

JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Straße 69

4040 Linz, Austria

jku.at

Author

Dipl.-Ing. Markus

Weninger, BSc

Submitted at

Institute for System

Software

Supervisor and

1st Evaluator

o.Univ.-Prof. Dr. Dr.h.c.

Hanspeter Mössenböck

2nd Evaluator

Dr.-Ing. André van Hoorn

June 2021

DETECTION AND

ANALYSIS OF

MEMORY ANOMALIES IN

MANAGED LANGUAGES

USING TRACE-BASED

MEMORY MONITORING

Doctoral Thesis

to confer the academic degree of

Doktor der technischen Wissenschaften

in the Doctoral Program

Technische Wissenschaften

Sworn Declaration

I hereby declare under oath that the submitted thesis has been written solely
by me without any third-party assistance, information other than provided
sources or aids have not been used and those used have been fully docu-
mented. Sources for literal, paraphrased and cited quotes have been accu-
rately credited.
The submitted document here present is identical to the electronically sub-
mitted text document.

Markus Weninger
Linz, 15.06.2021

i

ii

Abstract

Even though modern programming languages such as Java employ automatic
garbage collection to free programmers from the error-prone task of manual
memory management, anomalies such as memory leaks can still occur. Such
anomalies can dramatically impact an application’s performance and can
even lead to crashes. Thus, smart tool support is essential to help developers
in understanding the memory behavior of complex software systems.

Despite this, most state-of-the-art memory monitoring tools rely on rather
limited heap dumps, i.e., they inspect the heap only at a few single points
in time. While such approaches may reveal obvious issues, they often do
not provide enough details to drill down to the root cause of more complex
problems. To tackle this limitation, we propose the use ofmemory traces, i.e.,
continuous recordings of memory events such as object allocations or garbage
collection operations. Such memory traces enable us to reconstruct detailed
information about the monitored application’s memory evolution over time.

Existing works mainly focus on the (efficient) collection of information-
rich memory traces and mostly collect traces for very specific use cases. They
often miss discussions of the “big picture”, i.e., the flexibility of memory
traces and how they can be used for various kinds of memory analyses.

This thesis revolves around the question how general-purpose memory
traces can be processed and leveraged in memory monitoring tools to improve
the (semi-automatic) detection and analysis of memory anomalies. It covers
data structures and algorithms for memory trace processing, novel anomaly
analysis approaches such as automatic data structure growth analysis, as well
as interactive visualization techniques. Furthermore, the thesis investigates
how (novice) users approach the task of memory analysis and how memory
monitoring tools can be improved to better support and guide these users.

All ideas presented in this thesis have been implemented in the memory
analysis tool AntTracks to showcase their feasibly and applicability.

iii

iv

Kurzfassung

Moderne Programmiersprachen nutzen automatische Speicherbereinigung,
um fehleranfällige manuelle Speicherverwaltung zu vermeiden. Dennoch
können Anomalien wie Speicherlecks auftreten, die sich drastisch auf die Leis-
tung einer Anwendung auswirken und sogar Abstürze herbeiführen können.
Es ist daher essentiell, Entwicklern intelligente Werkzeuge an die Hand zu
geben, um das Speicherverhalten komplexer Systemen zu untersuchen.

Die meisten modernen Speicherwerkzeuge nutzen nur Speicherauszüge,
d.h. sie inspizieren den Speicher nur zu wenigen bestimmten Zeitpunkten.
Solche Ansätze können zwar oberflächliche Probleme aufdecken, bieten aber
oft nicht genug Details, um zur Ursache des Problems vorzudringen. Deshalb
empfehlen wir die Verwendung von Speicheraufzeichnungen: kontinuierliche
Aufnahmen von Speicherereignissen wie Objektallokationen oder Speicher-
bereinigungsoperationen. Diese erlauben es, detaillierte Information über
den Verlauf der Speicherentwicklung zu rekonstruieren.

Bestehende Arbeiten fokussieren meist die (effiziente) Sammlung informa-
tionsreicher, analysespezifischer Speicheraufzeichnungen, verabsäumen aber
oft die Diskussion des ,,großen Ganzen”: die Flexibilität solcher Aufzeichnun-
gen und ihre Nutzung für verschiedenste Arten von Speicheranalysen.

Diese Arbeit zeigt, wie Speicheraufzeichnungen verarbeitet und genutzt
werden können, um die (automatische) Problemerkennung und Speicherana-
lyse zu verbessern. Sie schlägt Datenstrukturen und Algorithmen zur Auf-
zeichnungsverarbeitung vor und führt neuartige Anomalieanalysen (z.B. die
automatisierte Analyse des Wachstums von Datenstrukturen) sowie interak-
tive Visualisierungstechniken ein. Ferner untersucht sie, wie (unerfahrene)
Benutzer sich bei der Speicheranalyse verhalten und wieWerkzeuge verbessert
werden können, um diese Nutzer besser zu unterstützen und anzuleiten.

Alle vorgestellten Ideen wurden im Speicheranalysewerkzeug AntTracks
umgesetzt, um ihre Machbarkeit und Anwendbarkeit zu präsentieren.

v

vi

Acknowledgements

This thesis would not have been possible without the help and regular support
of many people. First and foremost, I want to thank Hanspeter Mössenböck,
for being an excellent supervisor and mentor, for his constant feedback and
support, and for allowing me to freely follow my research interests. I also
want to thank my second examiner André van Hoorn for the time and effort
he put into evaluating this work and providing feedback.

My sincere gratitude also goes to Philipp Lengauer who introduced me
to scientific work. He also taught me the basics of garbage collection and
memory analysis, and he laid the groundwork for this thesis by helping me
to collect experience in the domain of trace-based memory monitoring.

I also want to thank my fellow PhD students, first of all Andreas
Schörgenhumer. We were always there for each other when we needed dis-
cussions or feedback and never failed to cheer each other up with jokes and
memes when we needed a little laugh.

A lot of work has been put into our publications as well as the development
of the AntTracks Analyzer and other tools. This work was greatly supported
by my student assistants and co-authors Elias Gander and Lukas Makor.
Thank you for your hard work and our countless brainstorming sessions.
I also thank all students that I gladly got to (co-)supervise during their
bachelor theses, master theses and master projects.

All my love goes out to my long-term partner Birgit König, who was
always there for me when I needed a shoulder to lean on, a bright mind
to talk to, or just somebody that helped me to breathe through and keep
track. Thank you for all the understanding you showed when I had little
time because of “yet another paper deadline” and all the understanding you
showed when I was unnecessarily grumpy because “some bug in the program
just took hours to fix”.

vii

A deep hug to my parents, who taught me the important balance between
hard work and recreation, the value of friendship and empathy, and who mo-
tivated me to chase my goals. They always valued education and supported
me in every possible way to help me to deepen my broad interests.

Thanks to my siblings and close friends (you know who you are), who
formed me, grew with me, let me grow with them and made me the person
that I am today.

This thesis has been developed as part of the Monitoring and Evaluation
of Very-Large-Scale Software Systems (MEVSS) Christian Doppler Labora-
tory in cooperation with our industry partner Dynatrace. I thank all the
people who were involved in this laboratory, especially Paul Grünbacher,
head of the laboratory, but also a mentor and a great advisor.

The financial support by the Austrian Federal Ministry for Digital and
Economic Affairs, the National Foundation for Research, Technology and
Development, and Dynatrace is gratefully acknowledged.

viii

Contents

Sworn Declaration i

Abstract iii

Kurzfassung v

Acknowledgements vii

I Introduction and Overview 1

1 Introduction 3
1.1 Outline . 3
1.2 Motivation: Memory Anomalies in Managed Languages 4
1.3 Background and Related Work 5

1.3.1 Data Collection . 6
1.3.2 Memory Leak Analysis 9
1.3.3 Memory Churn Analysis 12
1.3.4 Memory Bloat Analysis 13

1.4 Remaining Challenges . 13
1.5 Contributions . 15

1.5.1 Scientific Contributions 15
1.5.2 Technical Contributions 18
1.5.3 Publications . 20

2 Overview 23
2.1 Memory Traces and Their Processing 23

2.1.1 Heap Object Classification and Multi-Level Grouping . 24
2.1.2 GC Roots and Closures 27

ix

2.2 Data Structure Analysis . 29
2.3 Visualization . 31

2.3.1 Drill-down Trend Visualization 31
2.3.2 Memory Cities . 34
2.3.3 Tree Visualizations . 37

2.4 User Guidance and User Behavior 40
2.4.1 Automatic Detection of Suspicious Time Windows . . . 41
2.4.2 Cognitive Walkthrough and User Study 42
2.4.3 Guided Exploration . 45

2.5 Memory Churn . 47

II Publications 51

3 Memory Traces and Their Processing 53
3.1 Heap Object Classification and Multi-Level Grouping 53
3.2 GC Roots and Closures . 66

4 Data Structure Analysis 81

5 Visualization 97
5.1 Drill-down Trend Visualization 97
5.2 Memory Cities . 102
5.3 Tree Visualizations . 118

6 User Guidance and User Behavior 135
6.1 Automatic Detection of Suspicious Time Windows 135
6.2 Cognitive Walkthrough and User Study 146
6.3 Guided Exploration . 184

7 Memory Churn 219

III Future Work and Conclusions 223

8 Limitations and Future Work 225
8.1 Memory Anomaly Evaluation Suite 225
8.2 Automatic Data Structure Detection 226
8.3 Lifetime Analysis . 227

x

8.4 Metric-based Analysis . 228
8.5 Visualization Extensions . 228
8.6 Using Visualizations in SE Education 229
8.7 Static and Dynamic Analysis Synergies 229
8.8 IDE Integration . 230

9 Conclusions 231

Appendices 235

A Memory Cities Artifact 237

Bibliography 243

Curriculum Vitae 263

xi

xii

Part I

Introduction and Overview

1

2

Chapter 1

Introduction

1.1 Outline

This thesis is designed as a cumulative dissertation. It contains all publica-
tions that have been published as part of my PhD research, explains their
core concepts as well as the motivation behind them, and puts the work into
perspective to the state of the art and related work. Thus, this thesis is
structured into three parts:

• Part I establishes the context of this dissertation. It presents the moti-
vations that led to our research (Section 1.2), outlines background and
related work in memory monitoring (Section 1.3), discusses challenges
in this field that have been tackled in this thesis (Section 1.4), and gives
an overview of our scientific and technical contributions (Section 1.5).
Section 2.1 through Section 2.5 summarize the core ideas of the pub-
lished papers, separated into thematic categories, and illustrate how
these topics are related to each other.

• Part II contains the published papers, grouped into the above men-
tioned thematic categories.

• Part III concludes the thesis by outlining possible future work and
summarizing final conclusions.

This thesis contains some collective references for certain terms. This is
done to achieve a combined bibliography at the end of the thesis that contains
all references that have been used in at least one of the published papers.

3

Nevertheless, each paper in Part II is self-contained and thus again has its
own bibliography with more details provided for the cited works.

1.2 Motivation: Memory Anomalies in Man-

aged Languages

In traditional unmanaged programming languages such as C, it is the pro-
grammer’s responsibility to correctly handle memory allocations and deallo-
cations. While this offers a high degree of flexibility, which makes it possible
to write highly-optimized code, manual memory management can also eas-
ily lead to unintended memory bugs and errors. This problem is probably
best summarized with the well-known mantra “with great power comes great
responsibility”.

Typical memory-related problems in unmanaged languages encompass
problems such as memory leaks or dangling pointers. Memory leaks occur
if the programmer forgets to free memory once it is not needed anymore
(for example, by missing a needed free() call), unnecessarily increasing the
applications memory footprint over time. A dangling pointer access occurs
if the developer tries to access memory that has already been freed, e.g., if a
free() call has been placed too early in the code. Thus, this is also called a
use after free problem.

To reduce the number of memory-related problems, modern high-level
programming languages such as Java employ a garbage collector (GC) to
automatically reclaim unused memory. Such managed languages keep track
of all static fields and thread-local variables (so-called GC roots1) as well as
all the references between heap objects. During a garbage collection phase,
objects that are no longer (indirectly) reachable from these GC roots, i.e.,
objects that can no longer be referenced from code, are then automatically re-
claimed by the GC, freeing up their reserved memory. This approach relieves
the programmer from the error-prone task of manual memory management,
which also makes certain memory problems of unmanaged language such as
dangling pointer accesses impossible. Nevertheless, garbage collection comes
with its own set of possible memory anomalies that can slow down applica-
tions if developers handle object allocations and object storage carelessly.

1In Java, other GC root types such as JNI or Monitor also exist [317].

4

One of the main memory anomalies that can occur in managed languages
is a memory leak, although memory leaks in managed languages differ from
those in unmanaged languages. As explained before, in unmanaged lan-
guages, a memory leak occurs when the programmer forgets to include a free
call at the correct location. In managed languages, we can define a mem-
ory leak as a situation in which objects that are no longer needed remain
reachable from GC roots due to programming errors [192]. For example,
a developer may forget to remove objects from long-living data structures
once they are not needed anymore. These objects remain reachable, thus
cannot be reclaimed by the garbage collector, and will therefore accumulate
over time. Besides memory leaks, other kinds of memory anomalies exist.
Memory churn, also called excessive dynamic allocations [227, 270] or high
allocation density [75], occurs when objects are (unnecessarily) allocated in
high frequencies, just to be reclaimed shortly after their creation. Memory
bloat [135, 199, 349] describes the problem of using memory in an inefficient
way, causing a high memory overhead to achieve relatively simple tasks. It
is often caused by heavily using (object-oriented) abstractions such as over-
generalized data structures. Different patterns of memory inefficiency [56, 57]
can also be regarded as memory anomalies, i.e., patterns that lead to a sub-
optimal use of memory. Examples of such patterns are unnecessarily using
empty arrays and lists instead of null to express empty state, or to use lists
instead of arrays for fixed-size data structures.

Memory anomalies can dramatically impact an application’s memory uti-
lization and garbage collection behavior, and thus its performance. Anoma-
lies such as memory leaks can even lead to out-of-memory crashes. Thus,
tool support including smart (semi-automatic) analyses and easy-to-use fea-
tures is essential to help software engineers in finding and fixing memory
anomalies as well as understanding and improving the memory behavior of
complex software systems.

1.3 Background and Related Work

In this section, we give an overview of the basics of memory monitoring and
explore related work in the domain of memory analysis. We mainly focus
on approaches for the programming language Java and its underlying Java
virtual machine (JVM), but the ideas behind these approaches can also be

5

transferred to other managed languages and runtimes such as C# and its
.NET Common Language Runtime (CLR).

First, we present various kinds of data collection techniques, mainly com-
paring heap dumps to memory traces. Next, we discuss different kinds of
memory anomalies such as memory leaks, high memory churn, and memory
bloat. These memory anomalies cause the monitored application to exhibit
certain memory patterns. We give an overview of related works, how they
detect these patterns and how they make make use of them.

1.3.1 Data Collection

Before one can investigate an application’s memory behavior, information
about its internal operation has to be collected. If this collection is per-
formed without executing the application, e.g., by analyzing the source code,
we speak of static analysis. On the other hand, dynamic analysis approaches
collect their data while the application is running. Dynamic analysis ap-
proaches can be separated into online and offline approaches; a similar tax-
onomy is to group them into synchronous and asynchronous monitoring ap-
proaches [48]. Online approaches directly inspect and react to the monitored
application while it is running, for example by checking at run time whether
certain violations occurred or conditions hold. Offline approaches, on the
other hand, collect data at either a single point in time (e.g., a heap dump),
multiple points in time (e.g., multiple heap dumps), or continuously (e.g., a
memory trace) for later analysis in a separate offline analysis tool.

Static Analysis Static analysis does not rely on recordings performed dur-
ing program execution, but rather inspects the source code (or other static
artifacts) without taking run-time information into account. For example,
the static analysis tool LeakChaser [353] is based on the observation that
objects outside of a loop often keep unnecessary references to objects created
inside a loop. It uses static analysis to identify such unnecessary references
and reports them to the user. Distefano and Filipović [72] present a static
analysis approach that uses shape analysis to identify certain objects that
are reachable but no longer used. The static approach by Shaham et al. [267]
can detect no-longer used regions of arrays, allowing the garbage collector
(that has been modified to know about these regions) to collect them earlier.
A regular problem of static memory analysis approaches is that they often
do not scale well for real-world applications due to their complexity.

6

Type Histograms Most dynamic memory analysis tools can at least dis-
play a type histogram [213], i.e., they query the running program to re-
port how many objects and bytes of each type exist at the current point in
time. In Java, it is even possible to obtain a type histogram without us-
ing an external tool and without writing a heap dump to disk by setting the
-XX:+PrintClassHistogramBeforeFullGC and the
-XX:+PrintClassHistogramAfterFullGC flag [172]. These flags cause a tex-
tual class histogram to be printed to the console before and after every full
garbage collection. Even though type histograms are easy to obtain, they
only provide superficial, aggregated information. Thus, most memory anal-
ysis tools resort to either full heap dumps or to even more flexible memory
traces to perform their analyses.

Heap Dumps Most state-of-the-art memory monitoring tools rely on in-
formation reconstructed from a single heap dump (or possibly on information
from comparing two heap dumps), which can be limiting in many cases. The
data stored in a heap dump can be used to reconstruct the state of the heap
at one specific point in time, i.e., to reconstruct information about the ob-
jects that were live at this point in time, as well as their references to each
other. To create such a heap dump, tools shipped alongside Java such as
HPROF [215, 223] or jmap [213] can be used. Popular openly available tools
that use heap dumps as their data source are VisualVM [221], the Eclipse
Memory Analyzer (MAT) [79], or jhat [218]. Popular closed source tools to
analyze heap dumps are JProfiler [80] or YourKit [354].

X

Y Y

X

Y Y

delete X create
new X

Snapshot 1 Snapshot 2

same object?

Figure 1: Analyses based on heap dumps lack information on object identity.

While approaches and tools that rely on heap dumps may reveal obvious
issues, they generally do not provide enough details to drill into more complex
problems and their root causes. Most notably, they do not provide any

7

information on how the memory evolves over time. While it is possible to
use multiple heap dumps to inspect the aggregated heap growth (e.g., the
increase of objects of a certain type), heap dumps do to not have a concept
of object identity. Using only heap dumps without additional information,
it is not possible to decide whether an object that was alive in a certain
dump is still alive in a later dump. Figure 1 illustrates this problem, where
we can see two heap dumps (also called snapshots). We can only infer that
both snapshots contain one X object, but not whether these two X objects
are actually the same.

Another disadvantage is that writing heap dumps is time-consuming and
halts the application while dumps are produced. Thus, it is often not feasible
to record a heap dump (not to speak of regular or frequent heap dumps) in
applications that must be responsive. For example, it would probably not
be possible to record a heap dump in a large server application that has to
continuously answer web requests without disrupting users. Heap dumps are
thus often recorded as a “last resort” when an OutOfMemoryError occurs,
to provide the developer at least with a single heap snapshot of when the
application crashed.

Continuous Monitoring and Memory Traces Continuous recordings
of the memory behavior of applications are called memory traces. They pro-
vide data to perform detailed analyses based on the evolution of an applica-
tion’s heap. These analyses include growth analyses, staleness measurements,
or visual analyses, and will be discussed later in more detail.

Typical memory traces [55, 117, 118, 130, 231, 238, 239, 247, 248, 347,
355] encode events such as object allocations, garbage collection operations,
object deaths, or object field accesses. The granularity and the level of
detail may vary significantly between different tracing approaches, since most
approaches produce trace formats for specific kinds of analyses. There also
also other types of traces such as execution traces [63, 64, 134, 290] that rather
focus on call hierarchy information instead of the contents of the heap.

To generate traces, typically one of the following techniques is used [22]:
(1) A modified execution environment such as a custom Java VM that can
access internal information; (2) a sampling-based approach, e.g., an agent
using the Java VM Tool Interface [211] to receive periodical callbacks about
memory-relevant events in the application; or (3) an instrumentation-based
approach that relies on adding code to an existing application, either before

8

compilation (for example, by using aspect-oriented programming [153] with
AspectJ [51, 151, 152]) or at run time (for example, by using a bytecode
modifying library such as ASM [42, 43, 165] or Javassist [52–54]).

A major downside of typical memory tracing approaches so far was that
their recording often caused a several 100-fold slowdown of the analyzed
application [346], making them unfeasible for use in production systems.
Also, since modifications of real-world virtual machines such as the Hotspot
VM [219] require a deep understanding of its internals, many approaches have
only been implemented in research VMs such as the Jikes VM [137] or the
Maxine VM [342] that are more easily approachable, but are (as their name
suggests) hardly ever used outside of academia. Yet, Lengauer et al. [173–175]
have recently shown that it is possible to generate general-purpose memory
traces in a real-world virtual machine, introducing only a few percent of
run-time overhead. Thus, we hope to see more implementations of memory
tracing techniques in production VMs in the future that provide a detailed
data basis for interesting analyses.

1.3.2 Memory Leak Analysis

Memory leaks are probably the most intensively researched memory anoma-
lies, since they are also the most often reported memory defects [100, 101]. As
already explained, memory leaks in managed languages occur if objects that
are no longer needed remain reachable from garbage collection roots (e.g.,
static fields or local variables) due to programming errors. Such leaks lead to
a growing memory footprint, which at some point will cause an application
to crash. In the following, we will briefly discuss different kinds of memory
analysis approaches, following a similar memory leak analysis taxonomy as
Sor and Srirama [278].

Detecting Staleness [33–35, 114, 238, 266, 289, 350, 352] The stale-
ness of a heap object is expressed by the time since the program last actively
used it, i.e., the last time someone wrote to it or read from it. Staleness
analysis approaches assume that live objects which are not used for a long
time are more likely to be involved in a memory leak. However, the proposed
techniques are hardly used outside of academic research due to the extremely
high costs involved in tracking and recording accesses to objects.

9

One exemplary staleness analysis approach that addresses this scalability
issue is container profiling by Xu and Rountev [350, 352]. In their approach,
they do not track accesses to single objects, but rather focus on accesses to
data structures. For each data structure, they track operations such as ADD,
GET, and REMOVE. As these operations may look different for various data
structures (e.g., an ADD operation on a list may be called add while it may
be called put on a map), their approach requires ahead-of-time modeling of
container wrappers. The developer has to introduce a “glue layer” in the
monitored application’s source code that maps methods of each container
type to the mentioned primitive operations via annotations. This way, their
approach can track when data structures last interacted with their containing
objects. An important difference between this approach and other more
traditional staleness analysis approaches is that it calculates staleness based
on the time since an object was last placed into or retrieved from a collection,
rather than the time since the object was generally accessed. This is due
to the authors’ assumption that most memory leaks involve growing and
wrongly-used data structures.

Detecting Growth [51, 144–146, 200, 275–277] Approaches that de-
tect growth typically inspect the object reference graph, i.e., the references
between the heap objects, and analyze how this graph changes over time to
detect growing patterns. For example, Jump and McKinley [144–146] imple-
mented Cork, an online tool integrated into the Jikes RVM, that constructs a
Type Points-From Graph (TPFG) during each garbage collection. A TPFG
contains a node for each type and the directed edges between the nodes sum-
marize how many objects of a given type are referenced by objects of the
type on the edge’s other end. As the application runs, multiple TPFGs are
created and stored, introducing about 1% memory overhead and 2.3% run-
time overhead. Growing parts in these graphs, i.e., growing types of data
structures, are then reported to the user. This directs the developer’s atten-
tion to certain data structures that exhibit continuous growth. There are
also growth analysis approaches that involve statistics and machine learn-
ing [275–277], and many growth analyses also involve visualizations, as we
will discuss in the next paragraph.

Visualization Techniques [2, 70, 119, 120, 150, 198, 226, 229, 241–
243, 255, 360] Most memory visualizations revolve around object refer-

10

ence graph visualization. A pure object graph consists of nodes that repre-
sent heap objects and edges that represent the references between them [228].
Even though such a graph could be directly visualized as a node-link dia-
gram [360], the size of real-world applications (having millions of live objects)
renders approaches that display every heap object as a separate node infea-
sible. Thus, most approaches create ownership trees using the concept of
object ownership [18, 197, 228, 317] based on the dominator relation [177].
These concepts will be explained in more detail in Section 2.1.2. In general,
ownership trees can be used to detect single objects that keep many other
objects alive and are often used as a basis for further graph aggregations.

Reiss [241–243] visualizes an aggregated ownership graph in an icicle-
like visualization [11, 115, 164] using coloring, hatching, hue and satura-
tion to convey information about the underlying growth. The approach by
Hill et al. [119, 120] plots the evolution of ownership trees in a scalable
tree visualization that shares visual similarities with flame graphs [109, 110].
Mitchell et al. [198] apply further transformations on ownership trees to de-
tect costly data structures, which are then displayed in a node-link diagram.
Heapviz [2, 150] is a tool that also focuses on data structures. It allows users
to display them on different levels of detail, arranging collapsible nodes in a
radial node-link diagram. The work by De Pauw and Sevitsky [70, 226] is
one of the few object graph visualization approaches that does not utilize the
dominator relation. Instead, they extract reference patterns, i.e., repetitive
reference sequences in the heap object graph, and then visualize these reoc-
curring patterns. The detection of these patterns can be restricted to those
objects that have accumulated between two heap snapshots, i.e., potentially
leaking objects.

Even though various work regarding memory visualization exists, most
state-of-the-art tools do not yet make use of them. We think that this might
be the case due to the complexity of the visualizations, still requiring deeper
understanding of how managed runtimes work internally. Instead, most
tools visualize the growth of the heap just as a line plot or stacked area
plot, for example as done in tools such as JConsole [217], VisualVM [221] or
Kieker [154, 303, 304]. In these simple visualization approaches, the moni-
tored application’s memory footprint is periodically plotted in a time-series
chart. The user can then check these charts for suspicious sections of con-
tinuous growth that might hint at a memory leak. If such a time window
is found, the user then continues the analysis in traditional (table-based)
analysis views.

11

Static Analysis [72, 267, 353] As already laid out in Section 1.3.1, static
analysis approaches do not use data collected at run time, but rather inspect
the application’s source code (or other static artifacts).

Hybrid Techniques Hybrid memory leak analysis techniques combine
several of the mentioned techniques. For example, based on the work by
Xu and Rountev [350, 352] Yu et al. [356] present a memory leaking confi-
dence (MLC) metric, which combines information about object staleness and
object growth. Other examples for hybrid techniques involve static analysis
in combination with dynamic analysis [81], or approaches that use visual-
izations to better communicate growth behavior. Even though some of the
approaches referenced in the above paragraphs may be classified as hybrid
techniques, we presented them in the paragraph with their strongest focus.

1.3.3 Memory Churn Analysis

Another common memory anomaly that is often overlooked by novice users
is high memory churn [75, 227, 270]. High memory churn, i.e., the excessive
allocation and deallocation of large amounts of objects, results in run-time
overhead that could often be avoided. The overhead stems from the facts
that the allocation of an object itself takes time and that the large number
of dying objects results in an increased number of garbage collections. A
situation that often leads to high memory churn is the allocation of temporary
short-living objects in heavily executed loops. In each loop iteration, new
objects are allocated that almost immediately turn into garbage. Another
typical problem is the use of boxed primitives as generic types [40], e.g.,
ArrayList<Integer>. Every time a primitive is added to such a structure,
it is wrapped into a heap object, which causes unnecessary memory overhead.

In summary, the main contributors to high memory churn are objects
that are allocated in bursts and do not survive a single garbage collection.
However, obtaining the information on how long objects survive is expensive,
especially if the time of death should be reconstructed exactly [118, 247, 248].
Thus, most tools do not provide information about object age, but limit the
user to inspect the plain number of allocations that happen within a certain
time window. Memory churn is often detected visually by spotting frequent
spike patterns in memory charts (i.e., heavily growing memory consumption
followed by many object deaths) or by plotting the aggregated number of

12

allocations per minute (i.e., detecting allocation-intensive time windows), as
it is done in Dynatrace [77].

1.3.4 Memory Bloat Analysis

Memory bloat [135, 199, 349] describes the inefficient use of memory for
achieving relatively simple tasks. It is often caused by heavily using (object-
oriented) abstractions, such as in over-generalized data structures. For exam-
ple, Costa et al. [65] have shown that by choosing alternative data structures
instead of the default Java collections can lead to memory savings of up
to 88%, depending on the application and use case. Most techniques for
memory bloat detection focus on data structure analysis, searching for those
structures that require many auxiliary objects [201, 202], or analyze the in-
efficient use of data structure operations for adding, getting, or removing
elements [348, 351].

1.4 Remaining Challenges

As discussed, advanced memory anomaly analyses often utilize memory
traces, as they provide continuous information that enables analyses regard-
ing object staleness, growth, and similar other factors. Unfortunately, the
majority of related works on memory traces either (1) focus on efficient ways
to collect the data without presenting novel analysis techniques, or (2) collect
specific memory traces that are used for one specific analysis, but they do
not explore if their traces could also be used for other analyses.

Thus, this thesis revolves around the usage of general-purpose memory
traces (i.e., traces that do not focus on the analysis of a specific problem)
such as the traces produced by the AntTracks VM by Lengauer et al. [173–
175]. More specifically, since it has been shown that such traces can be
collected efficiently, even in real-world VMs running production systems, the
main remaining challenge we want to tackle in this work is to show how they
can be utilized in developer-oriented memory analysis tools. To investigate
this, we focus on questions and challenges on how to process and utilize
memory traces, for example by providing a common data basis for various
analyses and visualizations to help developers in detecting, analyzing and
fixing memory anomalies.

13

In summary, open questions in the following areas are tackled throughout
the thesis:

• Memory Trace Processing Memory traces are textual or binary
recordings of memory events. To make sense of these events, the traces
have to be processed and brought into a useful format. Memory traces
have two main advantages over heap dumps: (1) They can provide
vastly more information about every heap object (such as the object’s
type, allocation site, its allocating thread, its references to other ob-
jects, and much more), as well (2) information about the evolution over
time, e.g., how long certain objects survive.

This opens a number of interesting questions to investigate, including:

– How can information that is reconstructed from a memory trace be
arranged to build a general data basis for a variety of analyses, i.e.,
is there a flexible yet useful format to represent data reconstructed
from a trace?

– How can we use this aggregated information in combination with
information about the references between objects in novel analy-
ses?

– How can we reconstruct and utilize lifetime information, i.e., the
birth and death of objects, in analyses?

• Data Structure Analysis Since memory leaks are often caused by
growing data structures (lists, trees, hash maps, etc.) [57, 200, 350, 352],
how can memory traces be used to automatically detect and inspect
those data structures that are most likely involved in a memory leak?
To make this question more distinct from previous research, the analysis
should not be restricted to single-object ownership, i.e., leaks caused by
a single data structure. Instead, we also want do explore how we could
detect leaks caused by the interaction of multiple data structures, and
how to report them to the user.

• Visualization Existing visualizations are often static, visualizing the
heap at one specific point in time or visualizing some difference-measure
between two points in time. Consequentially, most techniques do not
focus on the visualization of general trends in the monitored applica-
tion, i.e., they do not focus on the evolution of the heap memory over

14

time. Thus, an open question that is tackled in this thesis is how
to provide accessible and understandable visualizations to depict the
often complex continuous memory evolution reconstructed from mem-
ory traces. For example, continuous memory growth may hint at the
possible existence of a memory leak, yet only certain types or data
structures are responsible for it. Providing (1) interactive visualiza-
tions that (2) emphasize the memory evolution (and growth) over time
and (3) provide a drill-down into suspicious parts of the heap may help
to detect and understand the root causes of memory anomalies.

• User Guidance and User Behavior Most memory tracing
approaches have only been evaluated with regard to their performance
overhead, yet the analyses and tools built upon them are nearly never
evaluated with users. Thus, this thesis should also investigate how
users behave during memory analysis. Since most memory analysis
tools are used by “normal software developers”, i.e., users with a lim-
ited background in memory monitoring, so-called expert tools may be
too complex for this kind of users [222, 288]. We want to investigate
how novices can be better supported by memory monitoring tools by
guiding them through memory analyses, automatically pointing them
to suspicious memory behavior.

1.5 Contributions

The contributions presented in this thesis can be divided into scientific con-
tributions, technical contributions, and their corresponding publications.

1.5.1 Scientific Contributions

The scientific contributions of our approach can be summarized as follows:

Memory Traces and Their Processing [317, 331] We present a novel
approach on how to enable a vast amount of different analyses through a
flexible heap object classification system. At its core, it allows the user to
freely group heap objects according to any of their properties such as type,
allocation site, allocating thread, or any user-specified criterion. Grouping
objects according to multiple criteria, for example by first grouping all objects

15

by their types and then all objects of a given type by their different allocation
sites, results in a memory tree. We have shown that such memory trees are
a suitable means for data representation, as they can be used as a source for
analyses such as heap state analysis, data structure growth analysis, as well
as different visualization techniques. Our work on heap object grouping and
memory trees has been nominated for the best paper award at ICPE 2018.

Another topic to which we contributed is the analysis of object ownership,
i.e, analyzing which objects keep each other alive. Most existing approaches
rely on a dominator tree constructed from the references between the heap
objects to perform such ownership analyses. Yet, these approaches lack the
ability to report problems that are caused by multi-object ownership [191],
i.e., where leaking objects are kept alive by more than a single object. We
present algorithms to calculate the transitive closure, i.e., the set of all objects
that are reachable from some other object, as well as the GC closure, i.e.,
the set of all objects that also become eligible for garbage collection if a
certain object dies. Further, these closures may not only be computed for a
single root object (single-object ownership), but also for a set of root objects
(multi-object ownership). This allows us to derive metrics such as deep size
and retained size for any group of objects, which integrates well into our
heap object grouping mechanism. These metrics provide vital information
to detect suspicious memory patterns, even those that involve multi-object
ownership.

Data Structure Analysis [316, 318] The previously mentioned closure
algorithms are especially useful when analyzing the evolution of data struc-
tures over time, since they allow us to detect growing data structures and,
more specifically, the kind of growth these data structures exhibit. We devel-
oped a domain-specific language that can be used to express which parts of
a data structure are internal (such as the nodes of a HashMap) and external
(such as the objects stored as keys and values in a HashMap). Combining this
information with the information about the transitive closure and the GC
closure growth of every data structure allows us to derive metrics to rank
data structures according to their probability of being involved in a possible
memory leak. At the same time, we can provide information about the na-
ture of this leak being either data-structure internal or external, as well as
being either due to single-object ownership or multi-object ownership.

16

Visualization [325–328, 330] We present novel techniques to visualize
the evolution of memory trees over time. For this, we studied existing visu-
alization approaches and evaluated them with respect to their applicability
and usefulness for visualizing memory metrics, especially the evolution of
memory trees. We present adaptations and applications of traditional time-
series charts, 2D tree visualizations as well as an engaging 3D software city
visualization. All these approaches provide novel inspection and interaction
techniques that make the memory evolution of system easier to understand
and more tangible. For each approach, we present a complete visualization
pipeline [73, 183], including data pre-processing, layouting, and user inter-
action. Both of our papers presented at STAG 2020 (2D tree visualizations)
and VISSOFT 2020 (3D memory cities) have been awarded with the best
paper award.

User Guidance and User Behavior [315, 319, 321] We performed
a structured cognitive walkthrough as well as a user study to evaluate the
usefulness of our techniques as well as to gain understanding on how novice
users use memory monitoring tools and their analysis capabilities. Based on
the results, we derived a set of recommendations that may guide memory tool
developers in improving existing analyses and implementing new features.

Following these recommendations, we also improved the user guidance in
our own memory analysis techniques. We devised algorithms that are able
to automatically detect patterns in an application’s memory utilization that
hint at certain memory anomalies such as memory leaks or high memory
churn. If a suspicious time window is detected, it is automatically high-
lighted, which relieves the users from having to find such patterns themselves.
Based on this first experience, we developed a complete user guidance con-
cept called guided exploration, which revolves around four support steps that
tools should perform: automatic detection of suspicious patterns, highlighting
relevant UI elements, explanation why the observed patterns are undesirable
and suggestion of suitable next steps. The implementation of guided ex-
ploration in our AntTracks Analyzer tool provides these support operations
on every step during memory leak analysis as well as high memory churn
analysis.

Memory Churn Analysis [320] We did not only investigate memory
leaks, arguably the most frequent memory anomaly, but also other prob-

17

lems. For example, we present a technique that automatically hints at mem-
ory churn hotspots, i.e., time windows in which a large quantity of objects
are allocated and freed shortly afterwards. We further show how we recon-
struct the lifetime of objects, i.e., how many garbage collections each object
survived, from memory traces and how this information can be incorporated
into memory trees for more detailed memory churn analysis.

1.5.2 Technical Contributions

The major technical contribution of this thesis is the development of a set of
tools for memory analyses based on memory traces, especially the AntTracks
Analyzer tool that can process traces produced by
the AntTracks VM. Further, we developed tools for visualizing an appli-
cation’s memory evolution over time, most notably the visualization tools
Memory Cities and WebTreeViz .

Many parts of the AntTracks Analyzer have been developed together with
Elias Gander, who contributed to its implementation as a student assistant
and as part of his master‘s thesis [98]. Lukas Makor contributed to the
implementation of our visualizations as a student assistant, as part of his
bachelor’s thesis and as part of his master‘s thesis [188].

AntTracks VM The AntTracks VM [173–175] is a virtual machine based
on the Java Hotspot VM [219]. It was initially developed by Lengauer et al.
and has been extended by us as part of this thesis. The VM records events
such as object allocations and object movements during garbage collection
by writing them into trace files [173, 174], introducing a run-time overhead of
about 5%. To reduce the trace size, the VM does not record any redundant
data and applies compression [175]. As part of this thesis, the VM’s trac-
ing mechanism has been extended to also record information about garbage
collection roots, a vital information for memory anomaly detection. For ex-
ample, GC root information allows us to find those static fields and local
variables that keep a lot of other objects alive (top-down analysis). GC root
information also helps during bottom-up analysis, e.g., by recursively follow-
ing the incoming references of accumulating objects up to the GC roots that
are keeping them alive.

18

AntTracks Analyzer The AntTracks Analyzer is the core tool that has
been developed throughout this thesis. It is written in Java and Kotlin
with a JavaFX user interface and serves as a reference implementation of
all ideas and concepts presented in this thesis. All presented techniques,
starting from heap object classification and multi-level grouping over closure
calculation and data structures growth analysis up to memory churn analysis
and user guidance, have been implemented in this tool. The tool has been
extensively used throughout all publications to present the feasibility, appli-
cability and usefulness of the presented techniques. It is openly available for
download [314] and can be further extended in the future.

Memory Cities Inspired by the CodeCity tool by Wettel [334], we devel-
oped the Memory Cities tool that visualizes the evolution of an application’s
heap over time using the software city metaphor. While in the past, software
cities have mostly been used to visualize static metrics of a software system
(such as class hierarchies), we adopted the idea to visualize the dynamic
memory behavior of an application. Groups of heap objects (e.g., objects
of the same type allocated in a certain method) are visualized as buildings
that are arranged in districts (e.g., all buildings concerning the same type).
A building’s size corresponds to the number of objects it represents. By
continuously updating the city over time we are able to create the engaging
feeling of an evolving city, where growing buildings represent growing parts of
the heap. Using color and opacity, users are specifically attracted to certain
buildings, which can then be interacted with to inspect them in more detail.

The tool has been successfully evaluated as an artifact at the VISSOFT
2020 conference. It is available at [329], a video of it can be found at 2,
and instructions on how to use the tool can be found in Appendix A.

WebTreeViz This web-based tool can display the heap evolution over time
either in a sunburst or an icicle visualization, two widely used tree visualiza-
tion techniques. It can be used to easily inspect what kind of objects take
up the most space in the heap, and how this heap composition changes over
time. For this, the tool processes a list of memory trees, i.e., the grouped heap
state of the monitored application at different points in time, and provides
two interaction techniques to inspect their evolution: In the time-travel-based

2http://ssw.jku.at/General/Staff/Weninger/AntTracks/VISSOFT20/

MemoryCities.mp4

19

http://ssw.jku.at/General/Staff/Weninger/AntTracks/VISSOFT20/MemoryCities.mp4
http://ssw.jku.at/General/Staff/Weninger/AntTracks/VISSOFT20/MemoryCities.mp4

visualization, a single space-filling tree visualization shows the monitored ap-
plication’s heap memory at a given point in time. Users can step back and
forth in time, causing the visualization to update itself, similar to our memory
city approach. In the timeline-based visualization, a time-series chart depicts
the overall memory consumption over time. Above this chart, multiple mem-
ory tree visualizations are shown side-by-side for a number of user-selected
points in time. These tree visualization can then be compared to each other
to extract information about changes in the heap. Both visualizations help
users to gain new insights and to detect (problematic) memory trends in their
applications.

The tool (directly usable within the browser) is available at 3. There, we
also provide demo data to test the tool, i.e., the data that has been used in
the case studies presented in the respective paper [330]. A video in which we
explain the tool’s most important features can be found at 4.

Interoperability Although we based Memory Cities and WebTreeViz on
data provided by AntTracks, we also defined a JSON interface through which
the tools can load their data either from the file system or via a Web-
Socket [85, 332] connection. Using this JSON interface, our visualization
tool could also be used with monitoring tools other than AntTracks.

1.5.3 Publications

The results of this thesis were published in various conference proceedings
and journals. Table 1 shows all publications (all first-authored) sorted in
chronologically ascending order. Part II provides the full text of all publica-
tions, grouped by thematic categories. Table 2 lists four more (co-)authored
publications that are not central to this dissertation.

3http://bit.ly/STAG-MemoryTreeVizTool
4http://bit.ly/STAG-MemoryTreeVizVideo

20

http://bit.ly/STAG-MemoryTreeVizTool
http://bit.ly/STAG-MemoryTreeVizVideo

Table 1: Chronological list of core publications (all first-authored)

Ref Title
Conference /

Journal

[331] User-defined Classification and Multi-level Grouping
of Objects in Memory Monitoring.

ICPE’18
(Best Paper
Nominee)

[317] Utilizing Object Reference Graphs and Garbage Col-
lection Roots to Detect Memory Leaks in Offline Mem-
ory Monitoring.

ManLang’18

[316] Analyzing the Evolution of Data Structures in Trace-
Based Memory Monitoring.

SSP’18

[318] Analyzing Data Structure Growth Over Time to Fa-
cilitate Memory Leak Detection.

ICPE’19

[325] AntTracks TrendViz: Configurable Heap Memory Vi-
sualization Over Time.

ICPE’19

[319] Detection of Suspicious Time Windows in Memory
Monitoring.

MPLR’19

[327] Memory Leak Visualization using Evolving Software
Cities.

SSP’19

[321] Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User
Study.

EICS’20 /
PACMHCI
(Journal)

[326] Memory Cities: Visualizing Heap Memory Evolution
Using The Software City Metaphor.

VISSOFT’20
(Best Paper)

[328] Heap Evolution Analysis Using Tree Visualizations SSP’20

[320] Investigating High Memory Churn via Object Lifetime
Analysis to Improve Software Performance

SSP’20

[330] Memory Leak Analysis using Time-Travel-based and
Timeline-based Tree Evolution Visualizations

STAG’20
(Best Paper)

[315] Guided Exploration: A Method for Guiding Novice
Users in Interactive Memory Monitoring Tools

EICS’21 /
PACMHCI
(Journal)

21

Table 2: Chronological list of non-core publications

Ref Title Conference

[173] Efficient Memory Traces with Full Pointer Informa-
tion. (Co-authored)

PPPJ’16

[176] A Comprehensive Java Benchmark Study on Memory
and Garbage Collection Behavior of DaCapo, DaCapo
Scala, and SPECjvm2008. (Co-authored)

ICPE’17

[323] User-centered Offline Analysis of Memory Monitoring
Data. (First-authored)

ICPE’17

[322] Tool Support for Restricted Use Case Specification:
Findings from a Controlled Experiment. (First-
authored)

APSEC’18

22

Chapter 2

Overview

In this chapter, we give an overview of the topics presented in this thesis. We
describe our core ideas and the respective papers and how they relate to each
other, dividing them into five main areas: Section 2.1 introduces the recon-
struction and aggregation of heap object information from memory traces,
Section 2.2 introduces our (semi-automatic) analysis of data structures and
their growth behavior, Section 2.3 introduces our visualization techniques to
support memory analysis, Section 2.4 discusses our work on usability, user
behavior and user guidance, and Section 2.5 introduces our inspection tech-
nique for memory churn.

