, which results in a score of 1

9 ≈ 0.11, indicating that there is indeed no
presence of temporal patterns.

D.2 Data Exploration

This section covers additional figures for the raw data we had at our disposal for evaluating
our time series clustering approach.

In Table D.1, all 128 UCR datasets are listed, including their name, the type of the time
series as well as their length, the number of samples in the training set and test set, and the
number of classes/labels. A detailed description of each dataset and its domain can be found
in the official documentation [45]. Moreover, for each training and test set, we specify whether
the samples are approximately equally distributed among the different classes, i.e., whether
the classes are balanced or unbalanced. “Approximately” means that we use a threshold t to
check if the lowest class size similarity s is within this threshold to still consider the dataset
balanced (b) or to treat it as unbalanced (u), which is defined in Equation D.1:

class balance =

{
balanced (b) if s ≥ t
unbalanced (u) if s < t

with s =
min(class sizes)
max(class sizes)

(D.1)

We chose a threshold of t = 0.9, meaning that a dataset is considered to be balanced if the
smallest class still has at least 90% of the number of samples of the largest class. For example,
a dataset with three class sizes {29, 32, 31} would be balanced (2932 ≈ 0.91 ≥ t = 0.9), whereas
if it had the class sizes {20, 32, 31}, it would be unbalanced (2032 ≈ 0.63 < t = 0.9). 63 (49%) of
the 128 UCR datasets thus have a balanced training set and 59 (46%) a balanced test set.

Name Type #Train
(b/u)

#Test
(b/u) #C Length

ACSF1 Device 100 (b) 100 (b) 10 1460
Adiac Image 390 (u) 391 (u) 37 176
AllGestureWiimoteX Sensor 300 (b) 700 (b) 10 500
AllGestureWiimoteY Sensor 300 (b) 700 (b) 10 500
AllGestureWiimoteZ Sensor 300 (b) 700 (b) 10 500
ArrowHead Image 36 (b) 175 (u) 3 251
Beef Spectro 30 (b) 30 (b) 5 470
BeetleFly Image 20 (b) 20 (b) 2 512
BirdChicken Image 20 (b) 20 (b) 2 512
BME Simulated 30 (b) 150 (b) 3 128
Car Sensor 60 (u) 60 (u) 4 577
CBF Simulated 30 (u) 900 (b) 3 128

Data Exploration 253

Name Type #Train
(b/u)

#Test
(b/u) #C Length

Chinatown Traffic 20 (b) 343 (u) 2 24
ChlorineConcentration Sensor 467 (u) 3840 (u) 3 166
CinCECGTorso Sensor 40 (u) 1380 (b) 4 1639
Coffee Spectro 28 (b) 28 (u) 2 286
Computers Device 250 (b) 250 (b) 2 720
CricketX Motion 390 (u) 390 (u) 12 300
CricketY Motion 390 (u) 390 (u) 12 300
CricketZ Motion 390 (u) 390 (u) 12 300
Crop Image 7200 (b) 16800 (b) 24 46
DiatomSizeReduction Image 16 (u) 306 (u) 4 345
DistalPhalanxOutlineAgeGroup Image 400 (u) 139 (u) 3 80
DistalPhalanxOutlineCorrect Image 600 (u) 276 (u) 2 80
DistalPhalanxTW Image 400 (u) 139 (u) 6 80
DodgerLoopDay Sensor 78 (u) 80 (u) 7 288
DodgerLoopGame Sensor 20 (b) 138 (b) 2 288
DodgerLoopWeekend Sensor 20 (b) 138 (u) 2 288
Earthquakes Sensor 322 (u) 139 (u) 2 512
ECG200 ECG 100 (u) 100 (u) 2 96
ECG5000 ECG 500 (u) 4500 (u) 5 140
ECGFiveDays ECG 23 (u) 861 (b) 2 136
ElectricDevices Device 8926 (u) 7711 (u) 7 96
EOGHorizontalSignal EOG 362 (b) 362 (b) 12 1250
EOGVerticalSignal EOG 362 (b) 362 (b) 12 1250
EthanolLevel Spectro 504 (b) 500 (b) 4 1751
FaceAll Image 560 (b) 1690 (u) 14 131
FaceFour Image 24 (u) 88 (u) 4 350
FacesUCR Image 200 (u) 2050 (u) 14 131
FiftyWords Image 450 (u) 455 (u) 50 270
Fish Image 175 (u) 175 (u) 7 463
FordA Sensor 3601 (b) 1320 (b) 2 500
FordB Sensor 3636 (b) 810 (b) 2 500
FreezerRegularTrain Sensor 150 (b) 2850 (b) 2 301
FreezerSmallTrain Sensor 28 (b) 2850 (b) 2 301
Fungi HRM 18 (b) 186 (u) 18 201
GestureMidAirD1 Trajectory 208 (b) 130 (b) 26 360
GestureMidAirD2 Trajectory 208 (b) 130 (b) 26 360
GestureMidAirD3 Trajectory 208 (b) 130 (b) 26 360
GesturePebbleZ1 Sensor 132 (u) 172 (u) 6 455
GesturePebbleZ2 Sensor 146 (u) 158 (u) 6 455
GunPoint Motion 50 (b) 150 (b) 2 150
GunPointAgeSpan Motion 135 (b) 316 (b) 2 150
GunPointMaleVersusFemale Motion 135 (b) 316 (b) 2 150
GunPointOldVersusYoung Motion 136 (b) 315 (b) 2 150
Ham Spectro 109 (b) 105 (b) 2 431
HandOutlines Image 1000 (u) 370 (u) 2 2709
Haptics Motion 155 (u) 308 (u) 5 1092
Herring Image 64 (u) 64 (u) 2 512
HouseTwenty Device 40 (b) 119 (u) 2 2000
InlineSkate Motion 100 (u) 550 (u) 7 1882
InsectEPGRegularTrain EPG 62 (u) 249 (u) 3 601
InsectEPGSmallTrain EPG 17 (u) 249 (u) 3 601
InsectWingbeatSound Sensor 220 (b) 1980 (b) 11 256
ItalyPowerDemand Sensor 67 (b) 1029 (b) 2 24
LargeKitchenAppliances Device 375 (b) 375 (b) 3 720

254 Time Series Clustering

Name Type #Train
(b/u)

#Test
(b/u) #C Length

Lightning2 Sensor 60 (u) 61 (u) 2 637
Lightning7 Sensor 70 (u) 73 (u) 7 319
Mallat Simulated 55 (u) 2345 (b) 8 1024
Meat Spectro 60 (b) 60 (b) 3 448
MedicalImages Image 381 (u) 760 (u) 10 99
MelbournePedestrian Traffic 1194 (b) 2439 (b) 10 24
MiddlePhalanxOutlineAgeGroup Image 400 (u) 154 (u) 3 80
MiddlePhalanxOutlineCorrect Image 600 (u) 291 (u) 2 80
MiddlePhalanxTW Image 399 (u) 154 (u) 6 80
MixedShapesRegularTrain Image 500 (b) 2425 (u) 5 1024
MixedShapesSmallTrain Image 100 (b) 2425 (u) 5 1024
MoteStrain Sensor 20 (b) 1252 (u) 2 84
NonInvasiveFetalECGThorax1 ECG 1800 (u) 1965 (u) 42 750
NonInvasiveFetalECGThorax2 ECG 1800 (u) 1965 (u) 42 750
OliveOil Spectro 30 (u) 30 (u) 4 570
OSULeaf Image 200 (u) 242 (u) 6 427
PhalangesOutlinesCorrect Image 1800 (u) 858 (u) 2 80
Phoneme Sensor 214 (u) 1896 (u) 39 1024
PickupGestureWiimoteZ Sensor 50 (b) 50 (b) 10 361
PigAirwayPressure Hemodynamics 104 (b) 208 (b) 52 2000
PigArtPressure Hemodynamics 104 (b) 208 (b) 52 2000
PigCVP Hemodynamics 104 (b) 208 (b) 52 2000
PLAID Device 537 (u) 537 (u) 11 1344
Plane Sensor 105 (u) 105 (u) 7 144
PowerCons Power 180 (b) 180 (b) 2 144
ProximalPhalanxOutlineAgeGroup Image 400 (u) 205 (u) 3 80
ProximalPhalanxOutlineCorrect Image 600 (u) 291 (u) 2 80
ProximalPhalanxTW Image 400 (u) 205 (u) 6 80
RefrigerationDevices Device 375 (b) 375 (b) 3 720
Rock Spectrum 20 (b) 50 (u) 4 2844
ScreenType Device 375 (b) 375 (b) 3 720
SemgHandGenderCh2 Spectrum 300 (b) 600 (u) 2 1500
SemgHandMovementCh2 Spectrum 450 (b) 450 (b) 6 1500
SemgHandSubjectCh2 Spectrum 450 (b) 450 (b) 5 1500
ShakeGestureWiimoteZ Sensor 50 (b) 50 (b) 10 385
ShapeletSim Simulated 20 (b) 180 (b) 2 500
ShapesAll Image 600 (b) 600 (b) 60 512
SmallKitchenAppliances Device 375 (b) 375 (b) 3 720
SmoothSubspace Simulated 150 (b) 150 (b) 3 15
SonyAIBORobotSurface1 Sensor 20 (u) 601 (u) 2 70
SonyAIBORobotSurface2 Sensor 27 (u) 953 (u) 2 65
StarLightCurves Sensor 1000 (u) 8236 (u) 3 1024
Strawberry Spectro 613 (u) 370 (u) 2 235
SwedishLeaf Image 500 (u) 625 (u) 15 128
Symbols Image 25 (u) 995 (u) 6 398
SyntheticControl Simulated 300 (b) 300 (b) 6 60
ToeSegmentation1 Motion 40 (b) 228 (b) 2 277
ToeSegmentation2 Motion 36 (b) 130 (u) 2 343
Trace Sensor 100 (u) 100 (u) 4 275
TwoLeadECG ECG 23 (b) 1139 (b) 2 82
TwoPatterns Simulated 1000 (u) 4000 (b) 4 128
UMD Simulated 36 (b) 144 (b) 3 150
UWaveGestureLibraryAll Motion 896 (u) 3582 (b) 8 945
UWaveGestureLibraryX Motion 896 (u) 3582 (b) 8 315

Evaluation Results 255

Name Type #Train
(b/u)

#Test
(b/u) #C Length

UWaveGestureLibraryY Motion 896 (u) 3582 (b) 8 315
UWaveGestureLibraryZ Motion 896 (u) 3582 (b) 8 315
Wafer Sensor 1000 (u) 6164 (u) 2 152
Wine Spectro 57 (b) 54 (b) 2 234
WordSynonyms Image 267 (u) 638 (u) 25 270
Worms Motion 181 (u) 77 (u) 5 900
WormsTwoClass Motion 181 (u) 77 (u) 2 900
Yoga Image 300 (u) 3000 (u) 2 426

Table D.1: Detailed information on the 128 UCR datasets. #Train/Test (b/u) represents the
number of train/test samples and whether their distribution among the #C different classes is
balanced (b) or unbalanced (u). Length indicates the time series length.

D.3 Evaluation Results

We present the complete variant differences for all models and datasets, and then we proceed
with the clustering results for all unlabeled datasets that we did not show in the evaluation.

D.3.1 Variant Differences

This section covers all variant differences, grouped by the four datasets and by the evaluated
feature sets. Figure D.3 shows the variant differences for the UCR dataset, Figure D.4 for the
UCR-merged dataset, Figure D.5 for the IMTS1 dataset and Figure D.6 for the IMTS2 dataset.
In all figures, the column variants are omitted to create more compact matrix representations.
However, they are identical to the row variants, since the matrices are symmetric in this regard,
i.e., the omitted column variants are identical to the corresponding row variants.

D.3.2 Clustering Unlabeled Data

In this section, we present all results on the remaining unlabeled datasets (cf. Table 5.5 on
p. 158) we did not cover in the evaluation, which, unless explicitly stated otherwise, were
all obtained by using our selected clustering method linkage|distributional|clip01_drop.
Furthermore, we include figures for additional information, which are t-SNE visualizations
of the distributional feature set and the cluster feature values showing all TSC (sub)group
features.2

Figure D.7 shows the t-SNE visualization and cluster feature values for the CPU Idle
(H-01) metric of the IMTS1 dataset. Figure D.8 also shows these two figures as well as the
Venn diagram for the original two clusters within the Memory Available % (H-07) metric
of the IMTS1 dataset, and Figure D.9 displays the t-SNE visualization and cluster feature
values when partitioning the same data into six new clusters. In Figure D.10, Figure D.11 and
Figure D.12, we present all clustering results for the Page Faults (H-06), Disk Available %
(D-03) and Bytes Received (N-01) metrics of the IMTS1 dataset, respectively.

2The clusters were still obtained with the distributional features, the TSC feature values were then calculated
afterwards for each resulting cluster.

256 Time Series Clustering

0 20 40 60 80 100
1.0

0.5

0.0

0.5

1.0

(a) Sinus-shaped time series with 100 data points.

0 20 40 60 80 100
1.0

0.5

0.0

0.5

1.0

(b) The 30% percentile threshold for the sinus-
shaped time series, where two continuous seg-
ments are above this threshold.

0 20 40 60 80 100
1.0

0.5

0.0

0.5

1.0

(c) A random permutation of the sinus-shaped time series with the same 30% percentile threshold as
shown in Figure D.1b. Here, 19 continuous segments are above this threshold.

10% 20% 30% 40% 50% 60% 70% 80% 90%
Percentile-based Thresholds

10

15

20

25

30

Co
un

t A
bo

ve
 T

hr
es

ho
ld

(d) The confidence interval of the counts obtained after repeating the permutation step ten times,
where Count Above Threshold indicates the number of continuous time series segments that are above
the corresponding threshold.

10% 20% 30% 40% 50% 60% 70% 80% 90%
Percentile-based Thresholds

0

10

20

30

Co
un

t A
bo

ve
 T

hr
es

ho
ld

Score = 1.00

(e) The counts of the original, sinus-shaped time series compared to the confidence interval of the
permutation-based counts. Here, the counts do not overlap with the interval, which results in a score
of 1, thus indicating the presence of temporal patterns.

Figure D.1: Example of the steps and the final score returned by our custom feature
permutation_analysis (using nine thresholds) when applied on a sinus-shaped time series.

Evaluation Results 257

0 20 40 60 80 100
2

0

2

(a) Random time series with 100 data points.

10% 20% 30% 40% 50% 60% 70% 80% 90%
Percentile-based Thresholds

10

15

20

25

30

Co
un

t A
bo

ve
 T

hr
es

ho
ld

Score = 0.11

(b) The counts of the original, random time series compared to the confidence interval of the
permutation-based counts. Here, most of the counts overlap with the interval (only the count at the
50% threshold is outside the interval), which results in a score of 0.11, thus indicating the absence of
temporal patterns.

Figure D.2: Example of the final score returned by our custom feature permutation_-
analysis (using nine thresholds) when applied on a random time series.

258 Time Series Clustering

01
01_d
log

log_d
tan

tan_d
d

0101010101
01 00 01
01 0000 0001
010000
01 00 01
01 01

00 01
0101 010101

kmeans |
tsc

020202010202
02 02
02 02
02 02
01 01
02 02
02 02

020202010202

birch |
tsc

010101 0101
01 01
01 01
01 01

01
01 01
01 01

010101010101

linkage |
tsc

030202010302
03 01 04
02 03
02 01 02
0101 01 010102
03 01 04
02 01 03

040302020403

linkage(w) |
tsc

030302020302
03 01 03
03 03
02 02
0201 02
03 04
02 03

030302020403

linkage(w+c) |
tsc

(a) Variant differences for dataset UCR and feature set tsc.

01
01_d
log

log_d
tan

tan_d
d

010101010000
01 0000000001
01 01
0100 01
0100 01
0000 01
0000 00

010101010100

kmeans |
distributional

020101010202
02 0000 03
01 01
0100 00 01
0100 000001
02 0000 02
02 00 02

030101010202

birch |
distributional

010101
01 01
01 01
01 01

01
01
01

010101010101

linkage |
distributional

020202020202
02 02
02 02
02 02
02 02
02 02
02 02

020202020202

linkage(w) |
distributional

010101 0101
01 02
01 01
01 01

00
01 01
01 01

020101000101

linkage(w+c) |
distributional

(b) Variant differences for dataset UCR and feature set distributional.

01
01_d
log

log_d
tan

tan_d
d

01 00 00
01 00 01

00
0000 00

00
00 01

0100000001

kmeans |
temporal

01 01 01
01 01 03

0001 01
0100 02

010001 010001
01 010001 03

00 02
01030102010302

birch |
temporal

01 00 01
01 01 01

01 00
00 00 01

01
01 01

01
01 01010101

linkage |
temporal

020201010301
02 0101 03
02 01 03
0101 01 02
010101 01 01
03 0101 04
01 02

030302010402

linkage(w) |
temporal

020102 0201
02 01 02
01 00 01
02 01 02

010001 01 00
02 01 02
01 01

020102000201

linkage(w+c) |
temporal

(c) Variant differences for dataset UCR and feature set temporal.

01
01_d
log

log_d
tan

tan_d
d

00
000000 0000

00 00
00 00 0000
00 00

0000
000000 00

0000 00 00

kmeans |
complexity

01

00
01 00 0001

00
01

birch |
complexity

00

00

linkage |
complexity

01
01 0000 0101

00
00 0101
00 01

0001
01 01 00
0100010101

linkage(w) |
complexity

00 01
01

00
01
00

0101 0100

linkage(w+c) |
complexity

(d) Variant differences for dataset UCR and feature set complexity.

01
01_d
log

log_d
tan

tan_d
d

kmeans |
test

birch |
test

linkage |
test

linkage(w) |
test

linkage(w+c) |
test

(e) Variant differences for dataset UCR and feature set test.

Evaluation Results 259

01
01_d
log

log_d
tan

tan_d
d

000000000000
00 00
00 00
00 00 00
00 00 00
00 0000 0100
00 01 00

000000000000

kmeans |
d_dispersion

0100
0101
0201
0101
0101

0101020101 01
0001010101 01

0101

birch |
d_dispersion

00
00 00

00

0000

linkage |
d_dispersion

020201010201
02 0000 02
02 02
0100 01
0100 01
02 01
01 01

020201010101

linkage(w) |
d_dispersion

0101 0101
01 01
01 01

00
00

01 0101
01 01 01

010100000101

linkage(w+c) |
d_dispersion

(f) Variant differences for dataset UCR and feature set d_dispersion.

01
01_d
log

log_d
tan

tan_d
d

000000 00
00 00 0001
00 00 00
00 00 01

000000 00
00 00

00 00
010001000000

kmeans |
d_dispersion_b

00 0100
02 01

02 0000
00 00 00

000000
01 000000 01
00 00 00 01

01 00000101

birch |
d_dispersion_b

00 00 00
00 01

01
00 01

00
00 01

00
010101000100

linkage |
d_dispersion_b

020101010202
02 00 02
01 02
01 01
0100 01 01
02 01 02
02 02

020201010202

linkage(w) |
d_dispersion_b

00

00

00 00 00

00

linkage(w+c) |
d_dispersion_b

(g) Variant differences for dataset UCR and feature set d_dispersion_b.

01
01_d
log

log_d
tan

tan_d
d

00

00

kmeans |
d_distribution

00

00

birch |
d_distribution

linkage |
d_distribution

0001
00
01 00 00

00

00

linkage(w) |
d_distribution

linkage(w+c) |
d_distribution

(h) Variant differences for dataset UCR and feature set d_distribution.

01
01_d
log

log_d
tan

tan_d
d

kmeans |
d_duplicates

birch |
d_duplicates

linkage |
d_duplicates

01
01

01

0101 01

linkage(w) |
d_duplicates

01 01010101
01 01010101

0101 01 00
01 01010101

0101 01 00
0101000100 0100
0101 01 01
0101 01 00

linkage(w+c) |
d_duplicates

(i) Variant differences for dataset UCR and feature set d_duplicates.

01
01_d
log

log_d
tan

tan_d
d

0000 0000
00 0000 00
00 0000 00

0000 0000
0000 0000

00 0000 00
00 0000 00

0000 0000

kmeans |
t_dispersion

0000
0000

0000
0000

birch |
t_dispersion

0000 0000
00 0000 00
00 0000 00

0000 0000
0000 0000

00 0000 00
00 0000 00

0000 0000

linkage |
t_dispersion

010100000000
01 0000 01
01 0000 01
000000 00
000000 00
00 00
00 00

010100000000

linkage(w) |
t_dispersion

0000 0000
00 0000000000
00 0000000000

0000
0000

000000 00
000000 00

0000 0000

linkage(w+c) |
t_dispersion

(j) Variant differences for dataset UCR and feature set t_dispersion.

260 Time Series Clustering

01
01_d
log

log_d
tan

tan_d
d

kmeans |
t_dispersion_b

00000101
0000

00
00 000000
00 000000
0100 0000 01
0100000000 01

00000101

birch |
t_dispersion_b

00
00

0000

linkage |
t_dispersion_b

0101 0101
01 00
01 00

01 01
01 00

0000 0100

linkage(w) |
t_dispersion_b

linkage(w+c) |
t_dispersion_b

(k) Variant differences for dataset UCR and feature set t_dispersion_b.

01
01_d
log

log_d
tan

tan_d
d

00 00
00 000000

00
00 000000

00
00 00
00 00
00000000

kmeans |
t_similarity

02

02
02 02 02

02

birch |
t_similarity

linkage |
t_similarity

linkage(w) |
t_similarity

linkage(w+c) |
t_similarity

(l) Variant differences for dataset UCR and feature set t_similarity.