2.1 Memory Traces and Their Processing

Most state-of-the-art memory monitoring tools rely on heap dumps and use
a type histogram, i.e., a table showing how many objects of each type were
live at the given point in time, as their main way of displaying information.
Yet, in addition to such type histograms, users might also want to know
where these objects have been allocated, which other objects refer to them,
or how long they survived. Luckily, memory traces allow us to collect and
reconstruct this information [23].

Still, memory traces on their own are not a universal remedy. The data in
them is often reduced to a minimum, which makes post-processing steps nec-
essary to reconstruct information about the various heap objects. Further-
more, since modern object-oriented applications often accommodate millions
of live objects at any point in time, inspecting them on the object-level, i.e.,

23

one-by-one, becomes infeasible and makes aggregation necessary. Therefore,
the heap objects first have to be aggregated into a format that is flexible
enough to suit different kinds of memory analysis techniques.

In this section, we discuss our aggregation concept of heap object classi-
fication and multi-level grouping. A classifier is a function that groups heap
objects according to a certain criterion such as their type, their allocation
site, or their allocating thread. Grouping the objects according to multiple
classifiers results in a hierarchical memory tree. For instance, the top level
may group objects by their types, the second level by their allocation sites,
and the third level by their allocating threads. The top level gives users a
coarse overview of the application’s memory distribution, and drilling down
into suspicious objects groups allows users to inspect them in more detail,
following Shneiderman’s well-known mantra ‘Overview First, Zoom and Fil-
ter, Details on Demand ’ [269]. Memory trees are a recurring topic in this
thesis, as they are the main data structure that we use for all our analyses.

In addition to that, we discuss how we modified the AntTracks VM to not
only collect information about heap objects but also about GC roots, e.g.,
static fields and local variables, that keep objects alive. GC root information
is vital for a memory monitoring tool to be able to determine which roots
ultimately cause certain objects to accumulate. Useful concepts that we use
to describe keep-alive relations are closures and their respective metrics deep
size and retained size, which allow us to detect objects and object groups
that keep a large number of other objects alive.

2.1.1 Heap Object Classification and Multi-Level
Grouping

In User-defined Classification and Multi-level Grouping of Objects in Memory
Monitoring [331], we present our aggregation concept to build memory trees.
A memory tree is an aggregated representation of a heap state, i.e., of all heap
objects that were live at a certain point in time. In it, these heap objects are
grouped according to a selected set of object classifiers that group objects
based on common properties. Both, memory trees and objects classifiers are
explained in more detail in the following.

General approach: To build a memory tree, once a heap state is recon-
structed from a trace file, its heap objects have to be grouped according to

24

certain criteria provided by user-definable heap object classifiers. In gen-
eral, a heap object classifier has a name, a description and a classify()

function that takes a heap object as its input and returns a classification
result. For example, the type classifier takes in a heap object and returns
this object’s type as classification result (e.g., HashMap), while the allocating
thread classifier returns the object’s allocating thread as result (e.g., Input
Worker Thread). Heap objects with the same classification result will then
be grouped into the same group.

Grouping the heap objects according to the classification results of mul-
tiple classifiers results in a hierarchical memory tree. A common classifier
combination is to first group all heap objects by their types (using the type
classifier) and then by their allocation sites (using the allocation site classi-
fier), as shown in Figure 2. In this figure, yellow rectangles represent tree
nodes and blue circles represent the objects that were classified into the re-
spective tree branch. For example, the objects 0 to 3 are of type Object[],
of which the objects 0, 1 and 3 have been allocated in Stack:init() and
object 2 has been allocated in MyService:foo().

root

Object[] LinkedList

Stack:init() MyService:foo() X:meth()

1. Classify by type

2. Classify by
allocation site

… Tree node … Object

0 1 3

i

2 4

40 1 32

0 1 32 4

Figure 2: A memory tree that first groups all objects by their types and then by
their allocation sites.

It is worth mentioning that the order in which the classifiers are applied
matters: Applying the type classifier before the allocation site classifier re-
sults in a tree that first groups all objects by their types, and then all objects
of the same type by the method they have been allocated in. If we reverse
the order of the classifiers, i.e., when we apply the allocation site classifier
before the type classifier, we get a tree that first groups all objects by their
allocating method, and then all objects that have been allocated in the same
method by their types.

25

Classifiers: By default, AntTracks currently provides around 30 classifiers
out-of-the-box, covering all “standard” heap object properties such as type,
allocation site, or allocating thread, but also more sophisticated ones such as
age or number of ingoing references. Since object classifiers are just arbitrary
functions that return a classification result, new classifiers can be introduced
as needed. For example, during our work on data structure analysis, in a
matter of minutes we introduced a new classifier that groups heap objects
based on their role within a data structure (e.g., head or leaf). This high-
lights one of the major benefits of memory trees: they are extremely flexible.
Depending on the use case or the analysis goal, different combinations and
orderings of classifiers can be used and new ones can be introduced if needed.
They can be used in user-centered analyses, where the classifier combination
is defined by the user, but we also extensively use fixed combinations of
classifiers within AntTracks to perform certain automated analyses.

The previously mentioned type classifier returns exactly one classification
result per heap object, namely its type, thus we call it a one-to-one classifier.
But there are also other kinds of classifiers. For example, one-to-hierarchy
classifiers are typically used if a heap object is classified by multiple keys
in a hierarchical fashion (i.e., keys with a parent-child relationship). An
example is the call site classifier, which classifies an object by the chain of
methods that called the allocating method, i.e., it returns a call chain that
can be merged with other call chains into a tree. The user could then drill
down into the resulting tree, exploring the call chain that allocated the most
objects. Furthermore, filters are a special kind of classifiers that take a heap
object as a parameter and return a boolean value whether to include or to
ignore the respective object. This reduces the tree size in situations where
certain objects are not of interest for the analysis.

Comparison to other heap object groupings: Tools such as Visu-
alVM [221] or MAT [79] support rudimentary queries using the Object Query
Language (OQL) [4, 49]. Unfortunately, the OQL standard is quite complex,
which is why these tools only implement a small part of the whole standard.
Furthermore, as an end user, writing OQL is more complicated than combin-
ing various classifiers and filters using a comfortable graphical user interface
as it is the case in AntTracks.

26

2.1.2 GC Roots and Closures

In Utilizing Object Reference Graphs and Garbage Collection Roots to De-
tect Memory Leaks in Offline Memory Monitoring [317], we describe a trace
format for recording GC root information, closure algorithms to calculate
keep-alive relationships between heap objects, as well as and new metrics
and classifiers based on the newly introduced closure concept.

Collecting GC Root Information To analyze keep-alive relationships
within the heap and to detect suspicious ownership based on that, two things
must be known: (1) the references between the heap objects and (2) infor-
mation about the various GC roots. While the AntTracks VM was already
able to collect the former, we had to extend its trace format to also record
GC roots. At the start of each garbage collection, we collect all GC roots
from different VM-internal sources and write information about them to the
trace file. This information depends on the kinds of the GC roots. For ex-
ample, for a static field we can extract its class and its field name (e.g., a
static field myList in class Buffer), while for thread-local variables we ex-
tract the thread, the class, the method and the variable name (e.g., thread T1

is currently in method m() in class C, holding a thread-local variable named
tmp).

Closures As described above, we need to combine GC root information
with information about the references between the objects to analyze suspi-
cious structures. For example, we need algorithms that can highlight those
objects that (indirectly) reference a lot of other objects and, more impor-
tantly, that keep a lot of other objects alive. We call the set of reachable
objects the transitive closure [82, 158, 291, 292] and the set of kept-alive
objects (or owned objects) the GC closure. Thus, the GC closure of a given
object X expresses its ownership, i.e., it contains all objects that could also
be reclaimed by the GC if object X was garbage-collected.

Existing work in memory analysis focuses on single-object ownership, i.e.,
on detecting single heap objects that own a lot of other objects. While
single-object ownership makes up a large portion of memory problems, we
presents closure algorithms that can also start from a group of heap objects
to calculate their shared closures. These closures can be used to inspect
multi-object ownership, i.e., a situation in which objects are kept alive by
two or more objects, a problem that is largely ignored in related work.

27

Traditional single-object ownership analyses typically rely on the domina-
tor relation [177] to calculate the GC closure of single objects. This relation
has been studied in detail [5, 62, 237] and is used in various domains [68, 83] to
analyze domination and ownership. In general, in a rooted directed graph,
a node d dominates a node n if every path from the root to n must pass
through d [252]. Translated to a heap object graph, this means that a heap
object d owns a heap object n if every path from a GC root to object n
must pass through object d. Using this relation, the object graph of a heap
state can be transformed into a dominator tree, as shown in Figure 3a. On
the left-hand side, an object graph is shown, where each node represents a
heap object and the edges represent references between the objects. L1 and
L2 are two singly linked lists with their nodes Ni that point to data objects
Di. The right-hand side depicts the object graph’s dominator tree, where the
descendants of a node are all owned by that node (single-object ownership).
For example, if L1 became eligible for garbage collection (by cutting all paths
from GC roots to it), seven other objects could be collected, too. Note how
D3, D4, and D5 are not placed below other objects in the dominator tree,
as they are subject to multi-object ownership, i.e., they are owned by both

L1

N1

N2

N3

N4

D1

D2

D3

N5

D4 N9

N8

N7

N6

D8

D7

D6

L2

N10D5

GC Roots

L1

N1

N2

N3

N4

D1

D2

D4

N5

D5

N9

N8

N7

N6

D8

D7D6

L2

N10

D3

Dom. Tree

(a) Object graph of two singly-linked lists and its dom-
inator tree.

L1

N1

N2

N3

N4

D1

D2

D3

N5

D4 N9

N8

N7

N6

D8

D7

D6

L2

N10D5

GC Roots

X1 X2

Transitive closure

GC closure

(b) Transitive closure and GC
closure for L1 and L2.

Figure 3: Object graph, dominator tree, and closures of two singly linked lists L1
and L2.

28

lists together. Such objects are typically overlooked by approaches that build
their analyses upon dominator trees.

Our multi-object closure algorithm differs from dominator-tree-based ap-
proaches as it works directly on the heap object graph. Given a certain set of
objects to start from, our algorithms can efficiently calculate the transitive
closure as well as the GC closure for them. For example, using L1 and L2
as start objects for the closure calculation, Figure 3b depicts their shared
GC closure, i.e., which objects could be collected if both L1 and L2 were
collected, as well as their transitive closure, i.e., which objects are reachable
either from L1, from L2, or from both.

Based on the closures, we can calculate the deep size (reachability) and
the retained size (ownership) for any heap object group S within the object
graph. The deep size is the number of nodes (or bytes) in the transitive
closure of S, i.e., the number of objects (bytes) reachable from S. The retained
size is the number of nodes (or bytes) in the GC closure of S, i.e., the number
of objects (bytes) that could be freed by the GC if S died. Knowing which
groups of objects keep a lot of memory alive helps the developer to decide
which part of the program to inspect in more detail. In the best case, the
developer is able to make these heap objects eligible for garbage collection,
allowing the garbage collector to also collect all objects in their GC closure.
Since every tree node in a memory tree represents a group of heap objects,
our memory trees and closure algorithms complement each other well, as we
now can calculate the deep size and the retained size for each tree node.

2.2 Data Structure Analysis

In Analyzing the Evolution of Data Structures in Trace-Based Memory Mon-
itoring [316] as well as in Analyzing Data Structure Growth Over Time to
Facilitate Memory Leak Detection [318] we present an approach to describe,
detect and track growing data structures. If the monitored application con-
tains a possible memory leak that is caused by a growing data structure,
our approach is able to automatically report that data structure. The user
can then use AntTracks’s flexible classification mechanism, together with new
classifiers for data structure analysis, to inspect the suspicious data structure
in detail.

In general, a data structure is described as a collection of data values,
the relationships among them, and the functions or operations that can be

29

Temporal AnalysisHeap State AnalysisDetectionDescription

AntTracks Analyzer

Describe DSs

Import

Heap state
with DS infoHeap state

Detect DS
instances Two heap states with

temporal DS info

DS tracking +
Metric calculation

Classification trees
Classification

tree

Filter DS heads
and classify

DS descriptions

Visualize

Filter surviving DS heads and
classify both heap states

Visualize
difference

Types enriched with
DS descriptions

Tool developers
and users

Trace file Reconstruct
heap state

Figure 4: Our data structure analysis approach consists of four stages: (1) De-
scription of data structures using a DSL, (2) detection of data structures in re-
constructed heap states, (3) heap state analysis, i.e., data structure analysis at a
single point in time, and (4) growth analysis, i.e., tracking data structures over
time, detecting those with suspicious growth.

applied to the data [312]. While certain memory leak analyses focus on the
operations performed on data structures [350, 352] (e.g., by comparing the
number of insert operations to the number of remove operations), we are
interested in the relationships, i.e., the references between the objects, that
make up a data structure. Our approach uses a domain-specific language
(DSL) developed in CocoR [203, 344] to define the shape of data structures.
This DSL allows us to define data structures in terms of a head element
(e.g., an object of type HashMap), internal elements (e.g., objects of type
HashMap$Node), and leaf elements (e.g., the keys and values stored in a hash
map node). As shown in Figure 4, these descriptions enable us to detect data
structures in reconstructed heap states. Once detected, we can inspect them
at a single point in time (heap state analysis) or we can track them across
their lifetime to monitor their growth (temporal analysis). For temporal
analysis we can calculate a data structure’s transitive closure, GC closure
and a newly defined data structure closure (which includes all objects that
directly belong to the data structure) at multiple points in time. Based
on the growth of these closures, we can detect which data structures grew

30

the most, while at the same time provide information about the kind of
growth. For example, certain combinations of retained size growth (i.e.,
ownership growth) and data structure size growth (i.e., new objects added
to the data structure) allow us to draw conclusions about the underlying
problem pattern. If we have a continuously growing data structure, but the
data structure’s ownership does not grow, this clearly indicates that at least
a second data structure is involved in keeping the accumulating objects alive.
Using this information, the user may then perform further analysis steps to
inspect this multi-object ownership in more detail. Similar conclusion can be
drawn for other combinations of growth metrics, and for each combination
different subsequent analysis steps may be suggested.

2.3 Visualization

The concepts discussed so far concerned either data structures or algorithms
to perform a variety of memory analyses. Even though these are important
topics, it is also important to display the gathered information in a way
that allows the user to easily digest it. This is even more true since most
memory analysis tools currently lack advanced visualizations, even though
data visualization [115] can help to convey information faster [149, 309]. It
can facilitate the identification of patterns and relationships [204, 310] which
can lead to new insights [310].

In this thesis, memory trees and their growth are a recurring theme. Inter-
preting system growth through visualization is a widespread research topic.
For example, in the domain of software evolution and program comprehen-
sion various studies have shown that using graphical means can help users
in understanding and interpreting software system growth [31, 64, 86, 88,
89, 250, 251, 339]. Thus, we present three visualization techniques that we
implemented to support users in analyzing memory evolution and memory
growth over time.

2.3.1 Drill-down Trend Visualization

In AntTracks TrendViz: Configurable Heap Memory Visualization Over
Time [325], we present an approach for visualizing the evolution of mem-
ory trees over time. To this end, we use a time-series chart that implements
a drill-down feature. Basically, the chart shows the evolution of the heap

31

memory grouped by a single heap object property, for example how many
objects of different types existed over time. The drill-down feature allows
the user to select a suspicious object group by clicking on its series in the
chart, which then opens another chart that displays more detailed informa-
tion about the selected objects, e.g., where the objects have been allocated.

We chose time-series plots as a means of visualization since they are
well-known, easy to understand and one of the most frequently used types
of visualization in statistics [300]. In general, each series in a time-series
plot takes the following form: D = {(t1, y1), (t2, y2), ..., (tn, yn)} [311], i.e., it
consists of data pairs where a given point in time ti has a certain numeric
value yi assigned to it.

We based our TrendViz visualization on a list of memory trees that are
created according to a user-defined combination of classifiers. For example,
at every garbage collection point, we may group all live objects first by
their types, and then by their allocation site. This results in a data set
D = {(t1, tree1), (t2, tree2), ..., (tn, treen)}, i.e., for each GC point we have
a corresponding memory tree, where each tree has two levels: On the first
level, the tree is split based on types, and on the second level each type is
split by allocating methods.

In our visualization, initially only the evolution of the first level of the
memory tree is shown. For example, if we classified all objects by types and
allocation sites, a single time-series chart would depict the evolution of the
objects grouped by type, showing each type as a separate series. If a certain
series (e.g., type) gains the user’s attention, for example because it exhibits
strong growth, the user can select it for drill-down. This opens a second
time-series plot below the first one, which depicts the memory evolution of
the selected node’s children, i.e., the evolution on the second tree level. The
example in Figure 5 shows objects of type Date that accumulated over time
(see top chart). The user then selected this object group (highlighted in
yellow), and a second chart opened below the current one, displaying the
selected type’s allocation sites over time. This way users can interactively
collect information about suspicious objects accumulating over time.

The individual time-series plots can be adjusted in various ways. For
example, a maximum number of shown series may be defined, the shown
metric (objects or bytes) can be switched as well as the kind of the shown
size (shallow size, deep size, retained size, or data structure size). The visu-
alization can also be switched between a stacked area chart (mostly useful
for the shallow size) and a traditional line chart (more useful for sizes such as

32

Figure 5: The AntTracks TrendViz displays the heap evolution grouped by a
selected classifier combination, allowing users to drill down into object groups by
clicking on them.

the retained size). In stacked charts, also the series’ sort order may be con-
figured (e.g., ordering the series from top to bottom based on their absolute
growth, as done in Figure 5). This enables users to generate sophisticated
drill-down time-series. For example, they may filter for data structures and
show the data structures with the strongest growing retained size as sepa-
rate line chart series. This highlights those data structures that exhibit the
strongest single-object ownership. The user may also use a second classifier
for drill-down, e.g., the data structure leaf classifier, which groups all leaves
inside a data structure based on their types. A drill-down into a suspicious
data structure would thus open a second time-series plot that would high-
light which object types accumulated the most over time in the selected data
structure.

In AntTracks, we implemented this feature using JFreeChartFX [103,
163], a modified version of JFreeChart [102] for JavaFX.

33

2.3.2 Memory Cities

InMemory Leak Visualization using Evolving Software Cities [327] andMem-
ory Cities: Visualizing Heap Memory Evolution Using The Software City
Metaphor [326] (Best Paper Award), we present ourMemory Cities approach
that visualizes an application’s heap memory evolution over time using the
software city metaphor.

General approach: Traditionally, the software city metaphor visualizes
software artifacts (e.g., classes) as buildings that are arranged in districts
(e.g., packages), where the size of a building conveys some kind of informa-
tion (e.g., the classes’ LOC). While the software city metaphor is typically
used to visualize static artifacts of a software system such as class hierarchies,
we use it to visualize the dynamic memory behavior of an application. In our
approach, we group the heap at multiple points in time, e.g., at each garbage
collection point, using a user-selected combination of classifiers, similar to our
TrendViz approach. For example, at each garbage collection, we may group
all heap objects first by their allocating threads and then by their types. For
each of these memory trees, we may then create a corresponding city layout.
In the given example, threads (the first level of the tree) would be visualized
as districts. Within these districts, buildings for the different types (the sec-
ond level of the tree) are placed. Continuously updating the city over time,
i.e., moving from one point in time to another, creates the engaging feel-
ing of an evolving city as buildings and districts grow and shrink over time.
Our visualization can be used to inspect an application for memory leaks by
searching for suspicious growth behavior, i.e., suspiciously strongly growing
buildings. For example, if the building Buffer (type) in district T1 (thread)
grows over time we can conclude that the thread T1 allocated more and more
objects of type Buffer that accumulated over time, which is a typical mem-
ory leak behavior. We further support memory leak analysis by also using
other visual attributes beside building size. For example, strongly growing
buildings are highlighted in color, and less suspicious buildings can be made
semi-transparent to guide the user’s focus to more important buildings, as
can be seen in Figure 6.

To transform a memory tree into a city layout, we use a tree map algo-
rithm [138, 257, 268], more specifically the squarified tree map algorithm by
Bruls et al. [41]. A tree map layout places rectangles (in our case approxi-
mate squares) within each other to model the tree hierarchy, and the area

34

Figure 6: Three different city visualizations. Left: Every building is shown fully
opaque. Middle: The five strongest growing buildings are shown fully opaque, the
rest is set to 40% opaqueness. Right: The five strongest growing buildings are
shown fully opaque, the rest fully transparent (except for outlines).

sizes of the rectangles indicate one of the tree nodes’ values. For example, if
the rectangles B and C are placed within rectangle A, B and C are children
of A, and larger rectangles represent larger values (in our case more heap
objects). Even though a tree map can be displayed as a 2D visualization on
its own, a third dimension height can be added to each rectangle to create a
3D visualization [30], similar to a city. By default, in our memory cities, both
the base area and the height represent the same metric, i.e., either object
count or byte count. Mixing these metrics, i.e., using one metric for the base
area and the other one for the height, is possible but may not yield visually
appealing results. For example, having a node that represents few very large
arrays could result in (a) extremely narrow buildings that are quite tall or
(b) extremely wide buildings that are quite flat. Such unrealistic building
sizes would distort a realistic city feeling and may also be hard to interact
with in certain situations (e.g., narrow tall buildings are hard to see and
click). A possible solution to this could be to use the object count as-is for
one visual attribute and the byte count as categorical data for the other, e.g.,
mapping the byte count to a few fixed heights such as tiny, small, medium,
large and huge.

Another challenge when working with evolving tree maps is layout stabil-
ity [112, 258, 273]. Layout stability means that the layout, i.e., the placement
of the rectangles / buildings should not change between two points in time.
When looking at visualizations, humans build cognitive maps that are based
on spatial relationships and attributes of the presented data [155]. Thus,

35

Figure 7: In this application, Location objects accumulate over time (selected
blue building), together with many Date objects and a few String objects that
are referenced by the Location objects.

if these relations (e.g., positions) change, the user may lose track of certain
buildings and consequentially cannot follow their evolution over time. In our
work, we use the static position animation [171] approach to achieve a stable
layout over multiple points in time. In this approach, we calculate a general
layout for the city once using the tree map algorithm to reserve space for
all buildings based on the maximum area sizes they may reach. Then, when
visualizing the city for a given point in time, the districts and buildings are
just centered within their reserved area based on their current size.

Another feature of our memory cities is its reference inspection. Once
a suspiciously growing building is detected, typically the next question is
“What causes this growth?”. As explained, objects accumulate over time be-
cause they are directly or indirectly referenced by GC roots. Thus, memory
cities allow the user to select a certain building to display its outgoing and in-
coming references as colored cones between buildings. Incoming cones (pink)
describe the is-kept-alive-by property; outgoing cones (green) describe the
keeps-alive property. This is important information to find out which other
objects cause the accumulation of a certain object group. Figure 7 shows an
example of an evolving software city where growing buildings change from
gray to red (left). It also shows how the reference inspection of a given build-
ing may look like for a selected building (right, selected building highlighted
in blue). Based on the gained information about growing object groups and
their references to and from other objects, the user should have a rather clear
picture of where to inspect the source code to fix a potential problem.

Metaphors and Software Cities in Other Domains The idea of using
metaphors [168] in visualization is not new. A few examples are geometri-
cal figures as a metaphor for coding constructs to teach programming [143],

36

3D structures to visualize database query results [39] (using attributes such
as size and position to convey information), colored virtual reality tunnels
to analyze concurrency in programs [244, 245], or data visualization in the
form of maps [121]. Knight and Munro [156, 157] strongly promoted the
use of metaphors for software visualizations, especially their metaphor of
a software world. As an alternative to software worlds, 3D city visualiza-
tions [224] emerged which, as studies show [46, 183], are used in a variety of
different domains. Application domains include the visualization of software
quality metrics [32, 169–171], evolution visualization of large-scale software
system [333, 335–339], software development history visualization [284–286],
concurrency visualization [306], software component communication and de-
pendency visualization [89–93], software performance visualization [196, 210],
business process visualization [254], test case analysis [279–281], and they
have been used in virtual reality [87, 196, 250, 251] as well as within com-
puter games such as Minecraft [12–15]. To the best of our knowledge, we are
the first to use the software city metaphor in the domain of memory moni-
toring, and also extended the basic idea of software cities with features such
as reference inspection.

We developed our 3D memory city visualization using Unity [220]. Even
though Unity is mainly used as a game engine, it more and more also qualifies
as a general-purpose real-time 3D development platform [343].

2.3.3 Tree Visualizations

In Heap Evolution Analysis Using Tree Visualizations [328] and Memory
Leak Analysis using Time-Travel-based and Timeline-based Tree Evolution
Visualizations [330] (Best Paper Award), we present a new visualization
approach that uses well-known 2D tree visualizations in combination with
novel interaction features to convey information about an application’s heap
memory evolution over time.

Similar to our Memory Cities, which use a 3D city representation to
visualize the evolution of memory trees, we also explored how well-known 2D
tree visualizations can be leveraged to ease memory analysis. In the past, it
has been shown that tree visualizations are useful for a variety of analysis
tasks [24, 294, 308], yet their application in memory monitoring is rare. Thus,
we first performed an analysis of existing tree visualization techniques [261]
based on a requirements catalogue to select approaches that are suitable for
interactively visualizing heap memory evolution. For example, we excluded

37

a()

b()

c()

d()

e()

a()

f()

Heap

Pers

String

Buf

(a) Tree
(Node-link diagram).

Heap Pers

String

Buf

a()

b()

c()
d()

e()

a()

f()

(b) Sunburst.

Heap

Pers

String

Buf

a()

b()

c()
d()

e()

a()

f()

(c) Icicle.

Figure 8: Three visualizations showing the same data.

approaches that involve complex layout phases [9, 359] that may cause the
application to exhibit inconvenient lag, an important property of interactive
tools [44, 185]. We also surveyed existing studies on the usefulness and visual
appeal of tree visualizations [17, 50] and finally selected sunburst plots [6, 59,
283] as well as icicle plots [11, 115, 164] as our means of tree visualization.

In Figure 8, three different tree visualization techniques are shown that
depict the same data. In a node-link diagram (Figure 8a), the tree is vi-
sualized explicitly, i.e., the tree nodes are explicitly linked via edges [262].
Typically, these kinds of visualizations do not use the node size to convey in-
formation, rather the nodes are equal in size or scaled to fit their text. On the
other hand, the sunburst plot (Figure 8b) and the icicle plot (Figure 8c) use
variable-sized graphical elements to visualize tree nodes, i.e., larger graphi-
cal elements represent larger values in the respective tree nodes (for example,
more heap objects). The sunburst plot uses ring segments to visualize tree
nodes and the tree hierarchy is moving outwards, starting at a root circle in
the middle. The icicle plot uses rectangles as a means of visualization. In a
horizontal icicle plot all rectangles have the same width, and the underlying
tree node values are mapped to the rectangles’ heights. The tree hierarchy is
moving from left to right, starting at a root rectangle on the left that spans
the whole height. For example, both the sunburst plot and the icicle plot in
Figure 8 show that 50% of the heap is occupied by objects of type Pers, and
most of these objects have been allocated in method a().

The overall visualization approach and the order of operations is similar
to our memory cities approach, yet it has some relevant differences. Similar

38

to memory cities, the user first selects a combination of classifiers based on
which the heap is grouped at multiple points in time, which results in a
list of memory trees. Then, each of these trees is mapped to its respective
visualizations, i.e, to a sunburst plot as well as to an icicle plot. To ensure
layout stability, before mapping a tree to its visualization, we apply a user-
selected sorting strategy, e.g., sorting based on the absolute growth, on all
tree nodes to ensure as few spatial changes in the visualization when going
from one point in time to another.

What distinguishes our approach from others is that we provide two ways
to visualize the trees’ evolution over time. A screenshot of our tool can be
seen in Figure 9. In our timeline-based visualization (5), a time-series chart
depicts the overall memory consumption over time. For each data point,
the user can toggle the display of a corresponding memory tree visualization
above the chart. These memory trees are shown side-by-side, which allows
the user to inspect the evolution of the heap over time by comparing the
different heap states. In our time-travel-based visualization, two space-filling
tree visualizations show the monitored application’s heap memory at a given
point in time. (1) visualizes the complete memory tree with all its branches
and levels. By clicking on a node, users can select a drill-down node (shown
as a hatched segment in (1)) which is used as the root node in (2) to depict
the selected tree branch in more detail. Clicking on the root node drills out
again. Further, both visualizations are synchronized, e.g., the hovered node
in (2) (red border) is also highlighted in (1). Users can step back and forth
in time using buttons or a slider (3), causing the visualization to update
itself. Also, the visualization can be switched between sunburst plots and
icicle plots, the depicted metric can be switched between number of objects
and number of bytes, and the nodes’ sort order can be changed (4). Both of
our visualization techniques should help users to gain new insights about the
memory behavior of their application and to detect (problematic) memory
trends.

This web application has been developed using d3.js [37, 38, 45], with a
focus on usability and visual appeal. For example, when switching between
two points in time, the visualization uses tweening [341], i.e., smooth transi-
tions, to make it even more easy for users to track the development of tree
nodes over time.

39

2.4 User Guidance and User Behavior

During tool demonstrations and small-scale studies, we recognized that de-
tecting and inspecting memory anomalies can be a non-trivial task, even
with advanced tools. This is especially true for novice users who have no

Figure 9: Overview of our visualization tool. (1) and (2) show the time-travel-based
visualization, i.e., both show the heap at the same point in time. (1) displays the
complete memory tree with all branches and levels. Clicking on a tree segment
selects a new drill-down node (hatched segment in (1)) which is used in (2) as
root node to inspect a certain branch in more detail. Both visualizations are
synchronized, e.g., the hovered node in (2) is also highlighted in (1). On the top
right, the (3) time controls and the (4) visualization options can be found. Beside
them, the (5) timeline-based visualization is placed, which can show multiple trees
side-by-side.

40

experience in memory monitoring. Thus, this thesis also covers topics such
as how users behave during memory analysis (which we investigated through
a detailed user study) and how memory analysis tools can be designed to
make the analysis easier for novice users.

2.4.1 Automatic Detection of Suspicious Time Win-
dows

In Detection of Suspicious Time Windows in Memory Monitoring [319], we
present our first step towards automatic user guidance by automatically de-
tecting time windows during which a monitored application behaved abnor-
mally with regard to memory consumption. For example, continuous memory
growth may be the result of a hidden memory leak, while a strong fluctuation
in memory consumption may be the result of high memory churn. Without
guidance, it is up to the users (1) to know how suspicious memory behavior
looks like, and (2) to detect suspicious time windows on their own.

To support novice users, we developed three algorithms that inspect the
memory evolution of an application as time-series data [96]. They are able
to recognize time windows with suspicious (1) continuous memory growth,
(2) high GC overhead, or (3) high memory churn, i.e., strong fluctuations in
memory consumption. To achieve this, they use regression [206] and heuris-
tics that mimic human behavior. For example, when searching for a possible
memory leak, we employ a heuristic that looks for the longest time window

Figure 10: The heuristic-based memory leak detection algorithm, one of the three
algorithms we devised, searches for the longest window that does not contain strong
drops in the reachable memory.

41

that does not contain a strong memory consumption drop until the end of
the trace (see Figure 10). This time window is then checked against certain
thresholds such as a minimum window length and a minimum memory in-
crease. If a suspicious time window has been detected, it is highlighted to
the user and can then be inspected in more detail using the other analysis
techniques presented in this thesis.

2.4.2 Cognitive Walkthrough and User Study

In Evaluating an Interactive Memory Analysis Tool: Findings from a Cogni-
tive Walkthrough and a User Study [321], we assessed the usability [1, 161]
of our tool AntTracks Analyzer. Except for a single study [357], we were not
able to find existing work on the usability of memory monitoring tools, as
nearly all existing studies evaluate approaches with a focus on their perfor-
mance overhead.

Cognitive Walkthrough First, we performed a systematic cognitive walk-
through based on the Cognitive Dimensions of Notations
framework [26, 27, 29, 106–108]. This framework offers a vocabulary for
discussing usability issues and their trade-offs, including a set of cognitive
dimensions (CDs), which are summarized in Table 3. It has already been

Table 3: Cognitive dimensions used for the walkthrough (taken from [107]).

Dimension Description

Abstraction types and availability of abstraction mechanisms
Closeness of Mapping closeness of representation to domain
Consistency similar semantics are expressed in similar syntactic forms
Diffuseness verbosity of language
Error-proneness notation invites mistakes
Hard Mental Operations high demand on cognitive resources
Hidden Dependencies important links between entities are not visible
Premature Commitment constraints on the order of doing things
Progressive Evaluation work-to-date can be checked at any time
Provisionality degree of commitment to actions or marks
Role-expressiveness the purpose of a component is readily inferred
Secondary Notation extra information in means other than formal syntax
Viscosity resistance to change
Visibility ability to view components easily

42

successfully used in the past to assess software tools [20, 162, 189, 232, 235],
visual diagrams [28], temporal specification notations [166, 167], or visual
modeling languages [67, 340]. Thus, we decided to use it as a basis for our
walkthrough, in which we evaluated each view of our AntTracks Analyzer
tool by checking it against the various cognitive dimensions.

Three assessors, two developers of AntTracks and an experienced col-
league, used AntTracks and systematically rated its views with regard to
fourteen different cognitive dimensions. Each assessor rated each cogni-
tive dimension on each view using a color-based three-level classification:
(1) green: no issues found, (2) yellow: room for improvement, and (3) red: se-
rious flaws. In addition to that, every assessor also took textual notes re-
garding each cognitive dimension on each view. The results of these assess-
ments were then merged during a discussion session to ensure a common
understanding of all raised concerns. Figure 11 shows the main result of our
cognitive walkthrough: a table with merged evaluation results and detailed
textual assessor notes. Based on this table, serious design flaws were imme-
diately fixed in AntTracks, and it was also used as a decision tool on what
to focus on during a subsequent user study.

User Study Once serious usability flaws that were revealed during the
cognitive walkthrough had been fixed, we designed a user study to investigate
findings from the CD assessment in more detail. We relied on well-established
guidelines for the design of the study tasks [159], the subject selection [127],
as well as for conducting empirical studies [253].

As system under inspection, we chose the web shop application JPet-
Store 6 [205], since it is complex enough to mimic a real application, yet
small enough to be easily explained using a single UML diagram [36]. It has
also been used in many other studies [91, 136, 147, 148, 307]. We seeded the
system with two defects: one memory leak by keeping shop items alive, and
one memory churn hotspot by using Java streams inefficiently.

Software engineering students from our university used AntTracks to in-
vestigate the memory evolution of this application, and we observed them
while they tried to detect and fix these anomalies by solving five given tasks.
While some of the participants reported that they had used various tools
to inspect memory before [79, 104, 111, 133, 187, 207, 212, 216, 221, 296],
all of them classified themselves as novices. Also, we made sure that the
participants had not used AntTracks before.

43

Task
Detection:

Memory
Growth

Inspection:
Evolution
over Time

Inspection:
Single Point

in Time

Inspection:
Single Point

in Time

Detection:
Memory Churn

Inspection:
Evolution
over Time

Cross-Cutting

AntTracks
View

Overview TrendViz View
Heap State

View
Graph View Details View

Short-living
Objects View

Abstraction
Overview uses easy

terminology.
Abstraction into

chart series ->
improve by ...

Maybe terminology?

Data structure DSL ...

Nodes represent
groups of objects ->
understandable? ...

GC chart Is the content of the
tree view clear?

Terminology, icons,
etc.

Closeness of
Mapping

GC chart Drill-down feature may
not be clear.

The hierarchical ...

Tree visualized as
hierarchical

TreeTableView.

How to display
different elements

(Objects, GC roots, ...

GC chart Tree visualized as
hierarchical

TreeTableView.

Consistency
Evolution data is by
default presented as
charts in AntTracks.

Hierarchical data is by
default presented as

TreeTableView ...

To achieve
immersion and
closeness of ...

Other column names
than on heap state

view.

Are there annoying
inconsistencies?

Diffuseness
Overcrowded

classifier selection,
also see viscosity.

Classifier selection is
too complex.

Highlight most ...

Test that not too
many different no-
tations are used, ...

Explanatory text is too
long.

Many charts on
overview - too many?

Unnecessary or
unnecessarily

complex views?

Error-
proneness

Possible flaw: Chart
interaction.

Positive: Zoom ...

Opertations in context
menu clear?

User-defined ...

Make sure that
operations that would

create too ...

See Overview (Chart
interactions)

Hard Mental
Operations

Do users recognize
growing memory as

problem?

See abstraction &
closeness of mapping.

User is free to use any
classifier com-bination.

Certain ...

Even though users
can inspect graphs,
the detection of ...

Interpretation of
charts hard?

Normal classification
trees.

Hidden
Dependencies

Zoom is synced,
selection is synced.

Highlight selection in
parent chart better.

Also display ...

BUG: New
classification in heap

state may ...

Link from pie chart to
table clear?

Are there any
dependencies that

we did not find yet?

Premature
Commitment

Time window has to be
selected beforehand ...

Time has to be selected
beforehand

Time has to be selected
beforehand.

Once nodes are ...

Order of operations,
etc.

Progressive
Evaluation

User can check how
many of the suggested

time ...

Selected value is
shown for every level.

The more levels, ...

Position withing
classification tree

determines progress.

User can always check
the path he/she has

already ...

Provisionality
Can open a new heap

state without
problems, can ...

All settings can be
changed arbitrarily.

Abortion of long
running operations is

possible.

View is always reset-
able. Future work:
"What-if"-games.

Role-
expressivness

Memory chart clear.
GC chart probably not

directly clear.

Is it clear what a
single chart is

showing?

Should be clear, ask
if the tree table

visualization was ...

Are the different
types of nodes clear?

Charts maybe not
clear, check if users
understand what ...

Do users understand
the charts?

Secondary
Notation

Viscosity
Inflexibility of the

classifier selection.
Classifiers cannot ...

Order of classifiers
cannot be changed
using drag-and-...

Graph grows rather
fast.

Order of classifiers
cannot be changed
using drag-and-...

Visibility
New overview tab was

implemented: Now
Memory + GC ...

Drill-down feature
has been improved
(with table, etc.) ...

Should be clear, ask if
the tree table

visualization was ...

Legend was needed. Many charts at once,
may be

overwhelming.

Tab system.

Do users find out ...

Co
gn

it
iv

e
D

im
en

si
on

s

Figure 11: Such a table was used to document and classify the results of the CD
assessment. Each column represents an memory analysis tasks performed on one of
AntTracks’ views. Each of the 14 cognitive dimensions [26] is shown in a separate
row. Green cells indicate cognitive dimension for which no issues were found on the
respective view, yellow cells highlight cognitive dimensions that may be improved
on the respective view (i.e., these dimensions were possible subjects for a more
detailed evaluation in the user study), and red cells indicate serious problems that
had to be fixed before the user study. The texts in the cells show parts of the notes
that were taken by the assessors during the walkthrough. Certain view-CD-pairs
(cells with black text and thick border) were chosen to be inspected in more detail
during the user study.

44

We asked the participants to ‘think aloud’ [125, 132, 209] during their ses-
sion, i.e., to describe what they were doing and to comment on any concerns.
After they finished the given tasks, each participant was also interviewed on
the usefulness of the tool [69] and completed a usability questionnaire [208].

Once all study sessions were finished, we labelled all observations, state-
ments and interview answers to allow their systematic use. For example, the
think-aloud statement on AntTracks’ overview screen ‘In the chart, I can
see that my memory grows more and more, that is not good.’ received the
labels ‘Detects Growth In Chart ’ as well as ‘Recognizes Growth as Problem’.
For this, we adopted and adjusted an iterative labelling process [101] that is
similar to Open Coding [264]. Based on a common set of labels (that was
initially developed in a joint meeting), three coders individually coded all
observations and statements. In the case that an observation or statement
could not be mapped to an existing label, the coders collectively decided if a
new label should be introduced. In a final join discussion, the coders merged
their three individually labelled lists of observations and statements into a
single list, thereby discussing and resolving possible differences.

A common request across multiple participants was ‘better guidance’.
When asked, the participants confirmed our observations that guidance would
have especially been needed in the following tasks: (1) deriving knowledge
from the displayed information, i.e., interpreting the data; (2) selecting suit-
able next analysis steps based on the findings; and (3) guidance within the
IDE to help fixing the problems, instead of just finding their locations in the
source code.

Based on the overall results of the user study, we derived nine recommen-
dations for memory tool developers. Based on these recommendations, we
implemented various improvements in the AntTracks Analyzer to increase its
usability for novice users. This ranged from minor changes such as improved
chart interactions (to better match existing tools with similar functional-
ity [10, 178]) to fully-fledged user guidance, as will be discussed in the next
section.

2.4.3 Guided Exploration

Our paper Guided Exploration: A Method for Guiding Novice Users in In-
teractive Memory Monitoring Tools is currently under review at the 13th
Conference on Engineering Interactive Computing Systems (EICS).

45

Moni

Monitoring
Data

(2)
Highlight

(3)
Explain

(4)
Suggest

repeat

respective
UI element

rationale next analysis step

Monitoring Tool
(1)

Detect
suspicious

pattern

Application

Figure 12: The four steps of guided exploration: (1) Detection, (2) Highlighting,
(3) Explanation, and (4) Suggestion.

The previously outlined cognitive walkthrough and the user study made
it clear that novice users are easily overwhelmed when they are confronted
with complex memory analysis tools that focus on expert users. According
to our experience, being too complex for novices is a widespread problem
across (memory) monitoring tools. Thus, we developed a guidance method
called Guided Exploration that should help tool developers to integrate user
guidance into their monitoring tools. Such guidance increases the learnability
and ease-of-use of a tool and particularly supports novice users, i.e., users
with little or no background in the tool’s domain. This is an important goal,
since factor such as learnability have a strong influence on tool usage and
user attraction [249], and the use of monitoring and analysis tools can lead
to higher software quality [3, 236, 282, 299].

The idea of user guidance is not new. Folmer and Bosch [95] classify two
general guidance patterns that are typically used to increase tool usability:
(1) wizards [74, 297, 358], i.e., a linear series of dialog views that ask a num-
ber of questions to then automate certain tasks, and (2) context-sensitive
help [74, 194, 287], e.g., systems providing “how to” information or sugges-
tions during program use as part of an intelligent user interface [116, 131, 140,
193]. Context sensitive help is often applied in micro-learning and gamifica-
tion approaches [105, 113, 128] to improve the onboarding experience [246],
i.e., while introducing a person to a new tool to improve the person’s success
using it [274]. To the best of our knowledge, we are the first to describes
a general guidance method in the context of interactive monitoring tools,
especially in the domain of memory monitoring.

In general, when following our guided exploration method, tool develop-
ers should first identify their tool’s most important analysis tasks by building
a task model [99, 160, 184, 186, 195, 225]. For each step in these analysis
tasks, the tool then should provide four support operations, as shown in Fig-
ure 12: (1) First, the tool should automatically detect potential problems,
i.e., suspicious patterns (for example by using automated time series analy-

46

sis [19, 96, 179, 206, 260, 313] or by using algorithms inspired by recommender
systems [84, 240]). (2) To help users understand on what the suspicion is
based, the respective user interface elements should be highlighted [180, 345].
(3) Since users may require background knowledge to comprehend the high-
lighted information, explanations should be provided why the highlighted in-
formation is interesting [58, 139]. (4) Finally, based on the detected problem,
subsequent analysis steps should be suggested. By providing these support
operations, tools guide users through the whole analysis process, helping
them to explore the data until the root cause of a problem is found. At
the same time, being guided by the tool results in a learning-by-doing ef-
fect [256], i.e., users learn about the capabilities of the tool and how to use
them efficiently.

In addition to presenting guided exploration as a general concept, we focus
on its application in the domain of memory monitoring. We present two com-
plete guidance processes for (1) memory leak analysis as well as for (2) mem-
ory churn analysis, two of the most common analyses in memory monitoring
tools. To demonstrate how guided exploration can be implemented, we de-
scribe how we refactored our memory monitoring tool AntTracks Analyzer
to support this concept. In two user scenarios on different applications, we
resolve memory problems by just following the suggestions of the tool and
show how users profit from AntTracks’s new guidance feature.

We also discussed the applicability of guided exploration with authors
of a lock contention monitoring tool [122, 259, 263]. As we received positive
estimations of its applicability there, we are confident that guided exploration
can also be useful for other interactive monitoring tools outside of the domain
of memory monitoring [233, 234]. Thus, our work also encompasses a detailed
discussion of current limitations and future work and outlines how guided
exploration could be further improved and refined in the future. We hope
that our contribution will motivate and help other monitoring tool developers
to improve the learnability and accessibility of their tools.

2.5 Memory Churn

As a last topic in this thesis, we tackled another common memory anomaly
besides memory leaks: high memory churn. High memory churn is also
known as excessive dynamic allocations [227] or high allocation density [75]
and is a common performance anti-pattern [270–272]. As its name suggests,

47

high memory churn is the result of frequent allocation and collection of heap
objects. It negatively affects an application’s performance, since it takes time
to allocate the objects, as well as to collect them during garbage collection.
Even though modern garbage collectors mostly reclaim objects concurrently
to the application’s execution [61, 71, 94, 141, 181, 214], nearly all of them
require a stop-the-world pause at some point [182, 301], i.e., the application
is halted while the GC is running. Such GC pauses can make up a significant
portion of the application’s run time.

... Allocation event A
0
1

0
0 0 - -

0 1 2
B C D E

Birth time:
Free time:... Free event

0 1 2

t
A B B C AC DGC

Start
GC
End

GC
Start

GC
Start

GC
End

GC
EndE

Figure 13: For every heap object, its Birth Time and Free Time is reconstructed,
which is then used to calculate the object’s lifetime. Objects that are allocated
and freed during a memory churn hotspot are the hotspot’s major contributors
and should be investigated.

In this work, we present a novel approach to support developers in inves-
tigating high memory churn. We rely on our work on detecting suspicious
time windows [319] to detect memory churn hotspots, i.e., time windows
where unusually high amounts of garbage are produced and collected. Since
most objects are short-living [66, 182], we want to draw the user’s attention
to objects that died young, i.e., to those that died without surviving a single
garbage collection. Thus, if our algorithm detects a memory churn hotspot,
we calculate the lifetime of each object that was garbage-collected within
that hotspot. This lifetime information can be reconstructed from the mem-
ory trace, as we know between which GC runs each object was created and
during which it was collected, as shown in Figure 13. Since most objects are
allocated in relatively few methods [142, 305], we group all garbage-collected
objects by their lifetime and allocation site, which highlights those methods
that cause the most short-living garbage. Using our flexible heap object clas-
sification mechanism and visualizations, the user can also use other grouping
combinations to inspect the memory churn hotspot’s garbage. This enables
the users to pinpoints object types and code locations that should be in-

48

spected to reduce memory churn. To reduce the number of allocations, we
suggest to reuse existing objects [129, 190], for example by implementing
a caching strategy and/or by using design patterns such as the prototype
pattern or the flyweight pattern [97].

49

50

Part II

Publications

51

52

Chapter 3

Memory Traces and Their
Processing

3.1 Heap Object Classification and Multi-

Level Grouping

This section includes the paper [331] that describes our classification and
multi-level grouping approach, the core of the AntTracks Analyzer. Most of
our analyses and visualization approaches rely on aggregated memory trees
produced by this method.

Paper:
Markus Weninger, Hanspeter Mössenböck:
User-defined Classification and Multi-level Grouping of Objects in Memory
Monitoring. In Proceedings of the 2018 ACM/SPEC International Confer-
ence on Performance Engineering, ICPE 2018, Berlin, Germany, April 09-13,
2018. - Best Paper Nominee

53

User-defined Classification and Multi-level Grouping of Objects
in Memory Monitoring

Markus Weninger
Institute for System Software

Christian Doppler Laboratory MEVSS
Johannes Kepler University Linz, Austria

markus.weninger@jku.at

Hanspeter Mössenböck
Institute for System Software

Johannes Kepler University Linz, Austria
hanspeter.moessenboeck@jku.at

ABSTRACT
Software becomes more and more complex. Performance degrada-
tions and anomalies can often only be understood by using moni-
toring approaches, e.g., for tracing the allocations and lifetimes of
objects on the heap. However, this leads to huge amounts of data
that have to be classified, grouped and visualized in order to be
useful for developers. In this paper, we present a flexible offline
memory analysis approach that allows classifying heap objects
based on arbitrary criteria. A small set of predefined classification
criteria such as the type and the allocation site of an object can
further be extended by additional user-defined criteria. In contrast
to state-of-the-art tools, which group objects based on a single
criterion, our approach allows the combination of multiple criteria
using multi-level grouping. The resulting classification trees allow
a flexible in-depth analysis of the data and a natural hierarchical
visualization of the results.

KEYWORDS
Memory, Monitoring, Analysis, Tool, Grouping, Classification
ACM Reference Format:
Markus Weninger and Hanspeter Mössenböck. 2018. User-defined Classi-
fication and Multi-level Grouping of Objects in Memory Monitoring. In
ICPE ’18: ACM/SPEC International Conference on Performance Engineering,
April 9–13, 2018, Berlin, Germany. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3184407.3184412

1 INTRODUCTION
The increasing complexity of software systems requires tools and
techniques for monitoring the behavior of large and complex ap-
plications. Many of these tools trace an application by recording
events at run time and writing them to a trace file for later analysis.
For example, a memory monitoring tool could record object allo-
cations and garbage collector activity (e.g., object moves) so that
the application’s heap can be later reconstructed offline for various
analyses.

Such monitoring tools produce huge amounts of data, which
have to be classified, grouped and visualized in order to be helpful

ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ICPE ’18: ACM/SPEC
International Conference on Performance Engineering, April 9–13, 2018, Berlin, Germany,
https://doi.org/10.1145/3184407.3184412.

for the user. For example, users might want to know how many
objects of a certain type were allocated, at which locations they
were allocated, and how long they survived. Unfortunately, many
state-of-the-art tools fail to provide a flexible information retrieval
technique. Most of them only support hard-coded classification
criteria (often type is the only one) in conjunction with tabular
histograms, e.g., showing the number of instances per class and
the number of allocated bytes. They don’t allow users to classify
the data based on multiple criteria (e.g., type, allocation site and
age) and miss features to organize and aggregate the resulting
information hierarchically on multiple levels.

Our tool AntTracks [12, 13] is a memory monitoring tool for
Java based on the Java Hotspot™ VM [21] that records object alloca-
tions and garbage collection moves. It also offers offline analysis of
trace files, in which the heap can be reconstructed for any garbage
collection point in time. Bitto et al. [3] showed how to reconstruct
an application’s heap from traces produced by AntTracks. Based on
this work, Weninger et al. [25] presented first ideas on object classi-
fiers with the goal to make the classification of memory monitoring
data more general and customizable.

In this paper, we extend our work by presenting a generally ap-
plicable object classification and multi-level grouping concept. An
object classifier processes an object and classifies it based on a cer-
tain criterion derived from the object’s properties, e.g., classifying
heap objects based on their type. Objects with the same classifi-
cation result are grouped together. As already mentioned, most
state-of-the-art memory monitoring tools have two major restric-
tions: (1) They only offer a restricted set of classification criteria,
such as Type or Allocation Site, and (2) their grouping mechanism is
based on just a single classification criterion, i.e., single-level group-
ing. Our approach eliminates both restrictions. In addition to a set
of predefined object classifiers that are usable out-of-the-box, users
can define custom object classifiers as small dynamically-loaded
code snippets. Furthermore, the grouping is not based on a single
criterion but on dynamic classification trees, i.e., on multi-level
grouping based on multiple object classifiers. Such classification
trees store classification results in a hierarchical manner and allow
a more flexible top-down data analysis approach. The concepts of
object classification, multi-level grouping and classification trees
are not restricted to memory data and may therefore also be used
in other domains.

Our scientific contributions are (1) a novel concept of object
classifiers, a way to classify a collection of objects based on their
properties, (2) a multi-level grouping algorithm that classifies a
collection of objects based on a user-chosen set of object classifiers
into a classification tree, (3) various classification tree data structures

that differ in terms of classification throughput, memory overhead
and information loss, and (4) a quantitative evaluation based on
well-known benchmarks as well as a functional evaluation based
on typical memory analysis use cases.

2 BACKGROUND
AntTracks consists of a virtual machine based on the Java Hot-
spot™ VM and a memory analysis tool. The AntTracks VM records
memory events into trace files, which can then be analyzed of-
fline with the tool. Since our object classifier approach has been
integrated into this tool, it is essential to understand AntTracks’s
architecture and workflow.

2.1 Trace Recording
The AntTracks VM records memory events, e.g., events for object
allocations and object movements executed by the garbage collector
(GC), throughout an application’s execution and writes them into
trace files. Furthermore, it is also capable of recording pointers
between objects [11]. After loading such a trace file, the AntTracks
analysis tool provides overview of the memory behavior over time
and can reconstruct the heap’s state and layout for every garbage
collection point by incrementally processing the events in the trace.

2.2 Trace Reconstruction and Data Structure
Bitto et al. [3] show that a naïve approach, in which every heap
object is represented by a Java object in the analysis tool, would
result in an unacceptable memory overhead. Therefore, we devel-
oped the data structure shown in Figure 1. It separates the heap into
multiple spaces. For example, the ParallelOldGC’s heap consists
of one eden space, two survivor spaces, and one old space. Each
of these spaces encompasses various fields such as the starting
address, the size, or the kind of the space (i.e., eden, survivor or old).
Additionally, each space contains an address-to-LAB map. A LAB
(local allocation buffer) represents a sequence of objects that have
been processed together by the same thread (e.g., objects that have
been allocated by the same thread within the same thread-local
allocation buffer (TLAB)). Each entry in the LAB’s object array
represents one heap object and contains a pointer to a global cache
of object representations, called ObjectInfo. ObjectInfos are cached
structures that contain information which is shared by multiple
objects, namely the event which created the object (e.g., an allo-
cation by the interpreter), the object’s allocation site, its type and
its size. For array allocations, also the array length is stored. Using
this mechanism, many different objects can be represented by the
same ObjectInfo. Their addresses do not have to be explicitly stored

Heap

Space #1
Space #2
Space #3
Space ...

0x0100
0x0500
0x0600
0x0800

Space
Lab

0x0200
0x0600
0x0800

Space
address = 0x0100

ObjectInfos
Buffer
34b

Buffer::create

0x0100

Foo
60b

Meth::m

char[16]
48b

Foo::baz

address = 0x0100
pointers to =

objects =

pointed from =

spaces =

labs =

Figure 1: AntTracks’s data structure to represent a heap at a
certain point in time.

but can be computed from their LAB’s address. In addition to the
object array, each LAB contains two arrays of the same length to
store pointer information. For each entry in the object array, i.e.,
for each heap object, the respective entry in the pointers to array
contains the addresses of all objects that are referenced by this
object. Analogously, each entry in the pointed from array contains
the addresses of all objects that point to the respective object.

3 APPROACH
This section presents the domain-independent concepts of classifi-
cation (i.e., representing an object by a classification result made up
of one or more classification values) and multi-level grouping (i.e.,
arranging classification results in a tree structure). Examples on
how these concepts can be applied in a specific domain / tool will
be given in the context of Java and the classification of Java heap
objects within the AntTracks memory analysis tool. If a specific
heap state is shown, it has been reconstructed from a trace of a
DaCapo xalan benchmark run.

3.1 Source Collection and Source Objects
Classification and grouping always operate on a source collection
which consists of source objects of a certain type. AntTracks’s source
collection when classifying a heap state are the Java heap objects
that have been live at the given point in time.

The source collection does not have to be represented by a single
class but may be made up of multiple classes that interact with each
other, see Figure 2. One of these classes must act as the source col-
lection to the public. This class is required to provide functionality
to iterate the contained source objects. In AntTracks, as explained
in Section 2, a heap state is modeled by multiple classes (i.e., the
heap itself, which further consists of multiple spaces, which further
consist of multiple LABs), yet the Heap class acts as the source
collection to the public.

Similarly, the properties of a source object do not have to be
stored in a single object. In AntTracks, for example, they are stored
in different locations: Most of them are stored in the ObjectInfo,
but a heap object’s pointers are stored in the LAB, and its address
is calculated on demand.

Iterable
source collection

Conceptual Model Data Model

Source collection

Part 1 Part 2

Cache DB Some
class

Properties (via
 property functions)

Iteration

e.g., Space

e.g., Heap

e.g., LABSource
object

Property 1
Property 2
Property 3

Figure 2: Basic classification concepts: Source collection,
source objects and source object properties.

We distinguish the term object from the term source object be-
cause object is often used in the context of programming languages
to describe a certain instance of a class. A source object, on the
other hand, represents properties that may be stored in various
places.

3.2 Source Object Properties and Source
Collection Iteration

A source object is described by itsm properties based on its position
P within its source collection, as shown in Definition 3.1.

Definition 3.1. A source object at position P within its source
collection is described by itsm distributed properties:

soP is described by (prop1, prop2, . . . , propm)P
P ’s format depends on the source collection. For example, in

a list, source objects are identified by their index i , i.e., P = i . In
AntTracks’s heap data structure, a source object’s position, i.e.,
the position of a heap object within the reconstructed heap, is
described by (1) the space in which the object is, (2) the lab inside
the object’s space, and (3) the object’s position within the lab, i.e.,
P = (spaceIndex , labIndex , objectIndex).

Source collection iteration describes the task of visiting every
position in the source collection and obtaining the properties of the
respective source object. In AntTracks, iterating the heap means to
visit every element in the ObjectInfo array of every LAB in every
space, and collecting all properties of the currently visited heap
object, e.g., calculating its address based on its containing LAB.

3.3 Object Classifiers
As soon as a source object’s properties have been obtained, object
classifiers can be used to classify it. Object classifiers are entities
that classify a source object based on a certain criterion derived
from the source object’s properties. Each object classifier provides
a classify function, which takes one parameter per source object
property and returns the classification result. Additionally, every
object classifier contains the following meta-data:

Name. A unique name used to identify the classifier.
Return Type. The classify method’s return type.
Description (Optional). Useful to keep the classifier’s names

short while still offering additional information about the
classifier’s purpose.

Example (Optional). A possible classification result returned
by the classifier, e.g., java.lang.Integer returned by
AntTracks’s Type classifier. This can be shown as a clas-
sification sample to the user in the UI.

Cardinality. Each classifier can be of one of the follow-
ing three cardinalities: One-to-one, one-to-many or one-to-
hierarchy. Depending on the cardinality, the classifier’s clas-
sification result may be made up of a different number of
classification values, see Figure 3.

In AntTracks, object classifiers are used to classify Java heap objects
based on their properties such as the object’s type, its allocation
site and so on. Each classifier, e.g., the Type classifier, implements a
common Java interface (most importantly the classify method),
see Section 4.2.

3.3.1 One-to-one Classifier. A one-to-one classifier classifies a
source object by a unique classification value as classification result
(see top part in Figure 3). The returned classification value is an
instance of the classifier’s return type, i.e., a one-to-one String
classifier returns a single String as value.

O
n

e-
to

-m
an

y

* CV … Classification value

AntTracks Example:
Type

Concept

Source Object

One-to-one Classifier

Classification Value

Type Classifier

“my.package.X"

X x = new X();

AntTracks Example:
Feature

Concept

Source Object

One-to-many Classifier

CV #nCV #1 ...

Feature Classifier

“Feat. 4"“Feat. 1"

X x = new X();

AntTracks Example:
Allocation Site

Concept

Source Object

One-to-hierarchy Class.

Root Classification Value

Child Classification Value

Grandchild CV

Allocation Site Class.

“foo"

“bar"

void foo() {
 X x = new X();
}
void bar() {foo();}

Alloc.
Site

Caller

O
n

e-
to

-o
n

e
O

n
e-

to
-h

ie
ra

rc
h

y

addr = 0x10
type = X
...

Properties

Properties

Properties

addr = 0x60
type = X
...

addr = 0x90
type = X
...

Figure 3: Object classifiers classify a source object based on
its properties. The three types of classifiers vary in their clas-
sification value cardinality.

An example for a one-to-one classifier is AntTracks’s predefined
Type classifier, which classifies a Java heap object based on its type’s
name. Figure 4 shows a part of AntTracks’s analysis view where
each heap object has been classified using the Type classifier.Overall

Figure 4: Classifying heap objects by type in AntTracks.
shows the number and byte count of the whole heap, and each child
row represent a group of heap objects that have been classified by
the same value, i.e., that are of the same type. Each heap object is
part of exactly one group, i.e., one-to-one classification.

Filters. Filters are a special kind of one-to-one classifiers, which
are of type Boolean. Filters are used in the classification process
to define whether a source object should be further processed by
subsequent operations.

3.3.2 One-to-many Classifier. A one-to-many classifier classifies
a source object by multiple classification values, as can be seen in
the middle part of Figure 3. The result is a set of instances of the
classifier’s type: If the classifier’s type is String, a set of strings
will be returned.

An example for such a classifier is the predefined Feature classi-
fier in AntTracks. Assume that (possibly overlapping) code ranges
represent specific features [10]. The allocation site of an object may
then belong to one or more of these features. The Feature classifier
performs a feature mapping for every Java heap object and returns
the set of features to which its allocation site belongs. Figure 5,

Figure 5: Classifying heap objects by feature in AntTracks.
similar to Figure 4, shows again a part of AntTracks’s analysis view.
This time, each heap object has been classified using the Feature
classifier. Since the Feature classifier is a one-to-many classifier, each
heap object can be part of multiple groups (if the classifier returned
multiple values, i.e., features, for that heap object).

3.3.3 One-to-hierarchy Classifier. A one-to-hierarchy classifier
classifies a source object by hierarchical classification values, as
shown in the bottom part of Figure 3. Such a classifier returns
objects of the classifier’s return type in an ordered list. The object
at index 0 is the root object, and for all i > 0 the object at index
i − 1 is the parent of the object at index i .

An example for a one-to-hierarchy classifier is the predefined Al-
location Site classifier in AntTracks, which classifies an object based
on its allocation site and the allocation’s call sites. The root object
(at index 0) is the code location where the object was allocated, the
object at index 1 is the code location from where the allocating
method was called, and so on (i.e., the code location at index i is
the callee and the code location at index i + 1 the caller). Figure 6

s

Figure 6: Classifying heap objects by allocation site in
AntTracks.
also shows a part of AntTracks’s analysis view similar to Figure 5,
yet each heap object has been classified using the Allocation Site
classifier instead. First-level children of the Overall group, i.e., row
2 and row 6, are allocation sites where objects have been allocated.
Child relations represent the call chain, e.g., the call sites on row 3
and row 5 called the allocation site on row 2, and the call site on
row 4 has been the single caller to the call site on row 3.

3.4 Multi-level Grouping
Single-level grouping splits a set of objects into multiple groups.
Each group represents a distinct classification result (i.e., the clas-
sifier’s return value) and contains all objects that are classified by

this result. Typical single-level grouping only supports one-to-one
classifiers, i.e., each object is mapped to exactly one classification
value. In addition to introducing other classifier types beside one-
to-one classifiers, we present multi-level grouping to enhance the
flexibility and level of analysis detail.

3.4.1 Classification. Similar to single-level grouping, multi-
level grouping is an operation that groups a set of source objects.
Yet, instead of applying a single classifier, a list of classifiers is ap-
plied one after the other to every source object, and the sorted list
of their classification results (where each classification result may
be made up of multiple classification values) make up the source
object’s classification.

Obj. Classification and results in parentheses
O(1) [Age(1) → Feat(F1, F2) → AS(add, A)]
O(2) [Age(1) → Feat(F1, F2) → AS(add, B, D)]
O(3) [Age(3) → Feat(F1) → AS(main, C, A)]
O(4) [Age(3) → Feat(F1) → AS(clone, D)]
O(5) [Age(3) → Feat(F1) → AS(main, C, A)]
O(6) [Age(1) → Feat(F1, F2) → AS(add, A)]

Table 1: Example classification of 6 Java heap objects based
on three classifiers: Age (one-to-one), feature (one-to-many)
and allocation site (one-to-hierarchy).

Table 1 shows an example classification for six objects O(1) to
O(6). The three classifiers that get applied are (1) the Age classifier,
a one-to-one classifier categorizing heap objects based on their
number of survived GCs, (2) the Feature classifier (see Section 3.3.2)
and (3) the Allocation Site classifier (see Section 3.3.3). Each classifi-
cation contains three classification results, one per classifier, sorted
in the order in which the classifiers were applied.

3.4.2 Classification Tree. Raw information as presented in Ta-
ble 1 is not very helpful for the user. Classification trees bring such
classification results into a hierarchical format that allows (1) flex-
ible processing of data, such as merging, subgrouping, counting
and so on as well as (2) straightforward visualization, e.g., as a tree
table view, for user-driven analysis.

Figure 7 shows the creation of a classification tree for the objects
in Table 1. Rectangles (yellow) represent tree nodes containing
their keys as text, and arrows point to their child nodes. Smoothed
rectangles (blue) represent the data that a node is holding, i.e., the
source objects assigned to the node.

The following example explains how O(1) gets added to the
classification tree. The algorithm starts with the root node as the
current node. During the classification process, when looking for a
child node with a certain key that does not exist yet, a new child
gets created for that key.

The Age classifier returns 1 as the classification result for O(1).
For each current node (i.e., the root node), the child matching this
classification becomes the new current node, i.e. the status of cur-
rent node moves from the parent to the child. Then, the Feature
classifier is applied, which returns F1 and F2 as its classification val-
ues for the source object O(1). Both features get added as children
of 1 and become the new current nodes. Finally, the Allocation Site
classifier gets applied on the source object and returns the alloca-
tion site add and its caller A. add nodes are appended as children

root 1
F2

F1 add

add

A

A

Level 0 Level 1: Level 2: Level 3: Level 4:
Age Feature Allocation Site Call Site

O(1)

O(1)

B

B

D

D

O(2)

O(2)

root 1

F2

F1 add

add

A

A

O(1)

O(1)

Level 5:
Call Site

3 F1 main C A O(3)

B

B

D

D

O(2)

O(2)root

1

F2

F1 add

add

A

A

O(1)

O(1)

3 F1
main C A O(3)

B

B

D

D

O(2)

O(2)root

1

F2

F1 add

add

A

A

O(1)

O(1)

clone:16 D O(4)

3 F1
main C A O(3,5)

B

B

D

D

O(2)

O(2)root

1

F2

F1 add

add

A

A

O(1)

O(1)

clone:16 D O(4)

3 F1
main C A O(3,5)

B

B

D

D

O(2)

O(2)root

1

F2

F1 add

add

A

A

O(1,6)

O(1,6)

clone:16 D O(4)

1

2

3

6

5

4

Age … One-to-one classifier
Feature … One-to-many classifier
Allocation Site (incl. Call Sites) … One-to-hierarchy classifier

Classification

 Age(1),
 Feat(F1, F2),
 AS(add, A)

 Age(1),
 Feat(F1, F2),
 AS(add, B, D)

 Age(3),
 Feat(F1),
 AS(main, C, A)

 Age(3),
 Feat(F1),
 AS(clone, D)

 Age(3),
 Feat(F1),
 AS(main, C, A)

 Age(1),
 Feat(F1, F2),
 AS(add, A)

 O(1)

 O(2)

 O(3)

 O(4)

 O(5)

 O(6)

Figure 7: Step-by-step multi-level grouping of six heap ob-
jects into a classification tree based on age, feature and allo-
cation site.

to all current nodes (i.e., to F1 and F2) and A nodes are appended to
the two add nodes.

Since no more classifiers have to be applied, the object is then
added as a data entry at the current nodes, i.e., at both A nodes.
This is the state that is shown in the top part of Figure 7. To reach
the state at the bottom of Figure 7 the above steps are repeated for
every source object O(2) to O(6).

Figure 8 shows an example on how classification trees get visu-
alized in AntTracks. It displays a part of AntTracks’s heap state
analysis view where all heap objects have first been classified by
Age, then by Feature, followed by Allocation Site.

3.5 Data Representation in Nodes
Source objects have to be associated with certain nodes of the
classification tree. Various approaches are possible, some of which
sacrifice information in favor of reduced memory overhead (see
Figure 9).

Figure 8: AntTracks’s visualization of classification trees.

3.5.1 Lossless Approaches. Information lossless approaches al-
low to retrieve all properties of all source objects stored in the
classification tree. This is needed if the classification tree should
later be used for further complex processing.

Naïve List Approach. A naïve approach is to represent the node’s
data as a list of objects. A source object’s properties (which are
distributively stored) would have to be combined into a new object
on demand (e.g., new MyObject(p1, p2, p3)).

We chose to store source object properties in a scattered way
exactly because we want to prevent the creation of class instances,
which would lead to increased memory footprint (e.g., due to object
headers). Further, the more live objects reside in the heap, the
less memory is available for new allocations. This results in more
frequent GC invocations, which may slow down the application.

Property List Approach. Instead of storing a list of objects, this
approach only stores a list of one of the source object’s properties.
This is possible if the object’s remaining properties can be derived
from this property, which is the case for nearly all use cases. In
AntTracks, for example, heap objects can be identified by their
address. The downside of this approach is the additional indirection
when obtaining the other properties on demand.

3.5.2 Lossy Approaches. convey a feeling The lossless ap-
proaches retain object identity, i.e., we know exactly which source
objects have been added towhich tree nodes. This level of detail may
be traded for less memory-consuming tree node data structures.

Mapping Approach. This approach relies on a map, where the
key’s type is application-dependent and the value is represented
by a counter.

When adding a source object to a node, information of interest
about the object gets extracted as the object key. This object key is

C
o

u
n

te
r

Source object
create

instance

Tree node | | | | | | |

stores

Property 3

Property 2

Property 1
Object

N
aï

ve
 L

is
t

P
ro

p
er

ty
 L

is
t

Source object
pick ident.
property

Tree node | | | | | | |

stores

Property

M
ap

p
in

g

Source object
extract

key

Tree node

Key #2

Key Counter
Key #1 150
Key #2 500
Key #3 70

increase count
Source object

extract
value

Tree node

20

150
500

add

inc

2nd counter
Count

Figure 9: Two lossless list approaches and two lossy ap-
proaches based on counters to store node data.

then looked up in the node’s data map and the respective counter
gets incremented (or created if it does not yet exist).

It is crucial to take two aspects into account when choosing
the object key: (1) What data should be reconstructed from the
classification tree and (2) that many source objects should share
the same object key to keep the number of entries in the map
small. For example, AntTracks uses the object size (in bytes) as
the object key. While this allows to only aggregate the number of
objects and number of bytes represented by a certain node, it offers
high memory saving potential which is discussed in more detail in
Section 5. For example, if 1000 objects of only three different sizes
get added to the same node, this approach just needs three key-value
pairs compared to 1000 list entries as in the list approaches.

Counter Approach. This approach is designed to have the lowest
memory footprint, while giving up flexibility and accepting the
highest loss of information. Every time a source object gets classi-
fied at a certain node, counters stored in the node get incremented
based on a fixed scheme. In AntTracks, for example, we could store
two counters, one for the number of objects and one for the number
of bytes classified at the given node.

This approach even loses information about specific properties.
For example, it would not be possible to determine how many heap
objects of a certain size have been classified, which is possible using
the mapping approach.

3.6 Aggregation and Duplicate Detection
Using a one-to-many classifier may cause a source object to be
added to multiple nodes. To avoid wrong results when aggregating
this data, we have to detect duplicate entries in the tree and ignore
them.

3.6.1 List Approaches. Since the entries in every data list are
distinct, the lists can be treated as sets. The set of objects in a tree
with head n can be computed recursively as the union of the objects
in n and in the subtrees (Equation 1). Duplicates will be removed
and the resulting set can be used for counting.

objects(n) = n.data ∪ (
child⋃

n .children

objects(child)) (1)

3.6.2 Mapping Approach. By extracting a source object’s object
key, we lose the object identity which would be needed for duplicate
detection. Therefore, we additionally have to keep track of multiple
classifications. This can be done by installing a second map, i.e., the
duplicate map, in each node.

If a source object is added to more than one subtree of a node
n, a counter for the object’s key is incremented in the duplication
map of node n, which is later used for sifting out duplicates when
the total number of objects in a tree is computed.

3.6.3 Counter Approach. Similar to the mapping approach, ev-
ery node could store a duplicate counter per data counter. In all sit-
uations where a duplicate counter in the mapping approach would
be incremented, the duplicate counter in the counter approach is
incremented.

3.7 Advanced Classifiers
For advanced use, a special kind of classifiers are transformers. So
far, a classifier always took a source object’s properties as its input
and returned one or more classification values as classification
result. A transformer takes a source object and (1) transforms it

Source object

Classifier

Grouping

Transformer

Transformed
object ...

Transformed
object

...

Classifier

Classifier

...

Classifier

Step 1: Transformation

Step 2: Classification

Step 3: Grouping

Step 1: Transformation

Properties

Properties Properties

Figure 10: Transformers transform a source object into a set
of other source objects, classify each of these objects and
group them.

into a set of other source objects, (2) classifies each of these objects
based on a selected set of object classifiers, and (3) multi-groups
them based on their classification results (see Figure 10).

A use case for transformers in the domain of memory monitoring
is pointer analysis. First, a heap object gets transformed into the
set of all objects that are referenced by it. Second, this set of objects
gets classified based on a list of other classifiers selected by the
user. Finally, the classification results get multi-grouped into the
resulting classification tree. For example, this can be used to analyze
type-points-to-type graphs, as done by Jump and McKinley [8, 9].

4 IMPLEMENTATION
The previous section explained the domain-independent core con-
cepts of classification and multi-level grouping based on object
classifiers alongside some examples in the context of AntTracks.
This section discusses some implementation details on how these
concepts have been incorporated into AntTracks and its memory
analysis.

Property Additional info
address
space Space index, name, address, length, ...
type Name, package, fields, ...
size The object’s size in bytes
isArray true / false
arrayLength -1 for non-arrays
allocationSite Call stack, ...
pointedFrom Addresses of all referencing objects
pointsTo Addresses of all pointees
eventType Allocation event (alloc. subsystem, ...)

Table 2: Source object properties for heap objects.

4.1 Source Objects: Java Heap Objects
AntTracks’s source objects are Java heap objects that were alive
in the monitored application at a given point in time, i.e., the heap

objects that make up a certain heap state. Table 2 shows which
properties make up a Java heap object in AntTracks, i.e., the source
object properties. Every object classifier classifies a Java heap object
based on a criterion derived from these properties.

4.2 Object Classifiers
In AntTracks, classifiers implement a common base interface. This
interface defines the classify method, with its parameter signa-
ture matching the Java heap object properties.

To provide a convenient analysis environment for most use cases,
AntTracks comprises multiple predefined object classifiers. These
classifiers, listed in Table 3, can be used and combined freely on
every heap state. An example implementation of the Type classifier
can be seen in Listing 1.

Listing 1: Implementation of the Type classifier in
AntTracks.
public class T y p eC l a s s i f i e r implements C l a s s i f i e r < S t r i ng > {

// ... Fields modifiable by user , e.g., showPackage ...
@Override public S t r i n g c l a s s i f y (

long addre s s , Space space , Type type , long s i z e ,
boolean i sAr ray , int ar rayLength , A l l o c a t i o n S i t e a l l o c S i t e ,
long [] pointedFrom , long [] po in tsTo , Event eventType) {
return type . getName (showPackage) ;

}
}

When a heap state is opened in AntTracks, a default classification
(Type classifier followed by theAllocation Site classifier) gets applied.
This gives a fast overview that shows which types have the most
living objects, and where these objects have been allocated.

4.3 Heap Iteration
We implemented three different iteration approaches for
AntTracks’s heap data structure to evaluate their influence on the
classification speed.

4.3.1 Java Streams. This approach has been implemented as a
baseline for performance comparison. It uses the default technique
for Java streams on custom data structures by implementing a
Spliterator, the concurrent counterpart of an Iterator.

Java Stream Memory Overhead. The main problem with Java
streams and spliterators is that they are generic classes working
on Java objects of type T. Therefore, to support Java streams in
AntTracks, we have to transform AntTracks’s source objects (i.e.,
heap objects that are stored as scattered properties) into instances
of an auxiliary HeapObject class. These short-living objects (which
only exist while the stream is processed) may put unnecessary
burden on the garbage collector, especially for large heap states.

4.3.2 Fake Spliterator. This approach relies on a custom iter-
ation class that provides a tryAdvance and a trySplit method,
similar to the Spliterator implemented for the Java stream ap-
proach. However, this fake spliterator does not inherit from Java’s
Spliterator interface, but only mimics its behavior. More specifi-
cally, the fake spliterator’s tryAdvance does not match the official
interface but has been changed in a way that allows the fake split-
erator to process a heap object’s properties separately, which has
the advantage of avoiding the need for auxiliary objects.

4.3.3 Integrated Iteration Functions. A basic implementation of
this approach already existed in the previous versions of AntTracks.
It provided sequential iteration functions on each data structure
level, i.e., on the Heap, the Space, and the LAB. In our approach, we
added support for parallel iteration, which significantly increased
performance.

4.4 User-defined Classifiers
Classification in AntTracks is not restricted to predefined classifiers,
but allows users to define new classifiers, i.e., user-defined classifiers,
in two different ways: (1) By using Java’s Service Provider Interface
(SPI) concept, where new classifiers can be added to AntTracks
as pre-compiled JAR files, and (2) by using in-memory on-the-fly
compilation to support classifier development at run time.

4.4.1 Service Provider Interfaces (SPI). A service provider inter-
face is a set of public interfaces and abstract classes that a third-party
developer can implement. In AntTracks, the SPI encompasses ab-
stract classes for classifiers, transformers, and filters. All of them
define an abstract classify method which can be implemented
by third-party developers in a sub-class. If a JAR containing such
an implementation is detected on AntTracks’s class path (using
convenient SPI methods), it will be added to the list of available
classifiers or filters.

4.4.2 On-the-fly Compilation. It is also possible to define new
object classifiers, transformers and filters at run time. For example,
whenever users have to select one of the available classifiers, they
are offered to define a new one. The user then has to provide the
classify method, the classifier’s name, description, example and
cardinality. This information gets merged into an object classifier
template file which will then be compiled with a modified Java
compiler that enables compilation without generating a Java class
file on disk, i.e., the classifier gets compiled in-memory and on-the-
fly.

This compilation relies on the JavaCompiler instance returned
by ToolProvider.getSystemJavaCompiler(). This instance al-
lows modifying the compilation process in various ways. The most
important step is to provide a modified JavaFileManager. Instead
of providing a stream to a file on disk, AntTracks’s version returns
a ByteArrayOutputStream that keeps a class’s byte code stored
in memory. Additionally, the file manager’s class loader has been
modified to not only look up classes stored on disk, but also to look
up classes that are stored in memory.

5 EVALUATION
To evaluate the applicability of AntTracks’s object classifiers and
multi-level grouping we show how one can use the tool to detect
memory leaks and how to reproduce memory classification done
in related work.

Even though lossless classification tree implementations may
be needed in certain situations, a lossy approach provides enough
information for most use cases, including AntTracks’s heap state
analysis. Therefore, another goal of this evaluation is to analyze
how much classification throughput can be gained as well as how
much memory can be saved by accepting the information loss due
to using a lossy classification tree implementation. All of these

Name Description
Address Classifies objects based on their address.
Type Classifies objects based on their type’s name.
Allocating Subsystem Either VM, Interpreter, C1-compiled code or C2-compiled code.
Array Length Classifies array objects based on their length. Non-array objects are classified as -1.
Object Kind Either Instance (class instances), Small Array (< 255 elements), or Big Array (≥ 255 elements).
Space Classifies objects based on the heap space in which they are contained.
Space Mode Classifies objects based on the mode, i.e., a GC-dependent space info, of their containing heap space.
Space Type Classifies objects based on the type (e.g., Eden) of the space in which they are contained.
Feature Classifies objects based on a loaded feature-to-code mapping file.
Allocation Site Classifies objects based on their allocation site (allocating method + var. number of call sites).
Pointed From This transformer is used to classify the objects that reference a given object.
Points To This transformer is used to classify the objects that a given object references.

Table 3: Predefined classifiers in AntTracks.

analyses have been conducted based on well-known benchmarks
using three different classifier combinations: (1) Type classifier
(2) Allocation Site classifier (3) Type classifier, followed by the
Allocation Site classifier.

Setup. All measurements were run on an Intel® Core™ i7-4790K
CPU @ 4.00GHz x 4 (8 Threads) on 64-bit with 32 GB RAM and
a Samsung SSD 850, running Ubuntu 17.10 with the Kernel Linux
4.13.0-16-generic. All unnecessary services were disabled in order
not to distort the experiments.

5.1 Performance Evaluation
The goal of this evaluation is to gain insight into how much the
classification throughput increases when giving up object identity
and if Java streams are suitable to iterate distributed source ob-
jects. Thus, we compare both implemented tree node types (i.e., the
property list approach (lossless) and the mapping approach (lossy))
using three different parallel heap iteration techniques (i.e., Java
stream, fake spliterator and integrated iteration).

(a) Lossy mapping approach (b) Lossless property list approach

Figure 11: Performance comparison between the mapping
approach and the property list approach.

We used the DaCapo [4] and the DaCapo Scala [6] benchmark
suites, in which, according to Lengauer at el. [14], h2 and factorie
are the benchmarks with the largest live set. We chose to only
analyze these two benchmarks since the other benchmarks from the

mentioned suites do not provide heap states in the same dimension.
Both trace files (h2: 2.9 GB trace file covering 26 garbage collections
with 15,800,000 objects on average per heap state; factorie: 19.5
GB trace file covering 205 GCs with 8,600,000 objects on average
per heap state) have been parsed and a classification tree has been
generated at every garbage collection end using every parameter
combination (i.e., iteration type, classifier, tree type).

Figure 11a shows the average throughput of this classification
tree generation when using the lossy mapping approach, while
Figure 11b shows the throughput using the property list approach.
We can see that the mapping approach is orders of magnitude faster
than the property list approach due to the work that is needed
to add the object’s address to the sorted data list when using the
property list approach. This strengthens our assumption to use the
mapping approach when object-identity loss is acceptable.

Furthermore, it shows that heap iteration using Java streams is
in general slower than the other two approaches. Especially for
larger heap states, the streaming approach falls behind the other
approaches. As hypothesized, this may be due to the temporary
objects that have to be generated during the iteration. Independent
of the domain this indicates that Java streams are not suitable for
iterating distributively stored source objects. The fake spliterator
approach is able to scale and parallelize the best, which explains its
advantage when using the property list approach.

5.2 Memory Footprint
Beside providing the better classification performance, it is inter-
esting to see how much memory can be saved when using the
object-identity-losing mapping approach instead of the property
list approach.

We analyzed a traced run of every DaCapo and DaCapo Scala
benchmark and reconstructed the heap state after every garbage
collection, if the heap state contained at least 200,000 objects. The
Type classifier showed that the number of types of live objects
at a certain point in time is approximately the same across all
benchmarks (around 500 objects), independent of the number of live
objects. Some of the benchmarks have few live objects with a high
number of different allocation site nodes (i.e., few objects allocated
at different sites) while some benchmarks with a large number of
live objects only generate a small number of allocation site nodes
(i.e., a lot of objects allocated at the same sites). Nevertheless, the
tree never reached a critical size in terms of node count for any of
the tested applications (tree size always below 20,000 nodes).

●●●●
●
● ●

●
● ●

●

● ●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

● ●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●●●●●●●●●●

●●●●●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●

●

●

●

●
●
●●
●
●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●

●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
● ●

●

●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●

●

●

●
●

●

●

●●●●●●●
●
●●
●
●●
●
●●
●
●●
●
●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

● ●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●●●●●●●●● ●
●
● ●

●
● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●●● ●●
●●●

●●●●●●●● ●
●
●●

●

●

●●

●

●
●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●

●

●

●
●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●

●

●

●
●●●

●

●

●
●●●●●●

●

●

●
●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●

●

●

●●

●

●
●●●●●●

●

●

●
●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●
●

●

●
●●0

10,000

20,000

30,000

40,000

50,000

0 10 20

Objects [in millions]

A
vg

. c
ou

nt
er

 v
al

ue
 in

 m
ap

 e
nt

ry

● ● ●Allocation Site classifier Type classifier Type classifier and Allocation Site classifier

Figure 12: Average object count per datamap entry using the
mapping approach.

Figure 12 shows that with a rising number of classified objects,
the average number of objects represented by a single data map
entry in the mapping approach increases. For example, classifying
about 10, 000, 000 objects based on the Type classifier resulted
in data map entries each representing about 18, 000 objects on
average (see regression line in Figure 12). Assume that the property
list approach is implemented using arrays and needs 8 bytes per
classified object (i.e., the heap object’s 64-bit address excluding
memory needed by auxiliary data structures). Let’s further assume
that each map entry in the mapping approach points to a key
(containing an int) and a value (containing a long), thus taking up
3∗16 (3∗VM header)+2∗8 (2∗pointer)+4 (int)+8 (long) = 76 bytes.
If one such data map entry represents 18, 000 objects, the property
list approach (8∗ 18, 000 bytes) consumes about 1900 times as much
memory as the mapping approach (76 bytes).

Based on these results and those presented in Section 5.1, we de-
cided to use classification tree generation based on fake spliterator
heap iteration and the mapping approach in AntTracks.

The next section shows that the lossy mapping approach still
provides enough information to detect memory leaks and allows
general memory analysis.

5.3 Functional Evaluation
AntTracks’s goal is to provide a general memory monitoring and
analysis tool that primarily focuses on developers and their needs,
for example performing memory leak detection. In addition, user-
defined classifiers, their flexible combination, and multi-level group-
ing allows developers and also researchers to use AntTracks for
more general and experimental memory analyses.

5.3.1 Memory Leak Detection. Memory leak detection is the
main task developers perform when using AntTracks. To evalu-
ate AntTracks’s ability to allow memory leak detection, as well
as finding the root cause, we used it on an example artificial ap-
plication that uses a stack1 for storing its data. It first pushes 1
million objects onto the stack, then pops these 1 million objects,
followed by another 100,000 pushes and another 100,000 pop op-
erations. Opening the application’s trace displays the overview
shown in Figure 13. We can clearly see that we miss a drop of the
number of live objects after the 1 million objects got popped from

1https://www.codeproject.com/Articles/30593/Effective-Java; Item 6: Eliminate obso-
lete object references; last accessed October 17, 2017

Figure 13: Object count overview of the buggy stack imple-
mentation.

the stack, as we would expect in a non-faulty implementation. To
further investigate this problem, we utilized AntTracks’s heap diff-
ing functionality, which also supports object classifiers and allows
to analyze heap changes over time. Figure 14 shows the application

Figure 14: Heap diff of the buggy stack implementation.

of the Type classifier followed by the Allocation Site classifier on
the time frame selected in Figure 13 (black dots). On the type node
(2nd row, at.jku.data.TestObject), we can see that only 100.000
objects of this type were deallocated (red bar), while exactly the
same amount of objects were allocated (green bar). 900, 000 objects
stayed alive during the whole time frame (blue bar). Looking at the
indented allocation site nodes (3rd and 4th row), we see how many
TestObjects that were originally allocated at these sites were born,
have survived, or have died.

Figure 15: Pointer analysis of the buggy stack implementa-
tion.

Additionally, we would like to knowwhich objects keep those ob-
jects alive. Figure 15 shows a rather advanced application of object
classifiers: It first classifies a given object by its type, then trans-
forms that object into its set of referencing objects, classifies them
by type and then transforms them again into their sets of referenc-
ing objects, finally classifying those objects by type. It shows that
the TestObject instances are referenced from the type Object[],
which is again referenced by the type BuggyStack. With this infor-
mation, it is easy to find the bug in the source code. BuggyStack is
a faulty stack implementation that keeps references to previously

stored objects even after pop operations until a subsequent push
operation overwrites them.

Figure 16: Object count overview of the fixed application.

Figure 17: Heap diff of the fixed application.

Figure 16 and Figure 17 show the object counts and the heap diff
results after the stack implementation was fixed.

5.3.2 Memory Analysis. Developers as well as researchers may
want to classify heap objects based on a criterion not yet covered
by one of the predefined classifiers, which is possible by writing
a user-defined classifier. To showcase the implementation of user-
defined classifiers, we searched for related work on heap object
classification. For example, Mitchell and Sevitsky [17] classified
heap objects in terms of collection health and instance health. Both
classification criteria have been successfully implemented as user-
defined classifiers and can be used and freely combined with other
classifiers in AntTracks.