01
01_d
log

log_d
tan

tan_d
d

kmeans |
t_frequency

birch |
t_frequency

0000
00 0000 00
00 0000 00

0000
0000

0000

linkage |
t_frequency

00
00

00 0000 00
0000

00

00

linkage(w) |
t_frequency

00

0000
00 000000

0000
0000

00

linkage(w+c) |
t_frequency

(m) Variant differences for dataset UCR and feature set t_frequency.

01
01_d
log

log_d
tan

tan_d
d

00 00 00
00

00
00

00

00

kmeans |
t_linearity

020101 0201
02 0001 03
01 01 01
0100 01

0101 01 01
02 01 02
01 02

030101010202

birch |
t_linearity

linkage |
t_linearity

020202010202
02 01
02 01
02 01
01 01
02 01
02 02

010101010102

linkage(w) |
t_linearity

0102 010101
01 01
02 01 01

01 0001
01 00 01
01 01 01
01 01

0101 010101

linkage(w+c) |
t_linearity

(n) Variant differences for dataset UCR and feature set t_linearity.

01
01_d
log

log_d
tan

tan_d
d

00
00000000

00
0000

00
00
000000

0000 00

kmeans |
c_entropy

birch |
c_entropy

linkage |
c_entropy

00
01
01
00

00 00

01010000

linkage(w) |
c_entropy

linkage(w+c) |
c_entropy

(o) Variant differences for dataset UCR and feature set c_entropy.

Evaluation Results 261

01
01_d
log

log_d
tan

tan_d
d

kmeans |
c_complexity

birch |
c_complexity

00

00

linkage |
c_complexity

0101
01 00 01
01 0000 01

0000
00

0101

linkage(w) |
c_complexity

linkage(w+c) |
c_complexity

(p) Variant differences for dataset UCR and feature set c_complexity.

01
01_d
log

log_d
tan

tan_d
d

0100
0100

00
0100

00
0101 01
0000000000 00

00

kmeans |
c_flatness

birch |
c_flatness

00
00
01
00
01

0000010001 01

01

linkage |
c_flatness

linkage(w) |
c_flatness

linkage(w+c) |
c_flatness

(q) Variant differences for dataset UCR and feature set c_flatness.

01
01_d
log

log_d
tan

tan_d
d

kmeans |
c_peaks

birch |
c_peaks

linkage |
c_peaks

linkage(w) |
c_peaks

linkage(w+c) |
c_peaks

(r) Variant differences for dataset UCR and feature set c_peaks.

d
m

m_d
r

r_d

02 02 03 03
03 02 03 03

02 03
02 02
03 03
03 03

kmeans |
catch22

birch |
catch22

02 02 02 02
02 02 02 02

02 02
02 02
02 02
02 02

linkage |
catch22

01 01
01 01
02 02
02 02

01 01 02 02
01 01 02 02

linkage(w) |
catch22

01 01 07 06
01 01 06 06

01 01 03 04
01 01 03 04
07 06 03 03
06 06 04 04

linkage(w+c) |
catch22

(s) Variant differences for dataset UCR and feature set catch22.

Figure D.3: Variant differences for the UCR dataset of the five models k-means (left), BIRCH
(second), linkage (middle), linkage weighted (fourth) and linkage weighted cosine (right) in
combination with all evaluated feature sets (TSC, four main groups, 13 subgroups, catch22).
Abbreviations: empty = no post-processing, 01 = clip01, tan = clipTan, log = clipLog, m =
minmax, r = robust, d = drop, v_d = variant with drop. Omitted column variants = row
variants.

262 Time Series Clustering

01
01_d
log

log_d
tan

tan_d
d

030303030404
03 03
03 02
03 01 02
03 03
04 01 03
04 03

030202030303

kmeans |
tsc

0202
01
01
00
0101

0201010001 02
02 01 02

0202

birch |
tsc

030303030404
03 000103
03 01 0003
03 01 010102
03 000103
0400 0100 03
0401000101 04

030302030304

linkage |
tsc

403732303633
40 030608 0641
3703 05 37
3206 05 32
300805 06 32
36 0506 35
3306 35

413732323535

linkage(w) |
tsc

090505040604
09 050309 0512
0505 02 09
0503 03 08
04090203 04 04
06 04 0308
0405 03 07

120908040807

linkage(w+c) |
tsc

(a) Variant differences for dataset UCR-merged and feature set tsc.

01
01_d
log

log_d
tan

tan_d
d

050504050506
05 00 010105
0500 0101 0005
04 01 010204
05 01 010104
0501 0101 06
0601000201 06

050504040606

kmeans |
distributional

121009070807
12 0205030413
10 03 0311
0902 0310
070503 08
0803 0209
07040303 02 08

131110080908

birch |
distributional

040504040505
04 0101010105
05 0101 0105
040101 020204
040101 020204
0501 0202 06
0501010202 06

050504040606

linkage |
distributional

211918151817
21 06030422
19 04030419
18 04 0319
15060404 03 15
180303 03 16
17040403 15

221919151615

linkage(w) |
distributional

0204
03
03

02
040303

linkage(w+c) |
distributional

(b) Variant differences for dataset UCR-merged and feature set distributional.

01
01_d
log

log_d
tan

tan_d
d

010201020201
01 01
02 01
01 01
02 01
02 01
01 01

010101010101

kmeans |
temporal

0201
02 01 010102
01 0102

01

01
0101
0202

birch |
temporal

020301020203
02 0101 0102
0301 0100 02
010101 010101
02 00 0102
02 01 0102
0301 010101 03

020201020203

linkage |
temporal

121109061008
12 03 10
11 02 09
09 08
060302 07
10 08
08 08

100908070808

linkage(w) |
temporal

02 03
01 0102

0201

01
0302

linkage(w+c) |
temporal

(c) Variant differences for dataset UCR-merged and feature set temporal.

01
01_d
log

log_d
tan

tan_d
d

010001010102
01 010101
00 000101
01 010101
01 010101
0101000101 01
0201010101 01

010101010101

kmeans |
complexity

02
0404
0404
0202
0303

0204040203
04040203

birch |
complexity

00 01 0100
00 01

01 01
01 01

01
01 01 01
00 01

010101010101

linkage |
complexity

0203
03

03
04

03 0403
02 04
0303 0403 03

03

linkage(w) |
complexity

0204
0204

0202
02

0203
02 02 02 04
040202 03 05

04 02 0405

linkage(w+c) |
complexity

(d) Variant differences for dataset UCR-merged and feature set complexity.

01
01_d
log

log_d
tan

tan_d
d

0000
0000
0000
0000
0000

0000000000 00
0000000000 00

0000

kmeans |
test

birch |
test

0000
0000
0000
0000
0000

0000000000 00
0000000000 00

0000

linkage |
test

0101
0101
0101
0101
0101

0101010101 01
0101010101 01

0101

linkage(w) |
test

0000
0000
0000
0000
0000

0000000000 00
0000000000 00

0000

linkage(w+c) |
test

(e) Variant differences for dataset UCR-merged and feature set test.

Evaluation Results 263

01
01_d
log

log_d
tan

tan_d
d

0202 0000
02 0202020202
02 0202020202

0202 0000
0202 0000

0002020000 00
0002020000 00

0202 0000

kmeans |
d_dispersion

0000

00 000000
00 000000

0000
0000
0000

birch |
d_dispersion

0202 0000
02 0202020202
02 0202020202

0202 0000
0202 0000

0002020000 00
0002020000 00

0202 0000

linkage |
d_dispersion

030302020303
03 0202010103
03 0202010103
020202 010102
020202 010102
0301010101 03
0301010101 03

030302020303

linkage(w) |
d_dispersion

020201010101
02 0101010102
02 0101010102
010101 01
010101 01
010101 01
010101 01

020201010101

linkage(w+c) |
d_dispersion

(f) Variant differences for dataset UCR-merged and feature set d_dispersion.

01
01_d
log

log_d
tan

tan_d
d

030303030202
03 010103
03 010103
03 010103
03 010103
0201010101 02
0201010101 02

030303030202

kmeans |
d_dispersion_b

070708080606
07 07
07 07
08 08
08 08
06 06
06 06

070708080606

birch |
d_dispersion_b

03030202
03 0000010103
03 0000010103
020000 02
020000 02

0101
0101
03030202

linkage |
d_dispersion_b

131309091111
13 0303030313
13 0303030313
090303 09
090303 09
110303 11
110303 11

131309091111

linkage(w) |
d_dispersion_b

linkage(w+c) |
d_dispersion_b

(g) Variant differences for dataset UCR-merged and feature set d_dispersion_b.

01
01_d
log

log_d
tan

tan_d
d

0000
0000
0000
0000
0000

0000000000 00
0000000000 00

0000

kmeans |
d_distribution

0000
0000
0000
0000
0000

0000000000 00
0000000000 00

0000

birch |
d_distribution

0000
0000
0000
0000
0000

0000000000 00
0000000000 00

0000

linkage |
d_distribution

0101
01 01
01 01

0101

linkage(w) |
d_distribution

0101

01 01
01 01

0101

linkage(w+c) |
d_distribution

(h) Variant differences for dataset UCR-merged and feature set d_distribution.

01
01_d
log

log_d
tan

tan_d
d

kmeans |
d_duplicates

02 02010202
02 02010202

0202 02 01
02 02010202

0202 02 01
0101010101 0101
0202 02 01
0202 02 01

birch |
d_duplicates

00
00

00

0000 00

linkage |
d_duplicates

00 00 00
00 00 00

0000 00 01
00 00 00

0000 00 01
01 01 0101

01
0000 00 01

linkage(w) |
d_duplicates

02 02010202
02 02010202

0202 02 03
02 02010202

0202 02 03
0101030103 0303
0202 02 03
0202 02 03

linkage(w+c) |
d_duplicates

(i) Variant differences for dataset UCR-merged and feature set d_duplicates.

01
01_d
log

log_d
tan

tan_d
d

04040303
04 0101030304
04 0101030304
030101 020203
030101 020203

03030202
03030202
04040303

kmeans |
t_dispersion

020202020202
02 02
02 02
02 02
02 02
02 02
02 02

020202020202

birch |
t_dispersion

040403030202
04 0000020204
04 0000020204
030000 010103
030000 010103
0202020101 02
0202020101 02

040403030202

linkage |
t_dispersion

030301010101
03 0202020203
03 0202020203
010202 01
010202 01
010202 01
010202 01

030301010101

linkage(w) |
t_dispersion

0404 0202
04 0303060604
04 0303060604

0303 0303
0303 0303

0206060303 02
0206060303 02

0404 0202

linkage(w+c) |
t_dispersion

(j) Variant differences for dataset UCR-merged and feature set t_dispersion.

264 Time Series Clustering

01
01_d
log

log_d
tan

tan_d
d

02020202
02 02
02 02
02 02
02 02

02020202

kmeans |
t_dispersion_b

03030404
03030404

0303
0303
0404
0404

birch |
t_dispersion_b

020202020202
02 02
02 02
02 02
02 02
02 02
02 02

020202020202

linkage |
t_dispersion_b

111106060606
11 0303030311
11 0303030311
060303 06
060303 06
060303 06
060303 06

111106060606

linkage(w) |
t_dispersion_b

linkage(w+c) |
t_dispersion_b

(k) Variant differences for dataset UCR-merged and feature set t_dispersion_b.

01
01_d
log

log_d
tan

tan_d
d

00
00 00 01

01
01
01

00

01010101

kmeans |
t_similarity

050604041108
05 01 050305
06 050304
0401 070503
04 060403
1105050706 0210
080303050402 08

050403031008

birch |
t_similarity

01 00
01 0001

01
00 00

01

00
01010001

linkage |
t_similarity

02 0504
02 0303 03

0304 03
050202

0303 0604
0503040506 07
04 0204 04

030302 0704

linkage(w) |
t_similarity

03

03

linkage(w+c) |
t_similarity

(l) Variant differences for dataset UCR-merged and feature set t_similarity.

01
01_d
log

log_d
tan

tan_d
d

00
0000
0000
0000
0000

0000000000 00
00000000 00

0000

kmeans |
t_frequency

birch |
t_frequency

0000
0000
0000
0000
0000

0000000000 00
0000000000 00

0000

linkage |
t_frequency

000000000101
00 0000000000
00 0000000000
000000 000000
000000 000000
0100000000 01
0100000000 01

000000000101

linkage(w) |
t_frequency

0000

00
00

linkage(w+c) |
t_frequency

(m) Variant differences for dataset UCR-merged and feature set t_frequency.

01
01_d
log

log_d
tan

tan_d
d

020201010202
02 0001
02 00 00 01
01 00 010101
01 010101
02 000101 01
0200 0101 01

010101010101

kmeans |
t_linearity

02020101
02 010101
02 010101
01 0201
01 01

0101
01010201
010101

birch |
t_linearity

020202020202
02 00 02
02 00 02
020000 010101
02 0101
02 01 02
02 0101 02

020201010202

linkage |
t_linearity

060405050604
06 02 02 07
0402 06
05 02 07
0502 02 02 05
06 02 07
04 05

070607050705

linkage(w) |
t_linearity

01 02

01 01

02
01

linkage(w+c) |
t_linearity

(n) Variant differences for dataset UCR-merged and feature set t_linearity.

01
01_d
log

log_d
tan

tan_d
d

01 01 0101
01

0101
01

01 01
01 01

kmeans |
c_entropy

01020103020301
01 02 02 02
0202 02 01
01 02 02 03
0302 02
02 01
0302 03 01 02
01 01 02

birch |
c_entropy

01
01

01

01
0101 01 01

linkage |
c_entropy

03
02

03
02

linkage(w) |
c_entropy

02
02 04

02
03

0204 03

linkage(w+c) |
c_entropy

(o) Variant differences for dataset UCR-merged and feature set c_entropy.

Evaluation Results 265

01
01_d
log

log_d
tan

tan_d
d

0000 0202
00 010100
00 010100

0202
0202

0201010202 02
0201010202 02

0000 0202

kmeans |
c_complexity

0101

01 01
01 01

0101

birch |
c_complexity

000000000202
00 020200
00 020200
00 010100
00 010100
0202020101 02
0202020101 02

000000000202

linkage |
c_complexity

0202
0202
0101
0101

02020101
02020101

linkage(w) |
c_complexity

linkage(w+c) |
c_complexity

(p) Variant differences for dataset UCR-merged and feature set c_complexity.

01
01_d
log

log_d
tan

tan_d
d

0302
0302
0302
0302
0302

0303030303 0103
020202020201 02

0302

kmeans |
c_flatness

0000
0000

01
0000

01
0000 00 00
000001000100 01

01

birch |
c_flatness

01 01040201
01 01040201

0101 01 0503
01 01040201

0101 01 0503
0404050405 0205
020203020302 03
0101 01 0503

linkage |
c_flatness

0201
0201
0202
0201
0202

0202020202 02
0101020102 02

0202

linkage(w) |
c_flatness

02 02010302
02 02010302

0202 02 01
02 02010302

0202 02 01
0101 01 01
030301030101 01
0202 02 01

linkage(w+c) |
c_flatness

(q) Variant differences for dataset UCR-merged and feature set c_flatness.

01
01_d
log

log_d
tan

tan_d
d

kmeans |
c_peaks

birch |
c_peaks

linkage |
c_peaks

0101
0101
0101
0101
0101

0101010101 01
0101010101 01

0101

linkage(w) |
c_peaks

linkage(w+c) |
c_peaks

(r) Variant differences for dataset UCR-merged and feature set c_peaks.

d
m

m_d
r

r_d

05 05 04 04
05 05 04 04

05 05 01 01
05 05 01 01
04 04 01 01
04 04 01 01

kmeans |
catch22

02 02
02 02

02 02 04 04
02 02 04 04

04 04
04 04

birch |
catch22

02 02 01 01
02 02 01 01

02 02 01 01
02 02 01 01
01 01 01 01
01 01 01 01

linkage |
catch22

15 15 07 07
15 15 07 07

15 15 07 07
15 15 07 07
07 07 07 07
07 07 07 07

linkage(w) |
catch22

12 12 14 14
12 12 14 14

12 12 02 02
12 12 02 02
14 14 02 02
14 14 02 02

linkage(w+c) |
catch22

(s) Variant differences for dataset UCR-merged and feature set catch22.

Figure D.4: Variant differences for the UCR-merged dataset of the five models k-means
(left), BIRCH (second), linkage (middle), linkage weighted (fourth) and linkage weighted cosine
(right) in combination with all evaluated feature sets (TSC, four main groups, 13 subgroups,
catch22). Abbreviations: empty = no post-processing, 01 = clip01, tan = clipTan, log =
clipLog, m = minmax, r = robust, d = drop, v_d = variant with drop. Omitted column
variants = row variants.

266 Time Series Clustering

01
01_d
log

log_d
tan

tan_d
d

07080810050601
07 02
08
08 0101
1002 01 030105
05 0103
06 01
01 05

kmeans |
tsc

05 05
04 05

0504 05
03

0505 05
050305 06

06

birch |
tsc

03

03

linkage |
tsc

232420192023
23 030706 23
24 060607 24
200306 20
190706 0619
200607 20
23 06 23

232420192023

linkage(w) |
tsc

232422152124
23 06 22
24 0806 24
22 23
15 08 15
210606 19
24 23

222423151923

linkage(w+c) |
tsc

(a) Variant differences for dataset IMTS1 and feature set tsc.

01
01_d
log

log_d
tan

tan_d
d

01
00 03

03
00 01 04

04
01 03

04
01030304040304

kmeans |
distributional

08080508061008
08 15
08 15
05 0411
08 03 15
06 03 0511
10 04 05 16
08151511151116

birch |
distributional

05 04
04 04

0504 05
03

0404 03 05
05 05 03

03

linkage |
distributional

262324242123
26 26
23 26
24 25
24 24
21 24
23 25

262625242425

linkage(w) |
distributional

140912 1109
14 06 16
09 14
12 12

06 04 09
11 04 16
09 12

161412091612

linkage(w+c) |
distributional

(b) Variant differences for dataset IMTS1 and feature set distributional.

01
01_d
log

log_d
tan

tan_d
d

01 01 01 02
01 03 01010204

03 0201030001
01 02 01010204

010101 02 03
0101030102 0305

020002 03 02
02040104030502

kmeans |
temporal

03 03
01 03

03 02 03 05
02 04

05
0103 02

05
03030504050205

birch |
temporal

02 02
02 02 0203

0202 03 04
03 02 0303

02 02 03
04 03 0403

0202 03 04
03 03 03

linkage |
temporal

060301010302
06 0303 06
03 03
0103 01
0103 02 01
03 02 03
02 02

060301010302

linkage(w) |
temporal

080703000502
08 0506 0408
07 0305 0407
030503 01 03
00060501 030100
05 03 0205
020404 0102 02

080703000502

linkage(w+c) |
temporal

(c) Variant differences for dataset IMTS1 and feature set temporal.

01
01_d
log

log_d
tan

tan_d
d

15 14021715
15 15021715

1515 15 1202
15 14021714

1415 14 1002
0202120210 1412
171702170214 02
1515 14 1202

kmeans |
complexity

11 11 1411
12 11 1513

1112 14 1203
14 12 1611

1111 12 1004
12 10 1310

141503160413 01
1113 11 1001

birch |
complexity

10 11 1408
11 12 1511

1011 11 09
11 10 1409

1112 10 08
09 08 1110

1415 14 11 03
0811 09 1003

linkage |
complexity

06

06

linkage(w) |
complexity

04
07

0407 03
03

linkage(w+c) |
complexity

(d) Variant differences for dataset IMTS1 and feature set complexity.

01
01_d
log

log_d
tan

tan_d
d

0101
0101
0101
0101
0101

0101010101 01
0101010101 01

0101

kmeans |
test

birch |
test

linkage |
test

linkage(w) |
test

linkage(w+c) |
test

(e) Variant differences for dataset IMTS1 and feature set test.

Evaluation Results 267

01
01_d
log

log_d
tan

tan_d
d

050502020303
05 0101010105
05 0101010105
020101 02
020101 02
030101 03
030101 03

050502020303

kmeans |
d_dispersion

0101 0101
01 0202030301
01 0202030301

0202 0101
0202 0101

0103030101 01
0103030101 01

0101 0101

birch |
d_dispersion

050502020404
05 05
05 05
02 02
02 02
04 04
04 04

050502020404

linkage |
d_dispersion

070704040707
07 07
07 07
04 04
04 04
07 07
07 07

070704040707

linkage(w) |
d_dispersion

linkage(w+c) |
d_dispersion

(f) Variant differences for dataset IMTS1 and feature set d_dispersion.

01
01_d
log

log_d
tan

tan_d
d

kmeans |
d_dispersion_b

03020002 0202
03 01 01
02
00
02 00

01
02 00 01
0201 01

birch |
d_dispersion_b

01

01 01
01

linkage |
d_dispersion_b

02020102
02 09
02 10
01 09
02 09

06
09

091009090609

linkage(w) |
d_dispersion_b

02

02

linkage(w+c) |
d_dispersion_b

(g) Variant differences for dataset IMTS1 and feature set d_dispersion_b.

01
01_d
log

log_d
tan

tan_d
d

020200000303
02 0101 02
02 0101 02
000101 020200
000101 020200
03 0202 03
03 0202 03

020200000303

kmeans |
d_distribution

04040303
04 050504
04 050504
03 030303
03 030303

05050303
05050303
04040303

birch |
d_distribution

0101

01 01
01 01

0101

linkage |
d_distribution

linkage(w) |
d_distribution

linkage(w+c) |
d_distribution

(h) Variant differences for dataset IMTS1 and feature set d_distribution.