Collection Health. Collection health classifies every heap object
as one of four types, depending on its use inside collections. (1) head,
the head of a collection, e.g., HashMap, (2) array, array backbones,
e.g., HashMap$Entry[], (3) entry, recursive list-style elements, e.g.,
HashMap$Entry, and (4) contained, anything else.

The classification for collection health is a typical use-case for a
user-defined one-to-one object classifier. Every object gets classified
by exactly one value, i.e., either head, array, entry or contained.
According to Mitchell and Sevitsky, every object that is an array of
a reference type gets classified as array. This is straightforward to
check in the classifier implementation2 since we know the object’s
type. If an object is not classified as array, it falls in the entry
category if it is of a type T and references an object of the same
type T. This check can be accomplished by following and analyzing
the pointers in the object’s pointer array. If the object has not been
categorized as array or entry, the object’s pointers are checked
again. If one of them references an object that is a primitive array
or is classified as array or entry, the object gets classified as head.
Otherwise, the object gets classified as contained.
2http://ssw.jku.at/General/Staff/Weninger/AntTracks/ICPE18/
CollectionHealthClassifier.java

Instance Health. Instance health splits every heap object’s bytes
into four different parts: (1) primitive, which encompasses prim-
itive array elements and primitive fields (2) header, the memory
consumed by the virtual machine (3) pointer, memory occupied by
references between objects (4) null, memory reserved for pointers
but set to null.

The classification for instance health has been reproduced as
a user-defined transformer in AntTracks3. The source object gets
transformed into four virtual objects, one per instance health part,
and every part gets assigned its appropriate size (i.e., byte count).
The amount of bytes of the primitive part can be calculated by
iterating the type’s fields and filtering them for primitive types.
The information about the header size (which depends on the VM
architecture, as well as whether compressed oops are used) is stored
in the symbols information generated alongside the trace file. Since
an object’s pointer array contains one entry per pointer, either with
the referenced object’s address or −1 if the pointer is null, the bytes
made up by pointers and null can also be easily calculated.

The judgment schemes presented by Mitchell and Sevitsky, i.e.,
the ways how to interpret combinations of both classifiers, can now
also be analyzed in AntTracks by using both classifiers at the same
time. Furthermore, they can be used in combination with any other
classifier that AntTracks provides.

Mitchell and Sevitsky used “the built-in facilities of Java virtual
machines (JVM) to trigger writing a snapshot to disk” [17]. Before
being able to write an analysis tool for such heap snapshots, one
must obtain knowledge about the binary file format, how to parse
it, and how to combine the parsed data into a convenient data
structure. Depending on the use-case, results also have to be pre-
sented graphically to the user to allow user-friendly manual analy-
sis, which also may take up a significant amount of development
time. Compared to that, the implementation of the two classifiers
presented above took about two hours each, including writing unit
tests (by checking the correct classification of known Java classes
such as HashMap). The classify methods of both classifiers cover
less than 150 lines of code (LOC). Therefore, we claim that writing
user-defined classifiers takes less work, with regard to person hours
as well as LOC. Additionally, AntTracks provides convenient visu-
alization out-of-the-box and the possibility to combine the newly
developed classifier with any other available classifier.

6 RELATED WORK
Current state-of-the-art tools share one common problem. Nearly
all of them represent heap states (or the change of the heap over
time) only as type histograms. No free selection of classification
exists, not even to mention multi-level grouping. Even basic infor-
mation such as an object’s allocation site is not available in many
cases, since most tools rely on heap dumps that do not provide
that level of detail. Still, some tools provide additional functionality
such as pointer information on object level (plainly reconstructed
from a heap dump).

The most basic approach supported by the Java Hotspot
VM are the -XX:+PrintClassHistogramBeforeFullGC and
-XX:+PrintClassHistogramAfterFullGC flags. They cause a class

3http://ssw.jku.at/General/Staff/Weninger/AntTracks/ICPE18/
InstanceHealthClassifier.java

histogram to be printed to the console on every full GC. JCon-
sole [18] can connect to a running Java application and retrieves
data from its Java Management Beans. Due to the restricted func-
tionality of the memory bean, it can only show the current heap
memory consumption separated into eden space, survivor space,
and old space. jhat [19] can be used to analyze a Java heap dump file
which has previously been generated using the jmap tool. It starts a
webserver that hosts the heap dump results and can be accessed via
a webbrowser. Beside a type histogram, also the rootset (i.e., objects
that are referenced by a GC root) can be shown. Visual VM [23] is a
general performance monitoring tool for Java applications that pro-
vides memory analysis based on heap dumps. In addition to a type
histogram, it allows users to analyze individual objects of a certain
type, including functionality to follow an object’s pointers and go
to the referencing object. It is also able to calculate the retained set
of objects. The retained set of an objectX is the set of objects which
would be removed when X is garbage collected. In addition to that,
the Eclipse Memory Analyzer (MAT) [7] also allows users to analyze
the application’s dominator tree [15]. The Netbeans profiler [20] is
just a slimmed down version of Visual VM and is integrated into
the Netbeans IDE.

Other approaches such as the one presented by Aftandilian et
al. [1] or De Pauw and Wim [22] focus on visualizing a heap state’s
object graph. To reduce the complexity of such graphs, certain
reduction operations such merging, cutting, and so on, are applied.
Such approaches may work well for pointer analysis, e.g., which
types references which types, yet most of them lack the flexibility
to take other properties into account, e.g., heap spaces or allocation
sites.

A query technique that is integrated into some of the mentioned
tools is the Object Query Language (OQL) [2, 5]. It has been de-
veloped by the Object Data Management Group and is an SQL-
like query language used to query objects from object-oriented
databases. The downside of OQL is its complexity, which results
in the problem that no vendor implements the whole standard.
For example, the Eclipse Memory Analyzer (MAT) as well as Visu-
alVM only allow queries in the form of SELECT <select clause>
FROM <from clause> WHERE <where clause>.Where clauses can
be represented in our approach using filters, while select clauses
can be represented using an object classifier. Multi-level grouping,
as supported in our approach, is neither possible in MAT nor in
VisualVM.

7 FUTUREWORK
The concept of object classifiers and multi-level grouping as well as
their implementation in AntTracks opened a number of interesting
ideas. This section will shortly introduce these ideas and point out
possible ways how to approach them.

Extended Pointer Support in AntTracks. Currently, Ant-Tracks
provides only basic support for pointer analysis. For every object, it
records the referencing and the referenced objects and makes them
available for offline analysis. However, state-of-the-art tools [1,
16] often use advanced data structures such as dominator trees
for analyzing whole pointer graphs. We plan to use similar data
structures also inAntTracks to compute, for example, all objects that
are reachable from a certain object (i.e., the transitive closure [24])

as well as the amount of memory that is kept alive by a specific
object (i.e., the retained size).

Heap Diffing. Weninger et. al. [25] suggest heap diffing, i.e., an-
alyzing how the heap changes over a certain time span, which is
currently already supported to a certain level in AntTracks. The
grouping and classification techniques that were described for heap
states in this paper can partially also be applied to heap diffing.
Extending classifiers with information about a source object’s de-
velopment over time, e.g., how a heap object’s pointers changed
over time, could further increase the potential application of heap
diffing in combination with object classifiers.

Combined Tree Types. We showed that the memory consumption
of a lossless classification tree is orders of magnitude higher than
that of a lossy one. In a classification tree, often only a small subtree
is of interest to the user. Since both classification tree types use
node data structures inheriting from the same interface, they could
be combined to only give lossless information for parts of the tree
that are of higher interest to the user.

AntTracks DSL. To abstract from classifiers and their underlying
programming language, the heap could also be analyzed by using a
domain-specific query language. Such a language could, for exam-
ple, be used to ask for the amount of objects of type T that were
allocated at site S and survived at least n garbage collections. Based
on our classifiers, we plan to develop such a language to provide
even better support for expressing application-specific queries in a
user-friendly way.

8 THREATS TO VALIDITY AND LIMITATIONS
Visualization of data in memory analysis tools is often strongly
coupled with the kind of data that is collected and analyzed by those
tools. Even though AntTracks collects more information about ob-
jects than most of the presented tools (e.g., only few tools collect
allocation site information), the general classification principles
using multi-level grouping and classification trees based on object
classifiers and as well as AntTracks visualization features are not
dependent on that amount of information. Only the number and
the complexity of the classifiers that developers can implement
is limited by the available information. The fewer source object
properties are available, i.e., the less information the tool collects
about heap objects, the less flexibility the developer has when it
comes to writing classifiers. Assuming that AntTracks only col-
lected type and heap space information for each object, we would
still be able to provide the Type classifier, the Object Kind classifier,
the Space classifier and so on as predefined classifiers, but due to the
missing information, no Allocation Site classifier could be provided.
Yet, all the available classifiers could still be freely combined, for
example, by first classifying all objects by space and then by type,
or first by object kind and then by space, or in any other possible
combination. This outclasses the flexibility of the data aggregation
and visualization techniques available in other tools presented in
Section 6.

Similar to the limitation mentioned above, current pointer-based
classifiers are restricted to adjacent objects via the from-pointer and
to-pointer information. As explained in Section 7, new classifiers

may become possible as soon as AntTracks provides full object
graph traversal and root pointer information.

To verify that the extra flexibility simplifies memory analy-
sis, specifically that it facilitates detecting and resolving memory-
related problems such as memory leaks, a user study is planned
as future work. Technical metrics such as task completion time
or number of found memory leaks and subjective metrics such as
user satisfaction can be collected during the study, based on faulty
benchmark implementations or industry applications.

A limitation of our current study is that we have not yet inves-
tigated, which combinations of classifiers are best for detecting
specific memory-related problems. This is another topic to be tack-
led by the mentioned user study.

9 CONCLUSION
In this paper, we presented the domain-independent concepts of
(user-defined) object classifiers and multi-level grouping, which are
novel and general concepts for classifying large amounts of objects,
processing them, and arranging their classification results as a tree
for later analysis. Object classifiers are entities that classify objects
based on a certain criterion derived from the objects’ properties.
Multi-level grouping is the process of applying multiple object
classifiers to a collection of objects and grouping these objects based
on the classification results. In contrast to single-level grouping,
which results in a key-value map, multi-level grouping results in
a classification tree. Such a tree can be visualized in various ways
and allows a top-down, fine-grained manual data analysis by the
user.

Various lossless and lossy classification tree data structures were
presented and analyzed with respect to their performance, their
memory consumption, and their ability to retain object identity. We
showed that the lossy tree structures allow a tremendous reduction
of memory overhead when accepting certain information loss in
the classification tree.

We integrated the concept of object classifiers and multi-level
grouping into the memory monitoring tool AntTracks, a tool that
primarily focuses on helping developers to detect and understand
memory anomalies, thus replacing its previous rigid classification
scheme. Developers benefit from AntTracks’s new ability to clas-
sify heap states based on any combination of classifiers, which
distinguishes our approach from existing state-of-the-art tools. Fur-
thermore, our tool supports user-defined object classifiers, i.e, it
allows the user to write small, dynamically loaded source code
snippets to classify heap objects based on arbitrary criteria. This
may also be of interest to researchers who want to perform more
general and experimental memory analyses. Our memory analysis
approach opens new ways how AntTracks can be used and how
memory can be analyzed, and its applicability has been shown in a
quantitative and a functional evaluation.

ACKNOWLEDGMENTS
This work was supported by the Christian Doppler Forschungsge-
sellschaft, and by Dynatrace Austria GmbH.

REFERENCES
[1] Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci, Sara L. Su,

and Samuel Z. Guyer. 2010. Heapviz: Interactive Heap Visualization for Program

Understanding and Debugging. In Proc. of the 5th Int’l. Symposium on Software
Visualization (SOFTVIS ’10). 53–62.

[2] A. M. Alashqur, S. Y. W. Su, and H. Lam. 1989. OQL: A Query Language for
Manipulating Object-oriented Databases. In Proc. of the 15th Int’l. Conference on
Very Large Data Bases (VLDB ’89). 433–442.

[3] Verena Bitto, Philipp Lengauer, and Hanspeter Mössenböck. 2015. Efficient
Rebuilding of Large Java Heaps from Event Traces. In Proc. of the Principles and
Practices of Programming on The Java Platform (PPPJ ’15). 76–89.

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dinck-
lage, and B. Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In Proc. of the 21st annual ACM SIGPLAN conference
on Object-Oriented Programing, Systems, Languages, and Applications (OOPSLA
’06). 169–190.

[5] R.G.G. Cattell, Douglas K. Barry, Mark Berler, Jeff Eastman, David Jordan, Craig
Russell, Olaf Schadow, Torsten Stanienda, and Fernando Velez. 2000. The Object
Data Standard: ODMG 3.0.

[6] Technische Universität Darmstadt. 2012. DaCapoScala (last accessed October 10,
2017). http://www.benchmarks.scalabench.org/modules/scala-benchmark-suite/.
(2012).

[7] Andrew Johnson and Krum Tsvetkov. 2017. MAT - Eclipse Memory Analyzer
(last accessed October 10, 2017). http://www.eclipse.org/mat/. (2017).

[8] Maria Jump and Kathryn S. McKinley. 2007. Cork: Dynamic Memory Leak
Detection for Garbage-collected Languages. In Proc. of the 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
’07). 31–38.

[9] Maria Jump and Kathryn S. McKinley. 2009. Dynamic Shape Analysis via Degree
Metrics. In Proc. of the 2009 Int’l. Symposium on Memory Management (ISMM ’09).
119–128.

[10] Philipp Lengauer, Verena Bitto, Florian Angerer, Paul Grünbacher, and Hanspeter
Mössenböck. 2013. Where Has All My Memory Gone?: Determining Memory
Characteristics of Product Variants Using Virtual-machine-level Monitoring. In
Proc. of the Eighth Int’l. Workshop on Variability Modelling of Software-Intensive
Systems (VaMoS ’14). Article 13, 13:1–13:8 pages.

[11] Philipp Lengauer, Verena Bitto, Stefan Fitzek, Markus Weninger, and Hanspeter
Mössenböck. 2016. Efficient Memory Traces with Full Pointer Information. In
Proc. of the 13th Int’l. Conference on Principles and Practices of Programming on
the Java Platform: Virtual Machines, Languages, and Tools (PPPJ ’16). Article 4.

[12] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2015. Accurate and
Efficient Object Tracing for Java Applications. In Proc. of the 6th ACM/SPEC Int’l.
Conference on Performance Engineering (ICPE ’15). 51–62.

[13] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2016. Efficient and
Viable Handling of Large Object Traces. In Proc. of the 7th ACM/SPEC on Int’l.
Conference on Performance Engineering (ICPE ’16). 249–260.

[14] Philipp Lengauer, Verena Bitto, Hanspeter Mössenböck, and Markus Weninger.
2017. A Comprehensive Java Benchmark Study on Memory and Garbage Collec-
tion Behavior of DaCapo, DaCapo Scala, and SPECjvm2008. In Proc. of the 8th
ACM/SPEC on Int’l. Conference on Performance Engineering (ICPE ’17). 3–14.

[15] Thomas Lengauer and Robert Endre Tarjan. 1979. A Fast Algorithm for Finding
Dominators in a Flowgraph. ACM Trans. Program. Lang. Syst. 1, 1 (Jan. 1979),
121–141.

[16] Evan K. Maxwell, Godmar Back, and Naren Ramakrishnan. 2010. Diagnosing
Memory Leaks Using Graph Mining on Heap Dumps. In Proc. of the 16th ACM
SIGKDD Int’l. Conference on Knowledge Discovery and Data Mining (KDD ’10).

[17] Nick Mitchell and Gary Sevitsky. 2007. The Causes of Bloat, the Limits of
Health. In Proc. of the 22Nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications (OOPSLA ’07). 245–260.

[18] Oracle. 2017. JConsole (last accessed October 10, 2017). https://docs.oracle.com/
javase/9/troubleshoot/diagnostic-tools.htm#JSTGD174. (2017).

[19] Oracle. 2017. jhat (last accessed October 10, 2017). https://docs.oracle.com/javase/
8/docs/technotes/tools/unix/jhat.html. (2017).

[20] Oracle. 2017. Netbeans profiler (last accessed October 10, 2017). https://profiler.
netbeans.org/. (2017).

[21] Oracle. 2017. OpenJDK HotSpot group (last accessed October 22, 2017). http:
//openjdk.java.net/groups/hotspot/. (2017).

[22] Wim De Pauw and Gary Sevitsky. 1999. Visualizing Reference Patterns for
Solving Memory Leaks in Java. In Proceedings of the 13th European Conf. on
Object-Oriented Programming (ECOOP ’99). 116–134.

[23] Jiri Sedlacek and Tomas Hurka. 2017. Visual VM - All-in-One Java Troubleshoot-
ing Tool (last accessed October 10, 2017). https://visualvm.github.io/. (2017).

[24] R. Tarjan. 1971. Depth-first search and linear graph algorithms. In 12th Annual
Symposium on Switching and Automata Theory (swat 1971). 114–121.

[25] Markus Weninger, Philipp Lengauer, and Hanspeter Mössenböck. 2017. User-
centered Offline Analysis of Memory Monitoring Data. In Proc. of the 8th
ACM/SPEC on Int’l. Conference on Performance Engineering (ICPE ’17). 357–360.

3.2 GC Roots and Closures

This section includes the paper [317] that describes (1) how we modified the
AntTracks VM to also collect information about garbage collection roots and
(2) how we use object reference information to calculate closures around heap
objects and heap object groups to detect suspicious object ownership.

Paper:
Markus Weninger, Elias Gander, Hanspeter Mössenböck:
Utilizing Object Reference Graphs and Garbage Collection Roots to Detect
Memory Leaks in Offline Memory Monitoring. In Proceedings of the 15th In-
ternational Conference on Managed Languages & Runtimes, ManLang 2018,
Linz, Austria, September 12-14, 2018.

66

Utilizing Object Reference Graphs and Garbage Collection
Roots to Detect Memory Leaks in Offline Memory Monitoring

Markus Weninger
Institute for System Software,

CD Labor MEVSS,
Johannes Kepler University

Linz, Austria
markus.weninger@jku.at

Elias Gander
CD Labor MEVSS,

Johannes Kepler University
Linz, Austria

elias.gander@jku.at

Hanspeter Mössenböck
Institute for System Software,
Johannes Kepler University

Linz, Austria
hanspeter.moessenboeck@jku.at

ABSTRACT
Complex software systems often suffer from performance problems
caused by memory anomalies such as memory leaks. While the
proliferation of objects is rather easy to detect using state-of-the-
art memory monitoring tools, extracting a leak’s root cause, i.e.,
identifying the objects that keep the accumulating objects alive,
is still poorly supported. Most state-of-the-art tools rely on the
dominator tree of the object graph and thus only support single-
object ownership analysis. Multi-object ownership analysis, e.g.,
when the leaking objects are contained in multiple collections, is
not possible by merely relying on the dominator tree. We present
an efficient approach to continuously collect GC root information
(e.g., static fields or thread-local variables) in a trace-based memory
monitoring tool, as well as algorithms that use this information to
calculate the transitive closure (i.e., all reachable objects) and the
GC closure (i.e., objects that are kept alive) for arbitrary heap object
groups. These closures allow to derive various metrics for heap
object groups that can be used to guide the user during memory
leak analysis. We implemented our approach in AntTracks, an
offline memory monitoring tool, and demonstrate its usefulness
by comparing it with other widely used tools for memory leak
detection such as the Eclipse Memory Analyzer. Our evaluation
shows that collecting GC root information tracing introduces about
1% overhead, in terms of run time as well as trace file size.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Software defect analysis; • Information systems→ Clustering and
classification; •Theory of computation→Data structures design
and analysis;

KEYWORDS
Memory Monitoring, Memory Leak, Pointer Analysis, Garbage
Collection, Graph Closure,

ManLang’18, September 12–14, 2018, Linz, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 15th International
Conference on Managed Languages & Runtimes (ManLang’18), September 12–14, 2018,
Linz, Austria, https://doi.org/10.1145/3237009.3237023.

ACM Reference Format:
MarkusWeninger, Elias Gander, and Hanspeter Mössenböck. 2018. Utilizing
Object Reference Graphs and Garbage Collection Roots to Detect Memory
Leaks in Offline Memory Monitoring. In 15th International Conference on
Managed Languages & Runtimes (ManLang’18), September 12–14, 2018, Linz,
Austria.ACM, NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3237009.
3237023

1 INTRODUCTION
Modern programming languages such as Java or C# rely on garbage
collection to relieve the programmer from freeing allocatedmemory
manually. The garbage collector (GC) tries to free heap space by
removing dead objects that are not reachable from root objects
anymore. Examples for root objects are objects referenced by GC
roots such as static fields or thread-local variables. Since these
objects cannot be reclaimed by the GC, they also keep alive all
other objects that are directly or indirectly referenced by them.
This reveals one of the drawbacks of garbage collection. Since
programmers are no longer required to free memory manually,
they tend to use object allocations more carelessly. However, even
in garbage-collected languages, careless handling of memory can
lead to anomalies such as memory leaks. A memory leak occurs
when objects that are not needed anymore are still unintentionally
reachable and can therefore not be garbage collected.

Detecting the presence of a memory leak is often relatively easy.
A simple chart displaying an application’s growing memory usage
may be enough to detect such a leak. Yet, it is difficult to track
down a memory leak’s root cause, i.e., to identify which objects
are leaking and which objects are responsible for that by keeping
the leaking objects alive. Most state-of-the-art memory monitoring
tools analyze the heap based on the object graph in conjunction
with its dominator tree [25]. The object graph is a representation of
the heap state, where each object is represented as a node, and the
references between objects are represented as edges. The dominator
tree of an object graph describes a keeps-alive relationship between
the objects. If an object A dominates an object B and A is collectible
by the GC, also B is collectible. While the dominator tree may help
to find memory leaks where a single object is responsible, e.g.,
when all leaking objects are contained in a single large list, it fails
to provide insight in situations where multiple objects are keeping
objects alive (e.g., in multiple collections) [6].

AntTracks [4, 21–23] is a memory monitoring tool for Java based
on the Java Hotspot™ VM [30]. During an application’s execution,
it records various events such as object allocations, object moves
during garbage collection, or pointer information. Based on such

ManLang’18, September 12–14, 2018, Linz, Austria M. Weninger et al.

trace files, the heap can be reconstructed for any garbage collec-
tion point in time. For inspecting the live objects at such points,
Weninger et al. [42, 43] presented the concept of object classifiers
and multi-level grouping, which enable the user to classify and
group heap objects on multiple levels based on arbitrary grouping
criteria.

In this paper, we extend their work by presenting a novel ap-
proach to collect and use information about GC roots and the object
graph in order to guide users in finding the root causes of memory
leaks. First, our approach encompasses an efficient technique to
collect GC root information of different kinds (e.g., of static fields
or thread-local variables) in a trace. Then, we show how to use
this information to calculate object closures. AntTracks is able to
calculate closures for arbitrary heap object groups, not just for sin-
gle objects as other approaches that rely on dominator-tree-based
analysis. The transitive closure encompasses all objects reachable
from the given object group. TheGC closure encompasses all objects
kept alive by the given object group, i.e., those objects that could
get garbage collected if the given object group was freed. Based on
these closures, metrics such as the transitive size and the retained
size can be calculated. We show how these metrics, in combination
with AntTracks’s user-driven classification system, can be used to
detect memory leaks. Finally, we show in a quantitative evaluation
based on three different well-known benchmark suites that collect-
ing GC root information introduces about 1% overhead in terms of
run time and trace file.

Thus, our scientific contributions are

(1) a concept to integrate information about GC roots into a
trace-based memory monitoring tool such as AntTracks,

(2) algorithms to calculate the transitive closure and the GC
closure of a single heap object as well as of heap object
groups to derive meaningful metrics,

(3) various techniques to use this information in top-down and
in bottom-up memory analysis,

(4) a quantitative evaluation of the tracing overhead and a func-
tional evaluation of our approach based on typical memory
anomaly detection use cases.

The paper is organized as follows: Section 2 provides the back-
ground of our work, Section 3 describes our approach as well as
its concepts and techniques, Section 4 provides details on the im-
plementation of these concepts in AntTracks, Section 5 presents a
quantitative and a functional evaluation, Section 6 discusses related
work, Section 7 outlines possible future work and discusses threats
to validity, and Section 8 concludes the paper.

2 BACKGROUND
AntTracks consists of the AntTracks VM, a virtual machine based on
the Java Hotspot™ VM [30], and the AntTracks Analyzer, a memory
analysis tool. The AntTracks VM records memory events into trace
files, which can then be analyzed offline with the tool. Since the con-
cepts presented in this paper have been integrated into AntTracks,
it is essential to understand AntTracks’s architecture and workflow
alongside basic garbage collection mechanisms.

root

Object[] LinkedList

Stack:init() MyService:foo() X:meth()

4000 obj
10 MB

1000 obj
15 MB

50 obj
1 MB

5,000 obj
25 MB

50 obj
1 MB

1. Classify by type

2. Classify by
allocation site

… Classification tree node … Info stored in tree node

5,000,000 obj
500 MB

Figure 1: A heap state, consisting of 5 million heap objects,
first classified by type followed by allocation site.

GC roots Reachable objects Non-reachable objects
(dead / garbage)

Figure 2: All objects directly or indirectly reachable by GC
roots are considered live. Other objects are considered dead
or garbage, and may be collected by the GC.

2.1 AntTracks VM: Trace Recording and
Reconstruction

The AntTracks VM records memory events, e.g., events for object
allocations and object movements executed by the GC, and writes
them into trace files. After parsing such a trace file, the AntTracks
Analyzer provides an overview of the memory behavior over time
and can reconstruct the heap state for every garbage collection
point by incrementally processing the events in the trace. A heap
state is the set of heap objects that were live in the monitored
application at a certain point in time. For every heap object, a
number of properties can be reconstructed, including its address,
its type, its allocation site, the heap objects it references, and the
heap objects it is referenced by.

2.2 AntTracks Analyzer: Memory State
Analysis

The AntTracks Analyzer uses user-defined object classifiers and
multi-level grouping [42, 43] to enable user-driven heap state anal-
ysis. Object classifiers classify heap objects based on certain criteria
such as their type, their allocation site, their allocating thread, and
so on. For example, the Type classifier classifies a heap object based
on its type’s name, e.g. java.util.HashMap. Multi-level grouping
is the process of applying multiple classifiers to a collection of ob-
jects (i.e., to a heap state), and grouping these objects based on the
classification results into a hierarchical classification tree.

A typical example in AntTracks is to first group all heap objects
by their types (using the Type classifier) and then by their allocation
site (using the Allocation Site classifier). Figure 1 shows such a
classification tree. Yellow rectangles represent tree nodes, and gray
rounded rectangles represent data about all heap objects that were
classified by the respective tree branch (basically the number of
objects and the number of bytes).

Utilizing Object Reference Graphs and Garbage Collection
Roots to Detect Memory Leaks in Offline Memory Monitoring ManLang’18, September 12–14, 2018, Linz, Austria

2.3 Garbage Collection Roots
Certain objects in the heap are so-called root objects. Root objects
must not be collected during a garbage collection, and neither
must objects be collected that are directly or indirectly reachable
from root objects. Whether a heap object is a root object or not is
determined by the fact whether at least one GC root is referencing
the object. There are different kinds of GC roots in Java (and in
most other object-oriented languages), the most important ones
are:

• Local variables of threads: Local variables reside on the call
stack of a thread and may reference objects on the heap.
Therefore, threads and all objects referenced by local vari-
ables of threads are always considered root objects.

• Static variables: Static fields of loaded classes are GC roots,
i.e., objects referenced by static fields are considered root
objects.

Figure 2 shows an example of how GC roots keep reachable
objects alive whereas non-reachable objects are eligible for garbage
collection.

2.4 Running example
For the algorithms in the following sections we will use a singly-
linked list as a running example (see Listing 1). A singly-linked
list is represented by its root object of type LinkedList. If a list
contains at least one object, its LinkedList instance points to the
head node of the list, an instance of Node. Every node may point
to another node (its successor) and must point to an instance of
Data. A Data instance contains some integer value and may point
to another Data instance.

A heap state can be represented as an object graph, i.e., a directed
graph in which the nodes correspond to heap objects and references
between objects are the edges. Figure 3 shows the visualization of
an object graph of two LinkedList instances and their referenced
objects.

class L i n k e d L i s t {
private Node head ;
// ...

}
class Node {

Node nex t ;
Data da t a ;
Node (Data d) { d a t a = d ; }
// ...

}
class Data {

int va lue ;
Data o th e r ;
Data (int v) { this (v , null) ; }
// ...

}

Listing 1: Code example for a singly-linked list

L N N N N

D D D

N

D

N N N N N

D D D

LN

D

Figure 3: Object graph of two LinkedLists (L, red), one with
five Nodes and one with six Nodes (N, blue) that point to eight
Data instances (D, green).

event
type

root
types

Thread ID Class ID Method ID Slot number

Thread ID

Class ID Field offset

absolute
address

header:

1st GC root -
local var:

2nd GC root -
static var:

3rd GC root -
JNI local:

4th GC root -
Monitor:

5th GC root -
JVMTI:

6th GC root -
Class loader:

Figure 4: Example of a GC root event (with a size of 22 ∗ 4 =
88 bytes) that contains information about a local variable, a
static field, a JNI GC root and 3 other GC roots without addi-
tional information.

3 APPROACH
In this section, we show which information can be retrieved from
GC roots and how it can be integrated into our trace-based memory
monitoring approach. We further present algorithms to calculate
the transitive closure and the GC closure for arbitrary heap object
groups. Finally, we discuss how closures and GC root information
can be used as a guidance to users when tracking down memory
anomalies and memory leaks.

3.1 Retrieving GC Root Information
There are two kinds of information that can be retrieved from GC
roots: (1) information about the GC roots themselves and (2) infor-
mation about the references between the objects that are directly
or indirectly reachable from the GC roots. Approaches that rely on
snapshot-based analysis create heap dumps, which contain infor-
mation about the objects that were live at a certain point in time
as well as the references between them and GC root information.
However, if we are not just interested in the heap state at a single
point in time, but in the development of the heap over time, heap
dumps may prove insufficient.

Instead of creating multiple heap dumps, which would introduce
enormous run time overhead, continuous tracing approaches such
as AntTracks produce trace files. These allow the offline reconstruc-
tion of heap states for arbitrary garbage collection points in time.
Trace files contain a sequence of events that have a certain encod-
ing and are only allowed in a certain order. Lengauer et al. [21, 22]
present a general event format to trace objects and the references
between them. In the following, we propose an additional GC root
event to trace information about GC roots and root objects.

GC root events are written before any other event at the start of
every garbage collection. The format of a GC root event is shown
in Figure 4, where each block represents a word of 4 bytes. Like
every other event in AntTracks’s event format, a GC root event
starts with a 1-byte event type. The remaining 3 bytes of the first
word are filled with six 4-bit numbers, each of which indicates the
type of one GC root that is encoded in the event (see Table 1 for
the different GC root types) or is set to 0 if less than six GC roots

ManLang’18, September 12–14, 2018, Linz, Austria M. Weninger et al.

ID Type Description Info encoded in event
1 Class Loader GC root referencing a class loader -
2 Static Field GC root representing a static field referencing a heap object class id, field offset
3 Thread GC root referencing a thread thread id
4 Local variable GC root representing a local variable referencing a heap object thread id, class id, method id, slot number
5 Code Blob GC root referencing a code object (e.g. a JIT-compiled method) class id, method id
6 JNI GC root referencing a heap object created via JNI thread id
7 JVMTI GC root referencing a heap object created via JVMTI -
8 Monitor GC root referencing a monitor object used for synchronizing -
9 Management GC root referencing internal objects used by MXBeans -
10 Others GC root referencing other JVM internal object (e.g., profilers) -

Table 1: The different GC root types in the JVM.
are encoded in the event. Thus, the number of GC roots that can be
encoded in a single GC root event is limited to six. For every GC
root encoded in the event, the address of the referenced root object
as well as additional information (depending on the type of the GC
root) is appended after the header word (see Figure 4).

The types of the different GC roots encoded in the header word
are necessary to correctly interpret the given GC root’s informa-
tion. As shown in Table 1, depending on the type of each GC root,
additional information is added to the event’s payload (the size of
the different IDs is determined by the JVM):

• A static field root adds a 4-byte class ID and a 4-byte field
offset.

• A thread root adds an 8-byte thread ID.
• A local variable root adds an 8-byte thread ID (i.e., the thread
that holds the local variable), a 4-byte class ID (i.e., the class
in which the local variable is defined), a 4-byte method ID
(i.e., the method in which the local variable is defined) and a
4-byte slot number (i.e., the local variable stack index).

• A code blob root adds a 4-byte class ID and a 4-byte method
ID.

• A JNI local root adds an 8-byte thread ID.
The connection between a thread’s ID and its name is established

by a separate event that is recorded whenever a new thread is
started. This information can later be used to resolve a thread
ID into the thread’s name. Similarly, class IDs, method IDs, field
offsets and slot numbers can be resolved to their identifiers and type
signatures using symbol information that is written to a separate
symbols file during program execution.

Based on local variable GC roots, the call stacks of all threads
at the time of the garbage collection can be reconstructed. This is
possible because (1) each local variable root stores the method and
thread they belong to and (2) they are written in the same order as
they are encountered when traversing their thread’s stack frames
from top to bottom. This excludes stack frames that do not contain
at least one local variable.

The amount of information differs among GC root types, thus
the total event size is variable. However, the maximum size of a GC
root event is 43 words (336 bytes) which is reached in the case of 6
local variable GC roots.

Since GC roots are recorded at the start of every garbage col-
lection, their referenced objects may be moved during garbage
collection. AntTracks also records these object movements. When
encountering a matching move event while parsing a trace file, GC
roots have to be updated to the move’s destination address.

3.2 Heap Object Closures
In general, a heap object closure is the set of heap objects that
are directly or indirectly reachable from a given heap object or
from a group of heap objects. A heap object closure may contain
all reachable objects (i.e., the transitive closure) or only those that
satisfy certain criteria (e.g., in the case of the GC closure). In this
section, we show how to calculate closures for arbitrary object
groups. This allows us to detect leaking objects that are kept alive,
even by more than one object. Metrics derived from the closures
such as the retained size can be displayed to help and guide users
during heap state analysis. Closure calculations, as well as metrics
derived from these closures, have been integrated into AntTracks.
Nevertheless, this techniques could also be integrated into other
heap profiling tools such as Elephant Tracks [39], as long as they
are able to reconstruct heap object graphs, i.e., they record the
heap objects themselves, pointers between them, as well as garbage
collection roots.

3.2.1 Transitive Closure. The transitive closure [20, 41] of a sin-
gle node in a graph is made up of the node itself and all other nodes
that are directly or indirectly reachable from this node following
all edges. Its calculation has been well studied, e.g., by Eve and
Kurki-Suonio [13].

Instead of calculating the transitive closure of a single object, we
argue that it is also useful to calculate the transitive closure of an
object group.We call the objects for whichwe calculate a closure the
closure root objects (which are not to be confused with root objects,
i.e., objects that are referenced by GC roots). The transitive closure
of an object group is made up of the closure root objects themselves
and all other objects that are directly or indirectly reachable from
at least one of the closure root objects. Figure 5 shows the transitive
closure (gray background), first for a single closure root object (thick
border), and second for a group of two closure root objects. The
transitive closure is calculated based on the pseudocode presented
in Listing 2.

Section 4.2 discusses how the transitive closure algorithm is
computed in AntTracks based on AntTracks’s internal heap state
data structure.

The transitive closure can be used to detect objects that reference
an unexpectedly large amount of other objects since it describes
how many objects are reachable from the given closure root objects.
Analogously, an object group with a small transitive closure, i.e.,
an object group that does not reach many other objects, can never
be the root cause of a memory leak. In AntTracks, heap objects are
separated into object groups that get arranged in a classification

Utilizing Object Reference Graphs and Garbage Collection
Roots to Detect Memory Leaks in Offline Memory Monitoring ManLang’18, September 12–14, 2018, Linz, Austria

L N N N N

D D D

N

D

N N N N N

D D D

LN

D

L N N N N

D D D

N

D

N N N N N

D D D

LN

D

Figure 5: Two examples showing the transitive closures
when using the thick bordered object(s) as closure root ob-
jects.

tree based on their classification results. If the user is only inter-
ested in finding memory leak roots, i.e., objects that keep a lot of
other objects alive, tree nodes of object groups with small transitive
closures can be hidden and excluded from further analysis. This
reduces the tree’s complexity, speeds up further computations, and
thus eases the overall analysis process. Nevertheless, a large transi-
tive closure does not automatically identify a leaking data structure
or object group. Just because objects are reachable from a given
set of closure root objects does not mean that only the closure root
objects keep them alive. Therefore, the transitive closure can be
used to further calculate the GC closure, a closure that describe the
closure root objects’ ownership over other objects.

3.2.2 GC Closure / Retained Closure. The transitive closure con-
tains all objects reachable from the closure root objects. In contrast,
the GC closure contains all objects that (1) are reachable from the
given closure root objects and (2) could be garbage collected if all
closure root objects were collected. Thus, the GC closure describes
object ownership, i.e., all objects that are kept alive by a given set of
closure root objects. Being able to detect heap object groups that
keep large amounts of other objects alive bears large potential in
helping users to resolve memory leaks.

To calculate the GC closure of a single object, the object graph’s
dominator tree can be used. In graph theory, a node d dominates a
node n if every path from the root to n must pass through d [40].
Figure 6 shows the dominator tree of a sample object graph of two
singly-linked lists. Some of the data is shared between the two lists,
i.e.,D3,D4 andD5, which results in those three objects not having a
dominator. For example, assuming that node N 8 could be collected
by the garbage collector (by removing all references to it), all child
objects in its dominator subtree (i.e, D8, N9, and N10) could be

// called with closure root objects as initial work list
t r a n s i t i v e C l o s u r e (L i s t workL i s t) {

L i s t c l o s u r e = new L i s t () ;
mark a l l o b j e c t s in workL i s t as v i s i t e d ;
f o r e a ch (ob j in workL i s t) {

add ob j to c l o s u r e ;
f o r e a ch (c h i l d r e f e r e n c e d by ob j) {

if (c h i l d i s not ye t marked as v i s i t e d) {
mark c h i l d as v i s i t e d ;
add c h i l d to workL i s t ;

}
}

}
return c l o s u r e

}

Listing 2: Pseudocode calculating the transitive closure for
a given closure root object group

L1

N1

N2

N3

N4

D1

D2

D3

N5

D4 N9

N8

N7

N6

D8

D7

D6

L2

N10D5

GC Roots

L1

N1

N2

N3

N4

D1

D2

D4

N5

D5

N9

N8

N7

N6

D8

D7D6

L2

N10

D3

Dom. Tree

Figure 6: Object graph of two singly-linked lists and its dom-
inator tree.

collected, too. However, it is not possible to use the dominator tree
to answer which objects could be freed if a certain object group,
e.g., N 4 and N 9, would be freed (which would be N 5 and N 10, but
also D4 and D5).

While the dominator tree and its algorithms are well-studied,
they are only suited to analyze single nodes and to detect the maxi-
mum unique ownership [27] within a graph, e.g., what happens if
one specific heap object could be freed by the GC. We are therefore
presenting a new algorithm that is able to calculate the GC closure
for arbitrary closure root object groups.

Simple Approach. Our approach assumes that an heap object
group’s transitive closure is already known, e.g., by using the algo-
rithm presented in Section 3.2.1. This transitive closure can then
be reduced to the GC closure by following these steps:

(1) The initial GC closure is set to the transitive closure.
(2) To determine which objects could be freed if the closure root

objects get freed, we have to simulate that the closure root
objects are not reachable from root objects anymore. Thus,
we ignore all references to these objects (i.e., assuming that
all references to the closure root objects have been set to
null).

(3) Then, the heap is recursively traversed, starting at the heap’s
root objects (i.e., the objects directly referenced by GC roots),
visiting every reachable object exactly once. If the currently
visited object is part of the GC closure (which has been
initialized to the transitive closure, see Step 1), the current
object and all objects reachable from it are removed from
the closure. This is done because these objects would still
be reachable from the heap’s root objects and thus be kept
alive, even if the closure root objects would be freed. Visited
and removed objects are marked to avoid processing them
multiple times.

At the end of this algorithm, the GC closure contains only those
objects that are not referenced by GC roots from outside the transi-
tive closure. The object in the GC closure are the objects that could
be freed if the closure root objects were released.

A major problem with this approach is that its complexity de-
pends on the object graph size, i.e., the number of objects in the
heap, since the heap traversal starts at the root objects. Yet, with

ManLang’18, September 12–14, 2018, Linz, Austria M. Weninger et al.

minor adjustments to the algorithm, the complexity can be reduced
to only depend on the object group’s transitive closure size.

Improved Approach. The performance problems of the simple
approach can be tackled by using the following technique. When a
heap state is reconstructed from a trace file, we traverse the object
graph once (instead of traversing the object graph on every GC
closure calculation in the simple approach). Starting at the GC root
objects, every visited object is marked. This allows us to identify all
objects either as live (if they have been visited) or as dead (if they
have not been visited). Since this additional information can be
stored as a single bit per object (i.e., 0 if the object is not reachable
from any GC root or 1 if it is) the additional memory overhead is
negligible. For example, this information would take up around
12.5 MB for a heap state of 100, 000, 000 objects). The improved
approach works as follows:

(1) The initial GC closure is set to the transitive closure.
(2) To determine which objects could be freed if the closure root

objects get freed, we have to simulate that the closure root
objects are not reachable from root objects anymore. Thus,
we ignore all references to these objects (i.e., assuming that
all references to the closure root objects have been set to
null).

(3) The GC closure (which has been initialized to the transitive
closure) is recursively traversed, starting at the closure root
objects, visiting every object in the closure exactly once. The
current object is checked for the following criteria:
• Is it directly referenced by a GC root?
This can easily be checked since we know every GC root.

• Is it referenced by a live object that is not part of the clo-
sure?
AntTracks enables access all objects that reference a given
object (pointed-from analysis). For each of these refer-
encing objects it can be checked whether it is part of the
closure, and whether it has been marked as live during
the heap state reconstruction.

If at least one of the mentioned criteria holds, the current
object and all objects reachable from it are removed from the
closure. Visited and removed objects are marked to avoid
processing them multiple times.

Instead of having to traverse the whole heap, the algorithm’s
complexity now only depends on the transitive closure’s size. Fig-
ure 7 shows how objects that are reachable from live objects outside
the transitive closure have to be removed to reduce the transitive
closure to the GC closure.

3.3 Metrics
A single object’s shallow size is the size of the object itself. This
encompasses the object’s header and its data, without taking into
account any referenced objects. The shallow size of an object group
is the sum of the shallow sizes of all contained objects. Using the
transitive closure, the transitive object count (also called deep object
count) as well as the transitive size (also called deep size) can be
calculated. The transitive object count is the number of objects
contained in the transitive closure, while the transitive size is the
sum of the shallow sizes of all objects in the transitive closure.
Similarly, using the GC closure, the retained object count as well as

L1

N1

N2

N3

N4

D1

D2

D3

N5

D4 N10

N8

N7

N6

D8

D7

D6

L2

N11D5

GC Roots

Non-root-pointed objects

X1 X2

Transitive closure

GC closure

Figure 7: GC closure for L1 and L2, derived from the transi-
tive closure and GC root information.

the retained size can be calculated. The retained object count is the
number of objects contained in the GC closure, i.e., the number of
objects that could be freed if the closure root objects were released,
while the retained size is the sum of the shallow sizes of all objects
in the GC closure.

As explained in Section 2, AntTracks applies user-specified ob-
ject classifiers to aggregate heap objects in a classification tree
(see Figure 1). Without information about an object group’s tran-
sitive closure and GC closure, only the group’s object count and
shallow size could be calculated and displayed to the user. While
this information is good enough to learn about the system under
investigation (e.g., about the most frequently allocated types, the
hot allocation sites, the object allocations per thread, etc.), it is not
well suited to track down memory leaks. So far, the users’ decisions
on which object groups to analyze in more detail (e.g., by applying
further classifiers) often strongly depended on prior knowledge
about the system under analysis, e.g., by having an educated guess
on what to look for. For example, a user unaware of the internals
of a given system may not suspect a possible memory leak when
discovering that there was a single instance of type A with a small
shallow size. However, knowing that objects of type A are very
complex (i.e., may keep a lot of other objects alive) and are not
expected to be alive in the given heap state would lead to further
investigation.

Thus, we extended AntTracks to also display the deep size as well
as the retained size for every tree node in a classification tree. Even
without knowing anything about the system under investigation,
the user is now able to detect object groups that keep a lot of other
objects alive. An evaluation of this feature will be described in
Section 5.1.

3.4 Utilizing GC Root Information
In some cases, one might be aware of a group of objects that occupy
a large portion of the heap. For example, by analyzing multiple
heap states, we may detect that objects of a certain type that are

Utilizing Object Reference Graphs and Garbage Collection
Roots to Detect Memory Leaks in Offline Memory Monitoring ManLang’18, September 12–14, 2018, Linz, Austria

allocated at a certain allocation site accumulate over time. To free
their memory, these objects must be made eligible for garbage
collection. This can be done either by freeing all root objects that
reference the object group or by cutting all connections to them.
Therefore, bottom-up analysis is used to detect possible ways to
free memory occupied by a given object group by inspecting the
relation between the object group and its referencing root objects.
For example, we may detect a suspiciously large object group. By
following the object references from the object group back to the
GC roots we may detect that all these objects are stored in a list,
which in turn is referenced directly or indirectly by multiple GC
roots. Ideally, we are able to remove the list head, and in turn the
whole object group becomes unreachable and can thus be garbage
collected. If this is not possible, suitable cutting points to remove
single elements from the list have to be found.

3.4.1 Root Object Classification. Assume that we detect a suspi-
cious object group. As a first step, we obtain all root objects that
reference the object group. Since not every object of the suspicious
object group must be referenced by every found root object, we
have to detect those root objects that own most of them. This can be
done by further analyzing the found root objects, e.g., by applying
multiple classifiers on them (e.g., classifying them by their types,
packages, allocation sites, etc.). Since the classified object groups
can be sorted by their size or by their retained size, we can try
to find object groups that are small but still keep a large number
of other objects alive. This small number of root objects is then
feasible to be traced and dealt within the code.

3.4.2 Bottom-up Visualization. Alternatively, instead of analyz-
ing the root objects directly, one can also trace and visualize all
paths from the suspicious object group to their root objects. These
paths may reveal possible cutting points to make (parts of) the
object group unreachable and thus eligible for garbage collection.
To facilitate the task of locating high-impact cutting points, the
paths can be displayed as a graph with objects as nodes and their
pointers as edges. Additionally, since object groups can be very
large, node aggregation would be necessary in many cases. The
goal of node aggregation is to combine multiple objects into a single
node by detecting typical reference patterns between them. This
could, for example, be achieved by merging nodes that belong to
the same data structure, which is a goal of our future work. Node
aggregation decreases the complexity of the graph and thus enables
users to draw meaningful conclusion from it more easily.

4 IMPLEMENTATION
4.1 Retrieving GC Root Information
AntTracks uses a modified Java Hotspot™ VM to detect events (e.g.,
object allocations) and to write information about these events
into trace files. GC root information gets written at the beginning
of every garbage collection. Since there are different types of GC
roots, various VM-internal data structures are used to retrieve this
information. The ClassLoaderDataGraph contains information
about classes that are loaded by an application’s class loaders. Other
data structures include the SystemDictionary and the Universe.
These data structures are needed to retrieve information about
static fields, since static fields are stored inside Java class instances.

To collect information about thread-local variables, we iterate all
Java threads and extract each thread’s stack trace. Each frame in the
stack trace contains a StackValueCollection that allows to access
information about the frame’s local variables. Also, the thread object
itself is marked as a root object. Furthermore, we handle CodeBlobs
as GC roots. These may be JIT-compiled static references to certain
addresses. JNIHandles and JvmtiExport are used to detect objects
that are kept alive via JNI and JVMTI. Other types of GC roots are
ObjectSynchronizer (i.e., monitors), FlatProfiler (i.e., a JVM
profiling tool), and Management (i.e., objects used by MXBeans).

4.2 Closure Algorithms
Section 3.2 presented algorithms to calculate the transitive closure
and the GC closure for arbitrary object groups. Implementing these
algorithms efficiently is crucial for their application in end-user
applications such as AntTracks Analyzer. After evaluating various
approaches, we decided to use BitSets for the representation of
closures. A BitSet is a vector of bits that is indexed by a nonnega-
tive object number and keeps track of which objects are part of the
closure.

To be able to use BitSets, we had to adjust AntTracks’s heap
data structure. It is now organized in such a way that objects can be
identified by a unique number that is used as their index in the bit
sets. The heap object at index 0 is the object with the lowest address,
while the object at index n (where n is the number of objects in the
heap) is the object with the highest address.

Another advantage of bit sets is their ability to be combined
using logical operators such as and or or. For example, using these
operators, we do not need to calculate the transitive closure for
every node in the classification tree, but only for leaf nodes. Imagine
classifying heap objects first by type and then by allocation site.
This may result in a classification tree node for two objects of type
A (intermediate node), one allocated at allocation site x (leaf node)
and one at allocation site y (leaf node). It is sufficient to calculate
the transitive closures for the x node and the y node based on the
object graph, since the transitive closure for nodeA is just the union
of the two closure for x and y. The union of these closures can be
obtained by or-ing their bit sets.

4.3 Classifiers
In addition to the metrics presented in Section 3.3, we extended
AntTracks by a number of new classifiers, which can be freely
combined with any other existing classifier to analyze a heap state.

4.3.1 Directly-GC-Rooted Classifier. This classifier categorizes
heap objects based on the GC roots by which they are directly
referenced and splits them into multiple groups (e.g., Root: Static
field or Root: Thread-local variable). Each of these groups is then
split into further subgroups, depending on the root type, to provide
further information. For example, objects in the group Root: Static
field are further split by the static fields’ classes, and then by the
static fields themselves (as shown in Figure 8). The classifier can
also be configured to only show variables (static fields, thread-local
variables and JNI locals) instead of all roots. In addition, the user
can chose if objects that are only indirectly referenced by GC roots
or not reachable from GC roots at all should be shown in a separate
group or be completely hidden.

ManLang’18, September 12–14, 2018, Linz, Austria M. Weninger et al.

Figure 8: A heap state in AntTracks, classified using the di-
rectly rooted classifier.

Figure 9: A heap state in AntTracks, classified using the type
classifier followed by the indirectly rooted classifier.

Figure 8 shows an example for the use of the directly-GC-rooted
classifier in AntTracks. The first line (with the key Overall) shows
how many objects the heap contains. Its first child (with the key
Not directly referenced by any variable) contains the 89.406 ob-
jects that are not directly root-pointed by a variable. The second
child (with key Root: Static field) contains 318 objects that are di-
rectly root pointed by a static field. Two of them are referenced
from a static field in the class jku.anttracks.example.gcroot-
classifier.Service (4th line), one by the field names (5th line)
and one by the field map (6th line).

4.3.2 Indirectly-GC-Rooted Classifier. Similar to the directly-
GC-rooted classifier, the indirectly-GC-rooted classifier categorizes
heap objects based on the GC roots by which they are referenced.
However, instead of only taking direct references into account, also
indirectly referencing GC roots are considered. The classifier can
also be configured to only show variables instead of all roots, as
well as to whether objects that are not root-pointed at all should
be shown in a separate group or be completely hidden.

This classifier is especially useful when the user encounters
an unexpectedly large group of objects that was not assumed to
be alive or when such a group has been growing over time. In
such situations the indirectly-GC-rooted classifier can be used to
find out which root objects are keeping them alive. To improve
performance, it is also possible to cut the calculation as soon as the
first referencing root object is encountered.

Figure 9 shows an example for the use of the indirectly-GC-
rooted classifier, following the type classifier. 21, 129 String objects
exist at the given point in time, of which 20, 849 are reachable
from static fields. 20, 000 of these strings are reachable from the
static field names in the class jku.anttracks.example.gcroot-
classifier.Service.

4.4 Object Group Inspection Window
The classification mechanism in AntTracks produces object groups
that share certain properties based on the selected classifiers (e.g.,
objects of the same type allocated at the same allocation site). Beside

further classifying such object groups (e.g., extending the classifica-
tion tree by further splitting the objects by their allocating thread),
a given object group can also be inspected in more detail in an
object group inspection window.

A classification tree visualizes a particular heap state by showing
the object count, the shallow size, the deep size, and the retained
size of each object group. This is well suited for a fast overview.
It either enables users to detect small groups of objects with large
retained sizes (most probably heads of larger data structures) or
large groups of objects (most probably contained in other data
structures). The aim of the inspection window is now to provide
more detailed information about a particular object group.

First of all, the view shows all root objects from which a selected
object group can be reached and which keep the object group
alive. These root objects can then be further classified (root object
classification) or the paths to them can be visualized (bottom-up
visualization) as described in Section 3.4. Second, the inspection
window includes another classification tree showing the objects in
the group’s transitive closure or in its GC closure. Again, classifiers
can be applied to assign the objects in the closures to the branches
of the tree (e.g., according to the object types in the closures). This
feature might prove useful in helping user to understand the own-
ership relations between the inspected object group and the closure
objects.

5 EVALUATION
To evaluate the usefulness of our analyses we show how one can
use the AntTracks Analyzer to detect memory leaks and compare
it to a dominator-tree-based state-of-the-art memory monitoring
tool, namely the Eclipse Memory Analyzer (MAT) [15].

We also evaluate the overhead that is caused by recording the GC
root data in terms of run time and trace file size. All analyses were
performed on well-known benchmarks from the DaCapo suite1 [5]
(version 9.12-bach), DaCapo Scala suite2 (version 9.12-bach) and
the SPECjvm2008 suite3 (version 1.01).

Setup. All measurements were run on an Intel® Core™ i7-4790K
CPU @ 4.00GHz x 4 (8 Threads) on 64-bit with 32 GB RAM and
a Samsung SSD 850, running Ubuntu 17.10 with the Kernel Linux
4.13.0-16-generic. All unnecessary services (including graphical
user interfaces) were disabled in order not to distort the experi-
ments.

5.1 Functional Evaluation
In this section we are going to evaluate AntTracks’s applicability
to detect memory leaks and their root causes. The analyzed appli-
cation, mulit-cache, is an artificial demo application to demonstrate
AntTracks’s ability to detect memory leaks caused by multiple ob-
jects, a situation in which dominator-tree-based approaches prove
less useful. It stores products in a database which can be identified
by a long id as well as a String name. Once a Product instance
is queried, it gets stored in two caches (HashMap), one to access
products via their id and one to access them via their name. Both
HashMaps are stored in static fields, one in the class IdCache and
1http://dacapobench.org/(last accessed May 11, 2018)
2Info: http://www.scalabench.org/ (last accessed May 11, 2018)
3https://www.spec.org/jvm2008/ (last accessed May 11, 2018)

Utilizing Object Reference Graphs and Garbage Collection
Roots to Detect Memory Leaks in Offline Memory Monitoring ManLang’18, September 12–14, 2018, Linz, Austria

Figure 10: Dominator tree view in MAT.

one in the class NameCache. To simulate a memory leak, the caches
are never cleared and thus grow over time. We compare AntTracks
to the Eclipse Memory Analyzer (MAT), a state-of-the-art memory
monitoring tool that employs dominator-tree-based memory leak
detection. This comparison should demonstrate how tools that only
perform dominator-tree-based analyses are not able to derive the
root cause of a memory leak that is caused by multiple objects, i.e.,
by multi-object ownership.

As a baseline, we analyzed the application usingMAT, which pro-
vides a hierarchical visualization of the dominator tree. Figure 10
shows the dominator tree view for the multi-cache demo applica-
tion. It reports that the complete heap (about 273 MB) is kept alive
by the AppClassLoader, which again holds a Vector that holds an
Object[], i.e., the loaded classes. The two classes with the largest
retained size are the IdCache (about 64 MB) and the NameCache
(about 40 MB). Both keep a HashMap alive (only the IdCache is
shown in detail in Figure 10), which further keeps its HashMap$Node
instances alive using an array. Yet, these HashMap$Nodes only dom-
inate their keys, but not their data. Since the dominator tree is
only suitable for detecting single-ownership, it is not possible to
infer how much and which memory is kept alive by both caches
together, or if further data structures are involved in the memory
leak. This is also reflected by the fact that the Object[] that keeps
the loaded classes alive is the dominator of 1, 000, 000 Product in-
stances, which is rather useless to infer ownership (this number is
not directly visible in Figure 10 but is a part of the very last entry
in the figure).

By default, AntTracks classifies all objects by type, which can
be seen in Figure 11. The figure shows that the application’s 22
HashMaps together keep 99.9% of the heap alive. When classifying
the maps by allocation site (see Figure 12), the classification tree dis-
plays the retained sizes of the individual hash maps (23.6% for the
one allocated in IdCache, 14.8% for the one allocated in NameCache,
and 0.0% for the remaining 20 maps). The individual retained sizes
do not add up to the combined retained size of 99.9%, which in-
dicates shared ownership between the hash maps. To analyze the
shared ownership of the two caches, both have to be combined
into one object group, which in turn may then be analyzed. There
are two options to do this: (1) Selecting the two rows in the tree
and opening the object group inspection window (showing the
object group information explained in Section 4.4 for the two maps
combined) or (2) applying a classifier that groups the two caches
into one node in the classification tree.

Figure 13 shows parts of the object group inspection window
that gets displayed when using the first method. The upper part

Figure 11: AntTracks’s default heap state analysis view, clas-
sifying heap objects by type.

Figure 12: Classifying heap objects by type and allocation
site in AntTracks.

Figure 13: Parts of the object group inspection window
displaying information about the hash maps allocated in
IdCache and NameCache

of the figure shows various metrics, including the retained size. A
retained size of about 272MB confirms our assumption that both
caches together nearly keep the whole heap alive. In the lower
part, the classification tree (by default classifying objects by their
types) of the retained objects is shown. It reveals that, beside other
objects, 1, 000, 000 Product instances are part of the caches’ shared
GC closure.

When using the second method to analyze shared ownership,
a suitable classifier has to be used to group the suspicious objects
into one tree node. Since both caches are allocated in the same
package, the allocating package classifier seems advisable to group
them. Additionally, the type classifier, followed by the indirectly-
GC-rooted classifier has been applied, and the result can be seen in
Figure 14. We can see that 3, 000, 002 objects have been allocated
in the jku.anttracks.example.data package, and all objects to-
gether have a retained size of 99.9% of all memory. By classifying
these objects by type, we can see that they split up into 1, 000, 000
Product instances, 2, 000, 000 int[] instances, and 2 HashMaps,
i.e., the maps in the caches. The maps also have a retained size
of 99.9%, which clearly identifies the two HashMaps as the source

ManLang’18, September 12–14, 2018, Linz, Austria M. Weninger et al.

Figure 14: Classifying heap objects by allocating package,
type and indirect GC roots in AntTracks.

Figure 15: AntTracks’s object group inspection window also
allows the analysis of GC roots.

of the memory leak. To find out which GC roots keep certain ob-
jects alive, one can apply the indirectly-GC-rooted classifier. In the
case of the two maps this classifier returns two static fields, one in
the IdCache class of type java.util.Map called idCache, and one
in the NameCache class of type java.util.Map called nameCache.
Even if the user would not have had any prior knowledge about
the system under investigation, we claim that this information is
enough to find the corresponding locations in the source code to
investigate the leak further on source code level.

This memory leak could have also been identified by using
bottom-up analysis. By comparing multiple heap states regard-
ing the frequency of types, one could detect that the number of
Product instances is increasing over time. In Section 3.4, such an
object group has been called suspicious object group. By opening
the object group inspection window for such an object group, we
can inspect the closures of the objects as well as the GC roots. The
hierarchical view of the GC roots also allows us to define classifiers
on them. By default, the root objects are classified using the directly-
GC-rooted classifier, categorizing them based on their referencing
GC roots (see Figure 15). This again identifies the two HashMaps as
responsible for the memory leak.

5.2 Recording Overhead
In Section 3.1 we presented the events that are recorded by the
AntTracks VM to collect information about GC roots. Information
is recorded for every GC root at the start of every garbage collection.
Therefore, the recording of this information may have an influence
on the following metrics:

• Run time: The time it takes to execute a given benchmark.
• Trace file size: The size of the resulting trace file.

Figure 16: Median run time without (-GCRoots) and with
(+GCRoot) GC root tracing, relative to the median run time
without GC root tracing enabled.

The recording does not influence the number of garbage collections
since we did not modify the GC’s collection behavior, but only
perform additional operations at the beginning of each garbage
collection.

We evaluate the overhead using benchmarks from the DaCapo
suite, the DaCapo Scala suite and the SPECjvm2008 suite, all fixed to
amaximumheap size of 2GB (which is enough to run the benchmark
with the largest live set, i.e., DaCapo h2) and using the Parallel Old
GC. We reduced our selection to benchmarks that trigger at least
one garbage collection per run.

As a baseline, we used the AntTracks VM to trace the applica-
tions, including pointer information but disabling GC root infor-
mation tracing (parameter -GCRoots). According to Lengauer et
al. [21], this introduces an average run time overhead of 15.0%. We
measured the additional overhead introduced by enabling GC root
information tracing (parameter +GCRoots). For warm-up, we ran
a benchmark with a given parameter 10 to 40 times on a single
VM instance using the largest input size to ensure stabilization of
caching and JIT compilation. The largest possible input sizes and
the necessary warm-up iterations depend on the benchmarks and
have been taken from Lengauer et al., Figure 1 [24]. After warm-
up, we ran the benchmark another 10 times on the same VM and
calculated the median run time and median trace file size of these
runs. We repeated this experiment 10 times for every benchmark
and parameter combination, using a new VM instance every time.
In the next sections, we report the median, the 25 percentile, and
the 75 percentile of the 10 medians per benchmark and parameter
setting.

5.2.1 Run time. Figure 16 shows the median run time for each
benchmark, relative to the median run time without GC root tracing
enabled. The error bars show the 25 percentile and the 75 percentile.
On average (geometric mean), the run time increases by 1.00%
across all benchmarks when turning GC root tracing on, with an
outlier of a maximum median run time increase by 8.77% on the
DaCapoScala tmt benchmark. The reason for this outlier may be
that tmt is one of the most allocation-intensive benchmarks. The
official documentation describes tmt as externally single-threaded
and internally multi-threaded. It creates a large number of threads,
each of which is only very short-lived.4 Allocating a lot of objects
may trigger many garbage collections, which, in combination with
a large number of thread-local GC roots, may lead to a run-time
4http://www.benchmarks.scalabench.org/modules/tmt-dacapo-benchmark/ (last ac-
cessed May 11, 2018)

Utilizing Object Reference Graphs and Garbage Collection
Roots to Detect Memory Leaks in Offline Memory Monitoring ManLang’18, September 12–14, 2018, Linz, Austria

Figure 17: Trace file size without (-GCRoots) and with (+GC-
Root) GC root tracing, relative to the median trace file size
without GC root tracing enabled.

Figure 18: Trace file size without (-GCRoots) and with (+GC-
Root) GC root tracing, relative to the median trace file size
without GC root tracing enabled (excluding benchmarks
generating trace files < 30MB).

increase. Nevertheless, tmt was the only outlier, and we claim that
an average run-time increase of one percent makes our approach
feasible for production systems.

5.2.2 Trace file size. Figure 17 shows the median trace file size
for each benchmark, relative to the median trace file size without
GC root tracing. The error bars show the 25 percentile and the 75
percentile. The extreme trace file size increases for certain bench-
marks (over 1000% for SPECjvm scimark.fft.small) have to be set in
relation to their absolute file sizes. For most benchmarks, the trace
files have sizes between some 100 megabytes and some gigabytes,
depending on how many objects are allocated by the application
and moved by the garbage collector. All benchmarks that show a
large relative increase of their trace sizes have an original trace
size of less than 30MB. These benchmarks allocate and move very
few objects, and the size of the GC root information exceeds the
amount of the trace data for the actual objects.

Figure 18 shows the same data as Figure 17, but excludes all
benchmarks that generate trace files smaller than 30MB. On av-
erage (geometric mean), the trace file size for these benchmarks
increases by 0.21% across all benchmarks when turning GC root
tracing on. Since most of the data that is written to the trace files
concerns object allocations, object movements and pointer updates,
the additional data written due to GC roots becomes nearly negligi-
ble.

6 RELATEDWORK AND STATE-OF-THE-ART
Based on the dominator tree algorithm proposed by Lengauer and
Tarjan [41], various variations have been presented [2, 7, 33]. Dom-
inator trees are used in a wide range of applications. For example,

dominance is used in compilers to analyze control flow graphs [10]
or to visualize software dependencies [14].

In the domain of program understanding and memory leak de-
tection, dominator trees (alongside other techniques) are often
used as basis for ownership detection, component analysis and
aggregation in heap graph visualization. Hill et al. [17, 18] reduce
object graphs into ownership trees for visualization based on the
dominator tree. Rayside et al. [34, 35] introduce object ownership
profiling, a technique that uses the dominator tree alongside in-
formation about last object access times and object interactions to
identify memory leaks and memory management anti-patterns in
applications. Mitchell [27] summarizes an application’s memory
footprint with help from the dominator relation. He introduces a set
of ownership structures, detects these structures in object graphs
and aggregates them into concise ownership graphs that visualize
responsibility and ownership of data structures. In further work,
Mitchell and Sevitsky [29] introduce health signatures for data struc-
tures based on dominator tree reference analysis. They show how
to judge data structure designs or implementations based on their
relationship between actual data and structural overhead. In [28],
Mitchell et al. present aggregation techniques using the domination
relation in heap object graphs to perform progressive graph ab-
stractions, alongside corresponding visualizations. Similarly, other
approaches use dominator information to abstract object graph
visualizations [26, 36–38] or to layout graphs [1].

Nevertheless, ample work in the domain of memory leak detec-
tion exists that does not rely on dominator trees but uses object
graphs directly, as we do in AntTracks. Most of these approaches
rely on certain types of pattern detection in the object graphs. De
Pauw et al. [11, 12] extract patterns from object graphs, shifting the
focus from individual objects to groups of objects to abstract their
visualization. Jump and McKinley [19] developed the memory leak
detection tool Cork that reduces the object graph to a type-points-
to-type graph for analysis. Barr et al. [3] use the object graph to
detect and classify typical reference patterns in real-world applica-
tion heaps. Chis et al. [6] discuss the limitations of the dominator
relation (mostly due to the issue of detecting shared ownership),
alternatively describe a ContainerOrContained relation, and use this
relation to detect various inefficient memory patterns.

State-of-the-art memory monitoring tools share the typical func-
tionality to represent heap states as type histograms, showing the
number of instances per class and their shallow sizes. While this
enables users to detect large object groups of a certain type in the
same way in all tools, they differ in how they support memory leak
root cause detection.

VisualVM [32] is a general performance monitoring tool for
Java applications that provides memory analysis based on heap
dumps. In addition to a type histogram, it can display a list of all
root objects, as well as the dominator tree. From each view, it is
possible to inspect individual objects, including functionality to
inspect an object’s fields, accessing referencing objects, and finding
the closest root object. Even though VisualVM can calculate the
retained size for the objects of a given type, it is not possible to
change that classification or to further split that group. Neither can
the user select multiple objects that might have shared ownership
for inspection, a functionality that is available in AntTracks by using
its object group inspection window on arbitrary object groups. The

ManLang’18, September 12–14, 2018, Linz, Austria M. Weninger et al.

Netbeans profiler [31] is a slimmed down version of VisualVM and
is integrated into the Netbeans IDE.

The focus of the the Eclipse Memory Analyzer (MAT) [15] tool is
to provide a fast overview on possible memory leaks, reducing the
need for complex user interaction. By default, it displays overview
charts of the largest dominating objects, packages and class loaders.
Their computations heavily rely on the dominator tree. In addition,
MAT provides an automatic leak suspect analysis which detects and
extracts the most suspicious objects from the dominator tree. While
MAT provides easy-to-use automated analysis features and high-
level abstractions based on the dominator tree, it shares a common
problem with VisualVM: Memory leak root cause detection is not
supported for leaking object groups with shared ownership.

7 FUTUREWORK AND THREATS TO
VALIDITY

Heap object graphs, alongside closure, could also be reconstructed
and calculated using normal heap dumps. Yet, the analysis of a single
heap state may not be sufficient to detect and analyze the prolif-
eration of objects. Thus, AntTracks utilizes a trace-based method
to continuously record memory information. Trace files can then
be used to analyze an application’s memory behavior over time on
object-level. Future work will make use of the temporal information
that can be reconstructed from traces and will combine it with
the approaches presented in this work. This includes automated
analysis of changes to the heap object graph, i.e., how object refer-
ences and GC root pointers change over time. This will enable us to
automatically detecting continuously growing object groups, e.g.,
detecting growing object groups of certain types or allocation sites.
It will also be possible to detect objects with a growing retained
size, which might hint at growing data structures. We further plan
to include a constraint DSL in AntTracks which would enable users
to define memory constraints such as maximum retained sizes or
checks for invalid reference patterns. Such constraints can then be
checked during parsing of trace files.

After detecting growing object groups (e.g., due to a memory
leak) or object groups that keep large portions of the heap alive,
the user’s goal is to make these objects eligible for garbage collec-
tion. This can be done by cutting references between objects on
the paths to their GC roots. Analyzing these paths to find suitable
cutting points is most effectively done by visualizing the object
graph. We therefore plan to develop more sophisticated graph visu-
alization techniques that offer convenient navigation and analysis
of object graphs. Yet, without aggregation, such object graphs tend
to grow big and become infeasible to analyze. Thus, our goal is to
reduce this complexity by collapsing the object graph based on data
structure membership, i.e., by aggregating objects that belong to
a certain data structure into a single graph node. When searching
for suitable cutting points, one is not interested in the internals of
data structures. For example, a linked list maintains its elements
via Node objects. These internals should not show up in the object
graph. By aggregating all objects of the list into a single node, one
could raise the abstraction level of the analysis. As a first step, data
structure aggregation could be done for the well-known Java col-
lection types. Later it could also be done for arbitrary user-defined
data structures described by a domain-specific language.

The major threat to validity of our work is its currently restricted
evaluation based on an artificial use case. It also lacks an evalu-
ation on how often multi-object ownership occurs in real-world
applications. There exist studies on the memory behavior of real-
world applications [8, 9, 16], yet they do not evaluate the interaction
between objects or data structures, e.g. they do not report multi-
object ownership rates. We plan to conduct in-depth evaluations on
open-source projects in the future to gain a deeper understanding
of object interaction in real-world applications. Further, to prove
AntTracks’s applicability for finding the root cause of memory
leaks in such real-world applications, we also plan to conduct a
user study with our industry partner. In addition to comparing
AntTracks to existing tools, e.g., in terms of found memory leaks,
we also want to evaluate which classifier combinations are most
useful when searching for memory leaks.

8 CONCLUSION
In this paper, we presented new techniques for collecting informa-
tion about GC roots and how to use this information for computing
the transitive closure and the GC closure of the object graphs refer-
enced by these roots. A distinguishing feature of our approach is
the fact that we can compute the GC size for whole object groups
and not only for single objects, as is the case in dominator-tree-
based approaches. From the closures we derived metrics such as
the retained size of an object group (i.e., the amount of memory that
is kept alive by this group). Finally, we integrated our techniques
into a state-of-the-art memory monitoring tool (AntTracks) that
provides classification and navigation facilities for analyzing the
memory behavior of an application and finding the root causes of
memory leaks.

The GC root information is written to a trace file at the start of
every garbage collection and can thus be reconstructed offline for
any garbage collection point. In a quantitative evaluation based on
the DaCapo, DaCapoScala and SPECjvm2008 benchmark suites, we
showed that tracing GC root information introduces 1.00% overhead
on the application’s run time and 0.21% overhead on the generated
trace file size on average, which is low enough to be used in pro-
duction systems.

A functional evaluation showed that our approach for computing
the GC closure enables us to detect memory leaks even if the leaking
objects are shared by multiple owner objects. In particular, the
retained size metric proved useful to detect data structures that
have shared ownership. Finally, we showed how bottom-up analysis
can be used to find the GC roots that keep a set of leaking objects
alive.

ACKNOWLEDGMENTS
This work was supported by the Christian Doppler Forschungsge-
sellschaft, and by Dynatrace Austria GmbH.

REFERENCES
[1] Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci, Sara L.

Su, and Samuel Z. Guyer. 2010. Heapviz: Interactive Heap Visualization for
Program Understanding and Debugging. In Proceedings of the 5th International
Symposium on Software Visualization (SOFTVIS ’10). ACM, New York, NY, USA,
53–62. https://doi.org/10.1145/1879211.1879222

[2] Stephen Alstrup and Peter W. Lauridsen. 1996. A Simple Dynamic Algorithm for
Maintaining a Dominator Tree. Technical Report.

Utilizing Object Reference Graphs and Garbage Collection
Roots to Detect Memory Leaks in Offline Memory Monitoring ManLang’18, September 12–14, 2018, Linz, Austria

[3] Earl T Barr, Christian Bird, andMarkMarron. 2013. Collecting a heap of shapes. In
Proceedings of the 2013 International Symposium on Software Testing and Analysis.
ACM, 123–133.

[4] Verena Bitto, Philipp Lengauer, and Hanspeter Mössenböck. 2015. Efficient
Rebuilding of Large Java Heaps from Event Traces. In Proc. of the Principles and
Practices of Programming on The Java Platform (PPPJ ’15). 76–89.

[5] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang, Kathryn S
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z Guyer, et al. 2006. The DaCapo benchmarks: Java benchmarking
development and analysis. In ACM Sigplan Notices, Vol. 41. ACM, 169–190.

[6] Adriana E Chis, NickMitchell, Edith Schonberg, Gary Sevitsky, Patrick O’Sullivan,
Trevor Parsons, and John Murphy. 2011. Patterns of memory inefficiency. In
European Conference on Object-Oriented Programming. Springer, 383–407.

[7] Keith D Cooper, Timothy J Harvey, and Ken Kennedy. 2001. A simple, fast
dominance algorithm. Software Practice & Experience 4, 1-10 (2001), 1–8.

[8] Diego Costa, Artur Andrzejak, Janos Seboek, and David Lo. [n. d.]. Empirical
Study of Usage and Performance of Java Collections. ([n. d.]). https://doi.org/10.
1145/3030207.3030221

[9] Diego Costa and Rivalino Matias Jr. 2015. Characterization of Dynamic Memory
Allocations in Real-World Applications: An Experimental Study. In 2015 IEEE 23rd
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems. IEEE, 93–101. https://doi.org/10.1109/MASCOTS.
2015.28

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1989. An
Efficient Method of Computing Static Single Assignment Form. In Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’89). ACM, New York, NY, USA, 25–35. https://doi.org/10.1145/
75277.75280

[11] Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, John Vlissides, and
Jeaha Yang. 2002. Visualizing the execution of Java programs. In Software
Visualization. Springer, 151–162.

[12] Wim De Pauw and Gary Sevitsky. 1999. Visualizing Reference Patterns for
Solving Memory Leaks in Java. In ECOOP’ 99 — Object-Oriented Programming,
Rachid Guerraoui (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 116–134.

[13] J. Eve and R Kurki-Suonio. 1977. On computing the transitive closure of a relation.
Acta Informatica 8, 4 (oct 1977), 303–314. https://doi.org/10.1007/BF00271339

[14] R. Falke, R. Klein, R. Koschke, and J. Quante. 2005. The Dominance Tree in Visu-
alizing Software Dependencies. In 3rd IEEE International Workshop on Visualizing
Software for Understanding and Analysis. 1–6. https://doi.org/10.1109/VISSOF.
2005.1684311

[15] Eclipse Foundation. 2018. Eclipse Memory Analyzer (MAT) (last accessed May
11, 2018). https://www.eclipse.org/mat/. (2018).

[16] Mohammadreza Ghanavati, Diego Costa, Artur Andrzejak, and Janos Seboek.
2018. Memory and Resource Leak Defects in Java Projects: An Empirical
Study. In Proceedings of the 40th International Conference on Software Engineer-
ing: Companion Proceeedings (ICSE ’18). ACM, New York, NY, USA, 410–411.
https://doi.org/10.1145/3183440.3195032

[17] T. Hill, J. Noble, and J. Potter. 2000. Scalable visualisations with ownership trees.
In Proceedings 37th International Conference on Technology of Object-Oriented
Languages and Systems. TOOLS-Pacific 2000. 202–213. https://doi.org/10.1109/
TOOLS.2000.891370

[18] Trent Hill, James Noble, and John Potter. 2002. Scalable visualizations of object-
oriented systems with ownership trees. Journal of Visual Languages & Computing
13, 3 (2002), 319–339.

[19] Maria Jump and Kathryn S. McKinley. 2007. Cork: Dynamic Memory Leak
Detection for Garbage-collected Languages. In Proceedings of the 34th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’07). ACM, New York, NY, USA, 31–38. https://doi.org/10.1145/1190216.
1190224

[20] Donald E. Knuth. 1971. Top-down syntax analysis. Acta Informatica 1, 2 (01 Jun
1971), 79–110. https://doi.org/10.1007/BF00289517

[21] Philipp Lengauer, Verena Bitto, Stefan Fitzek, Markus Weninger, and Hanspeter
Mössenböck. 2016. Efficient Memory Traces with Full Pointer Information. In
Proc. of the 13th Int’l. Conference on Principles and Practices of Programming on
the Java Platform: Virtual Machines, Languages, and Tools (PPPJ ’16).

[22] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2015. Accurate and
Efficient Object Tracing for Java Applications. In Proc. of the 6th ACM/SPEC Int’l.
Conference on Performance Engineering (ICPE ’15). 51–62.

[23] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2016. Efficient and
Viable Handling of Large Object Traces. In Proc. of the 7th ACM/SPEC on Int’l.
Conference on Performance Engineering (ICPE ’16). 249–260.

[24] Philipp Lengauer, Verena Bitto, Hanspeter Mössenböck, and Markus Weninger.
2017. A Comprehensive Java Benchmark Study on Memory and Garbage Collec-
tion Behavior of DaCapo, DaCapo Scala, and SPECjvm2008. In Proceedings of the
8th ACM/SPEC on International Conference on Performance Engineering (ICPE ’17).
ACM, New York, NY, USA, 3–14. https://doi.org/10.1145/3030207.3030211

[25] Thomas Lengauer and Robert Endre Tarjan. 1979. A Fast Algorithm for Finding
Dominators in a Flowgraph. ACM Trans. Program. Lang. Syst. 1, 1 (Jan. 1979),

121–141. https://doi.org/10.1145/357062.357071
[26] M. Marron, C. Sanchez, Z. Su, and M. Fahndrich. 2013. Abstracting runtime heaps

for program understanding. IEEE Transactions on Software Engineering 39, 6 (June
2013), 774–786. https://doi.org/10.1109/TSE.2012.69

[27] Nick Mitchell. 2006. The Runtime Structure of Object Ownership. In Proceedings
of the 20th European Conference on Object-Oriented Programming (ECOOP’06).
Springer-Verlag, Berlin, Heidelberg, 74–98. https://doi.org/10.1007/11785477_5

[28] Nick Mitchell, Edith Schonberg, and Gary Sevitsky. 2009. Making Sense of
Large Heaps. In Proceedings of the 23rd European Conference on ECOOP 2009 —
Object-Oriented Programming (Genoa). Springer-Verlag, Berlin, Heidelberg, 77–97.
https://doi.org/10.1007/978-3-642-03013-0_5

[29] Nick Mitchell and Gary Sevitsky. 2007. The Causes of Bloat, the Limits of Health.
In Proceedings of the 22Nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications (OOPSLA ’07). ACM, New York, NY, USA,
245–260. https://doi.org/10.1145/1297027.1297046

[30] Oracle. 2018. The HotSpot Group (last accessed May 11, 2018). http://openjdk.
java.net/groups/hotspot/. (2018).

[31] Oracle. 2018. Netbeans Profiler (last accessed May 11, 2018). https://profiler.
netbeans.org/. (2018).

[32] Oracle. 2018. VisualVM: All-in-One Java Troubleshooting Tool (last accessed
May 11, 2018). https://visualvm.github.io/. (2018).

[33] G. Ramalingam and Thomas Reps. 1994. An Incremental Algorithm for Maintain-
ing the Dominator Tree of a Reducible Flowgraph. In Proceedings of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
’94). ACM, New York, NY, USA, 287–296. https://doi.org/10.1145/174675.177905

[34] Derek Rayside and Lucy Mendel. 2007. Object Ownership Profiling: A Tech-
nique for Finding and Fixing Memory Leaks. In Proceedings of the Twenty-second
IEEE/ACM International Conference on Automated Software Engineering (ASE ’07).
ACM, New York, NY, USA, 194–203. https://doi.org/10.1145/1321631.1321661

[35] Derek Rayside, Lucy Mendel, and Daniel Jackson. 2006. A Dynamic Analysis for
Revealing Object Ownership and Sharing. In Proceedings of the 2006 International
Workshop on Dynamic Systems Analysis (WODA ’06). ACM, New York, NY, USA,
57–64. https://doi.org/10.1145/1138912.1138924

[36] Steven P Reiss. 2009. Visualizing the Java heap - Demonstration Proposal. In
Software Maintenance, 2009. ICSM 2009. IEEE International Conference on. IEEE,
389–390.

[37] S. P. Reiss. 2009. Visualizing the Java heap to detect memory problems. In 2009
5th IEEE International Workshop on Visualizing Software for Understanding and
Analysis. 73–80. https://doi.org/10.1109/VISSOF.2009.5336418

[38] Steven P. Reiss. 2010. Visualizing the Java Heap. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume 2 (ICSE ’10).
ACM, New York, NY, USA, 251–254. https://doi.org/10.1145/1810295.1810344

[39] Nathan P. Ricci, Samuel Z. Guyer, and J. Eliot B. Moss. 2013. Elephant Tracks:
Portable Production of Complete and Precise Gc Traces. In Proceedings of the
2013 International Symposium on Memory Management (ISMM ’13). ACM, New
York, NY, USA, 109–118. https://doi.org/10.1145/2464157.2466484

[40] C. Ruggieri and T. P. Murtagh. 1988. Lifetime Analysis of Dynamically Allocated
Objects. In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’88). ACM, New York, NY, USA, 285–293.
https://doi.org/10.1145/73560.73585

[41] Robert Tarjan. 1971. Depth-first search and linear graph algorithms. In 12th
Annual Symposium on Switching and Automata Theory (swat 1971). IEEE, 114–121.
https://doi.org/10.1109/SWAT.1971.10

[42] Markus Weninger, Philipp Lengauer, and Hanspeter Mössenböck. 2017. User-
centered Offline Analysis of Memory Monitoring Data. In Proc. of the 8th
ACM/SPEC on Int’l. Conference on Performance Engineering (ICPE ’17). 357–360.

[43] Markus Weninger and Hanspeter Mössenböck. 2018. User-defined Classification
and Multi-level Grouping of Objects in Memory Monitoring. In Proceedings of the
9th ACM/SPEC International Conference on Performance Engineering (ICPE 2018)
(ICPE 2018).

80

Chapter 4

Data Structure Analysis

This chapter includes two papers [316, 318] that describe our automatic data
structure growth analysis approach that tracks data structures across their
lifetime and sorts them based on their growth behavior and possible involve-
ment in a memory leak.

Work-In-Progress Paper:
Markus Weninger, Elias Gander, Hanspeter Mössenböck:
Analyzing the Evolution of Data Structures in Trace-Based Memory Moni-
toring. In Proceedings of the 9th Symposium on Software Performance, SSP
2018, Hildesheim, Germany, November 8 - 9, 2018.

Full Paper:
Markus Weninger, Elias Gander, Hanspeter Mössenböck:
Analyzing Data Structure Growth Over Time to Facilitate Memory Leak De-
tection. In Proceedings of the 2019 ACM/SPEC International Conference on
Performance Engineering, ICPE 2019, Mumbai, India, April 7-11, 2019.

81

Analyzing the Evolution of Data Structures

in Trace-Based Memory Monitoring

Markus Weninger?⊗, Elias Gander⊗, Hanspeter Mössenböck?

{firstname.lastname@jku.at}
? Institute for System Software, Johannes Kepler University, Linz

⊗ Christian Doppler Laboratory MEVSS, Johannes Kepler University, Linz

Abstract

Modern software systems are becoming increasingly
complex and are thus more prone to performance
degradation due to memory leaks. Memory leaks oc-
cur if objects that are not needed anymore are still
unintentionally kept alive. While there exists a vari-
ety of state-of-the-art memory monitoring tools, most
of them only use memory snapshots, i.e., heap dumps,
to analyze an application’s live objects at a single
point in time. This does not allow developers to
identify data structures that grow over time. Trace-
based monitoring tools tackle this problem by record-
ing memory events, e.g., allocations or object moves
performed by the garbage collector (GC), throughout
an application’s run time. In this paper, we present
ongoing research on the use of memory traces for de-
tecting the root causes of memory leaks introduced
by growing data structures. This encompasses (1) a
domain-specific language (DSL) to describe arbitrary
data structures, (2) an algorithm to detect instances
of previously defined data structures in reconstructed
heaps, as well as (3) techniques to analyze the tem-
poral evolution of these data structure instances to
identify those possibly involved in memory leaks. All
these concepts have been integrated into AntTracks,
a trace-based memory monitoring tool, to prove their
feasibility.

1 Introduction

Modern programming languages such as Java use au-
tomatic garbage collection. During garbage collection,
objects that are not directly or indirectly reachable
from static fields or thread-local variables (so-called
GC roots) may be collected by the GC. We speak of a
memory leak if no longer needed objects remain reach-
able from GC roots due to a programming error. For
example, if a developer misses to remove no longer
needed objects from their containing data structures,
e.g., lists, these objects may not be collected by the
GC. Beside excessive dynamic allocations [1], memory
leaks are one of the major memory anomalies [4].

Since modern applications may involve hundreds
of millions of objects at a single point in time, tool
support to resolve memory problems is of paramount
importance. Most state-of-the-art tools, such as Vi-

sualVM [8] or Eclipse Memory Analyzer (MAT) [7],
perform heap analysis based on snapshots, i.e., heap
dumps. While a single heap dump may allow develop-
ers to detect large data structures, it provides no infor-
mation about the heap’s evolution over time. Thus,
some approaches [2, 8] take multiple snapshots and
compare them. Nevertheless, such approaches do not
allow temporal analyses on the object-level.

In contrast to snapshot-based approaches, trace-
based approaches record additional information, e.g.,
object moves executed by the GC. This allows them
to reconstruct the heap offline from the recorded trace
for any point in time, as well as to track specific ob-
jects and their evolution throughout an application.
Since it would not be feasible – due to memory re-
strictions and computational borders – to reconstruct
and remember every single change to every single ob-
ject, temporal analysis approaches need to focus on a
certain subset of objects.

In this work, we present ongoing research on the use
of memory traces. Our goal is to extract information
about the root causes of memory leaks by focusing on
the temporal development of data structures. This en-
compasses (1) a DSL that enables users to describe ar-
bitrary data structures, (2) an algorithm to detect in-
stances of previously defined data structures in recon-
structed heaps, as well as (3) techniques to analyze the
temporal evolution of these data structure instances
to identify those possibly involved in memory leaks.
To prove the feasibility of our approach, all concepts
have been integrated into AntTracks. AntTracks is
a trace-based memory monitoring tool based on the
Hotspot Java VM, initially developed by Lengauer et
al. [3] and extended by Weninger et al. [5, 6].

2 Approach

This section illustrates how data structures can be
described in our DSL, how they are detected in re-
constructed heaps, and how information about their
temporal evolution is derived from AntTracks’s mem-
ory traces.

2.1 Data Structure Definition

In object-oriented languages such as Java, data struc-
tures typically consist of a head object and multiple

other objects that reference each other according to
a specific pattern. These patterns have to be known
by a memory monitoring tool in order to enable it to
perform data structure analyses. Therefore, we devel-
oped a DSL that allows us to describe arbitrary data
structures. This allows us to ship descriptions of well-
known data structures (e.g., data structures in Java’s
java.util package) directly with AntTracks. At the
same time, tool users can extend this set of predefined
data structure descriptions with descriptions of their
own data structures.