01
01_d
log

log_d
tan

tan_d
d

01 01020201
01 01020201

0101 01 0101
01 01020201

0101 01 0101
0202010201 0101
020201020101 01
0101 01 0101

kmeans |
d_duplicates

1111
1111
1111
1111
1111

1111111111 11
1111111111 11

1111

birch |
d_duplicates

03
03
02
03
02
01

030302030201 02
02

linkage |
d_duplicates

linkage(w) |
d_duplicates

04 04 04
04 04 04

0404 04 0404
04 04 04

0404 04 0404
04 04 04
04 04 04

0404 04 0404

linkage(w+c) |
d_duplicates

(i) Variant differences for dataset IMTS1 and feature set d_duplicates.

01
01_d
log

log_d
tan

tan_d
d

060605050303
06 0101030306
06 0101030306
050101 010105
050101 010105
0303030101 03
0303030101 03

060605050303

kmeans |
t_dispersion

000000000000
00 00
00 00
00 00
00 00
00 00
00 00

000000000000

birch |
t_dispersion

060605050303
06 030306
06 030306
05 05
05 05
030303 03
030303 03

060605050303

linkage |
t_dispersion

020201010202
02 0101 02
02 0101 02
010101 01
010101 01
02 02
02 02

020201010202

linkage(w) |
t_dispersion

0202
02 0202020202
02 0202020202

0202
0202
0202
0202
0202

linkage(w+c) |
t_dispersion

(j) Variant differences for dataset IMTS1 and feature set t_dispersion.

268 Time Series Clustering

01
01_d
log

log_d
tan

tan_d
d

01 00
01 00 0101

01
0000 0101

01
01 01 00
01010101 01

0001

kmeans |
t_dispersion_b

040802030103
04 02
08 08
02
03 04
01
03 04

0208 04 04

birch |
t_dispersion_b

02

01
02 01

linkage |
t_dispersion_b

040402 03

04 05
04 03
02

03
0503

linkage(w) |
t_dispersion_b

02
02

02 01
02 01 0302

01 02
01 03

0202 030203
02

linkage(w+c) |
t_dispersion_b

(k) Variant differences for dataset IMTS1 and feature set t_dispersion_b.

01
01_d
log

log_d
tan

tan_d
d

01 01010202
01 02010201

0101 02 01
02 02010202

0102 02 01
0101010101 0101
0202 02 01
0201 02 01

kmeans |
t_similarity

03 02040502
03 0304

0303 03 01
03 02040502

02 02 01
0403 04
0504010501 01
02 02 01

birch |
t_similarity

02

02

linkage |
t_similarity

02

0202

02 02
02

linkage(w) |
t_similarity

linkage(w+c) |
t_similarity

(l) Variant differences for dataset IMTS1 and feature set t_similarity.

01
01_d
log

log_d
tan

tan_d
d

0101
0101
0101
0101
0101

0101010101 01
0101010101 01

0101

kmeans |
t_frequency

birch |
t_frequency

linkage |
t_frequency

0202

02 02
02 02

0202

linkage(w) |
t_frequency

linkage(w+c) |
t_frequency

(m) Variant differences for dataset IMTS1 and feature set t_frequency.

01
01_d
log

log_d
tan

tan_d
d

030102 020102
03 01 02000204
0101 0101 0003
02 01 01 0104

020101 010002
0200 01 0104
010200010001 03
02040304020403

kmeans |
t_linearity

040102010302
04 02 02 0204
0102 01 01 02
02 01 01 03
0102 01 01 02
03 01 01 0103
0202 01 02

040203020302

birch |
t_linearity

01 04
01 0205

01 05
01 01 02010205

01 02 03
01 04

02 02 03
04050505030403

linkage |
t_linearity

020101000200
02 02 02 0202
0102 01 01
01 01 0001
0002 01 02 00
02 01 02 0102
0002 00 01 00

020101000200

linkage(w) |
t_linearity

0201 01
02 0102 02
01 00 01

01 00 01
020000 01

01 01 01
00

020101 0100

linkage(w+c) |
t_linearity

(n) Variant differences for dataset IMTS1 and feature set t_linearity.

01
01_d
log

log_d
tan

tan_d
d

0101
0101
0101
010101
0101

0101010101 01
0101010101 01

01 0101

kmeans |
c_entropy

birch |
c_entropy

01

01

01 01

linkage |
c_entropy

03
01

0301

linkage(w) |
c_entropy

linkage(w+c) |
c_entropy

(o) Variant differences for dataset IMTS1 and feature set c_entropy.

Evaluation Results 269

01
01_d
log

log_d
tan

tan_d
d

0101
0101
0101
0101
0101

0101010101 01
0101010101 01

0101

kmeans |
c_complexity

0202
0202
0202
0202
0202

0202020202 02
0202020202 02

0202

birch |
c_complexity

linkage |
c_complexity

linkage(w) |
c_complexity

linkage(w+c) |
c_complexity

(p) Variant differences for dataset IMTS1 and feature set c_complexity.

01
01_d
log

log_d
tan

tan_d
d

0203
0203
0303
0203
0303

0202030203 03
0303030303 03

0303

kmeans |
c_flatness

03
03

07
03

07
07 07 0407

0303 03 04
07

birch |
c_flatness

linkage |
c_flatness

04 04 04
04 04 04

0404 04 05
04 04 04

0404 04 05
05 05 05

0404 04 05

linkage(w) |
c_flatness

05 05 0705
05 05 0705

0505 05 06
05 05 0705

0505 05 06
06 06 0606

0707 07 06
0505 05 06

linkage(w+c) |
c_flatness

(q) Variant differences for dataset IMTS1 and feature set c_flatness.

01
01_d
log

log_d
tan

tan_d
d

01 01050601
01 01050601

0101 01 0304
01 01050601

0101 01 0304
0505030503 0103
060604060401 04
0101 01 0304

kmeans |
c_peaks

birch |
c_peaks

0507
0507
0507
0507
0507

0505050505 05
0707070707 07

0507

linkage |
c_peaks

0305
0305

0305

0303 03
0505 05

linkage(w) |
c_peaks

linkage(w+c) |
c_peaks

(r) Variant differences for dataset IMTS1 and feature set c_peaks.

d
m

m_d
r

r_d

13 12 16 16
13 12 16 16

13 13 01 03 03
12 12 01 03 04
16 16 03 03
16 16 03 04

kmeans |
catch22

13 12 14 12
13 12 14 12

13 13
12 12
14 14
12 12

birch |
catch22

12 11 15 13
12 11 15 13

12 12
11 11 02 02
15 15 02
13 13 02

linkage |
catch22

20 20
20 20

20 20 14 21
20 20 18 20

14 18
21 20

linkage(w) |
catch22

21 21 28 26
22 23 28 27

21 22 06 06
21 23 05 05
28 28 06 05
26 27 06 05

linkage(w+c) |
catch22

(s) Variant differences for dataset IMTS1 and feature set catch22.

Figure D.5: Variant differences for the IMTS1 dataset of the five models k-means (left),
BIRCH (second), linkage (middle), linkage weighted (fourth) and linkage weighted cosine
(right) in combination with all evaluated feature sets (TSC, four main groups, 13 subgroups,
catch22). Abbreviations: empty = no post-processing, 01 = clip01, tan = clipTan, log =
clipLog, m = minmax, r = robust, d = drop, v_d = variant with drop. Omitted column
variants = row variants.

270 Time Series Clustering

01
01_d
log

log_d
tan

tan_d
d

050706070606
05 010101 0105
0701 00 06
0601 00 06
070100 01 07
06 0001 0006
0601 00 06

050606070606

kmeans |
tsc

091009090910
09 0112
10 14
09 0111
09 12
09 0112
1001 01 01 13

121411121213

birch |
tsc

060806070708
06 02 0108
0802 02 02 09
06 02 0107
07 10
07 02 0108
0801 01 01 09

080907100809

linkage |
tsc

182201081215
18 1604 18
22 160604 22
011616 021101
080406 08
12 0402 12
15 11 15

182201081215

linkage(w) |
tsc

151903111214
15 08 16
19 0806 20
030808 04
11 06 13
12 14
14 15

162004131415

linkage(w+c) |
tsc

(a) Variant differences for dataset IMTS2 and feature set tsc.

01
01_d
log

log_d
tan

tan_d
d

051004080410
05 05 04 0407
1005 060205 11
04 06 04 0505
08040204 03 09
04 05 03 0505
1004 05 05 11

071105090511

kmeans |
distributional

212619232127
21 03 0422
2603 060305 27
19 06 0620
23 03 0424
21 05 0621
2704 060406 27

222720242127

birch |
distributional

06110509040902
06 06 02 0304
1106 060206 09
05 06 05 06
09020205 02 06
04 06 02 0402
0903 06 04 07
020409 060207

linkage |
distributional

202813191923
20 0605 20
2806 12 06 28
130512 08070713
19 08 19
19 0607 19
23 07 23

202813191923

linkage(w) |
distributional

070908 0608
07 10
09 10
08 09

04
06 12
08 09

101009041209

linkage(w+c) |
distributional

(b) Variant differences for dataset IMTS2 and feature set distributional.

01
01_d
log

log_d
tan

tan_d
d

040102010302
02 01

0402 02 02
01 02 01
02
01 02 01
0301 01 01
02

kmeans |
temporal

07120611061108
07 0201 0121
1202 03 03 22
060103 02 0320
11 02 21
06 03 0220
1101 03 02 22
08212220212022

birch |
temporal

040703070307
04 02 0303
0702 03 04 07
03 03 03 0403
07 03 04 07
03 04 04 03
0703 04 03 07

03070307 07

linkage |
temporal

040401010202
04 0203 04
04 0303 04
010203 010101
010303 010101
02 0101 02
02 0101 02

040401010202

linkage(w) |
temporal

050201010202
05 0303 04
02 01 02
0103 01
010301 0101
02 02
02 01 02

040201010202

linkage(w+c) |
temporal

(c) Variant differences for dataset IMTS2 and feature set temporal.

01
01_d
log

log_d
tan

tan_d
d

02 02010402
02 03010403

0202 02 0101
02 02010402

0203 02 0202
0101010102 0302
040401040203 01
0203 02 0201

kmeans |
complexity

07 07030806
06 05 0605

0706 08 04
08 07030807

0705 07 04
03 040304 0304
0806 08 03
0605 07 04

birch |
complexity

05 04 0505
04 04 0504

0504 04 02
04 04 0503

0404 04 02
02 02 0302

0505 05 03
0504 03 02

linkage |
complexity

02 02 0404
03 03 0404

0203
0303

0203
02

0404 03 02
0404 03

linkage(w) |
complexity

04 05
04

04 04
04 0205

02
0504 05

linkage(w+c) |
complexity

(d) Variant differences for dataset IMTS2 and feature set complexity.

01
01_d
log

log_d
tan

tan_d
d

0000
0000
0000
0000
0000

0000000000 00
0000000000 00

0000

kmeans |
test

birch |
test

0101
0101
0101
0101
0101

0101010101 01
0101010101 01

0101

linkage |
test

linkage(w) |
test

linkage(w+c) |
test

(e) Variant differences for dataset IMTS2 and feature set test.

Evaluation Results 271

01
01_d
log

log_d
tan

tan_d
d

060605050404
06 0101020206
06 0101020206
050101 010105
050101 010105
0402020101 04
0402020101 04

060605050404

kmeans |
d_dispersion

010101010101
01 0101000001
01 0101000001
010101 010101
010101 010101
0100000101 01
0100000101 01

010101010101

birch |
d_dispersion

050503030202
05 05
05 05
03 03
03 03
02 02
02 02

050503030202

linkage |
d_dispersion

060603030606
06 06
06 06
03 020203
03 020203
06 0202 06
06 0202 06

060603030606

linkage(w) |
d_dispersion

0101
01 020201
01 020201

0202
0202
0101

linkage(w+c) |
d_dispersion

(f) Variant differences for dataset IMTS2 and feature set d_dispersion.

01
01_d
log

log_d
tan

tan_d
d

01020102010101
01 00 00 01
02 01 010102
010001 01 00
02 01 010101
010001 01
01 01 01
0101020001

kmeans |
d_dispersion_b

181816181718
18 01 18
18 02 18
160102 02010216
18 02 18
17 01 17
18 02 18

181816181718

birch |
d_dispersion_b

03030102010301
03
03 0002 02
01
02 00 01
01 02 01
03 01 01
01 02 01 01

linkage |
d_dispersion_b

181712151716
18 0504 18
17 0501 17
120505 02050313
15040102 02 15
17 0502 17
16 03 16

181713151716

linkage(w) |
d_dispersion_b

03 0102
04 0104

0304 03
03 02

0101
0204 02

linkage(w+c) |
d_dispersion_b

(g) Variant differences for dataset IMTS2 and feature set d_dispersion_b.

01
01_d
log

log_d
tan

tan_d
d

0101 0202
01 0000 01
01 0000 01

0000 0101
0000 0101

02 0101 02
02 0101 02

0101 0202

kmeans |
d_distribution

0303
03 03
03 03

0303

birch |
d_distribution

0202
0101
0101

020101 02
020101 02

0202

linkage |
d_distribution

020203030202
02 02
02 02
03 03
03 03
02 02
02 02

020203030202

linkage(w) |
d_distribution

linkage(w+c) |
d_distribution

(h) Variant differences for dataset IMTS2 and feature set d_distribution.

01
01_d
log

log_d
tan

tan_d
d

0000
0000
0000
0000
0000

0000000000 0000
000000000000 00

0000

kmeans |
d_duplicates

birch |
d_duplicates

01

01
01 01 01

01

linkage |
d_duplicates

linkage(w) |
d_duplicates

04 04 0404
04 04 0404

0404 04 08
04 04 0404

0404 04 08
08 08 0708

0404 04 07
0404 04 08

linkage(w+c) |
d_duplicates

(i) Variant differences for dataset IMTS2 and feature set d_duplicates.

01
01_d
log

log_d
tan

tan_d
d

050504040202
05 0000020205
05 0000020205
040000 020204
040000 020204
0202020202 02
0202020202 02

050504040202

kmeans |
t_dispersion

0000 0000
00 00
00 00

00 00
00 00

0000 0000

birch |
t_dispersion

040402020202
04 0101010104
04 0101010104
020101 02
020101 02
020101 02
020101 02

040402020202

linkage |
t_dispersion

040401010303
04 0202 04
04 0202 04
010202 01
010202 01
03 03
03 03

040401010303

linkage(w) |
t_dispersion

0303
03 0303040403
03 0303040403

0303
0303
0404
0404
0303

linkage(w+c) |
t_dispersion

(j) Variant differences for dataset IMTS2 and feature set t_dispersion.

272 Time Series Clustering

01
01_d
log

log_d
tan

tan_d
d

00
01

0000
00 01
0100

000001 01
00 00 01

0001 01 0101

kmeans |
t_dispersion_b

12130112121300
12 08 0210
13 11 02 12
010811 080512
12 08 0210
12 0205 0211
1302 120202 13
001012 101113

birch |
t_dispersion_b

020202020302
02
02
02
02
03
02

linkage |
t_dispersion_b

07060205020701
07 03 03 04
06 04 04 06
020304 03 05
05 03 03 02
020304 03 04
07 05 04 04
010406 02 04

linkage(w) |
t_dispersion_b

linkage(w+c) |
t_dispersion_b

(k) Variant differences for dataset IMTS2 and feature set t_dispersion_b.

01
01_d
log

log_d
tan

tan_d
d

00 00 00
00 01 01 0101

01 01
01 0001

0001 01 01
01 01 0101

01 00 01
0001 01 01

kmeans |
t_similarity

06 06 0906
06 06 0906

0606 06 060300
06 06 0906

0606 06 060300
06 06 0907

090903090309 03
06060006000703

birch |
t_similarity

01 02 0202
01 01 0101

0101
01

0201
01

0201
0201 01 01

linkage |
t_similarity

02 04020603
07

02 03
03 03 0504

04 03
02 03
0607 05 03
03 04

linkage(w) |
t_similarity

01 01 01
01

01

01

linkage(w+c) |
t_similarity

(l) Variant differences for dataset IMTS2 and feature set t_similarity.

01
01_d
log

log_d
tan

tan_d
d

010101010202
01 020201
01 020201
01 020201
01 020201
0202020202 02
0202020202 02

010101010202

kmeans |
t_frequency

06060101
06 0101010106
06 0101010106
010101 01
010101 01

0101
0101
06060101

birch |
t_frequency

0101
01 010101
01 010101

0101
0101
0101

linkage |
t_frequency

linkage(w) |
t_frequency

linkage(w+c) |
t_frequency

(m) Variant differences for dataset IMTS2 and feature set t_frequency.

01
01_d
log

log_d
tan

tan_d
d

07080606070702
07 0201 09
0802 03 02 10
060103 02010208
06 02 10
07 0201 09
07 02 09
02091008100909

kmeans |
t_linearity

060605050607
06 06
06 06
05 05
05 06
06 06
07 07

060605060607

birch |
t_linearity

090807081008
09 09
08 09
07 08
08 09
10 11
08 10

090908091110

linkage |
t_linearity

030201010201
03 0102 03
02 01 02
0101 01
010201 01 01
02 01 02
01 01

030201010201

linkage(w) |
t_linearity

020000 01
02 010102 0202
0001 01
0001 00 01

02 00 01
01 01 0101

02 01 00
020101 0100

linkage(w+c) |
t_linearity

(n) Variant differences for dataset IMTS2 and feature set t_linearity.

01
01_d
log

log_d
tan

tan_d
d

00 00 01
00 000001

00
00 000001

00 00 00
00 00 01

010100010001 00
00

kmeans |
c_entropy

0201
02 02010202

02 02
02 01 0302

02 01
01 0101

0202 03 01
0102 02 01

birch |
c_entropy

linkage |
c_entropy

02 0301
02

02

03 02
01

linkage(w) |
c_entropy

linkage(w+c) |
c_entropy

(o) Variant differences for dataset IMTS2 and feature set c_entropy.

Evaluation Results 273

01
01_d
log

log_d
tan

tan_d
d

kmeans |
c_complexity

1212
1212
1212
1212
1212

1212121212 12
1212121212 12

1212

birch |
c_complexity

linkage |
c_complexity

linkage(w) |
c_complexity

linkage(w+c) |
c_complexity

(p) Variant differences for dataset IMTS2 and feature set c_complexity.

01
01_d
log

log_d
tan

tan_d
d

0603
0603
0603
0603
0603

0606060606 0206
030303030302 03

0603

kmeans |
c_flatness

13 13 1313
13 13 1313

1313 13 13
13 13 1313

1313 13 13
13 13 1313

1313 13 13
1313 13 13

birch |
c_flatness

0503
0503
0403
0503
0403

0505040504 04
0303030303 03

0403

linkage |
c_flatness

linkage(w) |
c_flatness

linkage(w+c) |
c_flatness

(q) Variant differences for dataset IMTS2 and feature set c_flatness.

01
01_d
log

log_d
tan

tan_d
d

02 02 0502
02 02 0502

0202 02 03
02 02 0502

0202 02 03
03 03 0503

0505 05 05
0202 02 03

kmeans |
c_peaks

birch |
c_peaks

03 03 0403
03 03 0403

0303 03
03 03 0403

0303 03
04

0404 04 04
0303 03

linkage |
c_peaks

10 10051210
10 10051210

1010 10
10 10051210

1010 10
0505 05 04
1212 12 04
1010 10

linkage(w) |
c_peaks

03 03 03
03 03 03

0303 03
03 03 03

0303 03

0303 03

linkage(w+c) |
c_peaks

(r) Variant differences for dataset IMTS2 and feature set c_peaks.

d
m

m_d
r

r_d

15 13 15 14
15 13 15 14

15 15
13 13
15 15 01
14 14 01

kmeans |
catch22

12 11 08
12 11 08

12 12 02 03 15
11 11 02 02 15
08 08 03 02 02

15 15 02

birch |
catch22

15 13 12 11
15 13 12 11

15 15 02 03
13 13
12 12 02
11 11 03

linkage |
catch22

18 16 00 01
18 16 00 01

18 18 18 19
16 16 16 16
00 00 18 16
01 01 19 16

linkage(w) |
catch22

14 14 17 16
15 15 17 17

14 15 04
14 15 03 03
17 17 04 03
16 17 03

linkage(w+c) |
catch22

(s) Variant differences for dataset IMTS2 and feature set catch22.

Figure D.6: Variant differences for the IMTS2 dataset of the five models k-means (left),
BIRCH (second), linkage (middle), linkage weighted (fourth) and linkage weighted cosine
(right) in combination with all evaluated feature sets (TSC, four main groups, 13 subgroups,
catch22). Abbreviations: empty = no post-processing, 01 = clip01, tan = clipTan, log =
clipLog, m = minmax, r = robust, d = drop, v_d = variant with drop. Omitted column
variants = row variants.

274 Time Series Clustering

Regarding the IMTS2 dataset, we first complete the evaluation results by presenting the
initial dendrogram (with representative time series) of the Disk Available % (D-03) metric
when clustered with the distributional feature set (cf. Figure D.13). Figure D.14 displays the
t-SNE visualization and cluster feature values when partitioning the same data into six new
clusters instead of the previous three. In Figure D.15, the t-SNE visualization, Venn diagram
and cluster feature values are displayed after clustering with the entire TSC group. Lastly, we
show the entire clustering output for the remaining unlabeled metrics of the IMTS2 dataset,
which are all again based on the distributional feature set (with our selected method). In
Figure D.16, we present the clustering results for the CPU Idle (H-01) metric, in Figure D.17
for the CPU IO Wait (H-05) metric, in Figure D.18 for the Page Faults (H-06) metric, in
Figure D.19 for the Memory Available % (H-07) metric and in Figure D.20 for the Read Bytes
(D-04) metric.

Table D.2 lists all unlabeled dataset evaluation results together with various internal
evaluation metrics (cf. Section 2.4.4.1 on p. 23).