Listing 1 shows an example of the DSL, describing
the structure of java.util.LinkedList. Every type
that is involved in the data structure needs a descrip-
tion, i.e., in our example java.util.LinkedList and
java.util.LinkedList$Node. The former represents
the head of the data structure (marked with the DS

keyword), while the latter is an internal part of a data
structure. Similar to Java syntax, the name of the
type is followed by a set of curly braces. These contain
a set of types (separated by semicolons) that may be
referenced by the respective data structure part. For
example, an instance of java.util.LinkedList may
point to instances of java.util.LinkedList$Node

(see line 2), which in turn may point to instances of
java.util.LinkedList$Node instances (see line 5),
and so on. Line 6 presents two special language fea-
tures: (1) a star (i.e., *) can be used as a wildcard
within the name of a pointed type and (2) enclos-
ing a type in parentheses declares it as a leaf. The
term (*) denotes a leaf of any type. Leaf information
is used during data structure detection to determine
the boundaries of a data structure. The DSL also
supports namespaces which allow us to omit package
declarations in type names.

2.2 Data Structure Detection

In order to detect data structures in a heap, the data
structure definitions have to be parsed first. The
parsed definitions are assigned to their correspond-
ing types. Types for which no data structure defini-
tion was parsed are assigned a non-head dummy data
structure definition that does not declare any pointed
types. Array types are an exception to this rule and
are handled in a special way. At this point, every type
has a data structure definition assigned.

A reconstructed heap contains information about
the objects live at a certain point in time (e.g., their
types), as well as their references between each other.
As a first step, the data structure detection algo-
rithm filters and remembers all objects that are data
structure heads, i.e., objects whose types have a head
data structure definition assigned. Then, to deter-
mine which objects belong to a certain data structure
instance, it recursively follows the head object’s point-
ers. The recursive descent is stopped when a pointed
object is encountered whose type is either (1) not part
of the current object’s data structure definition or (2)

1 DS java.util.LinkedList {

2 java.util.LinkedList$Node;

3 }

4 java.util.LinkedList$Node {

5 java.util.LinkedList$Node;

6 (*);

7 }

Listing 1: Definition of java.util.LinkedList

using our data structure DSL.

LL

N

DN

D

X

X

leaf

 leaf

LL

X

X

LL = java.util.LinkedList N = java.util.LinkedList$Node D = Data X = X

Figure 1: A LinkedList instance, consisting of the
head (LL), two nodes (N) and two data objects (D).

marked as a leaf in the current object’s data structure
definition. In the latter case, the object itself belongs
to the data structure instance, but none of its refer-
enced objects. Every visited object is marked to avoid
multiple visits.

For example, Figure 1 shows a
java.util.LinkedList that has been detected
using the description in Listing 1. Starting at the
head LL, the first N instance is visited. The data struc-
ture description of java.util.LinkedList$Node

then allows us to follow further nodes (line 5), or to
visit any other object as a leaf without continuing the
recursive descent (line 6). Thus, the first D instance
and the second N instance are visited, continuing the
descent from the N object. As a last step, the second
D object is visited as a leaf.

2.3 Temporal Analysis

Trace-based approaches are better suited for tempo-
ral analysis than snapshot-based ones because they al-
low to derive temporal information on the object-level.
Figure 2 illustrates this. Using only snapshots, with-
out additional temporal information, it is not possible
to decide whether two objects of type X are really the
same or just share the same type.

AntTracks is able to derive this information by re-
playing the recorded GC move events. Thus, we know
which objects survived between two points in time as
well as their updated pointers. Using this knowledge,
we can specifically search for data structure instances
which (1) survived over a certain time window (since

X

Y Y

X

Y Y

delete X create
new X

Snapshot 1 Snapshot 2

same object?

Figure 2: Analysis based on multiple snapshots lacks
information on the object-level.

2

objects that died cannot be the root cause of a mem-
ory leak) and (2) reference / keep alive more objects
than before.

Our workflow for temporal data structure evolution
analysis consists of the following steps:

1. The user chooses two garbage collection points in
time between which the temporal data structure
evolution analysis should take place.

2. The heap is reconstructed for the first point in
time and is stored. The addresses of all data
structure heads in this heap, i.e., the start ad-
dresses, are stored as well.

3. At every garbage collection, we stop tracking data
structure heads that died. For surviving heads,
their new addresses (which can be reconstructed
from GC move events) are stored alongside their
start addresses.

Following this algorithm up to the end of the se-
lected time window, we obtain (1) the reconstructed
heap at the start, (2) the reconstructed heap at the
end, and (3) a list of all data structures that survived,
more specifically, their initial and final addresses.

For every data structure head, its deep size (i.e.,
how many objects can be reached from that object)
as well as its retained size (i.e., how many objects are
kept alive by that object) can be calculated for both
points in time [5]. Based on that, the absolute and
the relative change of these sizes can be calculated.

The metric that proved the most useful to identify
problematic data structure instances in our prelimi-
nary evaluation is shown in Equation 1.

HGP (obj) =
∆retained(obj)

∆heapsize
× 100 (1)

Given that the overall heap size increased, this for-
mula calculates the ownership growth of each data
structure relative to the heap growth, i.e., the heap
growth portion. For example, assume that the overall
heap size went from 1GB to 2GB and a list’s retained
size increased by 700MB. This would result in a HGP
value of 70%, i.e., the ownership growth of this data
structure contributes 70% to the total growth of the
heap.

Sorting all data structures by this metric allows us
to easily identify those that keep more objects alive
than before. At the same time their growth is put into
perspective to the absolute heap growth. In the case
of a memory leak, objects that reveal a high HGP
value are most likely involved in it.

3 Conclusion and Future Work

In this paper, we presented a new and easy-to-use DSL
to describe arbitrary data structures and sketched an
algorithm that detects instances of those data struc-
tures in reconstructed heaps. We discussed how tem-
poral information regarding the growth of data struc-
ture instances can be derived from memory traces,

including a metric that puts data structure growth in
relation to the overall heap growth. This metric allows
us to prioritize data structure instances according to
how likely they are involved in a memory leak.

Being able to describe, detect and analyze the evo-
lution of arbitrary data structures over time, even
user-defined ones, yields many possibilities for future
work. Due to the complexity of heap object graphs, it
is not feasible to visualize and inspect them without
abstraction, e.g., by aggregating nodes. Our work can
be used to develop improved object graph visualiza-
tion techniques that perform node aggregation based
on data structure information. Data structure infor-
mation may also be used to push automatic memory
leak detection and resolution without human inter-
vention.

4 Acknowledgement

The financial support by the Austrian Federal Min-
istry for Digital and Economic Affairs, the National
Foundation for Research, Technology and Develop-
ment, and Dynatrace is gratefully acknowledged.

References

[1] C. U. Smith and L. G. Williams. “Software per-
formance antipatterns.” In: Workshop on Soft-
ware and Performance. 2000.

[2] M. Jump and K. S. McKinley. “Detecting mem-
ory leaks in managed languages with Cork”. In:
Software: Practice and Experience 40.1 (2010).

[3] P. Lengauer, V. Bitto, and H. Mössenböck. “Ac-
curate and Efficient Object Tracing for Java Ap-
plications”. In: Proc. of the 6th ACM/SPEC
Int’l. Conference on Performance Engineering.
2015.

[4] M. Ghanavati et al. “Memory and Resource Leak
Defects in Java Projects: An Empirical Study”.
In: Proc. of the 40th Int’l Conf. on Software En-
gineering: Companion Proceeedings. 2018.

[5] M. Weninger, E. Gander, and H. Mössenböck.
“Utilizing Object Reference Graphs and Garbage
Collection Roots to Detect Memory Leaks in Of-
fline Memory Monitoring”. In: Proc. of the 15th
Int’l Conf. on Managed Languages & Runtimes.
2018.

[6] M. Weninger and H. Mössenböck. “User-defined
Classification and Multi-level Grouping of Ob-
jects in Memory Monitoring”. In: Proc. of the
9th ACM/SPEC Int’l Conf. on Performance En-
gineering. 2018.

[7] Eclipse Foundation. Eclipse Memory Analyzer
(MAT) (last accessed August 13, 2018). https:
//www.eclipse.org/mat/.

[8] Oracle. VisualVM: All-in-One Java Trou-
bleshooting Tool (last accessed August 13, 2018).
https://visualvm.github.io/.

3

Analyzing Data Structure Growth Over Time
to Facilitate Memory Leak Detection

Markus Weninger
Institute for System Software,

CD Laboratory MEVSS,
Johannes Kepler University

Linz, Austria
markus.weninger@jku.at

Elias Gander
CD Laboratory MEVSS,

Johannes Kepler University
Linz, Austria

elias.gander@jku.at

Hanspeter Mössenböck
Institute for System Software,
Johannes Kepler University

Linz, Austria
hanspeter.moessenboeck@jku.at

ABSTRACT
Memory leaks are a major threat in modern software systems. They
occur if objects are unintentionally kept alive longer than necessary
and are often indicated by continuously growing data structures.

While there are various state-of-the-art memory monitoring
tools, most of them share two critical shortcomings: (1) They have
no knowledge about themonitored application’s data structures and
(2) they support no or only rudimentary analysis of the application’s
data structures over time.

This paper encompasses novel techniques to tackle both of these
drawbacks. It presents a domain-specific language (DSL) that allows
users to describe arbitrary data structures, as well as an algorithm
to detect instances of these data structures in reconstructed heaps.
In addition, we propose techniques and metrics to analyze and mea-
sure the evolution of data structure instances over time. This allows
us to identify those instances that are most likely involved in a
memory leak. These concepts have been integrated into AntTracks,
a trace-based memory monitoring tool. We present our approach
to detect memory leaks in several real-world applications, showing
its applicability and feasibility.

CCS CONCEPTS
• General and reference → Metrics; Performance; • Informa-
tion systems→ Data structures; • Software and its engineer-
ing→Data types and structures;Domain specific languages;
Dynamic analysis; Software performance; Garbage collection.

KEYWORDS
Memory Monitoring, Data Structures, Growth Analysis, Analysis
Over Time, Memory Leak Detection, Domain Specific Language

ACM Reference Format:
Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2019. Analyz-
ing Data Structure Growth Over Time to Facilitate Memory Leak Detection.
In Tenth ACM/SPEC International Conference on Performance Engineering
(ICPE ’19), April 7–11, 2019, Mumbai, India. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3297663.3310297

ICPE ’19, April 7–11, 2019, Mumbai, India
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Tenth ACM/SPEC
International Conference on Performance Engineering (ICPE ’19), April 7–11, 2019, Mum-
bai, India, https://doi.org/10.1145/3297663.3310297.

1 INTRODUCTION
Modern programming languages such as Java use automatic garbage
collection. Heap objects that are no longer reachable from static
fields or thread-local variables (so-calledGC roots) are automatically
reclaimed by a garbage collector (GC). A memory leak occurs if
objects that are no longer needed remain reachable from GC roots
due to programming errors. For example, a developer may forget to
remove objects from their containing data structures. These objects
cannot be reclaimed by the garbage collector and will therefore ac-
cumulate over time. Beside excessive dynamic allocations [27–29],
memory leaks are one of the major memory anomalies [10].

Applications may involve hundreds of millions of objects at a
single point in time. Thus, tools to resolve memory problems are of
paramount importance. Most state-of-the-art tools, such as Visu-
alVM [34] or Eclipse Memory Analyzer (MAT) [32], perform heap
analyses based on snapshots, i.e., heap dumps. While such tools
can group heap objects by their types, they have no notion on how
these objects are connected as data structures. This is problematic
because memory leaks are frequently related to data structures [41].
By recognizing data structures, users can be provided with further
guidance during memory leak detection.

In addition to the problem of missing data structure information,
a single heap dump does not give any insights regarding the heap’s
evolution over time. Thus, some approaches [6, 12, 13, 34], take
multiple snapshots and compare them. Nevertheless, this still does
not allow temporal analyses on the object-level, i.e., its not possible
to tell whether a certain object was alive in snapshot A and is still
alive in a later snapshot B.

In contrast to snapshot-based approaches, trace-based approaches
continuously record information about events, e.g., allocations or
object moves executed by the GC, throughout an application’s life
time. The recorded trace can later be used to reconstruct the heap
for an arbitrary garbage collection point. In addition to that, de-
tailed trace-based approaches are able to track specific objects over
multiple garbage collections. One example of a trace-based mem-
ory monitoring tool is AntTracks, which is based on the Hotspot
Java VM. It was initially developed by Lengauer et al. [17] and has
been extended by Weninger et al. [37–39]. All concepts presented
in this work have been integrated into AntTracks to prove the
feasibility of our approach.

Weninger et al. [36] presented first ideas on how to use memory
traces to find the root causes of memory leaks by focusing on
the growth of data structures over time. In this work, we extend
and complement our work by a more in-depth description of the
approach and the algorithms used, new metrics and metric patterns

for data structure growth analysis, as well as a thorough evaluation
of our implementation based on several real-world scenarios in
which we detect memory leaks caused by growing data structures.

Our scientific contributions are

(1) a DSL that enables users to describe arbitrary data structures,
(2) an algorithm to detect instances of previously defined data

structures in reconstructed heaps,
(3) techniques, metrics and patterns for data structure growth

analysis to identify data structures that are possibly involved
in memory leaks, as well as

(4) an evaluation of our approach based on memory leak detec-
tion in real-world applications.

2 BACKGROUND
AntTracks consists of two parts: The AntTracks VM, a virtual ma-
chine based on the Java Hotspot VM [33], and the AntTracks An-
alyzer, a memory analysis tool. Since the concepts presented in
this paper have been integrated into AntTracks, it is essential to
understand how AntTracks works.

2.1 Trace Recording by the AntTracks VM
The AntTracks VM records memory events such as object allocation
events and object movements executed by the GC by writing them
into trace files. It keeps the event size to a minimum and avoids the
recording of redundant data [16, 17].

2.2 AntTracks Analyzer
2.2.1 Reconstruction.
The AntTracks Analyzer is able to parse previously created trace
files. The events in the trace are incrementally processed, which
enables to reconstruct the heap at every garbage collection point [1].
A heap state is the set of heap objects that were live in themonitored
application at a certain point in time. For every heap object, a
number of properties can be reconstructed, including its address,
its type, its allocation site, the heap objects it references, and the
heap objects it is referenced by. To allow addressing a specific object
within a heap state, every heap object is assigned a unique index.

2.2.2 Heap Object Classification.
The AntTracks Analyzer’s core mechanism is object classification
in combination with multi-level grouping [38, 39] to enable user-
driven heap analysis. Using object classifiers, heap objects can be
grouped according to certain criteria such as type, allocation site,
allocating thread, and so on. For example, the Type classifier allows
to group objects by their types, e.g. java.util.LinkedList. In
multi-level grouping, objects are grouped according to the classifi-
cation results of multiple classifiers. This results in a hierarchical
classification tree.

A common classifier combination is to first group all heap ob-
jects by their types (using the Type classifier) and then by their
allocation sites (using the Allocation Site classifier). Figure 1 shows
an example of a classification tree. Yellow rectangles represent
tree nodes and blue circles represent the objects that were clas-
sified into the respective tree branch. For example, the objects 0
to 3 are of type Object[], of which the objects 0, 1 and 3 have

Figure 1: A classification tree that first groups all objects by
their types and then by their allocation sites.

Figure 2: Shared transitive closure ("reachability") and GC
closure ("ownership") of the two red objects.

been allocated in Stack:init() and object 2 has been allocated in
MyService:foo().

2.2.3 Closures and Metrics.
Users require guidance to decide how they should navigate through
a classification tree. AntTracks currently supports three metrics
that are displayed for every object group, i.e., for every node in the
classification tree:

• Shallow
The shallow object count and the shallow byte count are
calculated based on the objects classified at a given node,
without taking into account any referenced objects. For ex-
ample, the shallow object count of the node Object[] in
Figure 1 is 4. The shallow byte count is the size of the ar-
rays themselves, without taking into account the sizes of the
objects referenced by them.

• Deep
The deep object count and the deep byte count are the num-
ber of objects / number of bytes of a node’s transitive closure.
The transitive closure contains all objects that are reachable
from a given object group, as shown in Figure 2.

• Retained
The retained object count and the retained byte count are
the number of objects / number of bytes of a node’s GC
closure. The GC closure contains all objects that are owned
by a given object group, as shown in Figure 2. In other words,
the GC closure contains all objects that could be freed by the
garbage collector if the given object group would be freed.

3 APPROACH
Over the last years, the memory consumption of applications has
grown drastically. This poses a challenge to memory monitoring
tools because it results in more complex heap states that have to
be visualized in a user-friendly way. Many tools still use flat type
histograms (see Figure 4) as their main visualization.

Growth Analysis

Heap State Analysis

Detection
Description

AntTracks Analyzer

Describe DSs Import

Heap state
with DS info

Heap state

Detect DS
instances

Two heap states with
temporal DS info

DS tracking +
Metric calculation

Classification trees

Classification
tree

Filter DS heads
and classify

DS descriptions

Visualize

Classify both
heap states

Visualize
differenceTypes enriched with

DS descriptions
Tool developers
and users

Reconstruct
heap stateTrace

file

Figure 3: Our approach consists of four stages: (1) Description of data structures (DS) by a DSL, (2) detection of data structure
instances in reconstructedheap states, (3)heap state analysis, i.e., data structure analysis at a single point in time, and (4) growth
analysis, i.e., tracking data structures over time, detecting those with suspicious growth.

Figure 4: A type histogram displays every type alongside the
number of allocated objects and the consumed memory.

In many heap states, most of the objects are auxiliary objects,
i.e., internal parts of more complex data structures. These are often
located at the top of type histograms. One prominent example are
java.util.HashMap$Node instances. Though head objects of data
structures (e.g., of type HashMap) are far more likely the root cause
for a memory leak, they are only listed at a lower position.

In this work, we present an approach that greatly reduces the
complexity that users have to cope with during memory analysis.
The idea is to hide objects that convey little information and to focus
on the analysis of data structures instead. Generally speaking, a data
structure is a collection of data values, the relationships among them,
and the functions or operations that can be applied to the data [35].
For memory leak detection, we are especially interested in the
relationships among the objects that make up the data structure.

This section explains the core concepts of our approach (see
Figure 3): How data structures can be described by a DSL, how they
are detected in a reconstructed heap state, how this information can
be used to ease heap state analysis, and how information about data
structure growth over time can be derived and used in trace-based
tools such as AntTracks.

3.1 Data Structure Description
In object-oriented languages such as Java, data structures typically
consist of a head object, multiple internal objects that serve as a
backbone, and leaf objects that represent the actual contents of
the data structure. These objects reference each other according
to a specific pattern. This pattern has to be known by a memory
monitoring tool before it can detect instances of the respective data
structure and perform analyses on it.

3.1.1 Benefits of a DSL for Data Structure Description.
Themost straightforward way to achieve pattern recognition would
be to hard-code the patterns of well-known data structures directly
into the tool’s data structure instance detection algorithm. How-
ever, the set of data structure types that can be detected by the
tool would be fixed. Users could not define new data structures, for
example data structures specific to their application or data struc-
tures introduced by third-party libraries. Also, if the well-known
data structures change in the future, e.g., due to renamed types, the
tool’s source code would have to be modified.

Figure 5: Description of java.util.LinkedList in our DSL,
without and with using namespaces and wildcards.

To circumvent these drawbacks, we developed a DSL for describ-
ing arbitrary data structures in separate files. These data structure
description files can then be read by memory analysis tools such
as AntTracks to be used for data structure instance detection in re-
constructed heap states. Using a DSL for data structure description
instead of hard-coded data structure patterns has various advan-
tages. It enables us to ship descriptions of well-known data struc-
tures (e.g., data structures in Java’s java.util package) directly
with AntTracks. At the same time, tool users can extend the pre-
defined data structure descriptions with descriptions of their own
data structures. Finally, changes to existing data structures do not
require changes in the source code, but only in the data structure
description file(s) that are much easier to adjust.

3.1.2 DSL Format.
The left side of Figure 5 shows how java.util.LinkedList can be
described in our DSL. Every type that is a part of the data structure
needs a description, i.e., in our example java.util.LinkedList
and java.util.LinkedList$Node. Since Java applies type era-
sure [3, 4], no information about generics is available at run time and
thuswe do not include generics in theDSL. java.util.LinkedList
represents the head of the data structure and has to be marked with
one of the head keywords (such as DS). Internal parts of data struc-
tures such as java.util.LinkedList$Node are not marked with
a keyword. Similar to Java syntax, the name of the type is followed
by a pair of curly braces. These contain a set of types (separated
by semicolons) that may be referenced by the respective data struc-
ture part. We call this set of types pointed-to types. For example,
an instance of java.util.LinkedList may point to instances of
java.util.LinkedList$Node (line 2), which in turn may point to
instances of java.util.LinkedList$Node instances (line 5), and
so on. Line 6 presents two special language features: (1) a star (i.e., *)
can be used as a wildcard within the name of a pointed-to type
and (2) enclosing a type in parentheses declares it as a leaf. The
term (*) denotes a leaf of any type. Leaf information is used during
data structure instance detection to determine the boundaries of a
data structure. The DSL also supports namespaces which makes it

possible to omit package declarations in type names. For example,
the right side of Figure 5 shows a minimized version of the data
structure description. Line 1 defines the namespace java.util,
thus we can omit the package name for the described types (line 2
and line 5). Since java.util.LinkedList only references the list
head, we do not have to specify the exact pointed-to type but may
use a wildcard instead (line 3). For java.util.LinkedList$Node,
we may again omit the package name in the pointed-to type (line 6).

3.1.3 Implementation.
To implement our DSL, we used the compiler generator Coco/R [21].
It takes an attributed grammar (in EBNF) of a source language
and generates a scanner and a recursive descent parser for it. We
chose this approach because it allowed us to rapidly prototype
first versions of the DSL and to remain flexible in extending the
language’s grammar with new production rules. The full grammar
can be downloaded here1.

3.2 Parsing Data Structure Descriptions and
Detecting Instances

3.2.1 Assigning Data Structure Descriptions to Types.
Before instances of data structures can be detected in a heap state,
the data structure descriptions have to be parsed and assigned to
their corresponding types. Types without a data structure descrip-
tion are assigned a non-head dummy description that does not
declare any pointed-to types. They will always act as leaves in data
structures. Array types of reference types are an exception to this
rule. They are assigned a non-head dummy description too, but they
declare * (any type) as their pointed-to type. After this step, every
type is equipped with its corresponding data structure description.

3.2.2 Resolving Type Names.
As described in Section 3.1.2, every type’s data structure description
defines a set of pointed-to types that belong to the data structure.
These type names may contain wildcards and have to be resolved
to all types matching the name pattern. For example, if a type is
defined to have a pointed-to type *Node, this has to be resolved to
the set of all types whose name ends with Node. The pointed-to
type * is not resolved into the set of all types (which would lead to
enormous memory overhead), but to java.lang.Object.

3.2.3 Detecting Instances.
A reconstructed heap contains information about the objects that
are live at a certain point in time (e.g., their types), as well as
their references between each other. First, the algorithm filters and
remembers all objects that are data structure heads, i.e., objects
whose types have a head data structure description assigned. Then,
to determine which objects belong to a certain data structure, the
head’s pointers are followed recursively. For every object that is
met along the way, the first matching branch of the following four
is taken:

(1) The object’s type is part of its referencing object’s set of pointed-
to types and is a data structure head type.
This it the case if a data structure points to the head of
another data structure. The head object is treated as a leaf of
the referencing data structure and the descent is stopped. A

1http://ssw.jku.at/General/Staff/Weninger/AntTracks/ICPE19/DSL.atg

typical example for this is Java’s HashSet, which is backed
by a HashMap. Figure 6 visualizes this pattern. A HashSet
only consists of two objects: The head of the hash set and
the head of the hash map.

(2) The object’s type is part of its referencing object’s set of non-
leaf pointed-to types.
In this case, the object belongs to the referencing data struc-
ture, and the descent is continued with its children. For exam-
ple, this is the case for LinkedList$Node instances within
a LinkedList.

(3) The object’s type is part of its referencing object’s set of leaf
pointed-to types.
This means that the object belongs to the data structure, but
it is a leaf and thus the descent is stopped. For example, the
objects that have been added to a LinkedList, i.e., those
which are referenced from a LinkedList$Node instance, are
such leaf objects.

(4) The object’s type is not part of the referencing object’s set of
pointed-to types.
This means that the object does not belong to the data struc-
ture at all, and thus the descent is stopped.

Every visited object is marked to avoid multiple visits.
For example, Figure 7 shows a LinkedList that has been de-

tected using the description in Figure 5. The traversal starts at the
head LL. Next, the first N instance is visited. The data structure
description of LinkedList$Node then tells us to follow further N
nodes (left side, line 5), or to visit any other object as a leaf without
continuing the recursive descent (left side, line 6). Thus, the first
D instance and the second N instance are visited, continuing the
descent from the N object. As a last step, the second D object is
visited as a leaf.

HS HMN[]

HS = HashSet, HM = HashMap, HMN[] = HashMap$Node[]

HM

DS #1 DS #2

Figure 6: A HashSet only consists of two objects: The set’s
head (HS) and the contained hash map’s head (HM).

LL

N

DN

D

X

X

leaf

 leaf

LL = java.util.LinkedList, N = java.util.LinkedList$Node, D = Data, X = X

DS #1

Figure 7: A LinkedList data structure instances that consists
of the head (LL), two nodes (N) and two data objects (D).

(a) Object view (b) Data structure view
Figure 8: AntTracks’s object-based heap state view compared to AntTracks’s data-structure-based heap state view.

3.3 Heap State Analysis
Once all data structures have been detected in a certain heap state,
the user may utilize this information to investigate potential mem-
ory leaks. In AntTracks, a certain heap state can be investigated by
applying user- or predefined classifiers on the objects in the heap
in order to group them. New classifiers have been developed that
utilize the newly gained data structure information for classifica-
tion. In the following, we present the application of some of these
new classifiers, which can be used for top-down analysis as well as
for bottom-up analysis. Furthermore, we present the data structure
view, a new feature to ease top-down analysis.

3.3.1 Top-down Heap Analysis.
In AntTracks, when inspecting a heap state, all objects are initially
classified by their types. This is visualized in Figure 8a. Since we
are looking for the root cause of a memory leak, i.e., for those
objects that keep a lot of other objects alive, we sorted the types by
their retained size (i.e., by their ownership). However, the table in
Figure 8a still mostly shows internal parts of data structures. These
are often inaccessible for developers and are thus of minor interest
when looking for the root cause of a memory leak.

Data structure view. We introduce the data structure view, a view
on the heap state that filters out every object that is not the head
of a previously defined data structure. Additionally, data structures
that are completely contained in another data structure (i.e., owned
by another data structure) are hidden. A typical example for such
hidden data structures are HashMaps that are completely contained
in a HashSet (as previously shown in Figure 6).

When applying the data structure view on the same heap state
as in Figure 8a, only a small fraction of the original heap objects
remains visible, as can be seen in Figure 8b. In this example, internal
objects such as ConcurrentHashMap$Node instances are hidden by
the data structure view. Additionally, some data structures, such
as threee HashSets and three HashMaps, are not shown since they
are completely contained in another data structure. Depending on
the application, data structure head objects often make up far less
than 1% of the application. Also the number of object groups, i.e.,
entries in the classification tree, is greatly reduced. In the example
of Figure 8b, it is now easy to tell that among all data structures,
instances of ConcurrentHashMap together keep alive 47.7% of the
heap. Since the object group of interest still contains 12 objects,
we further drill down, i.e., we perform a top-down analysis, as
shown in Figure 9. First, we inspect the allocation sites of the maps.

Figure 9: Top-down analysis splits object groups until they
are small enough to be analyzed in detail.

Line 3 reveals that the map that has been allocated in method main
of class DataStructureDevelopmentExample keeps alive 47.5% of
the heap on its own.

Leaf classifier. At this point, the user may want to obtain infor-
mation about the map’s leaves, i.e., the actual key and data objects
contained in the map. The new leaf classifier enables users to clas-
sify the leaves of a data structure using any classifier combination.
For example, in Figure 9, the leaf classifier has been used to clas-
sify all leaf objects by their types and allocation sites. This clearly
identifies the leaves of type DeepLongData (line 5) that have been
allocated in the class DataStructureDevelopmentExample (line 6)
to consume the most memory. Knowing which data structure keeps
a large number of objects alive, as well as which leaf objects within
this data structure take up the most memory, should suffice to fix
the memory leak.

3.3.2 Bottom-up Heap Analysis.
In top-down analysis, users search for objects or object groups
that keep many other objects alive. An alternative approach is the
bottom-up approach. Tool users may search for objects that exist
in large quantities and then want to find out which other objects
keep them alive.

Our approach performs bottom-up analysis at a higher level of
abstraction to reduce complexity. Instead of analyzing which objects
keep the object group of interest alive, we suggest to look for the
data structures that keep that group alive. For example, Figure 10
shows a classification tree that has been used to perform bottom-up
analysis in AntTracks. On the first tree level (line 2 and line 6),
objects have been classified by type. This way, we can see that
about 50% of heap is kept alive by objects of type DeepLongData
(line 2).

Figure 10: Bottom-up analysis is used to find those objects
that keep a given set of objects alive.

Containing data structures classifier. The next step in our ap-
proach is to inspect those data structures that contain the objects
of interest. To support this, the new containing data structures clas-
sifier has been developed. This classifier takes an object group and
collects the heads of all data structures that contain these objects.
These head objects can then be classified using any classifier com-
bination. The information about which objects are contained in the
different data structures is obtained and remembered during data
structure instance detection, as explained in Section 3.2.3.

For example, the containing data structures classifier has been
used on the DeepLongData objects in Figure 10 to classify the con-
taining data structure heads by their types, followed by their alloca-
tion sites. As we can see, all DeepLongData objects are contained in
a single data structure (line 3), which is of type
ConcurrentHashMap (line 4) and has been allocated in class
DataStructureDevelopmentExample (line 5). This map could now
again be investigated further by using the top-down approach de-
scribed in the previous section.

3.4 Data Structure Growth Analysis
The analysis of data structures at a single point in time may already
yield useful insights on the structure of the heap. Growth analysis
further supports the user in the search for memory leaks. It consid-
ers the growth of data structures over time, which makes it even
easier for users to spot those involved in memory leaks. This section
describes how objects can be tracked over time using trace-based
approaches such as AntTracks. In addition, we present metrics to
analyze data structure growth as well as metric patterns based on
different growth types. Finally, we present how AntTracks’s exist-
ing classification system has been integrated into the new growth
analysis. This way, users can, for example, detect data structures
that grew over time, tell which set of leaf objects grew the most,
and finally where these leaves have been allocated.

3.4.1 Data Structure Instance Tracking.
We argue that trace-based approaches are better suited for temporal
analyses than snapshot-based ones. Trace-based approaches can
derive temporal information on the object-level, while snapshot-
based approaches have no concept of object identity. Using only
snapshots without additional information (e.g., object tagging), it
is not possible to decide whether an object that was alive in a
certain snapshot still lives in a later snapshot. Figure 11 illustrates
this. In a snapshot-based approach, it can only be inferred that
both snapshots contained one X object, but not whether these two
objects are actually the same instance.

Using AntTracks, we are able to derive this information by re-
playing the recorded GC move events. Furthermore, we are able

X

Y Y

X

Y Y

delete X create
new X

Snapshot 1 Snapshot 2

same object?

Figure 11: Analysis based onmultiple snapshots lacks infor-
mation on the object-level.

to reconstruct the heap object reference graph, i.e., all references
between objects, for both points in time. Using this knowledge,
we can specifically search for data structures which (1) survived
a certain time window (objects that have died cannot be the root
cause of a memory leak) and (2) reference / keep alive more objects
than before.

The workflow for data structure instance tracking consists in
the following steps:

(1) The user selects two garbage collection points betweenwhich
the data structure growth analysis should take place.

(2) The heap is reconstructed for the first point in time and is
stored. The addresses of all data structure heads in this heap,
i.e., the start addresses, are stored as well.

(3) If a data structure head dies during a garbage collection, we
stop tracking it. For surviving heads, their new addresses
(which can be reconstructed fromGCmove events) are stored
alongside their start addresses.

Following this algorithm until the end of the selected time win-
dow, we obtain (1) the reconstructed heap state at the start, (2)
the reconstructed heap state at the end, and (3) a list of all data
structures that survived, i.e., their start and final addresses.

3.4.2 Growth Metrics.
For both points in time, i.e. the start and the end of the selected time
window, various metrics can be calculated for every data structure
head. Subsequently, the absolute growth (both for object count and
byte count) can be calculated for each metric. In this section, we
present those metrics that have proven most useful in identifying
problematic data structures. For simplicity, we refer to both, the
object count and the byte count, as size.

Retained size growth. The retained size denotes ownership and
is calculated from the GC closure, as explained in Section 2.2.3.
A large retained size means that if the head of the data structure
were collected by the garbage collector (i.e., all references to it were
removed), a large number of objects / bytes could be collected with
it. If the retained size of a data structure grew considerably between
two points in time, it is a strong indication for the fact that the data
structure is involved in a memory leak. By default, AntTracks’s data
structure growth analysis sorts all data structures by this growth
metric. This allows us to highlight those data structures that have
a suspiciously large growing ownership.

Transitive size growth. A data structure’s transitive size denotes
reachability, i.e., how many objects / bytes (inside or outside the
data structure) can be reached from it. At a first glance, the growth
of a data structure’s reachability may not seem very useful as a
metric on its own. Nevertheless, we will show that it becomes a
valuable metrics as soon as it is put into relation with other metrics.

(Deep) Data structure size growth. The two previous metrics ig-
nored data structure boundaries. Now, assuming a list with only
a few objects inside it. If the list itself does not grow, i.e., no new
objects are added, but its data objects grow, the metrics mentioned
above would change.

This is why we introduce the two new metrics: data structure
size and deep data structure size. These metrics are calculated from
the newly proposed closures data structure closure and deep data
structure closure. The metrics are supposed to show whether the
data structure itself grew, i.e., whether new objects have been added
to it.

The data structure closure contains all objects that belong to the
given data structure. However, objects that belong to other data
structures within the given data structure are not included. On the
other hand, the deep data structure closure also includes objects
that are part of such contained data structures. For example, let us
revisit the HashSet from Figure 6. Every hash set’s data structure
closure contains only two objects: The HashSet object itself and
the contained HashMap. A hash set’s deep data structure closure,
however, also contains all objects that belong to the hash map, and,
if the hash map contains further data structures, also the objects
that belong to them.

Heap growth portion (HGP). While it is possible to work purely
with absolute growth metrics, our evaluation has shown that met-
rics are easier to interpret when they are put into relation to the
absolute heap growth. Given that the overall heap size increased,
the heap growth portion (i.e., the portion by which the growth of a
specific data structure contributes to the overall heap growth) can
be calculated for every metric as shown in Equation 1.

HGPmetr ic (ds) = ∆metric(ds)
∆heapsize

· 100 (1)

For example, HGPr etained (ds) puts the retained size growth
∆retained(ds) of data structure ds into relation with the overall
heap growth ∆heapsize .

Assume that the overall heap size increased by 1GB and a list’s re-
tained size increased by 0.7GB. This would result in a HGPr etained
value of 70%, i.e., the ownership growth of this data structure con-
tributes 70% to the total growth of the heap, which is a strong
indication that this list causes a memory leak.

3.4.3 Metric Patterns.
This section discusses five typical metric patterns (see Figure 12)
that may occur in various applications. Based on these patterns,
users can easily identify the growth type of a data structure, and
can determine how to proceed with the investigation.

Single-ownership container growth. If a data structure has a strong
retained size growth in combination with a strong (deep) data struc-
ture size growth, we can infer two important properties: (1) New
objects have been added to the data structure (i.e., container growth),
and (2) the data structure keeps the newly added objects alive (i.e.,
single-ownership). This indicates that it is possibly involved in a
memory leak. Nevertheless, this type of memory leak is rather easy
to resolve, since the accumulating objects are kept alive by this data
structure alone. This means that the leaf objects can be collected
by the GC as soon as they are removed from the data structure.

Singleownership
container growth

Retained Size
Growth

Data Structure
Size Growth

Sharedownership
container growth

Singleownership data
growth

Nongrowth
Shared
ownership
data growth

Low High

Low

High

Figure 12: Five common metric patterns.

Inspecting the allocation sites of the data structure as well as of
the accumulating leaf objects should yield enough information to
identify the source code locations of interest.

Shared-ownership container growth. Similar to single-ownership
container growth, new objects have been added to the data structure.
Yet, the newly added objects are not kept alive by this instance
alone. Other data structures may be involved as well.

To find a way to free the newly added objects, the tool user
has to analyze the data structure’s leaves in more detail. It is not
enough to just remove the leaves from this data structure to make
them eligible for garbage collection. They have to be removed from
all their containing data structures. To find these containing data
structures, bottom-up analysis (as shown in Section 3.3.2) can be
performed.

Single-ownership data growth. We use this term for a strong re-
tained size growth in combination with a weak (deep) data structure
growth. In contrast to single-ownership container growth, not the
data structure itself is growing (i.e., no or only few new elements
have been added). Instead, the ownership over the contained data
grew. There are two explanations for this.

One possible reason is that the already owned data grew. For
example, imagine a list that stores and owns 100 objects which do
not reference any other objects. Over the analyzed time window, the
list has not been extended, but the contained objects now reference
other objects. This has the effect that the data structure size remains
unchanged while the retained size grows.

Another possibility is that multiple data structures share own-
ership on data objects (or parts of them). The retained size of all
involved data structures would be small at the start of the selected
time window. However, the retained size would grow for one data
structure if the shared ownership changed to single-ownership, e.g.,
because the shared data has been removed from all data structures
except this one.

Non-growth / Shared-ownership data growth. There are two possi-
ble patterns for the case that neither the retained size nor the (deep)
data structure size grew considerably. They are distinguished based
on their deep size growth.

We call the first one non-growth data structures. In addition to
low retained size growth and low (deep) data structure size growth,
also the deep size did not change considerably. This is the case
when the size of a data structure approximately stayed the same,
i.e., neither were many new objects added to the data structure nor

Figure 13: Bar chart to give a quick impression on data struc-
ture growth.

did the contained data grow considerably. Thus, data structures
classified as non-growth do not contribute to a memory leak in the
selected time window.

If, however, the deep size did grow, the data structure growth
can be classified as shared-ownership data growth. This means that
the data structure itself did not grow, but its data became larger
(similar to single-ownership data growth). Yet, in contrast to single-
ownership data growth, the data structure does not own the newly
referenced objects.

3.4.4 Visualization and Classification.
At this point, all data structures have been tracked over the selected
time window and their growth metrics have been calculated. Now
these metrics have to be visualized to users in a way that allows
them to decide which data structures they should investigate in
more detail.

Visualization. AntTracks presents the data structure growth anal-
ysis results to the user in two ways. The first one is a bar chart
which displays the HGP values for deep size growth, retained size
growth, data structure growth and deep data structure growth. The
bar chart shows the ten data structures with the strongest growth
of the currently selected metric. By default, the data structures
are sorted and selected based on the retained HGP , but users may
change this sorting. This visualization gives a quick overview of the
metric combinations of those data structures that had the strongest
growth of the selected metric. An example is given in Figure 13.

More detailed analysis is possible using a tree table view, similar
to the one used in heap state analysis. Every data structure is pre-
sented by a single record. The table columns shown by default are
absolute and HGP values of deep size growth, retained size growth,
deep data structure size growth, as well as the object count. By
default, the data structures are sorted by their retained size growth,
but the user may change the sorting order to any other metric. This
way, the data structures can be searched for metric combinations.

Classification. If a suspicious data structure is detected, the user
can use AntTracks’s classification system to gain further insight on
it. Using the selected classifiers, the data structure is then classified
twice: Once at the start of the selected time window, and once at the
end. The difference between the two resulting classification trees is
then calculated and visualized. This is especially useful to analyze a
data structure’s leaf growth behavior. A typical approach is to first
classify the data structures by their types, then by allocation sites,
followed by the leaf classifier which classifies the leaves by their
types and allocation sites. Figure 14 shows an example of this. First,

Figure 14: Tree table view that displays the growth of a data
structure using a given classification.

one can see that the LinkedList’s retained HGP is about 19%. In
line 2, the list’s allocation site is shown. Then, the leaf classifier has
been applied (line 3). The Objects column shows that the number
of leaves raised from 5, 000 leaves at the start of the time window
to 20, 000 leaves at the end of the time window. The Retained size
column shows that this increase in the number of leaves accounts
for about 12% of the overall heap growth. Line 4 shows that all of
these leaves are of type FlatData. Lines 5 to 8 show the various
allocation sites of the leaves. It can be seen that the new leaves
have been allocated at three different allocation sites (line 5 to 7).
Line 8 conveys the information that the number of leaves that have
been allocated at this particular allocation site has not changed.

4 APPLICATION TO CASE STUDIES
To evaluate the usefulness of data structure descriptions and their
usage in heap analysis over time, we applied them on two different
real-world systems.

The first system is Dynatrace easyTravel [9]. Dynatrace focuses
on application performance monitoring (APM) and distributes
easyTravel as their state-of-the-art demo application. It is a multi-
tier application for a travel agency, using a Java backend. An auto-
matic load generator can simulate accesses to the service. When
easyTravel is started, different problem patterns can be enabled and
disabled, one of which is a hidden memory leak somewhere in the
backend.

The second system is AntTracks itself. AntTracks is under con-
stant development by the authors, as well as by students that do
projects with and within AntTracks. Lately, we were dealing with
an increasing memory footprint over time during the parsing of
trace files. To find the root cause of this memory leak, we analyzed
AntTracks using AntTracks’s data structure growth analysis, and
document this scenario here.

4.1 easyTravel
EasyTravel was executed on the AntTracks VM, which generated a
trace file. This trace file was then opened in the AntTracks Analyzer.
After parsing the trace file, multiple charts are presented to the
user, displaying the application’s memory behavior. For example,
Figure 15 shows the number of allocated objects separated by heap
space type (y-axis) over time (x-axis). In most generational garbage
collectors, objects are allocated in a heap space called eden, are
then moved to a survivor space if they survive at least on garbage
collection, and are eventually promoted to an old space after a cer-
tain number of garbage collections. The growing number of objects
in the old space (red) clearly indicates that the heap consumption
grew over time.

Figure 15: Object count evolution that hints at a memory
leak in easyTravel.

Figure 16: Metric growth bar chart that highlights the
ConcurrentHashMap as memory leak suspect due to its strong
retained size growth.

Figure 17: Classification of the conspicuous map based on
allocation site followed by leaf classification based on leaf
types and leaf allocation sites.

To perform data structure growth analysis, the user can specify
a time window by selecting two points in time (the vertical black
lines in Figure 15). In this example, we selected the end of two
major garbage collections. At these points we can assure that all
heap objects that were not reachable anymore have been collected
by the GC.

Once all surviving data structures have been tracked over the
selected time window, their growth are visualized in the bar chart
(Figure 16) and the tree table view. What can be seen at a glance
is that the retained HGP of the ConcurrentHashMap is about 80%.
This clearly identifies this specific ConcurrentHashMap as themem-
ory leak culprit. What can further be derived from the other metrics
is that nearly no new objects have been added to the data structure
itself (i.e., very low data structure size growth). Yet, since the deep
data structure size grew strongly, we can derive that the map must
contain further data structures, and that these data structures have
grown. As explained in Section 3.4.3, this can be categorized as
single-ownership container growth.

Since we now know that this concurrent hash map is the major
suspect for the memory leak, we want to gain more information
about it until we are able to fix the leak. Figure 17 shows the classifi-
cation tree that we used to analyze the map. The first classifier that
has been used on the map is the allocation site classifier. It tells us
that the map has been allocated in the method findLocations of
class JourneyService (line 3). The second classifier that has been
applied is the leaf classifier. As the name suggests, this classifier can
be used to inspect the leaves of a data structure. The classifier has
two modes: either own leaves or deep leaves. In the first mode, the
classifier would inspect only the leaves of the map itself, without
checking the leaves of contained data structures. Since we know
that the map contains further data structures, the deep leaves mode
has been selected. Furthermore, the classifier was configured to
classify all leaf objects based on their types and allocation sites.
Looking at theObjects column, we can see that the number of leaves
grew from about 32, 000 to about 136, 000 (line 4). We can further
see that nearly all of these leaves are of type Location (line 5).
Unfortunately, their allocation sites are not useful, since they are
somewhere hidden in a framework (line 6). The second growing leaf
type is JourneyService$QueryKey (line 7). These leaves have been
allocated in method findLocations of class JourneyService.