Overall, we can see good clustering results throughout, especially when we cross-analyze
the t-SNE visualizations, where the samples are tinted based on the predicted clusters, which
allows us to observe that equally colored samples (i.e., samples from a common cluster) are in
close proximity in the majority of the cases.

Evaluation Results 275

Cluster 1 (n = 2934)
Cluster 2 (n = 2622)
Cluster 3 (n = 1557)

(a) t-SNE visualization (perplexity = 30) of the
distributional feature set. The samples are tinted
according to their corresponding clusters.

0.0 0.2 0.4 0.6 0.8 1.0

Cl
us

te
r 1

 (n
 =

 2
93

4)
Cl

us
te

r 2
 (n

 =
 2

62
2)

Cl
us

te
r 3

 (n
 =

 1
55

7)

d_dispersion
d_dispersion_b
d_distribution
d_duplicates
t_dispersion
t_dispersion_b
t_similarity
t_frequency
t_linearity
c_entropy
c_complexity
c_flatness
c_peaks
test

(b) Cluster feature values of all TSC (sub)groups, clipped to [0, 1]. Abbreviations: d = distributional,
t = temporal, c = complexity, b = blockwise.

Figure D.7: Various results obtained when clustering the 7113 CPU Idle (H-01) series of the
IMTS1 dataset into three clusters. The respective cluster sizes are denoted by n.

276 Time Series Clustering

Cluster 1 (n = 1755)
Cluster 2 (n = 4895)
Cluster 3 (n = 526)

(a) t-SNE visualization (perplexity = 30) of the
distributional feature set. The samples are tinted
according to their corresponding clusters.

33 202
174

6
10

27

156

Cluster 1
(n = 1755)

Cluster 2
(n = 4895)

Cluster 3
(n = 526)

(b) Venn diagram showing the distribution of the
608 systems.

0.0 0.2 0.4 0.6 0.8 1.0

Cl
us

te
r 1

 (n
 =

 1
75

5)
Cl

us
te

r 2
 (n

 =
 4

89
5)

Cl
us

te
r 3

 (n
 =

 5
26

)

d_dispersion
d_dispersion_b
d_distribution
d_duplicates
t_dispersion
t_dispersion_b
t_similarity
t_frequency
t_linearity
c_entropy
c_complexity
c_flatness
c_peaks
test

(c) Cluster feature values of all TSC (sub)groups, clipped to [0, 1]. Abbreviations: d = distributional,
t = temporal, c = complexity, b = blockwise.

Figure D.8: Various results obtained when clustering the 7176 Memory Available % (H-07)
series of the IMTS1 dataset into three clusters. The respective cluster sizes are denoted by n.

Evaluation Results 277

In
te
rn
al

E
va
lu
at
io
n
M
et
ri
cs

D
at
as
et

ID
:
M
et
ri
c

Fe
at
u
re

S
et

#
C

S
il
h
ou

et
te

D
av
ie
s-
B
ou

ld
in

D
u
n
n

C
al
iń
sk
i-
H
ar
ab

as
z

IM
T
S 1

H
-0
1:

C
P
U

Id
le

di
st
ri
bu
ti
on

al
3

0.
18

1.
67

0.
04

23
02

.9
1

H
-0
6:

P
ag

e
Fa

ul
ts

di
st
ri
bu
ti
on

al
2

0.
29

1.
26

0.
03

15
26

.8
3

H
-0
7:

M
em

or
y
A
va
ila

bl
e
%

di
st
ri
bu
ti
on

al
3

0.
27

1.
50

0.
05

25
16

.1
4

H
-0
7:

M
em

or
y
A
va
ila

bl
e
%

di
st
ri
bu
ti
on

al
6

0.
12

1.
98

0.
04

15
53

.6
9

D
-0
3:

D
is
k
A
va
ila

bl
e
%

di
st
ri
bu
ti
on

al
2

0.
52

1.
12

0.
08

36
11

.5
7

N
-0
1:

B
yt
es

R
ec
ei
ve
d

di
st
ri
bu
ti
on

al
3

0.
29

1.
19

0.
02

35
26

.1
0

IM
T
S 2

H
-0
1:

C
P
U

Id
le

di
st
ri
bu
ti
on

al
3

0.
23

1.
52

0.
06

40
7.
03

H
-0
5:

C
P
U

IO
W
ai
t

di
st
ri
bu
ti
on

al
2

0.
35

1.
16

0.
09

41
3.
41

H
-0
6:

P
ag

e
Fa

ul
ts

di
st
ri
bu
ti
on

al
3

0.
47

0.
78

0.
12

60
8.
88

H
-0
7:

M
em

or
y
A
va
ila

bl
e
%

di
st
ri
bu
ti
on

al
2

0.
32

1.
34

0.
10

57
5.
04

D
-0
3:

D
is
k
A
va
ila

bl
e
%

di
st
ri
bu
ti
on

al
2

0.
45

1.
24

0.
10

77
4.
99

D
-0
3:

D
is
k
A
va
ila

bl
e
%

di
st
ri
bu
ti
on

al
6

0.
16

1.
70

0.
04

44
3.
16

D
-0
3:

D
is
k
A
va
ila

bl
e
%

al
lT

SC
3

0.
15

1.
95

0.
15

39
8.
66

D
-0
4:

R
ea
d
B
yt
es

di
st
ri
bu
ti
on

al
3

0.
38

0.
98

0.
03

16
05

.4
8

T
ab

le
D
.2
:
In
te
rn
al

ev
al
ua

ti
on

m
et
ri
cs

fo
r
al
lu

nl
ab

el
ed

da
ta
se
t
ev
al
ua

ti
on

s.
#
C

re
pr
es
en
ts

th
e
nu

m
be

r
of

id
en
ti
fie

d
cl
us
te
rs
.

278 Time Series Clustering

Cluster 1 (n = 1258)
Cluster 2 (n = 497)
Cluster 3 (n = 2004)
Cluster 4 (n = 954)
Cluster 5 (n = 1937)
Cluster 6 (n = 526)

(a) t-SNE visualization (perplexity = 30) of the distributional feature set. The samples are tinted
according to their corresponding clusters.

Evaluation Results 279

0.0 0.2 0.4 0.6 0.8 1.0

Cl
us

te
r 1

 (n
 =

 1
25

8)
Cl

us
te

r 2
 (n

 =
 4

97
)

Cl
us

te
r 3

 (n
 =

 2
00

4)
Cl

us
te

r 4
 (n

 =
 9

54
)

Cl
us

te
r 5

 (n
 =

 1
93

7)
Cl

us
te

r 6
 (n

 =
 5

26
)

d_dispersion
d_dispersion_b
d_distribution
d_duplicates
t_dispersion
t_dispersion_b
t_similarity
t_frequency
t_linearity
c_entropy
c_complexity
c_flatness
c_peaks
test

(b) Cluster feature values of all TSC (sub)groups, clipped to [0, 1]. Abbreviations: d = distributional,
t = temporal, c = complexity, b = blockwise.

Figure D.9: Various results obtained when clustering the 7176 Memory Available % (H-07)
series of the IMTS1 dataset into six clusters. The respective cluster sizes are denoted by n.

280 Time Series Clustering

02040
(141)
(107)
(50)
(62)
(89)
(172)
(176)
(58)
(154)
(248)
(136)
(70)
(76)
(39)
(73)
(70)
(12)
(48)
(84)
(89)
(44)
(49)
(347)
(166)
(89)
(70)
(147)
(177)
(114)
(204)

0

5

10

15

Cl
us

te
r 1

(n
 =

 2
35

2)

0

20

40

60

Cl
us

te
r 2

(n
 =

 1
00

9)

(a) Dendrogram (left) and representative time series (right) for the two identified clusters.

0.0

0.5

1.0

Cl
us

te
r 1

(n
 =

 2
35

2)

0.0

0.5

1.0

Cl
us

te
r 2

(n
 =

 1
00

9)

(b) Cluster time series averages.

Evaluation Results 281

Cluster 1 (n = 2352)
Cluster 2 (n = 1009)

(c) t-SNE visualization (perplexity = 30) of the
distributional feature set. The samples are tinted
according to their corresponding clusters.

180 71186

Cluster 1
(n = 2352)

Cluster 2
(n = 1009)

(d) Venn diagram showing the distribution of the
437 systems.

0.0 0.2 0.4 0.6 0.8 1.0

Cl
us

te
r 1

 (n
 =

 2
35

2)
Cl

us
te

r 2
 (n

 =
 1

00
9)

d_dispersion
d_dispersion_b
d_distribution
d_duplicates
t_dispersion
t_dispersion_b
t_similarity
t_frequency
t_linearity
c_entropy
c_complexity
c_flatness
c_peaks
test

(e) Cluster feature values of all TSC (sub)groups, clipped to [0, 1]. Abbreviations: d = distributional,
t = temporal, c = complexity, b = blockwise.

Figure D.10: Various results obtained when clustering the 3361 Page Faults (H-06) series
of the IMTS1 dataset into two clusters. The respective cluster sizes are denoted by n, and
all time series contain 20160 data points (two weeks in one-minute resolution, ranging from
22.01.2018 00:00 UTC to 04.02.2018 23:59 UTC).

282 Time Series Clustering

02550
(124)
(135)
(63)
(69)
(64)
(71)
(55)
(64)
(93)
(53)
(72)
(183)
(596)
(525)
(504)
(198)
(371)
(1055)
(501)
(549)
(245)
(201)
(377)
(841)
(310)
(118)
(241)
(153)
(198)
(191)

1

0

1

Cl
us

te
r 1

(n
 =

 7
35

7)

2.5

0.0

2.5

Cl
us

te
r 2

(n
 =

 8
63

)

(a) Dendrogram (left) and representative time series (right) for the two identified clusters.

0.5

0.0

0.5

Cl
us

te
r 1

(n
 =

 7
35

7)

0.5

0.0

0.5

Cl
us

te
r 2

(n
 =

 8
63

)

(b) Cluster time series averages.

Evaluation Results 283

Cluster 1 (n = 7357)
Cluster 2 (n = 863)

(c) t-SNE visualization (perplexity = 30) of the
distributional feature set. The samples are tinted
according to their corresponding clusters.

270 7226

Cluster 1
(n = 7357)

Cluster 2
(n = 863)

(d) Venn diagram showing the distribution of the
503 systems.

0.0 0.2 0.4 0.6 0.8 1.0

Cl
us

te
r 1

 (n
 =

 7
35

7)
Cl

us
te

r 2
 (n

 =
 8

63
)

d_dispersion
d_dispersion_b
d_distribution
d_duplicates
t_dispersion
t_dispersion_b
t_similarity
t_frequency
t_linearity
c_entropy
c_complexity
c_flatness
c_peaks
test

(e) Cluster feature values of all TSC (sub)groups, clipped to [0, 1]. Abbreviations: d = distributional,
t = temporal, c = complexity, b = blockwise.

Figure D.11: Various results obtained when clustering the 8220 Disk Available % (D-03)
series of the IMTS1 dataset into two clusters. The respective cluster sizes are denoted by n,
and all time series contain 20160 data points (two weeks in one-minute resolution, ranging
from 22.01.2018 00:00 UTC to 04.02.2018 23:59 UTC).

284 Time Series Clustering

02550
(55)
(154)
(53)
(70)
(45)
(34)
(39)
(142)
(185)
(137)
(112)
(122)
(100)
(113)
(235)
(44)
(194)
(150)
(333)
(57)
(68)
(178)
(292)
(89)
(149)
(316)
(457)
(328)
(21)
(65)
(154)
(164)
(362)
(114)
(42)
(117)
(116)
(157)
(59)
(69)
(44)
(48)
(169)
(122)
(131)
(100)
(192)
(124)
(129)
(247)

0.0

2.5

5.0

7.5

Cl
us

te
r 1

(n
 =

 3
84

7)

0

25

50

75

Cl
us

te
r 2

(n
 =

 1
31

6)

0

2

4

Cl
us

te
r 3

(n
 =

 1
83

4)

(a) Dendrogram (left) and representative time series (right) for the three identified clusters.

0.0

0.5

1.0

Cl
us

te
r 1

(n
 =

 3
84

7)

0.0

0.5

1.0

Cl
us

te
r 2

(n
 =

 1
31

6)

0.0

0.5

1.0

Cl
us

te
r 3

(n
 =

 1
83

4)

(b) Cluster time series averages.

Evaluation Results 285

Cluster 1 (n = 3847)
Cluster 2 (n = 1316)
Cluster 3 (n = 1834)

(c) t-SNE visualization (perplexity = 30) of the
distributional feature set. The samples are tinted
according to their corresponding clusters.

122
44

120

33

86
14

149

Cluster 1
(n = 3847)

Cluster 2
(n = 1316)

Cluster 3
(n = 1834)

(d) Venn diagram showing the distribution of the
568 systems.

0.0 0.2 0.4 0.6 0.8 1.0

Cl
us

te
r 1

 (n
 =

 3
84

7)
Cl

us
te

r 2
 (n

 =
 1

31
6)

Cl
us

te
r 3

 (n
 =

 1
83

4)

d_dispersion
d_dispersion_b
d_distribution
d_duplicates
t_dispersion
t_dispersion_b
t_similarity
t_frequency
t_linearity
c_entropy
c_complexity
c_flatness
c_peaks
test

(e) Cluster feature values of all TSC (sub)groups, clipped to [0, 1]. Abbreviations: d = distributional,
t = temporal, c = complexity, b = blockwise.

Figure D.12: Various results obtained when clustering the 6997 Bytes Received (N-01) series
of the IMTS1 dataset into three clusters. The respective cluster sizes are denoted by n, and
all time series contain 20160 data points (two weeks in one-minute resolution, ranging from
22.01.2018 00:00 UTC to 04.02.2018 23:59 UTC).

286 Time Series Clustering

020
(22)
(12)
(39)
(18)
(34)
(67)
(29)
(31)
(17)
(79)
(81)
(54)
(123)
(316)
(114)
(73)
(147)
(28)
(68)
(22)
(35)
(78)
(16)
(53)
(71)
(103)
(126)
(84)
(92)
(227)

2

0

Cl
us

te
r 1

(n
 =

 1
99

0)
5.0

2.5

0.0

Cl
us

te
r 2

(n
 =

 2
69

)

(a) Dendrogram (left) and representative time series (right) for the two identified clusters.

Evaluation Results 287

Cluster 1 (n = 1990)
Cluster 2 (n = 269)

(b) t-SNE visualization (perplexity = 30) of the
distributional feature set. The samples are tinted
according to their corresponding clusters.

1 6

Cluster 1
(n = 1990)

Cluster 2
(n = 269)

(c) Venn diagram showing the distribution of the
7 systems.

0.0 0.2 0.4 0.6 0.8 1.0

Cl
us

te
r 1

 (n
 =

 1
99

0)
Cl

us
te

r 2
 (n

 =
 2

69
)

d_dispersion
d_dispersion_b
d_distribution
d_duplicates
t_dispersion
t_dispersion_b
t_similarity
t_frequency
t_linearity
c_entropy
c_complexity
c_flatness
c_peaks
test

(d) Cluster feature values of all TSC (sub)groups, clipped to [0, 1]. Abbreviations: d = distributional,
t = temporal, c = complexity, b = blockwise.

Figure D.13: Various results obtained when clustering the 2259 Disk Available % (D-03)
series of the IMTS2 dataset into two clusters. The respective cluster sizes are denoted by n,
and all time series contain 40320 data points (four weeks in one-minute resolution, ranging
from 15.07.2019 00:00 UTC to 11.08.2019 23:59 UTC).

288 Time Series Clustering

Cluster 1 (n = 885)
Cluster 2 (n = 118)
Cluster 3 (n = 773)
Cluster 4 (n = 214)
Cluster 5 (n = 144)
Cluster 6 (n = 125)

(a) t-SNE visualization (perplexity = 30) of the distributional feature set. The samples are tinted
according to their corresponding clusters.

Evaluation Results 289

0.0 0.2 0.4 0.6 0.8 1.0

Cl
us

te
r 1

 (n
 =

 8
85

)
Cl

us
te

r 2
 (n

 =
 1

18
)

Cl
us

te
r 3

 (n
 =

 7
73

)
Cl

us
te

r 4
 (n

 =
 2

14
)

Cl
us

te
r 5

 (n
 =

 1
44

)
Cl

us
te

r 6
 (n

 =
 1

25
)

d_dispersion
d_dispersion_b
d_distribution
d_duplicates
t_dispersion
t_dispersion_b
t_similarity
t_frequency
t_linearity
c_entropy
c_complexity
c_flatness
c_peaks
test

(b) Cluster feature values of all TSC (sub)groups, clipped to [0, 1]. Abbreviations: d = distributional,
t = temporal, c = complexity, b = blockwise.

Figure D.14: Various results obtained when clustering the 2259 Disk Available % (D-03)
series of the IMTS1 dataset into six clusters. The respective cluster sizes are denoted by n.

290 Time Series Clustering

Cluster 1 (n = 1254)
Cluster 2 (n = 491)
Cluster 3 (n = 514)

(a) t-SNE visualization (perplexity = 30) of the
distributional feature set. The samples are tinted
according to their corresponding clusters.

1

6

Cluster 1
(n = 1254)

Cluster 2
(n = 491)

Cluster 3
(n = 514)

(b) Venn diagram showing the distribution of the
7 systems.

0.0 0.2 0.4 0.6 0.8 1.0

Cl
us

te
r 1

 (n
 =

 1
25

4)
Cl

us
te

r 2
 (n

 =
 4

91
)

Cl
us

te
r 3

 (n
 =

 5
14

)

d_dispersion
d_dispersion_b
d_distribution
d_duplicates
t_dispersion
t_dispersion_b
t_similarity
t_frequency
t_linearity
c_entropy
c_complexity
c_flatness
c_peaks
test

(c) Cluster feature values of all TSC (sub)groups, clipped to [0, 1]. Abbreviations: d = distributional,
t = temporal, c = complexity, b = blockwise.

Figure D.15: Various results obtained when clustering the 2259 Disk Available % (D-03)
series of the IMTS2 dataset into three clusters using the entire set of TSC features instead of
the distributional feature set. The respective cluster sizes are denoted by n.

Evaluation Results 291

01020
(90)
(44)
(83)
(17)
(12)
(18)
(15)
(9)
(17)
(15)
(13)
(20)
(20)
(24)
(26)
(24)
(27)
(36)
(26)
(75)
(66)
(28)
(35)
(43)
(11)
(14)
(13)
(11)
(15)
(17)
(7)
(13)
(17)
(17)
(10)
(9)
(9)
(23)
(11)
(22)
(51)
(13)
(29)
(43)
(12)
(41)
(23)
(38)
(10)
(12)

5

0

5

Cl
us

te
r 1

(n
 =

 4
10

)

40

20

0

Cl
us

te
r 2

(n
 =

 8
1)

5

0

Cl
us

te
r 3

(n
 =

 7
83

)

(a) Dendrogram (left) and representative time series (right) for the three identified clusters.

2

0

Cl
us

te
r 1

(n
 =

 4
10

)

2

0

Cl
us

te
r 2

(n
 =

 8
1)

2

0

Cl
us

te
r 3

(n
 =

 7
83

)

(b) Cluster time series averages.

292 Time Series Clustering

Cluster 1 (n = 410)
Cluster 2 (n = 81)
Cluster 3 (n = 783)

(c) t-SNE visualization (perplexity = 30) of the
distributional feature set. The samples are tinted
according to their corresponding clusters.

1

7

Cluster 1
(n = 410)

Cluster 2
(n = 81)

Cluster 3
(n = 783)

(d) Venn diagram showing the distribution of the
8 systems.

0.0 0.2 0.4 0.6 0.8 1.0

Cl
us

te
r 1

 (n
 =

 4
10

)
Cl

us
te

r 2
 (n

 =
 8

1)
Cl

us
te

r 3
 (n

 =
 7

83
)

d_dispersion
d_dispersion_b
d_distribution
d_duplicates
t_dispersion
t_dispersion_b
t_similarity
t_frequency
t_linearity
c_entropy
c_complexity
c_flatness
c_peaks
test

(e) Cluster feature values of all TSC (sub)groups, clipped to [0, 1]. Abbreviations: d = distributional,
t = temporal, c = complexity, b = blockwise.

Figure D.16: Various results obtained when clustering the 1274 CPU Idle (H-01) series of
the IMTS2 dataset into three clusters. The respective cluster sizes are denoted by n, and
all time series contain 40320 data points (four weeks in one-minute resolution, ranging from
15.07.2019 00:00 UTC to 11.08.2019 23:59 UTC).

Evaluation Results 293

01020
(11)
(31)
(10)
(29)
(9)
(4)
(14)
(17)
(9)
(26)
(10)
(40)
(31)
(6)
(15)
(3)
(15)
(29)
(15)
(16)
(9)
(13)
(49)
(8)
(52)
(17)
(31)
(104)
(25)
(32)

0

5

Cl
us

te
r 1

(n
 =

 4
18

)

0.0

2.5

5.0

7.5

Cl
us

te
r 2

(n
 =

 2
62

)

(a) Dendrogram (left) and representative time series (right) for the two identified clusters.

0

1

2

Cl
us

te
r 1

(n
 =

 4
18

)

0

1

2

Cl
us

te
r 2

(n
 =

 2
62

)

(b) Cluster time series averages.

294 Time Series Clustering

Cluster 1 (n = 418)
Cluster 2 (n = 262)

(c) t-SNE visualization (perplexity = 30) of the
distributional feature set. The samples are tinted
according to their corresponding clusters.

1 6

Cluster 1
(n = 418)

Cluster 2
(n = 262)

(d) Venn diagram showing the distribution of the
7 systems.

0.0 0.2 0.4 0.6 0.8 1.0

Cl
us

te
r 1

 (n
 =

 4
18

)
Cl

us
te

r 2
 (n

 =
 2

62
)

d_dispersion
d_dispersion_b
d_distribution
d_duplicates
t_dispersion
t_dispersion_b
t_similarity
t_frequency
t_linearity
c_entropy
c_complexity
c_flatness
c_peaks
test

(e) Cluster feature values of all TSC (sub)groups, clipped to [0, 1]. Abbreviations: d = distributional,
t = temporal, c = complexity, b = blockwise.

Figure D.17: Various results obtained when clustering the 680 CPU IO Wait (H-05) series
of the IMTS2 dataset into two clusters. The respective cluster sizes are denoted by n, and
all time series contain 40320 data points (four weeks in one-minute resolution, ranging from
15.07.2019 00:00 UTC to 11.08.2019 23:59 UTC).

Evaluation Results 295

01020
(21)
(20)
(20)
(15)
(3)
(4)
(16)
(17)
(10)
(3)
(4)
(14)
(13)
406
(5)
(28)
(10)
(35)
(26)
(32)
(12)
(22)
(7)
(6)
(2)
(3)
(9)
(12)
23
(12)
(3)
(7)
(7)
(9)
(3)
(5)
(4)
(5)
(12)
(22)
(16)
(35)
(20)
(34)
(7)
(14)
(18)
(19)
(28)
(29)

0

10

Cl
us

te
r 1

(n
 =

 2
97

)

0

25

50

75

Cl
us

te
r 2

(n
 =

 5
2)

2.5

0.0

2.5

5.0

Cl
us

te
r 3

(n
 =

 3
31

)

(a) Dendrogram (left) and representative time series (right) for the three identified clusters.

0

2

Cl
us

te
r 1

(n
 =

 2
97

)

0

2

Cl
us

te
r 2

(n
 =

 5
2)

0

2

Cl
us

te
r 3

(n
 =

 3
31

)

(b) Cluster time series averages.

296 Time Series Clustering

Cluster 1 (n = 297)
Cluster 2 (n = 52)
Cluster 3 (n = 331)

(c) t-SNE visualization (perplexity = 30) of the
distributional feature set. The samples are tinted
according to their corresponding clusters.

15

Cluster 1
(n = 297)

Cluster 2
(n = 52)

Cluster 3
(n = 331)

(d) Venn diagram showing the distribution of the
6 systems.

0.0 0.2 0.4 0.6 0.8 1.0

Cl
us

te
r 1

 (n
 =

 2
97

)
Cl

us
te

r 2
 (n

 =
 5

2)
Cl

us
te

r 3
 (n

 =
 3

31
)

d_dispersion
d_dispersion_b
d_distribution
d_duplicates
t_dispersion
t_dispersion_b
t_similarity
t_frequency
t_linearity
c_entropy
c_complexity
c_flatness
c_peaks
test

(e) Cluster feature values of all TSC (sub)groups, clipped to [0, 1]. Abbreviations: d = distributional,
t = temporal, c = complexity, b = blockwise.

Figure D.18: Various results obtained when clustering the 680 Page Faults (H-06) series
of the IMTS2 dataset into three clusters. The respective cluster sizes are denoted by n, and
all time series contain 40320 data points (four weeks in one-minute resolution, ranging from
15.07.2019 00:00 UTC to 11.08.2019 23:59 UTC).

Evaluation Results 297

01020
(19)
(21)
(33)
(25)
(21)
(34)
(21)
(19)
(58)
(59)
(45)
(146)
(93)
(95)
(59)
(51)
(17)
(25)
(59)
(84)
(22)
(21)
(61)
(13)
(5)
(19)
(35)
(71)
(39)
(86)

2

0

2

Cl
us

te
r 1

(n
 =

 1
00

1)

0

5

10

Cl
us

te
r 2

(n
 =

 3
55

)

(a) Dendrogram (left) and representative time series (right) for the two identified clusters.

0

1

2

Cl
us

te
r 1

(n
 =

 1
00

1)

0

1

2
Cl

us
te

r 2
(n

 =
 3

55
)

(b) Cluster time series averages.

298 Time Series Clustering

Cluster 1 (n = 1001)
Cluster 2 (n = 355)

(c) t-SNE visualization (perplexity = 30) of the
distributional feature set. The samples are tinted
according to their corresponding clusters.

2 6

Cluster 1
(n = 1001)

Cluster 2
(n = 355)

(d) Venn diagram showing the distribution of the
8 systems.

0.0 0.2 0.4 0.6 0.8 1.0

Cl
us

te
r 1

 (n
 =

 1
00

1)
Cl

us
te

r 2
 (n

 =
 3

55
)

d_dispersion
d_dispersion_b
d_distribution
d_duplicates
t_dispersion
t_dispersion_b
t_similarity
t_frequency
t_linearity
c_entropy
c_complexity
c_flatness
c_peaks
test

(e) Cluster feature values of all TSC (sub)groups. Abbreviations: d = distributional, t = temporal, c
= complexity, b = blockwise.

Figure D.19: Various results obtained when clustering the 1356 Memory Available % (H-07)
series of the IMTS2 dataset into two clusters. The respective cluster sizes are denoted by n,
and all time series contain 40320 data points (four weeks in one-minute resolution, ranging
from 15.07.2019 00:00 UTC to 11.08.2019 23:59 UTC).

Evaluation Results 299

020
(67)
(3)
(5)
(6)
(6)
(8)
(19)
(16)
(23)
(25)
(48)
(23)
(22)
(14)
(22)
(31)
(35)
(49)
(8)
(12)
(11)
(23)
(39)
(145)
(40)
(11)
(41)
(40)
(9)
(55)
(59)
(29)
(22)
(41)
(114)
(15)
(11)
(34)
(139)
(136)
(104)
(71)
(82)
(4)
(25)
(18)
(9)
(38)
(79)
(81)

0

10

20

30

Cl
us

te
r 1

(n
 =

 7
86

)

0

5

10

Cl
us

te
r 2

(n
 =

 7
05

)

0.0

2.5

5.0

7.5

Cl
us

te
r 3

(n
 =

 4
76

)

(a) Dendrogram (left) and representative time series (right) for the three identified clusters.

0

2

4

Cl
us

te
r 1

(n
 =

 7
86

)

0

2

4

Cl
us

te
r 2

(n
 =

 7
05

)

0

2

4

Cl
us

te
r 3

(n
 =

 4
76

)

(b) Cluster time series averages.

300 Time Series Clustering

Cluster 1 (n = 786)
Cluster 2 (n = 705)
Cluster 3 (n = 476)

(c) t-SNE visualization (perplexity = 30) of the
distributional feature set. The samples are tinted
according to their corresponding clusters.

2 1 4

Cluster 1
(n = 786)

Cluster 2
(n = 705)

Cluster 3
(n = 476)

(d) Venn diagram showing the distribution of the
7 systems.

0.0 0.2 0.4 0.6 0.8 1.0

Cl
us

te
r 1

 (n
 =

 7
86

)
Cl

us
te

r 2
 (n

 =
 7

05
)

Cl
us

te
r 3

 (n
 =

 4
76

)

d_dispersion
d_dispersion_b
d_distribution
d_duplicates
t_dispersion
t_dispersion_b
t_similarity
t_frequency
t_linearity
c_entropy
c_complexity
c_flatness
c_peaks
test

(e) Cluster feature values of all TSC (sub)groups, clipped to [0, 1]. Abbreviations: d = distributional,
t = temporal, c = complexity, b = blockwise.

Figure D.20: Various results obtained when clustering the 1967 Read Bytes (D-04) series
of the IMTS2 dataset into three clusters. The respective cluster sizes are denoted by n, and
all time series contain 40320 data points (four weeks in one-minute resolution, ranging from
15.07.2019 00:00 UTC to 11.08.2019 23:59 UTC).

Bibliography 301

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner,
Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. “TensorFlow: A System for Large-Scale Machine Learning”. In: Proceedings
of the 12th USENIX Symposium on Operating Systems Design and Implementation.
USENIX Association, 2016, pp. 265–283.

[2] Salisu Mamman Abdulrahman, Pavel Brazdil, Wan Mohd Nazmee Wan Zainon, and
Alhassan Adamu. “Simplifying the Algorithm Selection Using Reduction of Rankings
of Classification Algorithms”. In: Proceedings of the 8th International Conference on
Software and Computer Applications. ACM, 2019, pp. 140–148. doi: 10.1145/3316615.
3316674.

[3] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. “Time-series clustering
— A decade review”. In: Information Systems 53 (2015), pp. 16–38. doi: 10.1016/J.IS.
2015.04.007.

[4] Javier Alonso, Lluis Belanche, and Dimiter R. Avresky. “Predicting Software Anomalies
using Machine Learning Techniques”. In: Proceedings of the 10th IEEE International
Symposium on Network Computing and Applications. IEEE, 2011, pp. 163–170. doi:
10.1109/NCA.2011.29.

[5] Ayman Amin, Lars Grunske, and Alan Colman. “An approach to software reliability
prediction based on time series modeling”. In: Journal of Systems and Software 86.7
(2013), pp. 1923–1932. doi: 10.1016/J.JSS.2013.03.045.

[6] David Arthur and Sergei Vassilvitskii. “k-means++: The Advantages of Careful Seeding”.
In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms.
2007, pp. 1027–1035.

[7] Merve Astekin, Harun Zengin, and Hasan Sözer. “DILAF: A framework for distributed
analysis of large-scale system logs for anomaly detection”. In: Software - Practice and
Experience 49.2 (2019), pp. 153–170. doi: 10.1002/SPE.2653.

[8] Francisco Javier Baldan and José Manuel Benítez. “Complexity Measures and Features
for Times Series classification”. In: CoRR abs/2002.12036 (2020), pp. 1–22. arXiv:
2002.12036. url: https://arxiv.org/abs/2002.12036.

[9] Kasun Bandara, Christoph Bergmeir, and Slawek Smyl. “Forecasting across time series
databases using recurrent neural networks on groups of similar series: A clustering
approach”. In: Expert Systems with Applications 140 (2020), 112896:1–16. doi: 10.
1016/J.ESWA.2019.112896.

https://doi.org/10.1145/3316615.3316674
https://doi.org/10.1145/3316615.3316674
https://doi.org/10.1016/J.IS.2015.04.007
https://doi.org/10.1016/J.IS.2015.04.007
https://doi.org/10.1109/NCA.2011.29
https://doi.org/10.1016/J.JSS.2013.03.045
https://doi.org/10.1002/SPE.2653
https://arxiv.org/abs/2002.12036
https://arxiv.org/abs/2002.12036
https://doi.org/10.1016/J.ESWA.2019.112896
https://doi.org/10.1016/J.ESWA.2019.112896

302 Bibliography

[10] Gustavo E. A. P. A. Batista, Eamonn J. Keogh, Oben Moses Tataw, and Vinícius M. A.
de Souza. “CID: an efficient complexity-invariant distance for time series”. In: Data
Mining and Knowledge Discovery 28.3 (2014), pp. 634–669. doi: 10.1007/S10618-013-
0312-3.

[11] André Bauer, Marwin Züfle, Johannes Grohmann, Norbert Schmitt, Nikolas Herbst,
and Samuel Kounev. “An Automated Forecasting Framework based on Method Rec-
ommendation for Seasonal Time Series”. In: Proceedings of the 11th ACM/SPEC
International Conference on Performance Engineering. ACM, 2020, pp. 48–55. doi:
10.1145/3358960.3379123.

[12] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria Haque,
Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, Chiu Yuen Koo, Lukasz Lew,
Clemens Mewald, Akshay Naresh Modi, Neoklis Polyzotis, Sukriti Ramesh, Sudip
Roy, Steven Euijong Whang, Martin Wicke, Jarek Wilkiewicz, Xin Zhang, and Martin
Zinkevich. “TFX: A TensorFlow-Based Production-Scale Machine Learning Platform”.
In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2017, pp. 1387–1395. doi: 10.1145/3097983.
3098021.

[13] Momotaz Begum and Tadashi Dohi. “A Neuro-Based Software Fault Prediction with
Box-Cox Power Transformation”. In: Journal of Software Engineering and Applications
10.3 (2017), pp. 288–309. doi: 10.4236/JSEA.2017.103017.

[14] Oren Ben-Kiki, Clark Evans, and Ingy döt Net. YAML Ain’t Markup Language
(YAMLTM) Version 1.2. 3rd Edition. Oct. 2009. url: https://yaml.org/spec/
1.2/spec.html.

[15] Jürgen Bernard, Christian Bors, Markus Bögl, Christian Eichner, Theresia Gschwandt-
ner, Silvia Miksch, Heidrun Schumann, and Jörn Kohlhammer. “Combining the Auto-
mated Segmentation and Visual Analysis of Multivariate Time Series”. In: Proceedings
of the EuroVis Workshop on Visual Analytics. 2018, pp. 49–53. doi: 10.2312/EUROVA.
20181112.

[16] Jürgen Bernard, Tobias Ruppert, Oliver Goroll, Thorsten May, and Jörn Kohlhammer.
“Visual-Interactive Preprocessing of Time Series Data”. In: Proceedings of the SIGRAD
Interactive Visual Analysis of Data. Linköping University Electronic Press, 2012, pp. 39–
48.

[17] Robert Birke, Lydia Y. Chen, and Evgenia Smirni. “Data Centers in the Cloud: A Large
Scale Performance Study”. In: Proceedings of the 5th IEEE International Conference
on Cloud Computing. IEEE, 2012, pp. 336–343. doi: 10.1109/CLOUD.2012.87.

[18] Robert Birke, Lydia Y. Chen, and Evgenia Smirni. “Multi-Resource Characterization
and their (In)dependencies in Production Datacenters”. In: Proceedings of the 14th
IEEE/IFIP Network Operations and Management Symposium. IEEE, 2014, pp. 1–6.
doi: 10.1109/NOMS.2014.6838300.

[19] Avrim L. Blum and Pat Langley. “Selection of Relevant Features and Examples in
Machine Learning”. In: Artificial intelligence 97.1-2 (1997), pp. 245–271. doi: 10.1016/
S0004-3702(97)00063-5.

[20] Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B Woodard, and Hans Andersen.
“Fingerprinting the Datacenter: Automated Classification of Performance Crises”. In:
Proceedings of the 5th European Conference on Computer Systems. 2010, pp. 111–124.
doi: 10.1145/1755913.1755926.

https://doi.org/10.1007/S10618-013-0312-3
https://doi.org/10.1007/S10618-013-0312-3
https://doi.org/10.1145/3358960.3379123
https://doi.org/10.1145/3097983.3098021
https://doi.org/10.1145/3097983.3098021
https://doi.org/10.4236/JSEA.2017.103017
https://yaml.org/spec/1.2/spec.html
https://yaml.org/spec/1.2/spec.html
https://doi.org/10.2312/EUROVA.20181112
https://doi.org/10.2312/EUROVA.20181112
https://doi.org/10.1109/CLOUD.2012.87
https://doi.org/10.1109/NOMS.2014.6838300
https://doi.org/10.1016/S0004-3702(97)00063-5
https://doi.org/10.1016/S0004-3702(97)00063-5
https://doi.org/10.1145/1755913.1755926

Bibliography 303

[21] Julio Borges, Martin A. Neumann, Christian Bauer, Yong Ding, Till Riedel, and Michael
Beigl. “Predicting Target Events in Industrial Domains”. In: Proceedings of the 13th
International Conference on Machine Learning and Data Mining in Pattern Recognition.
Springer, 2017, pp. 17–31. doi: 10.1007/978-3-319-62416-7_2.

[22] Sabri Boughorbel, Fethi Jarray, and Mohammed El-Anbari. “Optimal classifier for
imbalanced data using Matthews Correlation Coefficient metric”. In: PLOS ONE 12.6
(June 2017), pp. 1–17. doi: 10.1371/journal.pone.0177678.

[23] Pavel B. Brazdil, Carlos Soares, and Joaquim Pinto Da Costa. “Ranking Learning
Algorithms: Using IBL and Meta-Learning on Accuracy and Time Results”. In: Machine
Learning 50.3 (2003), pp. 251–277. doi: 10.1023/A:1021713901879.

[24] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (Oct. 2001), pp. 5–32. doi:
10.1023/a:1010933404324.

[25] E. H. Bristol. “Swinging door trending: Adaptive trend recording?” In: ISA National
Conference Proceedings, 1990. 1990, pp. 749–753.

[26] Mark Brodie, Sheng Ma, Leonid Rachevsky, and Jon Champlin. “Automated Prob-
lem Determination Using Call-Stack Matching”. In: Journal of Network and Systems
Management 13.2 (2005), pp. 219–237. doi: 10.1007/S10922-005-4443-8.

[27] Field Cady. The Data Science Handbook. 1st ed. John Wiley & Sons, Inc., Feb. 2017.
isbn: 978-1-119-09294-0. doi: 10.1002/9781119092919.

[28] Tadeusz Caliński and Jerzy Harabasz. “A dendrite method for cluster analysis”. In:
Communications in Statistics 3.1 (1974), pp. 1–27. doi: 10.1080/03610927408827101.

[29] Maria Carla Calzarossa, Luisa Massari, and Daniele Tessera. “Workload Characteriza-
tion: A Survey Revisited”. In: ACM Computing Surveys 48.3 (Feb. 2016), 48:1–43. doi:
10.1145/2856127.

[30] Claudia Canali and Riccardo Lancellotti. “Automated clustering of VMs for scalable
cloud monitoring and management”. In: Proceedings of the 20th International Conference
on Software, Telecommunications and Computer Networks. IEEE, 2012, pp. 1–5.

[31] Márcio das Chagas Moura, Enrico Zio, Isis Didier Lins, and Enrique Droguett. “Failure
and reliability prediction by support vector machines regression of time series data”. In:
Reliability Engineering & System Safety 96.11 (2011), pp. 1527–1534. doi: 10.1016/J.
RESS.2011.06.006.

[32] Robert N. Charette. “Why Software Fails”. In: IEEE Spectrum 42.9 (2005), pp. 42–49.
doi: 10.1109/MSPEC.2005.1502528.

[33] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
“SMOTE: Synthetic Minority Over-sampling Technique”. In: Journal of Artificial
Intelligence Research 16 (2002), pp. 321–357. doi: 10.1613/JAIR.953.

[34] Yanpei Chen, Archana Sulochana Ganapathi, Rean Griffith, and Randy H. Katz.
Analysis and Lessons from a Publicly Available Google Cluster Trace. Tech. rep. UCB/
EECS-2010-95. Electrical Engineering and Computer Sciences, University of California
at Berkeley, June 2010.

[35] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W. Kempa-Liehr. “Time
Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh – A Python
package)”. In: Neurocomputing 307 (2018), pp. 72–77. doi: 10.1016/J.NEUCOM.2018.
03.067.

https://doi.org/10.1007/978-3-319-62416-7_2
https://doi.org/10.1371/journal.pone.0177678
https://doi.org/10.1023/A:1021713901879
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1007/S10922-005-4443-8
https://doi.org/10.1002/9781119092919
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1145/2856127
https://doi.org/10.1016/J.RESS.2011.06.006
https://doi.org/10.1016/J.RESS.2011.06.006
https://doi.org/10.1109/MSPEC.2005.1502528
https://doi.org/10.1613/JAIR.953
https://doi.org/10.1016/J.NEUCOM.2018.03.067
https://doi.org/10.1016/J.NEUCOM.2018.03.067

304 Bibliography

[36] Maximilian Christ, Andreas W. Kempa-Liehr, and Michael Feindt. “Distributed and
parallel time series feature extraction for industrial big data applications”. In: CoRR
abs/1610.07717 (2016), pp. 1–36. arXiv: 1610.07717. url: http://arxiv.org/abs/
1610.07717.

[37] Wikimedia Commons. An example of the correlation of x and y for various distributions
of (x,y) pairs. Accessed: 2020-09-29. May 2011. url: https://commons.wikimedia.
org/wiki/File:Correlation_examples2.svg.

[38] David Camilo Corrales, Agapito Ledezma, and Juan Carlos Corrales. “From Theory
to Practice: A Data Quality Framework for Classification Tasks”. In: Symmetry 10.7
(2018), 248:1–29. doi: 10.3390/SYM10070248.

[39] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. “Resource Central: Understanding and Predicting Workloads
for Improved Resource Management in Large Cloud Platforms”. In: Proceedings of
the 26th Symposium on Operating Systems Principles. ACM, 2017, pp. 153–167. doi:
10.1145/3132747.3132772.

[40] Douglas Crockford. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 8259. RFC Editor, Dec. 2017, pp. 1–16. url: http://www.rfc-editor.org/rfc/
rfc8259.txt.

[41] Weidong Cui, Marcus Peinado, Sang Kil Cha, Yanick Fratantonio, and Vasileios P.
Kemerlis. “RETracer: Triaging Crashes by Reverse Execution from Partial Memory
Dumps”. In: Proceedings of the 38th IEEE/ACM International Conference on Software
Engineering. ACM, 2016, pp. 820–831. doi: 10.1145/2884781.2884844.

[42] Yingnong Dang, Rongxin Wu, Hongyu Zhang, Dongmei Zhang, and Peter Nobel.
“ReBucket: A Method for Clustering Duplicate Crash Reports Based on Call Stack
Similarity”. In: Proceedings of the 34th International Conference on Software Engineering.
IEEE, 2012, pp. 1084–1093. doi: 10.1109/ICSE.2012.6227111.

[43] Anwesha Das, Frank Mueller, Charles Siegel, and Abhinav Vishnu. “Desh: Deep Learning
for System Health Prediction of Lead Times to Failure in HPC”. In: Proceedings of the
27th International Symposium on High-Performance Parallel and Distributed Computing.
2018, pp. 40–51. doi: 10.1145/3208040.3208051.