Even though we had no prior knowledge about the system, we
decided at this point that we gained enough insight to investigate
the memory leak on the source code level. To prevent the pro-
liferation of the concurrent hash map, we must prevent that its
Location and JourneyService$QueryKey leaves accumulate. In
the source code, the map of type ConcurrentHashMap<QueryKey,
Collection<? extends Location>> was easily found. In the
method findLocations (the allocation site of the accumulating
QueryKey instances) we found that the map should have served
as a cache for location searches. Once a search was executed for
a given QueryKey, the key was stored in the map, alongside its
search result (a Collection<Location>). Subsequent searches for
the same key should have found the respective entry in the map.
Yet, QueryKey neither implements hashCode nor equals. Thus, ev-
ery request resulted in a cache miss and consequently a new cache
entry, which led to this typical memory leak.

4.2 AntTracks
Figure 18 shows AntTracks’s object count evolution during trace
file parsing. Similar to easyTravel, we can see an increase of objects
in the old generation of the heap.

Yet, in contrast to easyTravel, which had to be analyzed with-
out prior knowledge about its data structures, this time we could
use the data structure DSL to describe AntTracks’s most impor-
tant data structures prior to analysis. Since the leak occurred dur-
ing trace parsing, the first data structure that was described was
AntTracks’s internal representation of heap states. To mimic the
structure of the real heap, AntTracks separates the heap under
reconstruction in a number of Space instances, which are further
divided into LAB (local allocation buffer) instances, which then
store the actual information about objects, mostly using arrays.
We also described AntTracks’s data structure that keeps track of
symbols information such as type names, allocation sites, and so on,
since this data could also have been corrupted during trace parsing.

1 namspace java.util { // By default shipped with AntTracks
2 HashMap$Node {
3 HashMap$Node;
4 (*);
5 }
6 DS HashMap {
7 HashMap$Node[];
8 }
9 // ... other java.util classes
10 }
11
12 namespace at.jku.anttracks.util { // Added for specific use case
13 DS ApplicationStatistics {
14 java.util.HashMap; // HashMap<Thread, MeasurementGroup> and others
15 }
16 ApplicationStatistics$MeasurementGroup {
17 *; // Various internal objects, including List<Measurement>
18 }
19 ApplicationStatistics$Measurement { }
20 }

Listing 1: Description of AntTracks’s data structure to
track the execution time of certain code segments.

AntTracks has an internal performance evaluation feature called
ApplicationStatistics, which is implemented as a singleton. It
supports to creation of Measurement objects, which can be used to
evaluate how much time is spent by which thread in certain code
segments. Multiple measurements are then grouped together in a
MeasurementGroup instance. These data structure parts have also
been described, and their descriptions can be seen in Listing 1.

After calculating the data structure growth over the time window
selected in Figure 18, an overview bar chart (Figure 19) and a tree
table view is shown. By looking at the bar chart, it becomes clear
that the memory leak is caused by the ApplicationStatistics
instance. The metric pattern is akin to that of the memory leak
found in easyTravel: a typical single-ownership container growth.
It may be noteworthy to mention that a data structure’s HGP val-
ues can be above 100%, as can be seen in Figure 19, where the
ApplicationStatistics’s retained HGP is around 115%. In this
case, the overall heap grew by about 100MB, while the
ApplicationStatistics’s ownership grew by 115MB, which can
happen if previous multi-object ownership changed to single-object
ownership, as explained in Section 3.4.3.

Figure 20 shows the classification tree used to analyze the mem-
ory leak. Since ApplicationStatistics is implemented as a sin-
gleton, it is not necessary to check its allocation site. The result of
the leaf classifier already provided enough information to resolve
the memory leak. The classifier has been configured to classify
each leaf by its type, followed by its allocation sites, as well as the
call sites of the allocating methods. Line 3 shows that the overall
number of leaves has skyrocketed from about 6.6 million to 10.2
million. Nearly all of the leaves are of type Measurement (line 4),
and all of them have been allocated in the ApplicationStatistic
class (line 5). To further distinguish the measurements, the methods
that called the allocating method can be inspected. This reveals
that two call sites, both located in the method parseGCRootPtr
of class TraceParserSlave (line 6 and 7), caused the extensive
Measurement allocations.

Checking the TraceParserSlave class, the instrumented parts
within parseGCRootPtr were easily detected. These parts were

Figure 18: AntTracks’s object count evolution shows a simi-
lar pattern as in easyTravel.

Figure 19: Bar chart clearly showing the single-ownership
container growth of the ApplicationStatistics instance.

Figure 20: Classifying the leaves of ApplicationStatistic by
type, allocation site, and call site.

frequently called and thus created a vast amount of Measurement
instances. Since theywere not essential to AntTracks’s functionality,
they were simply removed to resolve the memory leak.

5 RELATEDWORK AND STATE-OF-THE-ART
To support memory leak detection as well as to facilitate memory
leak resolving, various approaches and tools have been developed
over the last years. Šor and Srirama [43] classify these approaches
into the following groups:

(1) Online approaches that actively monitor and interact with
the running virtual machine, separated into approaches that

(a) measure staleness [2, 11, 23, 24, 41]. Staleness is not a quan-
tifiable metric, instead, the longer an object is not used,
the more stale it becomes. The idea behind approaches
that measure staleness is that objects that do not get col-
lected by the GC for a long time but become stale are more
likely to be leaking than non-stale objects. The challenge
that these approaches face is that object access tracking is
extremely expensive.

(b) detect growth [5, 12, 13, 30, 31]. These approaches group
the live heap objects (mostly based either on their types or
allocation sites) and detect growth using various metrics.

These metrics range from simple absolute count differ-
ences between allocations and deallocations [5] to more
complex ones based on the structure of the object refer-
ence graph [12, 13].

(2) Offline approaches that collect information about an applica-
tion for later analysis, separated into approaches that

(a) analyze heap dumps as well as other kinds of captured
state [15, 18–20]. Compared to online approaches, offline
approaches often performmore complicated analyses based
on the object reference graph, involving graph reduction,
graph mining and ownership analysis.

(b) use visualization to aid manual leak detection [6, 22, 25].
(c) employ static source code analysis [7, 42].

(3) Hybrid approaches that combine online features as well as
offline features [8, 26, 40].

For example, one of the approaches most similar to our approach
is container profiling by Xu and Rountev [41]. They also focus on
data structures, but instead of detecting growth, they track opera-
tions on containers and detect container staleness. Their approach
requires ahead-of-time modeling of containers, i.e., the user has
to introduce a “glue layer” in the monitored application’s source
code that maps methods of each container type to primitive opera-
tions (e.g., ADD, GET, and REMOVE). Compared to that, our data
structure description mechanism using a DSL is much less invasive.

Future work (see Section 6) encompasses plans to automatically
infer data structure descriptions from source code and memory
traces. For example, Mitchell and Sevitsky [19] developed LeakBot, a
tool that performs memory analysis using object aggregation. They
present various metrics to detect possible top-level leak roots, which
may correspond to data structure heads. Jump and McKinley [14]
introduced dynamic shape analysis, which seeks to characterize
data structures by summarizing the object pointer relationships
into degree metrics. Metrics like these may facilitate the process of
automatically inferring data structure descriptions.

6 FUTUREWORK
Our data structure description DSL can be used to describe arbitrary
data structures. However, users might find it tedious to describe a
greater number of custom data structures which they use in their
project. To relieve the user of this task, reasonable data structure
definitions should be inferred automatically from static information,
such as the source code, in combination with dynamic information
obtained during trace parsing. The DSL presented in this work
would not become obsolete by such a feature because automati-
cally detected data structure descriptions would most likely require
corrections or extensions by the user. Moreover, in some cases,
users might want to describe undetectable reference patterns as
data structures.

In AntTracks, the heap and subsets thereof are currently repre-
sented in the form of charts and tree table views. In the future, users
should also be able to browse through objects and their reference
patterns in a visualized reference graph. However, considering the
number of objects and references in heaps of modern applications,
visualizing complete reference graphs is infeasible in terms of per-
formance. Moreover, graphs of such dimensions are also impossible
to comprehend for users and consequently are not of much use to

locate the root cause of a memory leak. The newly gained informa-
tion about data structures in the monitored application could be
used to greatly reduce the number of nodes and edges that have to
be visualized. Instead of displaying every object as a separate node,
objects that belong to a given data structure could be collapsed into
a single node, ultimately reducing the object reference graph to a
data structure reference graph. Guided by the metrics that were pre-
sented in this paper, users could locate the root cause of a memory
leak by visually browsing through such a graph, investigating the
data structures they are interested in.

7 THREATS TO VALIDITY
In this paper, we presented five metric patterns that commonly
occur during data structure growth analysis. Each of these patterns
suggests different analysis steps. This poses two potential threats
to validity: (1) Users may find it hard to comprehend all metrics
and their patterns without prior training, and (2) one could argue
that the presented list of patterns is not exhaustive and that further
patterns could be defined (for example, patterns involving shrink-
ing metrics have not been discussed in this paper). To deal with
these threats, future work includes automatic decision making by
the tool. New heuristics should be defined that allow the tool to
automatically detect metric patterns. Based on detected patterns,
the tool could either perform certain classifications or analysis
steps automatically, or it could provide suggestions to the user on
how to proceed in the analysis, similar to a learning-by-doing tool
approach.

Most probably, the major threat to validity of our work is its
currently restricted evaluation based on a limited set of use cases.
We plan to search for open-source projects that suffered from mem-
ory leaks in the past with the goal of building a reference set of
real-world applications that could be used to evaluate memory leak
detection tools. Using this set of applications, alongside other ap-
plications with seeded memory defects, we plan to conduct a user
study with our industry partner as well as with university students.
In addition to comparing AntTracks to existing tools, e.g., in terms
of found memory leaks, we want to gain insight in how well the
study participants are able to understand and use existing memory
leak detection features, as well as what other features users expect
from a memory monitoring tool. This could help the community to
improve the quality of memory monitoring tools in general.

8 CONCLUSION
In this paper, we presented a memory leak detection approach
that puts data structures into the focus of its analysis. To prove
its applicability, we integrated this approach into AntTracks, a
trace-based memory monitoring tool.

Our approach encompasses an easy-to-use domain specific lan-
guage to describe arbitrary data structures, as well as an algorithm
that detects instances of those data structures in reconstructed
heaps. Further, we presented a new feature in AntTracks called data
structure view. It hides objects of lower interest, i.e., data-structure-
internal objects, during heap state analysis and emphasizes data
structure head objects. This reduces the complexity of heap state
analysis users have to deal with in state-of-the-art memory moni-
toring tools. To inspect conspicuous data structures, we developed

new data-structure-specific analysis features to support top-down
as well as bottom-up memory analysis.

Our main contribution is a new technique for analyzing the
growth of data structures over time: We (1) showed how to use
memory traces to track data structures throughout an application’s
lifetime, (2) introduced metrics that describe various aspects of data
structure growth, (3) discussed how certain metric patterns hint
at certain types of memory leaks, and (4) presented techniques to
prioritize, visualize and analyze data structures that may be the root
cause of a memory leak. Data structure growth analysis aims to
further ease the analysis of memory leaks by reducing the number
of steps a user has to take to identify the root cause of such leaks.
Finally, we evaluated the applicability of our approach using two
case studies.

ACKNOWLEDGMENTS
The financial support by the Austrian Federal Ministry for Digi-
tal and Economic Affairs, the National Foundation for Research,
Technology and Development, and Dynatrace is gratefully acknowl-
edged.

REFERENCES
[1] Verena Bitto, Philipp Lengauer, and Hanspeter Mössenböck. 2015. Efficient

Rebuilding of Large Java Heaps from Event Traces. In Proc. of the Principles and
Practices of Programming on The Java Platform (PPPJ ’15).

[2] Michael D. Bond and Kathryn S. McKinley. 2006. Bell: Bit-encoding Online
Memory Leak Detection. In Proc. of the 12th Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XII).

[3] Gilad Bracha, Martin Odersky, David Stoutamire, and PhilipWadler. 1998. Making
the Future Safe for the Past: Adding Genericity to the Java Programming Lan-
guage. In Proc. of the 13th ACM SIGPLAN Conf. on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA ’98).

[4] Robert Cartwright and Guy L. Steele, Jr. 1998. Compatible Genericity with Run-
time Types for the Java Programming Language. In Proc. of the 13th ACM SIGPLAN
Conf. on Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA ’98).

[5] K. Chen and J. Chen. 2007. Aspect-Based Instrumentation for Locating Memory
Leaks in Java Programs. In Proc. of the 31st Annual Int’l Computer Software and
Applications Conf. (COMPSAC ’07).

[6] WimDe Pauw andGary Sevitsky. 1999. Visualizing Reference Patterns for Solving
Memory Leaks in Java. In Proc. of the European Conference on Object-Oriented
Programming (ECOOP ’99).

[7] Dino Distefano and Ivana Filipović. 2010. Memory Leaks Detection in Java by
Bi-abductive Inference. In Proc. of the Int’l Conf. on Fundamental Approaches to
Software Engineering (FASE 2010).

[8] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. 2007. Blended Analysis for
Performance Understanding of Framework-based Applications. In Proc. of the
2007 Int’l Symposium on Software Testing and Analysis (ISSTA ’07).

[9] Dynatrace. 2019. Demo Applications: easyTravel. https://community.dynatrace.
com/community/display/DL/Demo+Applications+-+easyTravel

[10] Mohammadreza Ghanavati, Diego Costa, Artur Andrzejak, and Janos Seboek.
2018. Memory and Resource Leak Defects in Java Projects: An Empirical Study.
In Proc. of the 40th Int’l Conf. on Software Engineering: Companion Proceeedings
(ICSE ’18).

[11] Matthias Hauswirth and Trishul M. Chilimbi. 2004. Low-overhead Memory
Leak Detection Using Adaptive Statistical Profiling. In Proc. of the 11th Int’l
Conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS XI).

[12] Maria Jump and Kathryn S. McKinley. 2007. Cork: Dynamic Memory Leak
Detection for Garbage-collected Languages. In Proc. of the 34th Annual ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL ’07).

[13] Maria Jump and Kathryn S. McKinley. 2009. Detecting Memory Leaks in Managed
Languages with Cork. Software: Practice and Experience 40, 1 (2009).

[14] Maria Jump and Kathryn S. McKinley. 2009. Dynamic Shape Analysis via Degree
Metrics. In Proc. of the Int’l Symposium on Memory Management (ISMM ’09).

[15] Evan K. Maxwell, Godmar Back, and Naren Ramakrishnan. 2010. Diagnosing
Memory Leaks using Graph Mining on Heap Dumps. In Proc. of the ACM SIGKDD
Int’l Conf. on Knowledge Discovery and Data Mining (KDD ’10).

[16] Philipp Lengauer, Verena Bitto, Stefan Fitzek, Markus Weninger, and Hanspeter
Mössenböck. 2016. Efficient Memory Traces with Full Pointer Information. In
Proc. of the 13th Int’l. Conf. on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools (PPPJ ’16).

[17] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2015. Accurate and
Efficient Object Tracing for Java Applications. In Proc. of the 6th ACM/SPEC Int’l.
Conf. on Performance Engineering (ICPE ’15).

[18] Nick Mitchell. 2006. The Runtime Structure of Object Ownership. In Proc. of the
20th European Conf. on Object-Oriented Programming (ECOOP ’06).

[19] Nick Mitchell and Gary Sevitsky. 2003. LeakBot: An automated and lightweight
tool for diagnosing memory leaks in large Java applications. In Proc. of the
European Conference on Object-Oriented Programming (ECOOP ’03).

[20] Nick Mitchell and Gary Sevitsky. 2007. The Causes of Bloat, the Limits of Health.
In Proc. of the 22nd Annual ACM SIGPLAN Conf. on Object-oriented Programming
Systems and Applications (OOPSLA ’07).

[21] Hanspeter Mössenböck, Markus Löberbauer, and Albrecht Wöß. 2019. The
Compiler Generator Coco/R. http://www.ssw.uni-linz.ac.at/Coco/

[22] WimDe Pauw andGary Sevitsky. 2000. Visualizing Reference Patterns for Solving
Memory Leaks in Java. Concurrency: Practice and Experience 12, 14 (2000).

[23] Derek Rayside and Lucy Mendel. 2007. Object Ownership Profiling: A Technique
for Finding and Fixing Memory Leaks. In Proc. of the 22nd IEEE/ACM Int’l Conf.
on Automated Software Engineering (ASE ’07).

[24] Derek Rayside, Lucy Mendel, and Daniel Jackson. 2006. A Dynamic Analysis
for Revealing Object Ownership and Sharing. In Proc. of the Int’l Workshop on
Dynamic Systems Analysis (WODA ’06).

[25] S. P. Reiss. 2009. Visualizing The Java Heap to Detect Memory Problems. In
5th IEEE Int’l Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT ’09).

[26] Ran Shaham, Elliot K. Kolodner, and Shmuel Sagiv. 2000. Automatic Removal
of Array Memory Leaks in Java. In Proc. of the 9th Int’l Conference on Compiler
Construction (CC ’00).

[27] Connie U. Smith and Lloyd G.Williams. 2000. Software Performance Antipatterns.
In Proc. of the 2nd Int’l Workshop on Software and Performance (WOSP ’00).

[28] Connie U. Smith and Lloyd G. Williams. 2002. New Software Performance
Antipatterns: More Ways to Shoot Yourself in the Foot. In Intl. CMG Conf.

[29] Connie U. Smith and Lloyd G. Williams. 2003. More New Software Performance
Antipatterns: Even More Ways to Shoot Yourself in the Foot. In Intl. CMG Conf.

[30] V. Sor, P. Oü, T. Treier, and S. N. Srirama. 2013. Improving Statistical Approach
for Memory Leak Detection Using Machine Learning. In Proc. of the 2013 IEEE
Int’l Conf. on Software Maintenance (ICSM ’13).

[31] Vladimir Šor, Nikita Salnikov-Tarnovski, and Satish Narayana Srirama. 2011.
Automated Statistical Approach for Memory Leak Detection: Case Studies. In On
the Move to Meaningful Internet Systems (OTM 2011).

[32] Eclipse Foundation. 2019. Eclipse Memory Analyzer (MAT). https://www.
eclipse.org/mat/

[33] Oracle. 2019. The HotSpot Group. http://openjdk.java.net/groups/hotspot/
[34] Oracle. 2019. VisualVM: All-in-One Java Troubleshooting Tool. https://visualvm.

github.io/
[35] Peter Wegner and Edwin D. Reilly. 2003. Data Structures. In Encyclopedia of

Computer Science.
[36] Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2018. Analyzing

the Evolution of Data Structures Over Time in Trace-Based Offline Memory
Monitoring. In Proc. of the 9th Symposium on Software Performance (SSP ’18).

[37] Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2018. Utilizing Ob-
ject Reference Graphs and Garbage Collection Roots to Detect Memory Leaks in
Offline Memory Monitoring. In Proc. of the 15th Int’l Conf. on Managed Languages
& Runtimes (ManLang ’18).

[38] Markus Weninger, Philipp Lengauer, and Hanspeter Mössenböck. 2017. User-
centered Offline Analysis of Memory Monitoring Data. In Proc. of the 8th
ACM/SPEC on Int’l Conf. on Performance Engineering (ICPE ’17).

[39] Markus Weninger and Hanspeter Mössenböck. 2018. User-defined Classification
and Multi-level Grouping of Objects in Memory Monitoring. In Proc. of the 9th
ACM/SPEC Int’l Conf. on Performance Engineering (ICPE ’18).

[40] Guoqing Xu, Michael D. Bond, Feng Qin, and Atanas Rountev. 2011. LeakChaser:
Helping Programmers Narrow Down Causes of Memory Leaks. In Proc. of the
32Nd ACM SIGPLAN Conf. on Programming Language Design and Implementation
(PLDI ’11).

[41] Guoqing Xu and Atanas Rountev. 2008. Precise Memory Leak Detection for Java
Software Using Container Profiling. In Proc. of the 30th Int’l Conf. on Software
Engineering (ICSE ’08).

[42] Dacong Yan, Guoqing Xu, Shengqian Yang, and Atanas Rountev. 2014.
LeakChecker: Practical Static Memory Leak Detection for Managed Languages.
In Proc. of the Annual IEEE/ACM International Symposium on Code Generation
and Optimization (CGO ’14).

[43] Vladimir Šor and Satish Narayana Srirama. 2014. Memory Leak Detection in Java:
Taxonomy and Classification of Approaches. Journal of Systems and Software 96
(2014).

Chapter 5

Visualization

5.1 Drill-down Trend Visualization

This section includes the paper [325] on how to visualize the evolution of
memory trees over time in a time-series chart with drill-down functionality.

Paper:
Markus Weninger, Lukas Makor, Elias Gander, Hanspeter Mössenböck:
AntTracks TrendViz: Configurable Heap Memory Visualization Over Time.
In Companion of the 2019 ACM/SPEC International Conference on Perfor-
mance Engineering, ICPE 2019, Mumbai, India, April 07-11, 2019.

97

AntTracks TrendViz:
Configurable Heap Memory Visualization Over Time

Work-In-Progress Paper

Markus Weninger
Institute for System Software, CD Laboratory MEVSS

Johannes Kepler University
Linz, Austria

Lukas Makor
Johannes Kepler University

Linz, Austria

Elias Gander
CD Laboratory MEVSS

Johannes Kepler University
Linz, Austria

Hanspeter Mössenböck
Institute for System Software
Johannes Kepler University

Linz, Austria

ABSTRACT
The complexity of modern applications makes it hard to fix memory
leaks and other heap-related problems without tool support. Yet,
most state-of-the-art tools share problems that still need to be
tackled: (1) They group heap objects only based on their types,
ignoring other properties such as allocation sites or data structure
compositions. (2) Analyses strongly focus on a single point in time
and do not show heap evolution over time. (3) Results are displayed
in tables, even though more advanced visualization techniques may
ease and improve the analysis.

In this paper, we present a novel visualization approach that
addresses these shortcomings. Heap objects can be arbitrarily clas-
sified, enabling users to group objects based on their needs. Instead
of inspecting the size of those object groups at a single point in time,
our approach tracks the growth of each object group over time. This
growth is then visualized using time-series charts, making it easy
to identify suspicious object groups. A drill-down feature enables
users to investigate these object groups in more detail.

Our approach has been integrated into AntTracks, a trace-based
memory monitoring tool, to demonstrate its feasibility.

KEYWORDS
Memory Monitoring, Heap Growth Analysis over Time, Visualiza-
tion, Memory Leak Detection

ACM Reference Format:
Markus Weninger, Lukas Makor, Elias Gander, and Hanspeter Mössenböck.
2019. AntTracks TrendViz: Configurable Heap Memory Visualization Over
Time. In Tenth ACM/SPEC International Conference on Performance Engi-
neering Companion (ICPE ’19 Companion), April 7–11, 2019, Mumbai, India.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3302541.3313100

ICPE ’19 Companion, April 7–11, 2019, Mumbai, India
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Tenth ACM/SPEC
International Conference on Performance Engineering Companion (ICPE ’19 Companion),
April 7–11, 2019, Mumbai, India, https://doi.org/10.1145/3302541.3313100.

1 INTRODUCTION
Modern programming languages such as Java use automatic garbage
collection. Heap objects that are no longer reachable from static
fields or thread-local variables (so-called GC roots) are automati-
cally reclaimed by a garbage collector (GC). Nevertheless, memory
problems can still occur even in garbage-collected languages. One
of the major types of memory problems are memory leaks [4], i.e.,
objects may remain reachable from GC roots even though they are
no longer needed. For example, if a developer forgets to remove
objects from their containing data structures, these objects cannot
be reclaimed by the GC and will accumulate over time.

State-of-the-art tools, such as VisualVM [14] or Eclipse Memory
Analyzer (MAT) [12], perform memory analysis based on a heap
snapshot, i.e., a heap dump. They group the live heap objects by
their types and display the number of objects and the number of
bytes per type in a table, i.e., in a type histogram. In addition to that,
they support comparing two heap snapshots, showing the increase
or decrease of live objects / live bytes per type in a table.

While this information may be sufficient to detect basic memory
problems, such analysis approaches have also various shortcom-
ings. First, fixing a memory leak might require more information
about the objects besides their types, for example, their allocation
sites or the data structures in which they are contained. Second,
comparing two snapshots does not reveal general trends in an ap-
plication’s memory behavior. An increase in instances of a certain
type between two given points in time does not necessarily indicate
a continuous memory growth. To detect trends, the heap has to be
compared at multiple points in time, a feature that is not supported
by the two tools mentioned. Finally, tools should make it as easy as
possible to extract the needed information. Great potential to make
data more accessible lies in the use of data visualization [5].

In the following, we present a work-in-progress approach on
how to visualize continuous memory consumption trends over
time. Users can group the heap objects by arbitrary criteria such as
their types or their allocation sites and visually inspect the heap
evolution per object group. Trends within certain object groups can
hint at memory leaks and other memory anomalies. We integrated
our approach into AntTracks, a trace-based memory monitoring
tool based on the Hotspot Java VM, initially developed by Lengauer
et al. [9] and extended by Weninger et al. [18–21].

Our contribution encompasses:
• a technique to derive growth information of heap object
groups from memory traces.

• a highly configurable visualization approach for trend analy-
sis. It displays the growth of object groups over time (based
on various size metrics) using time-series charts.

• a drill-down feature to re-apply the same visualization ap-
proach on a specific subgroup of suspicious objects.

• a working implementation in AntTracks.

2 BACKGROUND
AntTracks consists of two parts: The AntTracks VM, a virtual ma-
chine based on the Java Hotspot VM [13], and the AntTracks An-
alyzer, a memory analysis tool. Since the concepts presented in
this paper have been integrated into AntTracks, it is essential to
understand how AntTracks works.

Trace Recording and Reconstruction. The AntTracks VM writes
information about memory events such as object allocations and
object movements executed by the GC into a trace file. It keeps
the event size to a minimum and avoids the recording of redun-
dant data [8, 9]. Later, the AntTracks Analyzer can incrementally
process such a trace file. It is able to display the overall memory
development over time and enables users to reconstruct and inspect
the heap state at every garbage collection point [2]. For every heap
object, a number of properties can be reconstructed, including its
address, its type, its allocation site, the heap objects it references,
and the heap objects it is referenced by.

Heap Object Classification. The AntTracks Analyzer uses ob-
ject classifiers in combination with multi-level grouping [20, 21]
to enable user-driven heap analysis. An object classifier groups
heap objects into multiple object groups according to certain cri-
teria such as their types, their allocation sites, or their allocating
threads. For example, the Type classifier groups objects by their
types, e.g., java.util.LinkedList. In multi-level grouping, ob-
jects are grouped according to the classification results of multiple
classifiers. This results in a hierarchical classification tree. In gen-
eral, every node in such a tree represents an object group and the
amount of objects / bytes classified in the respective sub-tree.

For example, the classification tree in Figure 1 has been created by
applying the Type classifier, followed by the Allocation Site classifier.
Overall, the classification tree represents 120, 000 objects, 5, 000 of
them are of type Object[], and 1, 000 of these arrays have been
allocated at Stack:init().

3 APPROACH
This section covers the basic concepts of our new visualization
approach. We show how to reconstruct object group growth infor-
mation from memory traces, together with a highly configurable
time-series-based visualization, and how this visualization can be
used to drill-down into specific object groups to gain further in-
sights on their growth behavior.

3.1 Gathering Object Group Information
When investigating an application with memory problems, cer-
tain parts of its execution trace will stand out. For example, if the

Figure 1: A classification tree that first groups all objects by
their types and then by their allocation sites.

memory consumption grew extraordinarily strong between two
points in time and does not shrink again afterwards, it indicates
that objects have been allocated within this timespan that cannot
be reclaimed by the garbage collector later, indicating some type of
memory leak. In our approach, users can select such a time window
for subsequent analysis.

After selecting the timewindow of interest, the user has to decide
according to which criteria the heap objects should be grouped
into object groups. The growth of each object group will later be
visualized to aid users in detecting object group growth trends.

Subsequently, the memory trace is incrementally parsed to re-
construct the heap objects within the selected time window. During
parsing, the live objects are classified at every garbage collection
point using the selected list of classifiers. The resulting classifica-
tion tree is then stored alongside a timestamp that identifies the
respective garbage collection. Every time a new entry is added to
this timeline of classification trees, a new time-series data set is
generated that is used to update the heap object group memory
growth visualization.

3.1.1 Improvements. Instead of classifying the live objects at every
garbage collection point within the selected time window, only a
subset of the garbage collections can be used for classification to
improve performance. The user can select to only classify at every
n-th garbage collection, or after at least x seconds have passed since
the last classification in the traced application. The benefit is that
the classification, which is the most performance-intensive task,
can be performed less often. In most cases, existing memory trends
will still be apparent.

Future work includes the automatic selection of interesting time
windows, thus freeing the user from this task.

3.2 Data Set Generation
To enable growth detection through visualization, the sequence of
classification trees first has to be converted into a visualizable data
set. The individual classification trees represent the application’s
heap state at different points in time. Thus, a time-series-based
visualization is the most natural choice. Since the time-series plot
is the most frequently used form of graphic design [15], it is well-
known and easy to understand. In general, time-series data takes
the following form: D = {(t1,y1), (t2,y2), ..., (tn ,yn)} [17], i.e., it
consists of data pairs where a given point in time ti has a certain
value yi assigned to it.

To achieve this format, the nodes on the first level of every
classification tree, i.e., the object groups formed by the first classifier,
are extracted. Next, a time series is created for every distinct node
key. For example, if the objects were first classified and grouped

using the Type classifier, every type would become a series in the
data set. Each series contains one entry (t ,y) per classification tree.
t is the timestamp assigned to the respective classification tree, and
y is the object group’s size, which can be extracted from its tree
node within the classification tree.

There are multiple size metrics [18] that users can choose from,
either in number of objects or number of bytes:

• Shallow size: The number of objects / bytes of an object group,
without taking into account any referenced objects.

• Deep size: The number of objects / bytes of an object group,
including all objects reachable from them.

• Retained size: The number of objects / bytes of an object
group, including all owned objects. In other words, it includes
all objects that could be freed by the garbage collector if the
given object group would be freed.

3.3 Visualization
Depending on the used classifier, the data set can end up containing
a large number of series. For example, if the objects have been
classified by their types, a series is created for every type, which
can easily be several thousands. Yet, most of these series are not of
interest when searching for possible memory problems. Thus, our
approach supports various techniques to select those series that
are of most interest to the user.

To decide which series should be shown, the series are sorted
according to a given strategy, and only the top N series are selected.
The following sorting strategies are currently supported:

• Start and End sorting: The series are sorted by their values
at the start or the end of the time window, respectively. This
way, the memory evolution of those series, i.e., object groups,
that take up the most heap space at the start / end of the
time window can be inspected.

• Average sorting: The series are sorted by their average
y-value. This setting can be used to inspect the growth be-
havior of those object groups that took up the most heap
space throughout the selected time window.

• Absolute growth and Relative growth sorting: The series are
sorted by their absolute or relative increase between the start
and the end of the time window, respectively. This enables
users to inspect the growth behavior of the object groups
that grew the most over the selected time window.

The user can also select if an Other series should be shown that
combines all object groups that are not visualized as separate series.
By default, theOther series is shown and theAbsolute growth sorting
with an N -value of 5 is selected. An example of the visualization is
shown in Section 4.

3.4 Drill-down
As explained in Section 3.2, the initial visualization extracts the first
level of the classification trees and visualizes their object groups’
growth behavior over time. If multiple classifiers have been applied
to build the classification trees, a suspicious object group (e.g., a
groupwith a strong growthwithin the selected timewindow) can be
selected for drill-down in the visualization. The drill-down feature
re-applies the same visualization technique to the children of the
selected object group and displays it in a new chart.

Figure 2: Visualizing the retained size of data structure types
over time highlights ArrayList as suspect.

Figure 3: Drill-down showing the development of the object
count of ArrayList’s data objects.

For example, assume that the Type classifier has been used as
the first classifier, followed by the Allocation Site classifier, cre-
ating classification trees similar to the one shown in Figure 1. If
the user detects suspicious growth for objects of type Object[],
this group can be selected for drill-down. A new data set will be
created, based on the various allocation sites at which objects of
type Object[] have been created, according to the steps explained
in Section 3.2. This allocation site data set will then be visualized
below the existing chart, using the steps described in Section 3.3.

The various settings, such as the sorting strategy, can be adjusted
individually per chart. To make browsing the charts more conve-
nient, interaction features such as zooming are synchronized over
all charts.

4 EXAMPLE
In this example, we show a typical way of how to use our visualiza-
tion approach by demonstrating how to identify and inspect data
structure types with growing ownership in AntTracks.

First, we select a time window over which the application’s
memory grew considerably. In this example, the basic idea is to (1)
first inspect the retained size growth, i.e., ownership growth, of data
structure types (such as HashMaps), (2) then selecting the type with
the highest growth for drill-down, (3) followed by a visualization of
the data object growth within this data structures to find out which
data objects accumulate the most.

Our example uses one filter and two classifiers to group the
heap objects for visualization. We are using the Data Structure filter,
which only includes data structure head objects (for example lists,
maps, etc.) during classification, ignoring other objects. These data
structure head objects are then classified by their types. Visualizing
the retained size growth, i.e., the ownership growth, of these types
results in a chart similar to the one in Figure 2, which shows that

objects of type ArrayList have the strongest retained size growth.
Thus, this type is selected for drill-down.

As a second classifier we are using the Data Object classifier
which enables us to analyze the data objects stored in a data struc-
ture. Due to paper length restrictions, we group those data objects
only by their types. Typically, they would also be grouped by their
allocation sites. In Figure 3, the drill-down on the ArrayList object
group was configured to show the growth of the number of data
objects in ArrayLists per data object type.

We are now able to easily pinpoint ArrayList data structures
that contain Item objects as the major suspects for a possible mem-
ory leak. This information could now be used to investigate the
memory problem on the source code level.

5 RELATEDWORK AND FUTUREWORK
State-of-the-art tools include, among others, VisualVM [14] and
Eclipse Memory Analyzer (MAT) [12], which have been discussed
in Section 1.

In their work on the taxonomy and classification of memory
analysis approaches in Java, Šor and Srirama [23] highlight the
visualization approaches by De Pauw and Sevitsky [3, 10] and by
Reiss [11]. The former extracts reference patterns (repetitive ref-
erence sequences in a heap object graph) and visualizes them. In
addition to that, such reference patterns can also be extracted for
those objects that are created between two heap snapshots (e.g.,
potentially leaking objects), which can then be visually explored.
The latter work visualizes the object ownership in a tree-like vi-
sualization using shapes, coloring, hatching, hue and saturation.
Another approach that compares heap snapshots has been devel-
oped by Jump and McKinley [6, 7]. Their tool, Cork, compares the
heap object graph structure of two heap snapshots to detect the
growth of certain reference patterns between classes.

Future work includes a more thorough evaluation and presen-
tation of our new visualization approach based on real-world sce-
narios. In addition to that, the approach can still be extended by
numerous features. For example, the analysis time windows could
be chosen automatically by the tool. Besides the current visualiza-
tion using line charts, other visualization techniques could also
be evaluated based on the same underlying data, such as small
multiples [16] or as software cities [22]. Other typical visualization
techniques that can still be further explored involve the representa-
tion of aggregated heap objects as graphs [1].

6 CONCLUSION
In this work, we presented a new approach to visualize the growth of
heap object groups over time. Trends detected in this visualization
can hint at memory problems such as memory leaks involving
certain object groups. To construct the underlying data for the
visualization, the live heap objects are split into groups based on
user-selected criteria (e.g., by their types) at multiple points in
time. The evolution of each group over time is then visualized in
a time-series chart. The visualization is highly user-configurable
based on the user’s needs, allowing users to select features such as
series sorting, series selection or size metrics. A drill-down feature
enables users to select an object group of interest, e.g., a strongly
growing group, to classify the objects within this group by another

criterion, and to re-apply the same visualization technique to this
group.

ACKNOWLEDGMENTS
The financial support by the Austrian Federal Ministry for Digi-
tal and Economic Affairs, the National Foundation for Research,
Technology and Development, and Dynatrace is gratefully acknowl-
edged.

REFERENCES
[1] Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci, Sara L.

Su, and Samuel Z. Guyer. 2010. Heapviz: Interactive Heap Visualization for
Program Understanding and Debugging. In Proc. of the 5th Int’l Symp. on Software
Visualization (SOFTVIS ’10).

[2] Verena Bitto, Philipp Lengauer, and Hanspeter Mössenböck. 2015. Efficient
Rebuilding of Large Java Heaps from Event Traces. In Proc. of the Principles and
Practices of Programming on The Java Platform (PPPJ ’15).

[3] Wim De Pauw and Gary Sevitsky. 1999. Visualizing Reference Patterns for
Solving Memory Leaks in Java. In Proc. of the European Conf. on Object-Oriented
Programming (ECOOP ’99).

[4] Mohammadreza Ghanavati, Diego Costa, Artur Andrzejak, and Janos Seboek.
2018. Memory and Resource Leak Defects in Java Projects: An Empirical Study.
In Proc. of the 40th Int’l Conf. on Software Engineering: Comp. Proc. (ICSE ’18).

[5] Jeffrey Heer, Michael Bostock, and Vadim Ogievetsky. 2010. A Tour Through the
Visualization Zoo. Commun. ACM 53, 6 (June 2010).

[6] Maria Jump and Kathryn S. McKinley. 2007. Cork: Dynamic Memory Leak
Detection for Garbage-collected Languages. In Proc. of the 34th Annual ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL ’07).

[7] Maria Jump and Kathryn S. McKinley. 2009. Detecting Memory Leaks in Managed
Languages with Cork. Software: Practice and Experience 40, 1 (2009).

[8] Philipp Lengauer, Verena Bitto, Stefan Fitzek, Markus Weninger, and Hanspeter
Mössenböck. 2016. Efficient Memory Traces with Full Pointer Information. In
Proc. of the 13th Int’l. Conf. on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools (PPPJ ’16).

[9] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2015. Accurate and
Efficient Object Tracing for Java Applications. In Proc. of the 6th ACM/SPEC Int’l.
Conf. on Performance Engineering (ICPE ’15).

[10] WimDe Pauw andGary Sevitsky. 2000. Visualizing Reference Patterns for Solving
Memory Leaks in Java. Concurrency: Practice and Experience 12, 14 (2000).

[11] S. P. Reiss. 2009. Visualizing The Java Heap to Detect Memory Problems. In
5th IEEE Int’l Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT ’09).

[12] Eclipse Foundation. 2018. Eclipse Memory Analyzer (MAT). https://www.
eclipse.org/mat/

[13] Oracle. 2018. The HotSpot Group. http://openjdk.java.net/groups/hotspot/
[14] Oracle. 2018. VisualVM. https://visualvm.github.io/
[15] Edward R. Tufte. 2007. The Visual Display of Quantitative Information (2nd edition).

Graphics Press, Cheshire, CT, USA.
[16] Stef van den Elzen and Jarke J. van Wijk. 2013. Small Multiples, Large Singles: A

New Approach for Visual Data Exploration. Comput. Graph. Forum 32 (2013).
[17] Marc Weber, Marc Alexa, and Wolfgang Müller. 2001. Visualizing time-series on

spirals. In Infovis, Vol. 1.
[18] Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2018. Utilizing Ob-

ject Reference Graphs and Garbage Collection Roots to Detect Memory Leaks in
Offline Memory Monitoring. In Proc. of the 15th Int’l Conf. on Managed Languages
& Runtimes (ManLang ’18).

[19] Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2019. Analyzing
Data Structure Growth Over Time to Facilitate Memory Leak Detection. In Proc.
of the 10th ACM/SPEC on Int’l Conf. on Performance Engineering (ICPE ’19).

[20] Markus Weninger, Philipp Lengauer, and Hanspeter Mössenböck. 2017. User-
centered Offline Analysis of Memory Monitoring Data. In Proc. of the 8th
ACM/SPEC on Int’l Conf. on Performance Engineering (ICPE ’17).

[21] Markus Weninger and Hanspeter Mössenböck. 2018. User-defined Classification
and Multi-level Grouping of Objects in Memory Monitoring. In Proc. of the 9th
ACM/SPEC Int’l Conf. on Performance Engineering (ICPE ’18).

[22] Richard Wettel and Michele Lanza. 2007. Visualizing Software Systems as Cities.
In 4th IEEE Int’l Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT ’07).

[23] Vladimir Šor and Satish Narayana Srirama. 2014. Memory leak detection in Java:
Taxonomy and classification of approaches. Journal of Systems and Software 96
(2014).

5.2 Memory Cities

This section includes two paper [326, 327] on how to visualize the evolution
of memory trees over time in an engaging 3D visualization inspired by the
software city metaphor.

Work-In-Progress Paper:
Markus Weninger, Lukas Makor, Hanspeter Mössenböck:
Memory Leak Visualization using Evolving Software Cities. In Proceedings
of the 10th Symposium on Software Performance, SSP 2019, Würzburg, Ger-
many, November 4 - 6, 2019.

Full Paper:
Markus Weninger, Lukas Makor, Hanspeter Mössenböck:
Memory Cities: Visualizing Heap Memory Evolution Using the Software City
Metaphor. In Proceedings of the Working Conference on Software Visualiza-
tion, VISSOFT 2020, Adelaide, Australia, September 28 - October 2, 2020
(moved online). - Best Paper Award

Artifact:
The tool has been successfully evaluated as an artifact at the VISSOFT 2020
conference. The artifact is available at [329], a video of the tool can be found
at http://ssw.jku.at/General/Staff/Weninger/AntTracks/VISSOFT20/
MemoryCities.mp4, and the instructions to use the tool can be found in
Appendix A.

102

http://ssw.jku.at/General/Staff/Weninger/AntTracks/VISSOFT20/MemoryCities.mp4
http://ssw.jku.at/General/Staff/Weninger/AntTracks/VISSOFT20/MemoryCities.mp4

Memory Leak Visualization using Evolving Software Cities

Markus Weninger⊗, Lukas Makor4, Hanspeter Mössenböck⊗
⊗ Institute for System Software, Johannes Kepler University Linz, Austria

4 Christian Doppler Laboratory MEVSS, Johannes Kepler University Linz, Austria

Abstract

Memory leaks occur when no longer needed objects
are unnecessarily kept alive. They can have a signifi-
cant performance impact, possibly leading to a crash
of the application in the worst case.

Most state-of-the-art memory monitoring tools lack
visualizations of memory growth over time. However,
domains such as software evolution and program com-
prehension have shown that graphically visualizing
the growth and evolution of a system can help users
in understanding and interpreting this growth.

In this paper, we present ongoing research on how
to visualize an application’s memory evolution over
time using the software city metaphor. While soft-
ware cities are typically used to visualize static arti-
facts of a software system such as classes, we use them
to visualize the dynamic memory behavior of an appli-
cation. In our approach, heap objects can be grouped
by arbitrary properties such as their types or their al-
locating threads. These groups are visualized as build-
ings arranged in districts, where the size of a building
corresponds to the number of objects it represents.
Continuously updating the city over time creates the
feeling of an evolving city. Users can then identify and
inspect those buildings, i.e., object groups, that grow
the most.

We integrated our approach into AntTracks,
a trace-based memory monitoring tool developed by
us, to prove its feasibility.

1 Introduction

Modern programming languages such as Java use au-
tomatic garbage collection. Heap objects that are no
longer reachable from static fields or thread-local vari-
ables (so-called GC roots) are automatically reclaimed
by a garbage collector (GC). A memory leak occurs
if objects that are no longer needed remain reachable
from GC roots due to programming errors. For ex-
ample, a developer may forget to remove objects from
their (long-living) containing data structures. These
objects cannot be reclaimed by the garbage collector
and will therefore accumulate over time [15].