[44] Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu,
Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. “The
UCR Time Series Archive”. In: IEEE/CAA Journal of Automatica Sinica 6.6 (2019),
pp. 1293–1305. doi: 10.1109/JAS.2019.1911747.

[45] Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu,
Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing Hu, Nurjahan
Begum, Anthony Bagnall, Abdullah Mueen, Gustavo Batista, and Hexagon-ML. The
UCR Time Series Classification Archive. Accessed: 2020-12-28. Oct. 2018. url: https:
//www.cs.ucr.edu/~eamonn/time_series_data_2018/.

[46] David L. Davies and Donald W. Bouldin. “A Cluster Separation Measure”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 1.2 (1979), pp. 224–227.
doi: 10.1109/TPAMI.1979.4766909.

[47] Daniel Joseph Dean, Hiep Nguyen, and Xiaohui Gu. “UBL: Unsupervised Behavior
Learning for Predicting Performance Anomalies in Virtualized Cloud Systems”. In:
Proceedings of the 9th International Conference on Autonomic Computing. 2012, pp. 191–
200. doi: 10.1145/2371536.2371572.

https://arxiv.org/abs/1610.07717
http://arxiv.org/abs/1610.07717
http://arxiv.org/abs/1610.07717
https://commons.wikimedia.org/wiki/File:Correlation_examples2.svg
https://commons.wikimedia.org/wiki/File:Correlation_examples2.svg
https://doi.org/10.3390/SYM10070248
https://doi.org/10.1145/3132747.3132772
http://www.rfc-editor.org/rfc/rfc8259.txt
http://www.rfc-editor.org/rfc/rfc8259.txt
https://doi.org/10.1145/2884781.2884844
https://doi.org/10.1109/ICSE.2012.6227111
https://doi.org/10.1145/3208040.3208051
https://doi.org/10.1109/JAS.2019.1911747
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1145/2371536.2371572

Bibliography 305

[48] Tejinder Dhaliwal, Foutse Khomh, and Ying Zou. “Classifying Field Crash Reports
for Fixing Bugs: A Case Study of Mozilla Firefox”. In: Proceedings of the 27th IEEE
International Conference on Software Maintenance. IEEE, 2011, pp. 333–342. doi:
10.1109/ICSM.2011.6080800.

[49] Sheng Di, Derrick Kondo, and Franck Cappello. “Characterizing Cloud Applications
on a Google Data Center”. In: Proceedings of the 42nd International Conference on
Parallel Processing. IEEE, 2013, pp. 468–473. doi: 10.1109/ICPP.2013.56.

[50] Sheng Di, Derrick Kondo, and Walfredo Cirne. “Characterization and Comparison of
Cloud versus Grid Workloads”. In: Proceedings of the IEEE International Conference
on Cluster Computing. IEEE, 2012, pp. 230–238. doi: 10.1109/CLUSTER.2012.35.

[51] David A. Dickey and Wayne A. Fuller. “Distribution of the Estimators for Autoregressive
Time Series with a Unit Root”. In: Journal of the American Statistical Association
74.366a (1979), pp. 427–431. doi: 10.1080/01621459.1979.10482531.

[52] Joseph C. Dunn. “A Fuzzy Relative of the ISODATA Process and Its Use in Detecting
Compact Well-Separated Clusters”. In: Journal of Cybernetics 3.3 (1973), pp. 32–57.

[53] Jennifer G. Dy and Carla E. Brodley. “Feature Selection for Unsupervised Learning”.
In: Journal of Machine Learning Research 5 (2004), pp. 845–889.

[54] Roy Thomas Fielding. “Architectural styles and the design of network-based software
architectures”. PhD thesis. University of California, Irvine, 2000.

[55] Olga Fink, Enrico Zio, and Ulrich Weidmann. “Predicting component reliability and
level of degradation with complex-valued neural networks”. In: Reliability Engineering
& System Safety 121 (2014), pp. 198–206. doi: 10.1016/J.RESS.2013.08.004.

[56] Edward B. Fowlkes and Colin L. Mallows. “A Method for Comparing Two Hierarchical
Clusterings”. In: Journal of the American Statistical Association 78.383 (1983), pp. 553–
569. doi: 10.1080/01621459.1983.10478008.

[57] Jan Frenzel, Yedhu Sastri, Christoph Lehmann, Taras Lazariv, René Jäkel, and Wolfgang
E. Nagel. “A Generalized Service Infrastructure for Data Analytics”. In: Proceedings of
the 4th IEEE International Conference on Big Data Computing Service and Applications.
IEEE, 2018, pp. 25–32. doi: 10.1109/BIGDATASERVICE.2018.00013.

[58] Ilenia Fronza, Alberto Sillitti, Giancarlo Succi, Mikko Terho, and Jelena Vlasenko.
“Failure prediction based on log files using Random Indexing and Support Vector
Machines”. In: Journal of Systems and Software 86.1 (2013), pp. 2–11. doi: 10.1016/J.
JSS.2012.06.025.

[59] Song Fu and Cheng-Zhong Xu. “Exploring Event Correlation for Failure Prediction
in Coalitions of Clusters”. In: Proceedings of the 20th ACM/IEEE Conference on
Supercomputing. ACM, 2007, 41:1–12. doi: 10.1145/1362622.1362678.

[60] Tak-chung Fu. “A review on time series data mining”. In: Engineering Applications of
Artificial Intelligence 24.1 (2011), pp. 164–181. doi: 10.1016/J.ENGAPPAI.2010.09.
007.

[61] Ben D. Fulcher. “Feature-based time-series analysis”. In: CoRR abs/1709.08055 (2017),
pp. 1–28. arXiv: 1709.08055. url: http://arxiv.org/abs/1709.08055.

[62] Ben D. Fulcher and Nick S. Jones. “hctsa: A Computational Framework for Automated
Time-Series Phenotyping Using Massive Feature Extraction”. In: Cell Systems 5.5
(2017), 527–531.e3. doi: 10.1016/J.CELS.2017.10.001.

https://doi.org/10.1109/ICSM.2011.6080800
https://doi.org/10.1109/ICPP.2013.56
https://doi.org/10.1109/CLUSTER.2012.35
https://doi.org/10.1080/01621459.1979.10482531
https://doi.org/10.1016/J.RESS.2013.08.004
https://doi.org/10.1080/01621459.1983.10478008
https://doi.org/10.1109/BIGDATASERVICE.2018.00013
https://doi.org/10.1016/J.JSS.2012.06.025
https://doi.org/10.1016/J.JSS.2012.06.025
https://doi.org/10.1145/1362622.1362678
https://doi.org/10.1016/J.ENGAPPAI.2010.09.007
https://doi.org/10.1016/J.ENGAPPAI.2010.09.007
https://arxiv.org/abs/1709.08055
http://arxiv.org/abs/1709.08055
https://doi.org/10.1016/J.CELS.2017.10.001

306 Bibliography

[63] Ben D. Fulcher and Nick S. Jones. “Highly Comparative Feature-Based Time-Series
Classification”. In: IEEE Transactions on Knowledge and Data Engineering 26.12 (2014),
pp. 3026–3037. doi: 10.1109/TKDE.2014.2316504.

[64] Ben D. Fulcher, Max A. Little, and Nick S. Jones. “Highly comparative time-series
analysis: the empirical structure of time series and their methods”. In: Journal of the
Royal Society Interface 10.83 (2013), 20130048:1–12. doi: 10.1098/RSIF.2013.0048.

[65] Qing Gao, Hansheng Zhang, Jie Wang, Yingfei Xiong, Lu Zhang, and Hong Mei.
“Fixing Recurring Crash Bugs via Analyzing Q&A Sites”. In: Proceedings of the 30th
IEEE/ACM International Conference on Automated Software Engineering. IEEE, 2015,
pp. 307–318. doi: 10.1109/ASE.2015.81.

[66] Salvador García, Sergio Ramírez-Gallego, Julián Luengo, José Manuel Benítez, and
Francisco Herrera. “Big data preprocessing: methods and prospects”. In: Big Data
Analytics 1.1 (2016), 9:1–22. doi: 10.1186/S41044-016-0014-0.

[67] Maryam Abdul Ghafoor and Junaid Haroon Siddiqui. “Cross Platform Bug Correlation
using Stack Traces”. In: Proceedings of the 14th International Conference on Frontiers
of Information Technology. IEEE, 2016, pp. 199–204. doi: 10.1109/FIT.2016.044.

[68] Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel Aul, Vince Orgovan,
Greg Nichols, David Grant, Gretchen Loihle, and Galen Hunt. “Debugging in the
(Very) Large: Ten Years of Implementation and Experience”. In: Proceedings of the
22nd ACM SIGOPS Symposium on Operating Systems Principles. 2009, pp. 103–116.
doi: 10.1145/1629575.1629586.

[69] Anjali Goyal and Neetu Sardana. “Machine Learning or Information Retrieval Tech-
niques for Bug Triaging: Which is Better?” In: e-Informatica Software Engineering
Journal 11.1 (2017). doi: 10.5277/E-INF170106.

[70] Alibaba Group. Alibaba Cluster Trace Program. Accessed: 2021-01-25. 2017. url: https:
//github.com/alibaba/clusterdata.

[71] Theresia Gschwandtner, Wolfgang Aigner, Silvia Miksch, Johannes Gärtner, Simone
Kriglstein, Margit Pohl, and Nik Suchy. “TimeCleanser: A Visual Analytics Approach
for Data Cleansing of Time-Oriented Data”. In: Proceedings of the 14th International
Conference on Knowledge Technologies and Data-Driven Business. 2014, pp. 1–8. doi:
10.1145/2637748.2638423.

[72] Manish Gupta, Abhishek B. Sharma, Haifeng Chen, and Guofei Jiang. “Context-Aware
Time Series Anomaly Detection for Complex Systems”. In: Proceedings of the 2nd
Workshop on Data Mining for Service and Maintenance. 2013, pp. 14–22.

[73] Charles R. Harris, K. Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. “Array programming with NumPy”. In:
Nature 585 (2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2.

[74] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. “ADASYN: Adaptive Synthetic
Sampling Approach For Imbalanced Learning”. In: Proceedings of the IEEE Interna-
tional Joint Conference on Neural Networks (IEEE World Congress on Computational
Intelligence). IEEE, 2008, pp. 1322–1328. doi: 10.1109/IJCNN.2008.4633969.

https://doi.org/10.1109/TKDE.2014.2316504
https://doi.org/10.1098/RSIF.2013.0048
https://doi.org/10.1109/ASE.2015.81
https://doi.org/10.1186/S41044-016-0014-0
https://doi.org/10.1109/FIT.2016.044
https://doi.org/10.1145/1629575.1629586
https://doi.org/10.5277/E-INF170106
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://doi.org/10.1145/2637748.2638423
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/IJCNN.2008.4633969

Bibliography 307

[75] Xin He, Kaiyong Zhao, and Xiaowen Chu. “AutoML: A survey of the state-of-the-art”.
In: Knowledge-Based Systems 212 (2021), 106622:1–27. doi: 10.1016/J.KNOSYS.2020.
106622.

[76] Sepp Hochreiter. Theoretical Concepts of Machine Learning. Lecture notes. Johannes
Kepler University Linz, Austria, 2014. url: http://www.bioinf.at/teaching/
ss2018/ss_vl_tcml/ML_theoretical.pdf.

[77] Seyedrebvar Hosseini, Burak Turhan, and Dimuthu Gunarathna. “A Systematic Lit-
erature Review and Meta-analysis on Cross Project Defect Prediction”. In: IEEE
Transactions on Software Engineering 45.2 (2017), pp. 111–147. doi: 10.1109/TSE.
2017.2770124.

[78] Lawrence Hubert and Phipps Arabie. “Comparing Partitions”. In: Journal of Classifica-
tion 2.1 (1985), pp. 193–218. doi: 10.1007/bf01908075.

[79] H. E. Hurst. “Long-Term Storage Capacity of Reservoirs”. In: Transactions of the
American Society of Civil Engineers 116.1 (1951), pp. 770–799.

[80] Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. “Algorithm runtime
prediction: Methods & evaluation”. In: Artificial Intelligence 206 (2014), pp. 79–111.
doi: 10.1016/J.ARTINT.2013.10.003.

[81] Rob J. Hyndman and George Athanasopoulos. “ARIMA models”. In: Forecasting:
Principles and Practice. OTexts, 2018, pp. 221–274. url: https://otexts.com/fpp2/.

[82] Rob J. Hyndman, Earo Wang, and Nikolay Laptev. “Large-Scale Unusual Time Series
Detection”. In: Proceedings of the 15th IEEE International Conference on Data Mining
Workshop. IEEE, 2015, pp. 1616–1619. doi: 10.1109/ICDMW.2015.104.

[83] Google Inc. Borg cluster traces from Google. Accessed: 2021-01-25. 2011. url: https:
//github.com/google/cluster-data.

[84] InfluxData. InfluxDB: Purpose-Built Open Source Time Series Database. Accessed:
2020-10-01. 2020. url: https://www.influxdata.com/.

[85] Arunima Jaiswal and Ruchika Malhotra. “Software reliability prediction using machine
learning techniques”. In: International Journal of System Assurance Engineering and
Management 9.1 (2018), pp. 230–244. doi: 10.1007/S13198-016-0543-Y.

[86] Femke Jansen, Mike Holenderski, Tanir Ozcelebi, Paulien Dam, and Bas Tijsma.
“Predicting machine failures from industrial time series data”. In: Proceedings of the 5th
International Conference on Control, Decision and Information Technologies. IEEE,
2018, pp. 1091–1096. doi: 10.1109/CODIT.2018.8394915.

[87] Pablo A. Jaskowiak, Ricardo J. G. B. Campello, and Ivan G. Costa. “On the selection
of appropriate distances for gene expression data clustering”. In: BMC Bioinformatics
15.2 (2014), S2:1–17. doi: 10.1186/1471-2105-15-S2-S2.

[88] Congfeng Jiang, Guangjie Han, Jiangbin Lin, Gangyong Jia, Weisong Shi, and Jian
Wan. “Characteristics of Co-Allocated Online Services and Batch Jobs in Internet Data
Centers: A Case Study From Alibaba Cloud”. In: IEEE Access 7 (2019), pp. 22495–
22508. doi: 10.1109/ACCESS.2019.2897898.

[89] Joe H. Ward Jr. “Hierarchical Grouping to Optimize an Objective Function”. In: Journal
of the American Statistical Association 58.301 (1963), pp. 236–244. doi: 10.1080/
01621459.1963.10500845.

[90] Mario Kahlhofer. “Exploring Supervised Event Prediction in Multi-System Monitoring”.
MA thesis. Johannes Kepler University Linz, Austria, Aug. 2019. url: https://epub.
jku.at/obvulihs/content/titleinfo/4403446.

https://doi.org/10.1016/J.KNOSYS.2020.106622
https://doi.org/10.1016/J.KNOSYS.2020.106622
http://www.bioinf.at/teaching/ss2018/ss_vl_tcml/ML_theoretical.pdf
http://www.bioinf.at/teaching/ss2018/ss_vl_tcml/ML_theoretical.pdf
https://doi.org/10.1109/TSE.2017.2770124
https://doi.org/10.1109/TSE.2017.2770124
https://doi.org/10.1007/bf01908075
https://doi.org/10.1016/J.ARTINT.2013.10.003
https://otexts.com/fpp2/
https://doi.org/10.1109/ICDMW.2015.104
https://github.com/google/cluster-data
https://github.com/google/cluster-data
https://www.influxdata.com/
https://doi.org/10.1007/S13198-016-0543-Y
https://doi.org/10.1109/CODIT.2018.8394915
https://doi.org/10.1186/1471-2105-15-S2-S2
https://doi.org/10.1109/ACCESS.2019.2897898
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1080/01621459.1963.10500845
https://epub.jku.at/obvulihs/content/titleinfo/4403446
https://epub.jku.at/obvulihs/content/titleinfo/4403446

308 Bibliography

[91] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Shun Chen. “LSTM Fully
Convolutional Networks for Time Series Classification”. In: IEEE access 6 (2017),
pp. 1662–1669. doi: 10.1109/ACCESS.2017.2779939.

[92] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. “Workload Characterization
and Prediction in the Cloud: A Multiple Time Series Approach”. In: Proceedings of
the 13th IEEE/IFIP Network Operations and Management Symposium. IEEE, 2012,
pp. 1287–1294. doi: 10.1109/NOMS.2012.6212065.

[93] Dongsun Kim, Xinming Wang, Sunghun Kim, Andreas Zeller, Shing-Chi Cheung, and
Sooyong Park. “Which Crashes Should I Fix First?: Predicting Top Crashes at an Early
Stage to Prioritize Debugging Efforts”. In: IEEE Transactions on Software Engineering
37.3 (2011), pp. 430–447. doi: 10.1109/TSE.2011.20.

[94] Sunghun Kim, Thomas Zimmermann, and Nachiappan Nagappan. “Crash Graphs: An
Aggregated View of Multiple Crashes to Improve Crash Triage”. In: Proceedings of the
41st IEEE/IFIP International Conference on Dependable Systems & Networks. IEEE,
2011, pp. 486–493. doi: 10.1109/DSN.2011.5958261.

[95] S. B. Kotsiantis, Dimitris Kanellopoulos, and P. E. Pintelas. “Data Preprocessing
for Supervised Leaning”. In: International Journal of Computer Science 1.1 (2006),
pp. 111–117.

[96] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In: The Annals of
Mathematical Statistics 22.1 (1951), pp. 79–86. doi: 10.1214/AOMS/1177729694.

[97] Denis Kwiatkowski, Peter C. B. Phillips, Peter Schmidt, and Yongcheol Shin. “Testing
the null hypothesis of stationarity against the alternative of a unit root: How sure are
we that economic time series have a unit root?” In: Journal of Econometrics 54.1–3
(1992), pp. 159–178. doi: 10.1016/0304-4076(92)90104-Y.

[98] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A LLVM-Based Python
JIT Compiler”. In: Proceedings of the 2nd Workshop on the LLVM Compiler Infrastruc-
ture in HPC. ACM, 2015, 7:1–6. doi: 10.1145/2833157.2833162.

[99] Zhiling Lan, Ziming Zheng, and Yawei Li. “Toward Automated Anomaly Identification
in Large-Scale Systems”. In: IEEE Transactions on Parallel and Distributed Systems
21.2 (2009), pp. 174–187. doi: 10.1109/TPDS.2009.52.

[100] Martin Längkvist, Lars Karlsson, and Amy Loutfi. “A review of unsupervised feature
learning and deep learning for time-series modeling”. In: Pattern Recognition Letters 42
(2014), pp. 11–24. doi: 10.1016/J.PATREC.2014.01.008.

[101] Nikolay Laptev, Saeed Amizadeh, and Ian Flint. “Generic and Scalable Framework
for Automated Time-series Anomaly Detection”. In: Proceedings of the 21st ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
2015, pp. 1939–1947. doi: 10.1145/2783258.2788611.

[102] Guillaume Lemaître, Fernando Nogueira, Dayvid V. Oliveira, and Christos K. Aridas.
User Guide of imbalanced-learn: Under-sampling. Accessed: 2021-01-27. 2020. url:
https://imbalanced-learn.org/stable/under_sampling.html.

[103] Christiane Lemke and Bogdan Gabrys. “Meta-learning for time series forecasting
and forecast combination”. In: Neurocomputing 73.10 (2010), pp. 2006–2016. doi:
10.1016/J.NEUCOM.2009.09.020.

[104] Vladimir I. Levenshtein. “Binary codes capable of correcting deletions, insertions, and
reversals”. In: Soviet physics. Doklady 10.8 (1966), pp. 707–710.

[105] Dynatrace LLC. The Leader in Cloud Monitoring. Accessed: 2021-01-29. 2021. url:
https://www.dynatrace.com/.

https://doi.org/10.1109/ACCESS.2017.2779939
https://doi.org/10.1109/NOMS.2012.6212065
https://doi.org/10.1109/TSE.2011.20
https://doi.org/10.1109/DSN.2011.5958261
https://doi.org/10.1214/AOMS/1177729694
https://doi.org/10.1016/0304-4076(92)90104-Y
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1109/TPDS.2009.52
https://doi.org/10.1016/J.PATREC.2014.01.008
https://doi.org/10.1145/2783258.2788611
https://imbalanced-learn.org/stable/under_sampling.html
https://doi.org/10.1016/J.NEUCOM.2009.09.020
https://www.dynatrace.com/

Bibliography 309

[106] Jungang Lou, Yunliang Jiang, Qing Shen, Zhangguo Shen, Zhen Wang, and Ruiqin Wang.
“Software reliability prediction via relevance vector regression”. In: Neurocomputing 186
(2016), pp. 66–73. doi: 10.1016/J.NEUCOM.2015.12.077.

[107] Jungang Lou, Yunliang Jiang, Qing Shen, and Ruiqin Wang. “Failure prediction by
relevance vector regression with improved quantum-inspired gravitational search”. In:
Journal of Network and Computer Applications 103 (2018), pp. 171–177. doi: 10.1016/
J.JNCA.2017.11.013.

[108] Gilles Louppe, Louis Wehenkel, Antonio Sutera, and Pierre Geurts. “Understanding
variable importances in forests of randomized trees”. In: Advances in Neural Information
Processing Systems. Vol. 26. 2013, pp. 431–439.

[109] Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong Xu, and Tongxin Bai. “Imbalance
in the cloud: An analysis on Alibaba cluster trace”. In: Proceedings of the 5th IEEE
International Conference on Big Data. IEEE, 2017, pp. 2884–2892. doi: 10.1109/
BIGDATA.2017.8258257.

[110] Carl Henning Lubba, Sarab S. Sethi, Philip Knaute, Simon R. Schultz, Ben D. Fulcher,
and Nick S. Jones. “catch22: CAnonical Time-series CHaracteristics”. In: Data Mining
and Knowledge Discovery 33.6 (2019), pp. 1821–1852. doi: 10.1007/S10618-019-
00647-X.

[111] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”. In:
Journal of Machine Learning Research 9 (2008), pp. 2579–2605.

[112] James MacQueen. “Some Methods for Classification and Analysis of Multivariate
Observations”. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics
and Probability. Vol. 1. 1967, pp. 281–297.

[113] Igor Manojlović, Goran Švenda, Aleksandar Erdeljan, and Milan Gavrić. “Time series
grouping algorithm for load pattern recognition”. In: Computers in Industry 111 (2019),
pp. 140–147. doi: 10.1016/J.COMPIND.2019.07.009.

[114] Marin Matijaš, Johan A. K. Suykens, and Slavko Krajcar. “Load forecasting using a
multivariate meta-learning system”. In: Expert Systems with Applications 40.11 (2013),
pp. 4427–4437. doi: 10.1016/J.ESWA.2013.01.047.

[115] Brian W. Matthews. “Comparison of the predicted and observed secondary structure
of T4 phage lysozyme”. In: Biochimica et Biophysica Acta (BBA) - Protein Structure
405.2 (1975), pp. 442–451. issn: 0005-2795. doi: https://doi.org/10.1016/0005-
2795(75)90109-9.

[116] Robert McGill, John W. Tukey, and Wayne A. Larsen. “Variations of Box Plots”. In:
The American Statistician 32.1 (1978), pp. 12–16.

[117] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Proceedings
of the 9th Python in Science Conference. 2010, pp. 56–61. doi: 10.25080/MAJORA-
92BF1922-00A.

[118] Bart van Merriënboer, Dzmitry Bahdanau, Vincent Dumoulin, Dmitriy Serdyuk, David
Warde-Farley, Jan Chorowski, and Yoshua Bengio. “Blocks and Fuel: Frameworks for
deep learning”. In: CoRR abs/1506.00619 (2015), pp. 1–5. arXiv: 1506.00619. url:
http://arxiv.org/abs/1506.00619.

[119] Microsoft. Application Domains for Report Server Applications. Accessed: 2020-10-17.
Mar. 2017. url: https://docs.microsoft.com/en-us/sql/reporting-services/
report-server/application-domains-for-report-server-applications.

https://doi.org/10.1016/J.NEUCOM.2015.12.077
https://doi.org/10.1016/J.JNCA.2017.11.013
https://doi.org/10.1016/J.JNCA.2017.11.013
https://doi.org/10.1109/BIGDATA.2017.8258257
https://doi.org/10.1109/BIGDATA.2017.8258257
https://doi.org/10.1007/S10618-019-00647-X
https://doi.org/10.1007/S10618-019-00647-X
https://doi.org/10.1016/J.COMPIND.2019.07.009
https://doi.org/10.1016/J.ESWA.2013.01.047
https://doi.org/https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.25080/MAJORA-92BF1922-00A
https://doi.org/10.25080/MAJORA-92BF1922-00A
https://arxiv.org/abs/1506.00619
http://arxiv.org/abs/1506.00619
https://docs.microsoft.com/en-us/sql/reporting-services/report-server/application-domains-for-report-server-applications
https://docs.microsoft.com/en-us/sql/reporting-services/report-server/application-domains-for-report-server-applications

310 Bibliography

[120] Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and Timm Euler.
“YALE: Rapid Prototyping for Complex Data Mining Tasks”. In: Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 2006, pp. 935–940. doi: 10.1145/1150402.1150531.

[121] Natwar Modani, Rajeev Gupta, Guy Lohman, Tanveer Syeda-Mahmood, and Laurent
Mignet. “Automatically Identifying Known Software Problems”. In: Proceedings of
the 23rd IEEE International Conference on Data Engineering Workshop. IEEE, 2007,
pp. 433–441. doi: 10.1109/ICDEW.2007.4401026.

[122] Martin Monperrus. “Automatic Software Repair: a Bibliography”. In: ACM Computing
Surveys (CSUR) 51.1 (2018), pp. 1–24. doi: 10.1145/3105906.

[123] Usue Mori, Alexander Mendiburu, and Jose A. Lozano. “Similarity Measure Selection
for Clustering Time Series Databases”. In: IEEE Transactions on Knowledge and Data
Engineering 28.1 (2016), pp. 181–195. doi: 10.1109/TKDE.2015.2462369.

[124] Syed Shariyar Murtaza, Nazim H. Madhavji, Mechelle Gittens, and Abdelwahab Hamou-
Lhadj. “Identifying Recurring Faulty Functions in Field Traces of a Large Industrial
Software System”. In: IEEE Transactions on Reliability 64.1 (2014), pp. 269–283. doi:
10.1109/TR.2014.2366274.

[125] Alex Nanopoulos, Rob Alcock, and Yannis Manolopoulos. “Feature-based Classification
of Time-series Data”. In: International Journal of Computer Research 10.3 (2001),
pp. 49–61.

[126] Frank Nielsen. “Hierarchical clustering”. In: Introduction to HPC with MPI for Data
Science. Springer, 2016, pp. 221–239. doi: 10.1007/978-3-319-21903-5.

[127] Edward E. Ogheneovo. “Software Dysfunction: Why Do Software Fail?” In: Journal of
Computer and Communications 2.6 (2014), pp. 25–35. doi: 10.4236/JCC.2014.26004.

[128] Burcu Ozcelik and Cemal Yilmaz. “Seer: A Lightweight Online Failure Prediction
Approach”. In: IEEE Transactions on Software Engineering 42.1 (2016), pp. 26–46. doi:
10.1109/TSE.2015.2442577.

[129] John Paparrizos and Luis Gravano. “K-Shape: Efficient and Accurate Clustering of Time
Series”. In: Proceedings of the ACM SIGMOD International Conference on Management
of Data. ACM, 2015, pp. 1855–1870. doi: 10.1145/2723372.2737793.

[130] Jinhee Park, Nakwon Lee, and Jongmoon Baik. “On the Long-term Predictive Capability
of Data-driven Software Reliability Model: An Empirical Evaluation”. In: Proceedings
of the 25th IEEE International Symposium on Software Reliability Engineering. IEEE,
2014, pp. 45–54. doi: 10.1109/ISSRE.2014.28.

[131] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. “Scikit-learn: Machine Learning in Python”.
In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[132] Nancy Pérez-Castro, Aldo Márquez-Grajales, Héctor Gabriel Acosta-Mesa, and Efrén
Mezura-Montes. “Full Model Selection issue in Temporal Data through Evolutionary
Algorithms: A Brief Review”. In: Proceedings of the IEEE Congress on Evolutionary
Computation. IEEE, 2017, pp. 2451–2457. doi: 10.1109/CEC.2017.7969602.

[133] Bruno Almeida Pimentel and André C. P. L. F. de Carvalho. “Statistical versus Distance-
Based Meta-Features for Clustering Algorithm recommendation Using Meta-Learning”.
In: Proceedings of the International Joint Conference on Neural Networks. IEEE, 2018,
pp. 1–8. doi: 10.1109/IJCNN.2018.8489182.

https://doi.org/10.1145/1150402.1150531
https://doi.org/10.1109/ICDEW.2007.4401026
https://doi.org/10.1145/3105906
https://doi.org/10.1109/TKDE.2015.2462369
https://doi.org/10.1109/TR.2014.2366274
https://doi.org/10.1007/978-3-319-21903-5
https://doi.org/10.4236/JCC.2014.26004
https://doi.org/10.1109/TSE.2015.2442577
https://doi.org/10.1145/2723372.2737793
https://doi.org/10.1109/ISSRE.2014.28
https://doi.org/10.1109/CEC.2017.7969602
https://doi.org/10.1109/IJCNN.2018.8489182

Bibliography 311

[134] Teerat Pitakrat, Jonas Grunert, Oliver Kabierschke, Fabian Keller, and André Van
Hoorn. “A Framework for System Event Classification and Prediction by Means of
Machine Learning”. In: Proceedings of the 8th International Conference on Performance
Evaluation Methodologies and Tools. 2014, pp. 173–180. doi: 10.4108/ICST.VALUETOO
LS.2014.258197.

[135] Teerat Pitakrat, Dušan Okanović, André van Hoorn, and Lars Grunske. “Hora: Ar-
chitecture-aware online failure prediction”. In: Journal of Systems and Software 137
(2018), pp. 669–685. doi: 10.1016/J.JSS.2017.02.041.

[136] Faimison Porto, Leandro Minku, Emilia Mendes, and Adenilso Simao. “A System-
atic Study of Cross-Project Defect Prediction With Meta-Learning”. In: CoRR abs/
1802.06025 (2018), pp. 1–28. arXiv: 1802.06025. url: http://arxiv.org/abs/1802.
06025.

[137] John W. Pratt. “Remarks on Zeros and Ties in the Wilcoxon Signed Rank Procedures”.
In: Journal of the American Statistical Association 54.287 (1959), pp. 655–667. doi:
10.1080/01621459.1959.10501526.

[138] Fangyun Qin, Zheng Zheng, Chenggang Bai, Yu Qiao, Zhenyu Zhang, and Cheng
Chen. “Cross-Project Aging Related Bug Prediction”. In: Proceedings of the 15th IEEE
International Conference on Software Quality, Reliability and Security. IEEE, 2015,
pp. 43–48. doi: 10.1109/QRS.2015.17.

[139] Alfredo Ramirez and Charles Cox. “Improving on the Range Rule of Thumb”. In:
Rose-Hulman Undergraduate Mathematics Journal 13.2 (2012), pp. 1–13.

[140] Jeff Reback, Wes McKinney, jbrockmendel, Joris Van den Bossche, Tom Augspurger,
Phillip Cloud, gfyoung, Sinhrks, Adam Klein, Matthew Roeschke, Simon Hawkins,
Jeff Tratner, Chang She, William Ayd, Terji Petersen, Marc Garcia, Jeremy Schendel,
Andy Hayden, MomIsBestFriend, Vytautas Jancauskas, Pietro Battiston, Skipper
Seabold, chris-b1, h-vetinari, Stephan Hoyer, Wouter Overmeire, alimcmaster1, Kaiqi
Dong, Christopher Whelan, and Mortada Mehyar. pandas-dev/pandas: Pandas 1.0.3.
Version 1.0.3. Mar. 2020. doi: 10.5281/ZENODO.3715232.

[141] Charles Reiss, John Wilkes, and Joseph L. Hellerstein. Google cluster-usage traces:
format + schema. Tech. rep. Google Inc., Oct. 2011.

[142] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou, Tony
Xing, Mao Yang, Jie Tong, and Qi Zhang. “Time-Series Anomaly Detection Service
at Microsoft”. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2019, pp. 3009–3017. doi: 10.1145/
3292500.3330680.

[143] John R. Rice. “The Algorithm Selection Problem”. In: Advances in Computers. Vol. 15.
Elsevier, 1976, pp. 65–118. doi: 10.1016/S0065-2458(08)60520-3.

[144] Joshua S. Richman and J. Randall Moorman. “Physiological time-series analysis using
approximate entropy and sample entropy”. In: American Journal of Physiology-Heart
and Circulatory Physiology 278.6 (2000), H2039–H2049. doi: 10.1152/AJPHEART.2000.
278.6.H2039.

[145] Lior Rokach and Oded Maimon. “Clustering Methods”. In: Data Mining and Knowledge
Discovery Handbook. Ed. by Oded Maimon and Lior Rokach. Springer US, 2005, pp. 321–
352. isbn: 978-0-387-25465-4. doi: 10.1007/0-387-25465-X_15.

https://doi.org/10.4108/ICST.VALUETOOLS.2014.258197
https://doi.org/10.4108/ICST.VALUETOOLS.2014.258197
https://doi.org/10.1016/J.JSS.2017.02.041
https://arxiv.org/abs/1802.06025
http://arxiv.org/abs/1802.06025
http://arxiv.org/abs/1802.06025
https://doi.org/10.1080/01621459.1959.10501526
https://doi.org/10.1109/QRS.2015.17
https://doi.org/10.5281/ZENODO.3715232
https://doi.org/10.1145/3292500.3330680
https://doi.org/10.1145/3292500.3330680
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1152/AJPHEART.2000.278.6.H2039
https://doi.org/10.1152/AJPHEART.2000.278.6.H2039
https://doi.org/10.1007/0-387-25465-X_15

312 Bibliography

[146] Andrew Rosenberg and Julia Hirschberg. “V-Measure: A conditional entropy-based
external cluster evaluation measure”. In: Proceedings of the Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational Natural Language
Learning. 2007, pp. 410–420.

[147] Peter J. Rousseeuw. “Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis”. In: Journal of Computational and Applied Mathematics 20 (1987),
pp. 53–65. doi: 10.1016/0377-0427(87)90125-7.

[148] Magnus Sahlgren. “An Introduction to Random Indexing”. In: Proceedings of the Methods
and Applications of Semantic Indexing Workshop at the 7th International Conference
on Terminology and Knowledge Engineering. 2005, pp. 1–9.

[149] Felix Salfner, Maren Lenk, and Miroslaw Malek. “A Survey of Online Failure Prediction
Methods”. In: ACM Computing Surveys (CSUR) 42.3 (2010), pp. 1–42. doi: 10.1145/
1670679.1670680.

[150] Felix Salfner and Steffen Tschirpke. “Error Log Processing for Accurate Failure Pre-
diction”. In: Proceedings of the 1st USENIX Workshop on the Analysis of System Logs.
2008.

[151] Christopher Schölzel. Nonlinear measures for dynamical systems. Version 0.5.2. June
2019. doi: 10.5281/ZENODO.3814723.

[152] Andreas Schörgenhumer, Paul Grünbacher, and Hanspeter Mössenböck. “Selecting
Time Series Clustering Methods based on Run-Time Costs”. In: Proceedings of the 11th
Symposium on Software Performance. Accepted for publication. GI Softwaretechnik-
Trends, 2020. url: https://www.performance-symposium.org/fileadmin/user_
upload/palladio-conference/2020/Papers/SSP2020_paper_1.pdf.

[153] Andreas Schörgenhumer, Mario Kahlhofer, Peter Chalupar, Paul Grünbacher, and
Hanspeter Mössenböck. “A Framework for Preprocessing Multivariate, Topology-Aware
Time Series and Event Data in a Multi-System Environment”. In: Proceedings of the
19th IEEE International Symposium on High Assurance Systems Engineering. IEEE,
2019, pp. 115–122. doi: 10.1109/HASE.2019.00026.

[154] Andreas Schörgenhumer, Mario Kahlhofer, Peter Chalupar, Hanspeter Mössenböck,
and Paul Grünbacher. “On the Difficulties of Supervised Event Prediction based on
Unbalanced Real-World Data in Multi-System Monitoring”. In: Proceedings of the 10th
Symposium on Software Performance. GI Softwaretechnik-Trends, 2019, pp. 38–40.
url: http://pi.informatik.uni-siegen.de/stt/39_4/01_Fachgruppenberichte/
SSP2019/SSP2019_Schoergenhumer.pdf.

[155] Andreas Schörgenhumer, Mario Kahlhofer, Peter Chalupar, Hanspeter Mössenböck,
and Paul Grünbacher. “Using Multi-System Monitoring Time Series to Predict Per-
formance Events”. In: Proceedings of the 9th Symposium on Software Performance.
GI Softwaretechnik-Trends, 2018, pp. 55–57. url: http://pi.informatik.uni-
siegen.de/stt/39_3/01_Fachgruppenberichte/SSP18/SchoergenhumerKahlhofer
Chalupar+18.pdf.

[156] Andreas Schörgenhumer, Mario Kahlhofer, Paul Grünbacher, and Hanspeter Mössen-
böck. “Can We Predict Performance Events with Time Series Data from Monitoring
Multiple Systems?” In: Companion of the 10th ACM/SPEC International Conference
on Performance Engineering. ACM, 2019, pp. 9–12. doi: 10.1145/3302541.3313101.

https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1145/1670679.1670680
https://doi.org/10.1145/1670679.1670680
https://doi.org/10.5281/ZENODO.3814723
https://www.performance-symposium.org/fileadmin/user_upload/palladio-conference/2020/Papers/SSP2020_paper_1.pdf
https://www.performance-symposium.org/fileadmin/user_upload/palladio-conference/2020/Papers/SSP2020_paper_1.pdf
https://doi.org/10.1109/HASE.2019.00026
http://pi.informatik.uni-siegen.de/stt/39_4/01_Fachgruppenberichte/SSP2019/SSP2019_Schoergenhumer.pdf
http://pi.informatik.uni-siegen.de/stt/39_4/01_Fachgruppenberichte/SSP2019/SSP2019_Schoergenhumer.pdf
http://pi.informatik.uni-siegen.de/stt/39_3/01_Fachgruppenberichte/SSP18/SchoergenhumerKahlhoferChalupar+18.pdf
http://pi.informatik.uni-siegen.de/stt/39_3/01_Fachgruppenberichte/SSP18/SchoergenhumerKahlhoferChalupar+18.pdf
http://pi.informatik.uni-siegen.de/stt/39_3/01_Fachgruppenberichte/SSP18/SchoergenhumerKahlhoferChalupar+18.pdf
https://doi.org/10.1145/3302541.3313101

Bibliography 313

[157] Andreas Schörgenhumer, Mario Kahlhofer, Hanspeter. Mössenböck, and Paul Grün-
bacher. “Using Crash Frequency Analysis to Identify Error-Prone Software Technologies
in Multi-System Monitoring”. In: Proceedings of the 18th IEEE International Con-
ference on Software Quality, Reliability and Security. IEEE, 2018, pp. 183–190. doi:
10.1109/QRS.2018.00032.

[158] Andreas Schörgenhumer, Thomas Natschläger, Paul Grünbacher, Mario Kahlhofer,
Peter Chalupar, and Hanspeter Mössenböck. “An Approach for Ranking Feature-based
Clustering Methods and its Application in Multi-System Infrastructure Monitoring”.
In: AI-Enabled Software Development and Operations (AI4DevOps) of the 47th Eu-
romicro Conference on Software Engineering and Advanced Applications. Accepted for
publication. IEEE, 2021.

[159] Thomas Schreiber and Andreas Schmitz. “Discrimination power of measures for nonlin-
earity in a time series”. In: Physical Review E 55 (5 May 1997), pp. 5443–5447. doi:
10.1103/PHYSREVE.55.5443.

[160] Thomas Schreiber and Andreas Schmitz. “Surrogate time series”. In: Physica D: Non-
linear Phenomena 142.3 (2000), pp. 346–382. doi: 10.1016/S0167-2789(00)00043-9.

[161] Adrian Schröter, Nicolas Bettenburg, and Rahul Premraj. “Do Stack Traces Help
Developers Fix Bugs?” In: Proceedings of the 7th IEEE Working Conference on Mining
Software Repositories. IEEE, 2010, pp. 118–121. doi: 10.1109/MSR.2010.5463280.

[162] Arthur Schuster. “On the investigation of hidden periodicities with application to a
supposed 26 day period of meteorological phenomena”. In: Terrestrial Magnetism 3.1
(1898), pp. 13–41. doi: 10.1029/TM003I001P00013.

[163] Yakov Shafranovich. Common Format and MIME Type for Comma-Separated Values
(CSV) Files. RFC 4180. RFC Editor, Oct. 2005, pp. 1–8. url: http://www.rfc-
editor.org/rfc/rfc4180.txt.

[164] Bikash Sharma, Praveen Jayachandran, Akshat Verma, and Chita R. Das. “CloudPD:
Problem Determination and Diagnosis in Shared Dynamic Clouds”. In: Proceedings
of the 43rd Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. IEEE, 2013, pp. 1–12. doi: 10.1109/DSN.2013.6575298.

[165] Virendra Singh Shekhawat, Avinash Gautam, and Ashish Thakrar. “Datacenter Work-
load Classification and Characterization: An Empirical Approach”. In: Proceedings of
the 13th IEEE International Conference on Industrial and Information Systems. IEEE,
2018, pp. 1–7. doi: 10.1109/ICIINFS.2018.8721402.

[166] Siqi Shen, Vincent Van Beek, and Alexandru Iosup. “Statistical Characterization of
Business-Critical Workloads Hosted in Cloud Datacenters”. In: Proceedings of the 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. IEEE,
2015, pp. 465–474. doi: 10.1109/CCGRID.2015.60.

[167] Kevin Sheppard. ARCH Toolbox for Python. Feb. 2015. doi: 10.5281/ZENODO.15681.

[168] Weiwei Shi, Yongxin Zhu, Tian Huang, Gehao Sheng, Yong Lian, Guoxing Wang, and
Yufeng Chen. “An Integrated Data Preprocessing Framework Based on Apache Spark
for Fault Diagnosis of Power Grid Equipment”. In: Journal of Signal Processing Systems
86.2 (2017), pp. 221–236. doi: 10.1007/S11265-016-1119-4.

[169] Connor Shorten and Taghi M. Khoshgoftaar. “A survey on Image Data Augmentation
for Deep Learning”. In: Journal of Big Data 6.1 (2019), pp. 1–48. doi: 10.1186/S40537-
019-0197-0.

[170] Michael Sipser. “Time Complexity”. In: Introduction to the Theory of Computation.
Cengage Learning, 2012, pp. 275–330. isbn: 978-1-133-18779-0.

https://doi.org/10.1109/QRS.2018.00032
https://doi.org/10.1103/PHYSREVE.55.5443
https://doi.org/10.1016/S0167-2789(00)00043-9
https://doi.org/10.1109/MSR.2010.5463280
https://doi.org/10.1029/TM003I001P00013
http://www.rfc-editor.org/rfc/rfc4180.txt
http://www.rfc-editor.org/rfc/rfc4180.txt
https://doi.org/10.1109/DSN.2013.6575298
https://doi.org/10.1109/ICIINFS.2018.8721402
https://doi.org/10.1109/CCGRID.2015.60
https://doi.org/10.5281/ZENODO.15681
https://doi.org/10.1007/S11265-016-1119-4
https://doi.org/10.1186/S40537-019-0197-0
https://doi.org/10.1186/S40537-019-0197-0

314 Bibliography

[171] Steven S. Skiena. The Data Science Design Manual. 1st ed. Springer, Aug. 2017. isbn:
978-3-319-55443-3. doi: 10.1007/978-3-319-55444-0.

[172] Robert R. Sokal and Charles D. Michener. “A Statistical Method for Evaluating
Systematic Relationships”. In: University of Kansas Science Bulletin 38.6 (1958),
pp. 1409–1438.

[173] Saúl Solorio-Fernández, J. Ariel Carrasco-Ochoa, and José Fco. Martínez-Trinidad. “A
review of unsupervised feature selection methods”. In: Artificial Intelligence Review
53.2 (2020), pp. 907–948. doi: 10.1007/S10462-019-09682-Y.

[174] Christopher Streiffer, Ramya Raghavendra, Theophilus Benson, and Mudhakar Srivatsa.
“Learning to Simplify Distributed Systems Management”. In: Proceedings of the 6th
IEEE International Conference on Big Data. IEEE, 2018, pp. 1837–1845. doi: 10.1109/
BIGDATA.2018.8622058.

[175] Yongmin Tan, Xiaohui Gu, and Haixun Wang. “Adaptive System Anomaly Prediction
for Large-Scale Hosting Infrastructures”. In: Proceedings of the 29th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing. 2010, pp. 173–182. doi:
10.1145/1835698.1835741.

[176] The Joblib development team. Joblib: running Python functions as pipeline jobs. Ver-
sion 0.14.1. 2019. url: https://joblib.readthedocs.io/.

[177] The Scikit-learn development team. sklearn.tree.DecisionTreeClassifier. Version 0.24.1.
Accessed: 2021-03-03. 2020. url: https://scikit-learn.org/stable/modules/
generated/sklearn.tree.DecisionTreeClassifier.html.

[178] Timo Teräsvirta, Chien-Fu Lin, and Clive W. J. Granger. “Power of the neural network
linearity test”. In: Journal of Time Series Analysis 14.2 (1993), pp. 209–220. doi:
10.1111/J.1467-9892.1993.TB00139.X.

[179] Jörg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bhatotia, Ruichuan
Chen, Bimal Viswanath, Lei Jiao, and Christof Fetzer. “Sieve: Actionable Insights
from Monitored Metrics in Distributed Systems”. In: Proceedings of the 18th ACM/I-
FIP/USENIX Middleware Conference. ACM, 2017, pp. 14–27. doi: 10.1145/3135974.
3135977.

[180] Ivan Tomek. “Two Modifications of CNN”. In: IEEE Transactions on Systems, Man
and Cybernetics 6.11 (1976), pp. 769–772. doi: 10.1109/TSMC.1976.4309452.

[181] Jamal Uddin, Rozaida Ghazali, Mustafa Mat Deris, Rashid Naseem, and Habib Shah. “A
survey on bug prioritization”. In: Artificial Intelligence Review 47.2 (2017), pp. 145–180.
doi: 10.1007/S10462-016-9478-6.

[182] Terry T. Um, Franz M. J. Pfister, Daniel Pichler, Satoshi Endo, Muriel Lang, Sandra
Hirche, Urban Fietzek, and Dana Kulić. “Data Augmentation of Wearable Sensor
Data for Parkinson’s Disease Monitoring Using Convolutional Neural Networks”. In:
Proceedings of the 19th ACM International Conference on Multimodal Interaction. 2017,
pp. 216–220. doi: 10.1145/3136755.3136817.

[183] Joaquin Vanschoren. “Meta-Learning”. In: Automated Machine Learning: Methods,
Systems, Challenges. Ed. by Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren.
Springer, 2019, pp. 35–61. isbn: 978-3-030-05318-5. doi: 10.1007/978-3-030-05318-
5_2.

[184] John Venn. “I. On the diagrammatic and mechanical representation of propositions
and reasonings”. In: The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science 10.59 (1880), pp. 1–18. doi: 10.1080/14786448008626877.

https://doi.org/10.1007/978-3-319-55444-0
https://doi.org/10.1007/S10462-019-09682-Y
https://doi.org/10.1109/BIGDATA.2018.8622058
https://doi.org/10.1109/BIGDATA.2018.8622058
https://doi.org/10.1145/1835698.1835741
https://joblib.readthedocs.io/
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://doi.org/10.1111/J.1467-9892.1993.TB00139.X
https://doi.org/10.1145/3135974.3135977
https://doi.org/10.1145/3135974.3135977
https://doi.org/10.1109/TSMC.1976.4309452
https://doi.org/10.1007/S10462-016-9478-6
https://doi.org/10.1145/3136755.3136817
https://doi.org/10.1007/978-3-030-05318-5_2
https://doi.org/10.1007/978-3-030-05318-5_2
https://doi.org/10.1080/14786448008626877

Bibliography 315

[185] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey,
İlhan Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold,
Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1. 0 Contributors.
“SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”. In: Nature
Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-0686-2.

[186] Shaohua Wang, Foutse Khomh, and Ying Zou. “Improving bug management using
correlations in crash reports”. In: Empirical Software Engineering 21.2 (2016), pp. 337–
367. doi: 10.1007/S10664-014-9333-9.

[187] Xiaozhe Wang, Kate Smith, and Rob Hyndman. “Characteristic-Based Clustering for
Time Series Data”. In: Data Mining and Knowledge Discovery 13.3 (2006), pp. 335–364.
doi: 10.1007/S10618-005-0039-X.

[188] Martin Wattenberg, Fernanda Viégas, and Ian Johnson. “How to Use t-SNE Effectively”.
In: Distill (2016). doi: 10.23915/distill.00002. url: http://distill.pub/2016/
misread-tsne.

[189] Frank Wilcoxon. “Individual Comparisons by Ranking Methods”. In: Biometrics Bulletin
1.6 (1945), pp. 80–83. doi: 10.2307/3001968.

[190] Andrew W. Williams, Soila M. Pertet, and Priya Narasimhan. “Tiresias: Black-Box
Failure Prediction in Distributed Systems”. In: Proceedings of the 21st IEEE Inter-
national Parallel and Distributed Processing Symposium. IEEE, 2007, pp. 1–8. doi:
10.1109/IPDPS.2007.370345.

[191] John R. Williams. “Clustering Household Electricity Use Profiles”. In: Proceedings of the
1st Workshop on Machine Learning for Sensory Data Analysis. ACM, 2013, pp. 19–26.
doi: 10.1145/2542652.2542656.

[192] Dennis L. Wilson. “Asymptotic Properties of Nearest Neighbor Rules Using Edited
Data”. In: IEEE Transactions on Systems, Man, and Cybernetics 2.3 (1972), pp. 408–
421. doi: 10.1109/TSMC.1972.4309137.

[193] Seunghye J. Wilson. “Data representation for time series data mining: time domain
approaches”. In: Wiley Interdisciplinary Reviews: Computational Statistics 9.1 (2017),
e1392:1–6. doi: 10.1002/WICS.1392.

[194] Svante Wold, Kim Esbensen, and Paul Geladi. “Principal Component Analysis”. In:
Chemometrics and Intelligent Laboratory Systems 2.1 (1987), pp. 37–52. doi: 10.1016/
0169-7439(87)80084-9.

[195] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. “Detecting
Large-Scale System Problems by Mining Console Logs”. In: Proceedings of the 22nd
ACM SIGOPS Symposium on Operating Systems Principles. ACM, 2009, pp. 117–132.
doi: 10.1145/1629575.1629587.

[196] Yan Xu, Yanming Sun, Jiafu Wan, Xiaolong Liu, and Zhiting Song. “Industrial Big
Data for Fault Diagnosis: Taxonomy, Review, and Applications”. In: IEEE Access 5
(2017), pp. 17368–17380. doi: 10.1109/ACCESS.2017.2731945.

[197] Ji Xue, Evgenia Smirni, Thomas Scherer, Robert Birke, and Lydia Y. Chen. “PROST:
Predicting Resource Usages with Spatial and Temporal Dependencies”. In: Proceedings
of the 7th ACM/SPEC on International Conference on Performance Engineering. ACM,
2016, pp. 125–126. doi: 10.1145/2851553.2858678.

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/S10664-014-9333-9
https://doi.org/10.1007/S10618-005-0039-X
https://doi.org/10.23915/distill.00002
http://distill.pub/2016/misread-tsne
http://distill.pub/2016/misread-tsne
https://doi.org/10.2307/3001968
https://doi.org/10.1109/IPDPS.2007.370345
https://doi.org/10.1145/2542652.2542656
https://doi.org/10.1109/TSMC.1972.4309137
https://doi.org/10.1002/WICS.1392
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1145/1629575.1629587
https://doi.org/10.1109/ACCESS.2017.2731945
https://doi.org/10.1145/2851553.2858678

316 Bibliography

[198] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasundaram,
and Shankar Pasupathy. “An Empirical Study on Configuration Errors in Commercial
and Open Source Systems”. In: Proceedings of the 23rd ACM Symposium on Operating
Systems Principles. 2011, pp. 159–172. doi: 10.1145/2043556.2043572.

[199] Li Yu, Ziming Zheng, Zhiling Lan, and Susan Coghlan. “Practical Online Failure
Prediction for Blue Gene/P: Period-based vs Event-driven”. In: Proceedings of the 41st
IEEE/IFIP International Conference on Dependable Systems and Networks Workshops.
IEEE, 2011, pp. 259–264. doi: 10.1109/DSNW.2011.5958823.

[200] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar Pasupa-
thy. “SherLog: Error Diagnosis by Connecting Clues from Run-time Logs”. In: Proceed-
ings of the 15th International Conference on Architectural Support for Programming
Languages and Operating Systems. 2010, pp. 143–154. doi: 10.1145/1735970.1736038.

[201] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. “Improving
Software Diagnosability via Log Enhancement”. In: ACM Transactions on Computer
Systems (TOCS) 30.1 (2012), pp. 1–28. doi: 10.1145/2110356.2110360.

[202] Jie Zhang, Xiaoyin Wang, Dan Hao, Bing Xie, Lu Zhang, and Hong Mei. “A survey
on bug-report analysis”. In: Science China Information Sciences 58.2 (2015), pp. 1–24.
doi: 10.1007/S11432-014-5241-2.

[203] Qi Zhang, Joseph L. Hellerstein, and Raouf Boutaba. “Characterizing Task Usage
Shapes in Google Compute Clusters”. In: Proceedings of the 5th International Workshop
on Large Scale Distributed Systems and Middleware. ACM, 2011.

[204] Shenglin Zhang, Ying Liu, Dan Pei, Yu Chen, Xianping Qu, Shimin Tao, and Zhi
Zang. “Rapid and Robust Impact Assessment of Software Changes in Large Internet-
Based Services”. In: Proceedings of the 11th ACM Conference on Emerging Networking
Experiments and Technologies. ACM, 2015, 2:1–13. doi: 10.1145/2716281.2836087.

[205] Tao Zhang, He Jiang, Xiapu Luo, and Alvin TS Chan. “A Literature Review of Research
in Bug Resolution: Tasks, Challenges and Future Directions”. In: The Computer Journal
59.5 (2016), pp. 741–773. doi: 10.1093/COMJNL/BXV114.

[206] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. “BIRCH: An Efficient Data
Clustering Method for Very Large Databases”. In: ACM SIGMOD Record 25.2 (June
1996), pp. 103–114. doi: 10.1145/235968.233324.

[207] Xiao Zhang, Fanjing Meng, Pengfei Chen, and Jingmin Xu. “TaskInsight: A Fine-
Grained Performance Anomaly Detection and Problem Locating System”. In: Proceedings
of the 9th IEEE International Conference on Cloud Computing. IEEE, 2016, pp. 917–920.
doi: 10.1109/CLOUD.2016.0136.

[208] Zhiyuan Zhang, Xuehai Tang, Jizhong Han, and Peng Wang. “Sibyl: Host Load Predic-
tion with an Efficient Deep Learning Model in Cloud Computing”. In: Proceedings of the
18th International Conference on Algorithms and Architectures for Parallel Processing.
Springer, 2018, pp. 226–237. doi: 10.1007/978-3-030-05054-2_17.

[209] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and Bren-
dan Murphy. “Cross-project Defect Prediction: A Large Scale Experiment on Data vs.
Domain vs. Process”. In: Proceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering. 2009, pp. 91–100. doi: 10.1145/1595696.1595713.

[210] Indrė Žliobaitė, Jorn Bakker, and Mykola Pechenizkiy. “Beating the baseline prediction
in food sales: How intelligent an intelligent predictor is?” In: Expert Systems with
Applications 39.1 (2012), pp. 806–815. doi: 10.1016/J.ESWA.2011.07.078.

https://doi.org/10.1145/2043556.2043572
https://doi.org/10.1109/DSNW.2011.5958823
https://doi.org/10.1145/1735970.1736038
https://doi.org/10.1145/2110356.2110360
https://doi.org/10.1007/S11432-014-5241-2
https://doi.org/10.1145/2716281.2836087
https://doi.org/10.1093/COMJNL/BXV114
https://doi.org/10.1145/235968.233324
https://doi.org/10.1109/CLOUD.2016.0136
https://doi.org/10.1007/978-3-030-05054-2_17
https://doi.org/10.1145/1595696.1595713
https://doi.org/10.1016/J.ESWA.2011.07.078

Curriculum Vitae

Personal Information

Name: Dipl.-Ing. Andreas Schörgenhumer, BSc
Address: Mannheimstraße 6/11/71, 4040 Linz, Austria
Telephone: +43 664 88583231
E-Mail: andischoe@gmail.com
Nationality: Austria
Date of Birth: 15.05.1993, 4600 Wels, Austria

Professional Experience

Lecturer 03/2019 – Today

Johannes Kepler University Linz – Teaching in the area of software development (computer science)

Researcher 03/2017 – Today

Johannes Kepler University Linz – Data analysis of large, heterogeneous systems of our APM industry partner
Dynatrace as part of the Christian Doppler Laboratory for Monitoring and Evolution of Very-Large-Scale Software
Systems (MEVSS) until 08/2020, from then on at the Institute for Software Systems Engineering. Application of
statistical methods for error analytics, supervised machine learning for the prediction of performance-related
events and unsupervised clustering of time series

Student Researcher 09/2015 – 02/2017

Johannes Kepler University Linz – Java lock contention analysis via a sampling-based Java agents with JVMTI as
part of the Christian Doppler Labors for Monitoring and Evolution of Very-Large-Scale Software Systems (MEVSS)

Paramedic und Control Operator 07-08/2013 – 2015

Red Cross Eferding (control operator) und Red Cross Wilhering (paramedic)

Paramedic (Civilian Service) 11/2011 – 07/2012

Red Cross Wilhering

Teaching Experience

Teaching 03/2019 – Today

Softwareentwicklung 2 (Software Development 2) in summer semester 2019 and 2020 (hybrid + digital teaching)
Softwareentwicklung 1 (Software Development 1) in winter semester 2019 and 2020 (hybrid + digital teaching)

Thesis Supervision

Bachelor’s thesis of Peter Chalupar: “Cross-System Event Prediction with Random Forests using Time Series“
Master’s thesis of Mario Kahlhofer: “Exploring Supervised Event Prediction in Multi-System Monitoring“
Master’s thesis of Ante Dilber: “Visualizing System Architectures with Time Series and Event Metadata“

Volunteering

Control Operator 09/2013 – 03/2017

Red Cross Eferding

Paramedic 10/2011 – 03/2017

Red Cross Eferding und Red Cross Wilhering

Academic Education

PhD in Technical Sciences 03/2017 – Today

Doktor der technischen Wissenschaften (Dr. techn.) – Johannes Kepler University Linz
PhD thesis: “Data Analysis and Error Analytics in Large-Scale Heterogeneous Software Systems“
Up to now, all subjects graded “sehr gut“ (very good)

Master in Computer Science 10/2015 – 02/2017

Diplom-Ingenieur (Dipl.-Ing.), Major subject: Software Engineering – Johannes Kepler University Linz
Master’s thesis: “Efficient Sampling-based Lock Contention Profiling in Java“
Passed with distinction, all subject groups graded “sehr gut“ (very good), completed below minimum period of
study

Bachelor Informatik (Informatics) 10/2012 – 10/2015

Bachelor of Science (BSc) – Johannes Kepler Universität Linz
Bachelor’s thesis: “Improved Eyes-Free Vehicle Control Using Touch Based Gestural Input on the Steering Wheel“
Passed with distinction, all subject groups graded “sehr gut“ (very good)

Senior Grade with Matura (Higher School Certificate) 09/2007 – 07/2011

Emphasis: fine arts – BORG Grieskirchen
Passed with distinction, all subjects graded “sehr gut“ (very good)

Lower Grade 09/2003 – 07/2007

Gymnasium Dachsberg, Prambachkirchen
All subjects graded “sehr gut“ (very good)

Additional Education

Control Operator (Red Cross) 04/2012 – 09/2013

Gruppenkommandant (Red Cross Leadership Training) 10/2012 – 12/2012

Emergency Vehicle Driver (Red Cross) 04/2012 – 08/2012

Knowledge

Languages: German (native), English (fluent), basic knowledge in French und Spanish (A1/A2),
Latin (six years)

Programming Languages: Excellent Knowledge in Java and Python, good knowledge in Kotlin,
basic knowledge in C, C++, C#, SQL

Tools and Miscellaneous: Microsoft Office (Word, Excel, PowerPoint), LaTeX, Moodle, Zoom,
Slack

Awards

Merit-based Scholarship of the Technical and Natural Sciences Faculty

For sessions 2012/2013, 2013/2014, 2014/2015 and 2015/2016

Nomination for the IEEE Student Paper Contest 2016

Submission based on the bachelor’s thesis (touch-based vehicle control)

Statutory Declaration

I hereby declare that the thesis submitted is my own unaided work, that I have not used
other than the sources indicated, and that all direct and indirect sources are acknowledged as
references. This printed thesis is identical with the electronic version submitted.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw.
die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe. Die
vorliegende Dissertation ist mit dem elektronisch übermittelten Textdokument identisch.

Linz, July 12, 2021 Dipl.-Ing. Andreas Schörgenhumer, BSc

	Introduction
	Motivation
	Scientific Contributions
	Outline

	Background
	Dynatrace
	Data Formats
	JSON
	YAML
	CSV
	InfluxDB

	Multi-System Infrastructure Monitoring Data
	System
	Topology
	Events
	Time Series
	Data Collection and Storage

	Machine Learning
	Basics
	Data Imbalance
	Supervised Learning
	Training and Testing
	Variants of Training and Testing
	Evaluation Metrics
	Random Forests

	Unsupervised Learning
	Evaluation Metrics
	t-distributed Stochastic Neighbor Embedding (t-SNE)
	k-Means
	Hierarchical Clustering
	Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)

	Statistical Background
	Standardization
	Normalization
	Pearson Correlation
	Wilcoxon Signed-Rank Test
	Box Plots

	Topology-driven Crash Analysis
	Motivation
	Data Requirements and Assumptions
	Topology
	Events

	Approach
	Tuple Creation
	Tuple Merging
	Ranking
	Crash Property Analysis

	Data for Evaluation
	Evaluation
	Automated Analysis
	Manual Investigation
	Process Communication

	Discussion
	Lessons Learned
	Problems and Limitations
	Threats to Validity

	Related Work
	Outlook

	Time-Series-based Event Prediction
	Motivation
	Data Requirements and Assumptions
	Topology
	Events
	Time Series

	Data Preprocessing Framework
	Requirements
	Preprocessing Pipeline
	Data Access
	Data Selection
	Sampling
	Data Extraction

	Scalability

	Approach
	Data Preparation
	Event Prediction

	Data for Evaluation
	Evaluation
	Clustering
	Balanced Scenario
	Unbalanced Scenario
	Synthetic Data
	Balanced Scenario Revisited

	Discussion
	Lessons Learned
	Problems and Limitations
	Threats to Validity

	Related Work
	Time Series Processing
	Time-Series-based Frameworks
	More General Frameworks
	Log-Data-based Approaches
	Monitoring-Data-based Approaches
	Reliability Prediction

	Outlook

	Time Series Clustering
	Motivation
	Data Requirements and Assumptions
	Time Series Characteristics
	Approach
	Determining Feature Set Importance
	Post-Processing Feature Sets
	Clustering Labeled Data
	Clustering Unlabeled Data
	Run-Time Cost Model

	Data for Evaluation
	UCR Archive
	IMTS Archive
	UCR and IMTS Datasets

	Evaluation
	Time Series Characteristics
	Clustering Method Selection
	Determining Feature Set Importance
	Post-Processing Feature Sets
	Clustering Labeled Data
	Clustering Unlabeled Data
	Run-Time Cost Model

	Discussion
	Lessons Learned
	Problems and Limitations
	Threats to Validity

	Related Work
	Features for Time Series
	Automatic Clustering Selection
	Analysis of Industrial Systems
	Statistical Analysis
	Applied Clustering

	Run-time Costs

	Outlook

	Conclusion
	Background
	Feature Importance

	Topology-driven Crash Analysis
	Data Exploration
	Evaluation Results

	Time-Series-based Event Prediction
	Data Exploration
	Evaluation Results

	Time Series Clustering
	Permutation Analysis Feature
	Data Exploration
	Evaluation Results
	Variant Differences
	Clustering Unlabeled Data

	Bibliography