Most state-of-the-art memory monitoring tools do
not use graphical means to visualize such a growth.
Instead, they just take two heap snapshots, calculate
the difference of the number of objects for every type,
and display these difference values in a table. As it

has been shown in other domains such as software
evolution and program comprehension [8], we think
that users can also profit from software visualizations
in the domain of memory monitoring.

In their work, Knight and Munro [1, 3] pro-
moted the use of metaphors when developing soft-
ware visualizations. Metaphors act as a mapping from
the concepts or artefacts required to be displayed to
their graphical representation. One such visualization
metaphor are software cities. Wettel and Lanza [4]
used software cities to visualize software systems,
where buildings represent classes, grouped into dis-
tricts based on their packages. The size of a build-
ing is determined by the classes’ number of attributes
and number of methods. Steinbrückner and Lewer-
entz [7, 9] adopted and extended this idea by visu-
alizing the development history of software systems
using elevated city maps. Software cities have also
been used in virtual reality environments to support
program comprehension, as done by Fittkau et al. [10].

In this paper, we present ongoing research on how
to use the software city metaphor to visualize memory
monitoring data. Our goal is to ease the inspection
of memory growth over time by providing interactive
easy-to-interpret visualizations to users. To achieve
this, our contributions encompass:

• a method to layout and visualize a heap state as a
software city, see Section 2 and Section 3.

• techniques to visualize the evolution of memory
over time as an evolving software city, see Section 4.

• a prototype implementation of our visualization ap-
proach in Unity 3D, see Figure 1.

2 Data

To visualize the memory evolution of an application,
we need continuous information about the live heap
objects. To obtain this information for a single point
in time, most tools use heap dumps. However, con-
tinuously dumping the heap would incur too much
run-time overhead, since the application is halted dur-
ing the heap dump. Thus, we use the AntTracks
VM [11, 12, 14], a virtual machine based on the Java
Hotspot VM, to collect memory data.

From this data, we can reconstruct the heap state
at every garbage collection point. For every heap ob-
ject, a number of properties can be reconstructed, in-

cluding its address, type, allocation site, the thread
that allocated it, and the heap objects it references.

3 Heap State Visualization

Heap objects can be grouped by a combination of their
properties which results in a grouping tree [13]. Such
a grouping tree is typically displayed in a tree table
view, similar to the one shown in Table 1.

Objects
- Heap 100,000

- Thread 1 80,000
Type A 70,000
Type B 10,000

+ Thread 2 10,500
...

Table 1: A tree table view representing a heap state
grouped by allocating threads and types.

Many tools also show other advanced metrics be-
side the number of objects and use features such
as color encoding to highlight certain object groups.
This can easily become overwhelming and hard to in-
terpret for novice users. Thus, we present an approach
to visualize a heap state as a software city.

3.1 Buildings and Districts

In the software city metaphor, artifacts are visualized
as buildings that are arranged in districts, which can
again be contained in other districts. In our case,
buildings represent leaf nodes of a grouping tree, while
inner tree nodes are represented as districts.

Districts are flat structures. Their area is sized to
enclose all their contained districts and buildings. A
building is a structure with a height and an area that
depends on the number of objects its tree node repre-
sents. One of our goals was to achieve building sizes
that represent more-or-less realistic building measures
of real-world buildings. As preliminary formulas, we
came up with 2 ∗ 4

√
nobjects units as the height and√

nobjects square units as the area for buildings. Map-
ping units to meters, the 70, 000 objects of Type A

from Table 1 would, for example, be represented as a
building that has an area of about 264.5 square meters
and a height of 32.5 meters. With adjusted formulas
for height and area, the same approach could be used
to visualize the city based on the number of bytes.
Mixing metrics, such as using the number of objects
for the area and the number of bytes for the height,
is up to future work. For example, having very few
very large arrays, this could result in extremely nar-
row building that are extremely tall if implemented
carelessly, which would distort a realistic city feeling.

3.2 Layout

To layout the districts and buildings, we used the
squarified tree map algorithm by Bruls et al. [2]. As
explained in the previous section, every building has
an area based on the number of objects it represents.

The squarified tree map algorithm tries to shape the
area of each building as an approximate square, such
that they can be laid out in a way that makes the
their districts again resemble squares.

4 Evolution Visualization

To visualize the memory evolution over a selected time
window, we apply time traveling. According to Wettel
and Lanza [6], time traveling is achieved by stepping
back and forth through the history of a system while
the city updates itself to reflect its current state. In
our case, the history is the sequence of grouping trees
generated at every reconstructed heap state in the se-
lected time window.

4.1 Layout

It is not enough to visualize these grouping trees one
after another. For example, buildings could be added
or removed between two heap states. This would
change the layout of districts and thus the position of
buildings. This leads to the problem that users could
hardly figure out if and which two buildings in two
different heap states represent the same tree node.

To overcome this problem we apply static position
animation [5], which creates a general city plan in
which all buildings remain at the same position during
the animation. To do so, all grouping trees are merged
into a meta tree. Every node in this meta tree stores
the maximum number of objects represented by the
respective node at any time. Then, the layouting of
the city happens once based on the values in this meta
tree to reserve space for every building based on its
largest possible area. Then, to visualize the heap at
a certain point in time, buildings are centered in the
space that has been reserved for them.

4.2 Memory Leak Investigation Mode

If a memory leak exists, typically certain objects
groups grow stronger than others. This is especially
the case if the objects are grouped by type. To make
it easier for users to identify those object groups, i.e.,
buildings, that grew the most, certain buildings are
shown in solid mode, while the others have reduced
opacity, as shown in Figure 1.

Figure 1: An application shortly after startup (left)
and 60 garbage collections later (right). The ten
buildings with the strongest growth are shown in solid
mode, while the others have reduced opacity.

2

5 Interaction

Users can navigate through the city as a free-moving
camera. The view can be tilted, rotated and zoomed
by using the mouse wheel. By dragging the mouse or
using the keyboard, the user can move the camera.
Clicking on a building or district displays its informa-
tion. This information includes the path from the tree
root, e.g., Overall Heap → Thread 1 → Type A, and
the number of objects the structure represents.

To step back and forth in time, users are provided
with buttons to go to the next and the previous heap
state, as well as a slider to move through time. An
automatic animation can also be played using a user-
defined pause time between heap states. An example
video of such an animation, showing AntTracks during
trace file parsing, can be found here1.

6 Conclusion and Future Work

In this paper, we presented an approach to visual-
ize memory monitoring data using the software city
metaphor. We discussed how a heap state, more
specifically its heap objects, can be grouped into a
tree, and how such a tree can be visualized as dis-
tricts and buildings in a software city. Our approach
is not only suitable for a single heap state, but can also
visualize the memory evolution over time by using an
advanced layout algorithm. Using our approach, the
memory evolution of an application can be animated
as a city that evolves over time, where growing build-
ings hint at an accumulation of objects that could be
the result of a possible memory leak.

Since this work is still in progress, many possibili-
ties exist for future work. Our current software cities
only make use of three visual properties: area, height,
and opacity. There is still potential for more advanced
user interaction that may alter currently unused prop-
erties, such as letting users mark buildings of interest
using custom colors. It is also interesting to explore
how additional information such as object references
could be included in a software city visualization. For
example, selecting a building may also highlight / cre-
ate visual links to other buildings that contain objects
referenced by the selected building’s objects. Also, a
user study should be conducted to evaluate the use-
fulness of our new visualization approach.

7 Acknowledgement

The financial support by the Austrian Federal Min-
istry for Digital and Economic Affairs, the National
Foundation for Research, Technology and Develop-
ment, and Dynatrace is gratefully acknowledged.

1Video showing AntTracks as evolving memory city:
http://ssw.jku.at/General/Staff/Weninger/AntTracks/

SSP19/MemoryCities-WorkInProgress.webm

References

[1] C. Knight and M. Munro. “Comprehension with
[in] virtual environment visualisations”. In: Int’l
Workshop on Program Comprehension. 1999.

[2] M. Bruls, K. Huizing, and J. J. van Wijk.
“Squarified Treemaps”. In: Joint Eurographics
and IEEE TCVG Symp. on Visualization. 2000.

[3] C. Knight and M. Munro. “Virtual but visible
software”. In: Conf. on Information Visualiza-
tion. 2000.

[4] R. Wettel and M. Lanza. “Visualizing Software
Systems as Cities”. In: Int’l Workshop on Visu-
alizing Software for Understanding and Analy-
sis. 2007.

[5] G. Langelier, H. Sahraoui, and P. Poulin.
“Exploring the evolution of software quality
with animated visualization”. In: Symp. on Vi-
sual Languages and Human-Centric Computing.
2008.

[6] R. Wettel and M. Lanza. “Visual Exploration
of Large-Scale System Evolution”. In: Working
Conf. on Reverse Engineering. 2008.

[7] F. Steinbrückner and C. Lewerentz. “Represent-
ing Development History in Software Cities”. In:
Int’l Symp. on Software Visualization. 2010.

[8] R. Wettel, M. Lanza, and R. Robbes. “Software
systems as cities: a controlled experiment”. In:
Int’l Conf. on Software Engineering. 2011.

[9] F. Steinbrückner and C. Lewerentz. “Un-
derstanding software evolution with software
cities”. In: Information Visualization 12.2
(2013).

[10] F. Fittkau, A. Krause, and W. Hasselbring. “Ex-
ploring software cities in virtual reality”. In:
Working Conf. on Software Visualization. 2015.

[11] P. Lengauer, V. Bitto, and H. Mössenböck. “Ac-
curate and Efficient Object Tracing for Java Ap-
plications”. In: Int’l. Conf. on Performance En-
gineering. 2015.

[12] P. Lengauer et al. “Efficient Memory Traces
with Full Pointer Information”. In: Int’l. Conf.
on Principles and Practices of Programming on
the Java Platform. 2016.

[13] M. Weninger and H. Mössenböck. “User-defined
Classification and Multi-level Grouping of Ob-
jects in Memory Monitoring”. In: Int’l Conf. on
Performance Engineering. 2018.

[14] M. Weninger. AntTracks. 2019. url: http://
mevss.jku.at/AntTracks.

[15] M. Weninger, E. Gander, and H. Mössenböck.
“Analyzing Data Structure Growth Over Time
to Facilitate Memory Leak Detection”. In: Int’l
Conf. on Performance Engineering. 2019.

3

Memory Cities: Visualizing Heap Memory
Evolution Using the Software City Metaphor

Markus Weninger
Institute for System Software

Johannes Kepler University Linz
Linz, Austria

markus.weninger@jku.at

Lukas Makor
CD Laboratory MEVSS

Johannes Kepler University Linz
Linz, Austria

lukas.makor@jku.at

Hanspeter Mössenböck
Institute for System Software

Johannes Kepler University Linz
Linz, Austria

hanspeter.moessenboeck@jku.at

Abstract—Tool support is essential to help developers in un-
derstanding the memory behavior of complex software systems.
Anomalies such as memory leaks can dramatically impact appli-
cation performance and can even lead to crashes. Unfortunately,
most memory analysis tools lack advanced visualizations (espe-
cially of the memory evolution over time) that could facilitate
developers in analyzing suspicious memory behavior.

In this paper, we present Memory Cities, a technique to
visualize an application’s heap memory evolution over time using
the software city metaphor. While this metaphor is typically used
to visualize static artifacts of a software system such as class
hierarchies, we use it to visualize the dynamic memory behavior
of an application. In our approach, heap objects can be grouped
by multiple properties such as their types or their allocation
sites. The resulting object groups are visualized as buildings
arranged in districts, where the size of a building corresponds to
the number of heap objects or bytes it represents. Continuously
updating the city over time creates the immersive feeling of an
evolving city. This can be used to detect and analyze memory
leaks, i.e., to search for suspicious growth behavior. Memory
cities further utilize various visual attributes to ease this task.
For example, they highlight strongly growing buildings using
color, while making less suspicious buildings semi-transparent.

We implemented memory cities as a standalone application
developed in Unity, with a JSON-based interface to ensure easy
data import from external tools. We show how memory cites
can use data provided by AntTracks, a trace-based memory
monitoring tool, and present case studies on different applications
to demonstrate the tool’s applicability and feasibility.

Index Terms—Memory City, Software City, Software Map,
Visualization Metaphor, Heap Memory Evolution, Memory Leak
Analysis, 3D Visualization, Interactive Analysis System

I. INTRODUCTION

Modern programming languages such as Java use automatic
garbage collection to free the developer from the error-prone
task of allocating and freeing memory manually. To do so,
heap objects that are no longer reachable from static fields or
thread-local variables (so-called GC roots) are automatically
reclaimed by a garbage collector (GC). Nevertheless, memory
problems and anomalies such as memory leaks can still occur

The Memory Cities artifact (including binaries, data sets, video, and
instructions) is available at [1], a video of the tool can be found at http://ssw.
jku.at/General/Staff/Weninger/AntTracks/VISSOFT20/MemoryCities.mp4

This is the author’s version of the work. The definitive version was
published in the Proceedings of the IEEE Working Conference on Software
Visualization (VISSOFT 2020).

https://doi.org/10.1109/VISSOFT51673.2020.00017

even in garbage-collected languages. For example, memory
leaks happen if objects that are no longer needed remain
reachable from GC roots. A common cause for this is that
a developer accidentally forgets to remove objects from a
(long-living) container data structure [2]–[4]. Such objects
cannot be reclaimed by the garbage collector and will therefore
accumulate over time.

To inspect a memory leak, users have to search for groups
of objects that grow suspiciously over time. To perform such
inspections, memory monitoring tools such as VisualVM [5]
or Eclipse MAT [6] are often used. Unfortunately, many of
these state-of-the-art tools do not use graphical means (except
for time-series charts) to visualize the evolution of the heap.
Yet, the usefulness of advanced visualization techniques in
domains such as software evolution and program comprehen-
sion has already been shown in various user studies [7]–[14].
Thus, we think that developers can also profit from software
visualizations in the domain of memory monitoring.

Visualizations often rely on metaphors to serve as “a map-
ping from the concepts or artefacts required to be displayed in
the virtual world to their graphical representation” [15]. For
example, in their inspiring works, Knight and Munro [15],
[16] suggest the software world metaphor which consists of
countries, cities, districts, and even details such as gardens and
interior. Since this level of detail may not always be suitable
or needed, the software cities metaphor emerged. Wettel and
Lanza [17], [18] used software cities to visualize the static
structure of a software system, where buildings represent
classes, grouped into districts based on their packages. The
size of a building is determined by the classes’ number of at-
tributes and number of methods. They extended this approach
to also visualize the evolution of the code base over time [19]–
[21]. Subsequent software city approaches used this metaphor
to visualize the dynamic behavior of a software system based
on recorded traces, such as SynchroVis to visualize concur-
rency [22] and ExplorViz to visualize the communication and
dependencies between software components [11], [23]–[26].

Inspired by the widespread use of the software city
metaphor, we combined existing techniques with new ideas
to apply this metaphor to the domain of memory monitoring.
In this paper, we present Memory Cities, an approach to
visualize the heap evolution as an evolving software city.

In memory cities, buildings represent heap object groups
that are arranged in districts based on shared heap object
properties such as type. The size of the buildings can change
over time, representing growing and shrinking heap object
groups throughout the lifetime of a monitored application. Our
goal is to ease the inspection and comprehension of memory
growth over time, a common task in memory leak analysis, by
providing an interactive and easy-to-understand visualization.
Based on a work-in-progress report [27], this paper discusses
the full visualization pipeline [28], [29] of memory cities, see
Section III. In detail, our scientific contributions encompass:

• a data model based on which memory cities can be
generated (Section IV),

• a discussion of the layout algorithm used (Section V),
• a mapping from memory metrics to visual attributes

(Section VI),
• interaction features such as time traveling, information

retrieval and a novel heap object reference analysis in
3D memory cities (Section VII),

• a fully functional 3D memory city visualization tool,
• various memory city case studies to showcase the ap-

proach’s feasibility and applicability (Section VIII).

II. BACKGROUND

Our memory city visualization has a well-defined JSON
interface to be independent of a specific data source. Yet,
to make this work more tangible, we regularly refer to data
imported from the memory monitoring tool AntTracks [30].

Thus, this section presents the basics of AntTracks, a fully
functional trace-based memory monitoring tool consisting of
the AntTracks VM [31]–[33] and the AntTracks Analyzer [3],
[4], [34]–[39].

A. Trace Recording by the AntTracks VM

The AntTracks VM (a slightly modified Java VM) records
events such as object allocations and object movements per-
formed by the GC during garbage collection and writes them
into a trace file [31]. Additionally, the VM collects information
about garbage collection roots and the references between
objects [33], [37]. To reduce the trace size, the VM does not
record any redundant data and applies compression [32].

B. Reconstruction in the AntTracks Analyzer

The AntTracks Analyzer incrementally processes the events
in a trace file, reconstructing the heap state, i.e., the set of
objects that were live in the monitored application, at every
garbage collection point [34]. For every heap object, various
properties can be reconstructed, including its memory address,
type, allocation site, allocating thread, GC roots, the heap
objects it references, and the heap objects it is referenced by.

The tool’s core mechanism is object classification and multi-
level grouping [35], [36]. A classifier groups heap objects
according to certain criteria such as type or allocation site.
Grouping the heap objects based on multiple classifiers results
in a hierarchical grouping tree. A common classifier combi-
nation is to group all heap objects by their types and then by

root

Object[] LinkedList

Stack:init() MyService:foo() X:meth()

1. Classify by type

2. Classify by
allocation site

… Tree node … Object

0 1 3

i

2 4

40 1 32

0 1 32 4

Fig. 1. A classification tree that first groups all heap objects by their types
and then by their allocation sites.

their allocation sites, as shown in Figure 1. Yellow rectangles
represent tree nodes and blue circles represent the objects that
were classified into the respective tree branch. For example,
the objects 0 to 3 are of type Object[], of which the objects
0, 1 and 3 have been allocated in Stack:init() and object
2 has been allocated in MyService:foo().

C. Common Techniques for Growth Visualization

As heap objects can be grouped by their properties, resulting
in a grouping tree, it is common to display such data in a tree
table, similar to the one shown in Table I.

TABLE I
A TREE TABLE VIEW REPRESENTING A HEAP STATE GROUPED BY TYPES

AND ALLOCATION SITES.

Objects
- Heap 100,000

- Type A 80,000
Allocated in foo() 70,000
Allocated in bar() 10,000

+ Type B 10,500
...

Some tools also provide features to visualize the differences
between two points in time. For this, they typically (1) take a
heap snapshot at two points in time, (2) group the heap objects
in both snapshots according to the same criteria, (3) calculate
the differences of the number of objects for every tree node,
and then (4) display these differences in a tree table. Even
though object groups that grew between two points in time
may hint at a memory problem, comparing two snapshots does
not reveal general trends in an application’s memory behavior.
To detect trends, the heap has to be compared at multiple
points in time, a feature that is not supported by most state-
of-the-art tools.

III. APPROACH

Our memory cities approach tackles the problem stated
at the end of Section II-C: It aims to provide an intuitive
and immersive visualization to inspect an application’s heap
evolution over time. This section discusses the approach in
general and presents its most important features and steps
(shown in Figure 2) that also serve as an outline for the rest
of the paper.

A. Overview

In general, a memory city displays a grouping tree, i.e.,
grouped sets of heap objects, as a 3D city visualization. Such a

AntTracks Analyzer

Memory
Trace

Monitored
Application

Memory Cities

b()a() c()

①
Window
selection

②
Group heap

states into trees

X

③
Meta trees

max growth

419 7

30

+3+8 -2

④
Layout based on

max tree

⑤
Center buildings at

given time

⑦
Color / Opacity
based on growth

⑥
render

3D
city

< >

⑧
Time

navigation

Play /
Pause

Inspect
references

Building
information

Interaction⑨
JSON /

WebSocket

a()

Fig. 2. Overview of our memory cities approach, corresponding to the typical visualization pipeline steps preprocessing, filtering, mapping, and rendering [29].

city consists of two types of structures: buildings and districts.
Buildings represent tree leaf nodes, where a building’s area
and height is determined by the number of objects / bytes
represented by the respective tree node. For example, if the
heap objects have been grouped by their types and allocation
sites, each building represents a set of heap objects of the
same type that have been allocated in the same method. These
buildings are then grouped into districts based on their parent
tree nodes, where districts can again be grouped into other
districts. An example of such a city can be seen in Figure 3.

To generate such a layout, a tree map algorithm [40], [41]
can be used. Figure 4 shows a tree map example, in which
the orange parent node (district) represents 40MB of Person
objects, with two yellow leaf nodes (buildings) representing
30MB allocated in method m2 and 10MB allocated in method
m1. As the set of classifiers that is used to group the heap
objects is user-defined in AntTracks, various memory cities
for different analysis purposes can be created. For example,
if the user is interested in the most frequent types of objects
allocated per thread, one could first group the heap objects
by their allocating threads (districts) followed by their types
(buildings). Memory cities can not only be inspected at a
single point in time, but the user can step back and forth in
time. This creates the feeling of an evolving city and enables
users to search for strongly growing buildings, i.e., heap object
groups that may be part of a memory leak. This task is further
supported by the use of color highlighting and opacity settings.

B. Steps

Figure 2 presents the steps that lead from a recorded
memory trace to the final memory city. The following list
shortly describes each of them; they are explained in more
detail throughout the rest of this work.
1 Once a memory trace file has been loaded by the

AntTracks Analyzer, the user sees the total heap memory
utilization over time in a time-series chart. In this chart, the
user can then select a suspicious time window, which may also
be automatically suggested by AntTracks [39].
2 Within the selected time window, the heap is grouped at

every garbage collection point according to a user-defined set
of heap object properties, resulting in a list of grouping trees.
3 Based on these grouping trees, various meta trees are

calculated. For example, a max tree stores the maximum
number of objects and bytes a tree node represents at any
point in time (in other words, the largest size a district or
building may reach), while a growth tree stores the growth of
each node between the first and the last grouping tree.
4 To reserve space for every building that will eventually

be displayed in the city, we use the object/byte counts stored
in the max tree as an input for the squarified tree map
algorithm [42] to generate the city’s general layout once. By
doing so, the generated layout ensures that every building
could fit into the city even if all of them reached their largest
size at the same point in time.
5 To display a memory city at a certain point in time, each

building’s base area is calculated at that point and the building
is then centered in the layout spot reserved for it.
6 Once every building has received its location, the build-

ing’s height is calculated and the corresponding cuboid is
placed in the 3D environment.
7 To ease the search for growing structures, we use the

growth information (stored in the growth tree) to highlight
certain buildings using color and opacity.
8 The user can step back and forth through time to visualize

the evolution of the city. When the user navigates between
points in time, steps 5 to 7 are executed for each new
point, and the visualization is updated. It is also possible to run
this animation automatically to watch the whole city evolution
without any user interaction needed.
9 Moving through time is not the only interaction possibility

in memory cities. Users can also gather more information
about a structure (i.e., a building or district) by hovering or
clicking it. Another feature is to show references between two
buildings. In the case of a memory leak, this feature helps
users to differentiate between buildings, i.e., object groups,
that cause other buildings to grow and those that grow because
their object’s are kept alive by others.

Fig. 3. An application’s heap visualized with memory cities shortly after
startup (left) and 2 minutes / 300 garbage collections later (right). Districts
are colored blue-ish based on their hierarchy level, buildings are colored from
gray to red based on their growth. The ten buildings with the strongest growth
are shown in solid mode, while the others have reduced opacity.

IV. DATA

This section discusses in more detail which data is needed
by software cities in general, how this need translates to
memory cities, and how we collect and process the needed
data using AntTracks.

A. General

In general, a software city is built upon tree data. In its most
basic form, each tree node contains a key for identification
and at least one value based on which the city is laid out.
Nevertheless, limiting each tree node to a single value also
massively limits the number of visual attributes a software
city can make use of. For example, a single value can be
represented by the size of a building, with no other attributes
such as color that could convey further information. If each
tree node contained three values, one of them could be used to
calculate a building’s base area, one could be used to calculate
the building’s height, and one could be used to determine the
building’s color, providing much more information for more
diverse inspections. Using more visual attributes can make the
visualization richer, yet complex mappings should be used for
complex tasks or expert systems only since the mappings may
become challenging to perceive [29]. Thus, when designing a
new software city for a certain task (such as memory cities
for the task of heap memory evolution analysis), the designers
first have to decide whether they want to develop an expert
system or a system that is also usable by novices.

B. Memory Cities

Since many expert memory monitoring tools already exist,
our focus is to make memory anomaly inspection easier
for novice users [43]. To achieve this, the goal of memory
cities is to provide enough details to enable the detection
of memory anomalies such as memory leaks, while keeping
the visualization simple enough to understand it without prior
training or explanations.

Once this decision is made, the next step is to define which
data is needed. In general, a memory city is based on a

Heap

Buffer
10MB

Person
40MB

X
20MB

m1()
10MB

m2()
30MB

m1()

10 MB

m2()

30 MB

Building
m2()

District
Person

Heap

Tree Tree Map

Fig. 4. We use tree mapping to lay out the buildings in memory cities.

tree in which each node represents a group of heap objects.
As already discussed in Section II, a grouping tree can be
constructed in AntTracks by applying a user-defined set of
classifiers on the heap to group its objects accordingly. There
are two ways to aggregate the heap objects in each node:
Either by counting the number of objects, or by counting the
number of bytes that the respective objects take up in the
heap. We decided that for every tree node both metrics should
be available for visualization in the memory city. Thus, our
memory city tool expects the following data in each tree node:

• A unique key to identify the object group
(e.g., “Heap#Person#m1”).

• A name to display (e.g., “m1()”).
• A role that specifies the object group’s grouping criteria

(e.g., “Allocation Site”).
• An object count value.
• A byte count value.
• A list of child nodes which is empty for leaf nodes.
Since the heap grows and shrinks over time while an

application is running (as new objects are allocated and others
are freed by the GC), a major goal is to visualize this memory
evolution. Especially, memory cities should help users to
detect object groups that grow suspiciously strong, as this
behavior hints at memory leaks. To this end, a memory city
may not only load a single tree, but also a list of trees
(representing heap states at garbage collection points), where
each tree has a timestamp to ensure correct ordering.

Once such a list of trees has been imported, the memory
city calculates two meta trees that are used to lay out the city
and to highlight buildings: The max tree stores the maximum
number of objects and bytes a tree node represents at any point
in time (in other words, the largest size a district or building
may reach), while a growth tree stores the growth of each node
between the first and the last grouping tree.

Our memory city visualization has explicitly been developed
to not depend on AntTracks’ grouping trees or any internals
of AntTracks. To achieve this, we provide two ways of how to
import data into our memory cities tool: Either by loading a
list of grouping trees in JSON format1 from disk, or by sending
a list of grouping trees in JSON format to the memory cities
tool via a WebSocket. Thus, any other memory monitoring
tool besides AntTracks could also use our memory cities tool

1JSON format example for list of grouping trees: http://ssw.jku.at/General/
Staff/Weninger/AntTracks/VISSOFT20/MemoryCities.json

to visualize heap states and heap evolution, as long as the
tool can provide a list of trees with the previously mentioned
information per tree node.

V. LAYOUT

In the software city metaphor, artifacts are visualized as
buildings that are arranged in districts, which can again be
contained in other districts. In this section, we present how
memory cities are laid out using the squarified tree map al-
gorithm [42] and how we apply static position animation [44]
to achieve a stable layout over multiple points in time.

A. Single Tree

In general, tree maps implicitly visualize a tree’s hierarchy
via containment, i.e., the tree is visualized as a rectangle that
contains other rectangles, which again can contain rectangles
and so on. Thus, each rectangle represents a tree node, and
the rectangle’s area is determined by one of the tree node’s
values. In case of memory cities, this value is either the node’s
object count or byte count. Instead of using the value directly
(i.e., an increase of objects/bytes by a factor of 2 results in a
building with a base area twice as big), a mapping function
such as sqrt can be applied on the values beforehand.

To generate a tree map, we use a recursive algorithm that
is given a tree node and a rectangle, which is then divided
to fit the tree node’s child nodes [40], [41]. The alignment
and rectangle ratio vary between different tree mapping algo-
rithms [45]. We use the squarified tree map algorithm by Bruls
et al. [42], which tries to shape the area of each tree node as
an approximate square. This creates more realistic cities than
using elongated shapes. The resulting layout is then used to
generate the 3D city visualization by displaying leaf nodes
as buildings and inner nodes as flat districts, which will be
explained in more detail in Section VI.

B. Evolution Over Time

The visualization of the heap’s evolution over time, i.e.,
visualizing multiple trees one after another to inspect their
growth, needs special handling, as it is not enough to perform
a simple tree map layout whenever switching from one tree to
another. One of the reasons for this is that if tree nodes were
added or removed between two points in time, the respective
rectangles in the tree map layout also have to be added or
removed. This may happen if all objects of a certain type
were collected by the GC, which leads to the disappearance
of the respective tree node. Such a change in the tree structure
would result in a change of the overall arrangement of districts
and/or buildings. An unstable layout may cause users to lose
track of a certain building. It becomes hard to figure out if
and which two buildings in different heap states represent the
same tree node, a core requirement for visualizations that want
to visually express a system’s growth.

We apply static position animation [44] to overcome the
problem of an unstable layout. This technique creates a general
city plan in which all buildings and districts remain at the same
position at every point in time. To create this general city plan,

we use the max tree presented in Section IV-B as an input to
the tree map algorithm. Every node in this meta tree stores
the maximum number of objects / bytes represented by the
respective node at any time. This layout is calculated once
when the memory city is initialized and contains a rectangle
for every district and every building that will eventually be
shown. More specifically, it reserves space for every district
and building based on its largest possible area. Then, to
visualize the heap at a certain point in time, buildings are
centered in the space that has been reserved for them.

C. Tree Pruning

During the layout phase, it is also possible to prune the tree
to reduce the complexity of the resulting memory city. For
example, the tree map algorithm could be restricted to only
take into account the N largest child nodes per parent, thus
only reserving space for those buildings that represent larger
groups of heap objects. When the city is shown for a certain
point in time and no reserved space is found for a given tree
node, this means that the object group is not relevant enough
for the visualization and no building is shown for that node.

This feature is particularly useful for very wide trees. For
example, grouping the live objects of a real-world application
by type (e.g., String, HashMap, etc.) may result in hun-
dreds or thousands of tree nodes, many of which may only
represent a few objects [37]. Since one of the main goals
of memory cities is to support the visualization of memory
leaks, i.e., object groups that accumulate a large number of
objects over time, small object groups are not of interest to
the user and can be dropped. By default, memory cities have
tree pruning enabled, using a user-defined number of child
nodes to be shown.

VI. METRICS AND VISUAL MAPPING

As discussed in the previous section, the area of a building
in a memory city depends either on the number of objects
or the number of bytes its tree node represents. Yet, memory
cities also use a number of other visual attributes to convey
information to the user. This section discusses these attributes.

A. Districts

Similar to other software cities, districts in memory cities
are flat structures, i.e., their height is fixed and does not encode
information. Their purpose is to visualize the hierarchy of
the underlying grouping tree. Thus, the bottom-most district
always represents the whole heap, which may be divided into
(multiple levels of) districts, one for each inner node in the
underlying grouping tree. We use a linear color gradient from
dark blue to light blue to encode a district’s level.

B. Buildings

As shown in Figure 5, in addition to the area metric (which
is either based on the object count or the byte count a building
represents) we further utilize the visual attributes height, color
and opacity for each building. Each of these attributes will be
discussed in the following.

Districts
(hierarchy):

Height
metric

Area
metric

Color
metric

Opacity
metric

&

Height metric
(fixed)

Color metric
(based on level)

Fig. 5. Various visual attributes are used to express metrics.

1) Height: One of our goals was to achieve building sizes
that represent more-or-less realistic measures of real-world
buildings. Thus, for a building with an area of A square units,
we use 2 ∗

√
A units as its height. This results in buildings

that, if visualized with a perfectly squarified foundation, have
a height twice the size of the building’s side length. Mapping
units to meters, for example, a building with an area of 100
square meters (squarified side length of 10 meters) would have
a height of 20 meters, while a building with an area of 400
square meters would have a height of 40 meters. Calculating
the height based on the area means that both visual attributes
represent the same metric, either object count or byte count.
Mixing these metrics, i.e., using one metric for the area and
the other one for the height, is still up to future research, since
doing so did not yield satisfying results so far. For example,
having a node that represents few very large arrays could
result in (a) extremely narrow buildings that are quite tall (if
the object count was used for the area and the byte count
was used for the height) or (b) extremely wide buildings that
are quite flat (if the byte count was used for the area and
the object count was used for the height). Such unrealistic
buildings would distort a realistic city feeling and would also
be hard to interact with in certain situations (e.g., narrow tall
buildings are hard to see and click). A possible solution in
future work could be to use categorical data for the height,
e.g., mapping the byte count to a few fixed heights such as
tiny, small, medium, large and huge.

2) Color: Memory cities try to support users in understand-
ing memory evolution (especially memory growth) over time.
To make this task easier, memory cities encode the hitherto
growth of a building as color. To this end, we utilize the linear
color gradient shown in Figure 6.

Fig. 6. The color gradient used for buildings, ranging from gray (shrinking
/ no growth) over orange (medium growth) to red (strong growth).

Fig. 7. Three different city representations. Left: Every building fully opaque.
Middle: Five strongest growing buildings fully opaque, rest 40% opaque.
Right: Five strongest growing buildings fully opaque, rest fully transparent.

The gradient maps a value in the range [0, 1] to its respective
color. Given a certain tree node with the identifier key, the
access functions first(key) and cur(key) to query the node’s
value (either objects or bytes) at the first point in time and
at the current point in time, respectively, and the function
max() that returns the largest growth of any building stored
in the growth tree. The color can then be calculated using
gradient((cur(key)− first(key))/max()). Negative values
are mapped to gray and represent buildings that shrank.

3) Opacity: To further increase the user’s focus on strongly
growing object groups, the opacity of less important buildings
can be decreased. The growth tree contains information about
the growth between the first and the last point in time, i.e., the
overall growth. Since object groups, i.e., buildings, that grew
the strongest over the selected time window are those which
are most likely involved in a potential memory leak, it seems
reasonable to highlight those buildings and damp the others.
Thus, memory cities allow the user to turn on the building
opacity mode and select a number of N buildings that should
stay opaque. As shown in Figure 7, the N buildings with
the strongest growth (queried from the growth tree) stay fully
opaque, while all other buildings are drawn at a user-defined
reduced level of opaqueness (by default 40%). It is worth
mentioning that the metric on which this visual attribute is
based, namely the overall growth over the whole time window,
differs from the metric used to define the building’s color,
namely the relative growth since the start of the time window
up to the current point in time. It is thus possible for a building
to appear red and transparent at some point in time, i.e., strong
growth up to that point but no strong overall growth, if the
building shrinks again afterwards. Consequently, at the last
point in time, those buildings that are shown opaque also have
the most intense red color.

VII. INTERACTION

Users can navigate the camera through a memory city, they
can step back and forth in time, they can click and hover
structures to inspect them in detail, and they can display the
number of references between buildings, i.e., heap objects. All
of these features are explained in more detail in the following.

A. Navigation

The camera can be tilted, rotated and zoomed using the
mouse wheel. By dragging the mouse or using the keyboard,

Fig. 8. The keyboard shortcut B positions the camera into a bird’s eye view.

the user can move the camera. Memory cities also provide
keyboard shortcuts for typical tasks. For example, pressing the
B key moves the camera into a bird’s eye view (see Figure 8),
which can be useful to inspect the district structure.

B. Evolution Visualization: Time Travel

To visualize the memory evolution over time, we apply
time traveling. Wettel and Lanza [19] define time traveling
in the context of software cities as stepping back and forth
through the history of a system while the city updates itself to
reflect the current state. In our case, the history of the system
is the sequence of grouping trees. The time stepping can be
performed manually using buttons or a slider as well as using
the arrow keys on the keyboard. Additionally, the evolution
can also be animated automatically. During this animation,
every heap state is shown for a user-defined period of time
(0.5 seconds by default) before automatically switching to the
next one. Users can pause and restart the animation at any
point in time.

C. Structure Information

Hovering over a building or district displays information
about its respective heap object group. This information in-
cludes the path from the tree root, e.g., Heap → Type: Per-
son → Allocation Site: foo(), the number of objects and the
number of bytes, as shown in Figure 9.

Besides showing a structure’s information on hover, users
can also click on a structure to highlight it, which is also
shown in Figure 9. The structure stays selected when moving
through time to make it easier to track its evolution.

D. Heap Object References

A novel feature of memory cities is the visualization of
heap object references in a 3D environment. This feature is
especially useful to reveal the root cause of a memory leak,
since objects may accumulate over time even if they are not
directly kept alive by a GC root, but rather indirectly by other
objects, which would be the actual root cause of the problem.
To fix such a leak, we want to find out the root cause by
inspecting the references between the heap objects.

For example, imagine a memory leak caused by a
LinkedList<Person> where persons are only added but

Fig. 9. Information about a structure is shown when hovering it (gray tool
tip) or when selecting it with a click (selected building is highlighted in blue).

never removed. Further imagine that every person has a first
name and a last name, each stored as a String field.
Every addition to this list will result in six heap objects
to be created: One LinkedList$Node that references the
Person which in turn references two String objects which
again reference a char[] each. 1 in Figure 10 shows
how such an application’s memory city could look like if
we group all heap objects by package (districts) and type
(buildings). Since the application allocates more String
and char[] objects than Person and LinkedList$Node
objects, these two buildings are colored more intensively, even
though they are only a symptom of the memory leak and not
the root cause. To find the real root cause of the memory
leak, we can inspect the references between the buildings. 2
indicates that nearly all char[] instances are referenced by
String objects (indicated by a thick purple frustum between
the buildings). 3 shows the state of the memory city after
selecting the String building. We can see that a lot of
different types reference strings, but the most references come
from Person, which is selected in 4 . All persons are
referenced by LinkedList$Node objects. 5 contains a
very thin purple frustum which tells us that one of the nodes
(i.e., the list head) is kept alive by the LinkedList.

To create the reference visualization, we utilize two maps,
i.e., a points-to map and a pointed-from map, as shown in
Table II. These maps (that, similarly to the grouping trees, can
be imported as JSON files or via WebSockets) contain an entry
for every building. For each building, they store how many
objects the respective building references in other buildings,
or by how many objects of other buildings it is referenced
by, respectively. Based on these numbers and the building size
itself, the frustums between the buildings can be sized, i.e., the
more are objects involved, the bigger the visualized frustum.
Since we know for every reference between two buildings how
many objects are referencing and how many are referenced,

Fig. 10. Heap object reference analysis. The currently selected building in each step is highlighted in blue. Incoming references, i.e., references that keep
objects alive in the selected building are colored purple. Outgoing references, i.e., references to objects that are kept alive by objects in the selected building
are colored green. The more references there are between the objects of two buildings, the bigger the respective frustum.

TABLE II
A POINTED-FROM MAP AND A POINTS-TO MAP ARE USED AS DATA

SOURCE TO CREATE THE REFERENCES BETWEEN BUILDINGS

Pointed-From Map
String Person 10,000

Buffer 300
...

Person LinkedList$Node 10,000
...

Points-To Map
LinkedList LinkedList$Node 1
LinkedList$Node Person 10,000
Person String 20,000
String char[] 20,000
...

we can even scale the start and the end radius of the frustum
differently. For example, if 1% of the objects in building A
reference 80% of objects in building B, the radius of the
frustum attached to A will be much smaller than the radius at
B, indicating a few-to-many reference. This information can
especially be useful to detect (few) arrays that reference a lot
of other objects. Vice versa, this technique can also indicate a
many-to-few reference behavior, i.e., many objects share few
other objects. Currently, a reference between two buildings is
shown as a straight color-textured frustum, which might cut
through other buildings in its way. Future research includes
the evaluation of different reference placement techniques, for
example pipe routing [46] or hierarchical edge bundling [47].

VIII. CASE STUDIES

To explain how memory cities can be used and to argue
their usefulness and applicability, we present two case studies
in which we use them to investigate memory leaks. To this end,
we searched for real-world applications that contain memory
leaks. In the following, we present the analysis of a memory
leak in the Commons HttpClient library, as well as the analysis
of a memory leak in the Dynatrace easyTravel application.

A. Commons HttpClient

Finding applications or libraries that contain memory leaks
requires lots of effort, since their source code and the needed
build tools have to be publicly available. To find the memory

leaking library discussed in this section, we browsed Apache’s
issue tracker2 for the keyword leak. This way, we found an old
issue regarding a memory leak in the Commons HttpClient
library, a library that can be used to send HTTP requests.
As we did not know the library beforehand, it seemed like a
good example to check if memory cities are helpful to detect
proliferating objects even in an unknown application. We
downloaded the affected version 3.0.13 and built a small driver
application4 which creates HTTP connections in multiple
batches. In each batch, 10, 000 connections are created and
deleted shortly thereafter. One would expect to see spikes in
the memory usage, as it should go up when connections are
created and should go down after their deletion.

Contrary to this assumption, AntTracks reported a contin-
uous memory growth in the application. Thus, we decided
to inspect the heap evolution using memory cities. To do
so, we selected the type and allocation site classifiers to be
used at multiple GC points to generate grouping trees, which
were then imported into the memory cities tool. The left half
of Figure 11 shows the evolution of the resulting city over
time. As we can clearly see in the third picture, six buildings
grew strongly. Inspecting their type names and allocation sites,
i.e., the methods in which the object have been allocated,
already revealed interesting insights. In addition to that, the
right-hand side of Figure 11 shows the reference patterns we
observed. This made it clear that the leak has to do with
HostConnectionPool objects that are kept alive (purple
frustum) by HashMap$Node (i.e., the nodes of a HashMap).

Knowing this reference pattern and the name of the method
in which the accumulating HostConnectionPool objects
are allocated provides us enough information to investigate the
problem on the source code level. In the allocating method,
we find that the HostConnectionPool objects are added
to a map upon the creation of a new HTTP creation. However,
they are not removed from that map when the connection is
deleted, resulting in a memory leak.

2Apache’s issue tracker for HttpClient: https://issues.apache.org/jira/
projects/HTTPCLIENT/issues

3Commons HttpClient in version 3.0.1: https://mvnrepository.com/artifact/
commons-httpclient/commons-httpclient/3.0.1

4Driver application: https://github.com/NeonMika/httpclient-leak-driver

Fig. 11. In the Commons HttpClient application, HostConnectionPools (that reference HostConfigurations and LinkedLists) are kept alive
because they are added to a HashMap but never removed.

Fig. 12. In easyTravel, Location objects accumulate over time, together with many Date objects and a few String objects that they reference.

B. easyTravel
The second investigated application is Dynatrace easy-

Travel. Dynatrace focuses on application performance mon-
itoring (APM) and distributes easyTravel as their state-of-the-
art demo application. It is a multi-tier travel agency appli-
cation, using a Java backend. A built-in load generator can
simulate accesses to the service. When easyTravel is started,
different problem patterns can be enabled and disabled, one
of which is a hidden memory leak somewhere in the backend.

To inspect the heap evolution over time, we grouped all
heap objects by type and closest domain call site, i.e., the
method within easyTravel that led to the allocation even if the
allocation itself was hidden inside a third-party framework.
Figure 12 depicts the resulting memory city as it evolves over
time. The two buildings that are clearly visible as strongest
contributors to the heap growth represent Location and
Date objects, each allocated by a certain method. To inspect
if this parallel growth is coincidental or caused by either of the
two, we inspected their references, as shown on the right-hand
side of Figure 12. This makes it clear that the Locations
reference the Date objects, as well as some Strings.

Using this information, we inspected the problem on the
source code level. We found that the method in which all
Location object are allocated is only called by the method
findLocations in class JourneyService. There, we
found a map that should have served as a cache for location
searches. Once a search has been executed, a QueryKey
instance is created and stored in the map, together with a
list of the Location objects (the backbone of these lists
can also be seen connected to the Location building via a
purple frustum in the last picture of Figure 12). Subsequent
searches for the same key should have found the respective
entry in the map. However, QueryKey neither implements

hashCode nor equals. Thus, every request (even for an
already existing key) resulted in a cache miss, which led to
this typical memory leak.

IX. RELATED WORK

In this section, we discuss the use of visualization metaphors
in general, as well as the application of the software city
metaphor in various domains.

A. Using Visualization Metaphors

The use of metaphors in information visualization is wide-
spread and has a long history. In general, metaphors such as
more is bigger (e.g., bigger visual artifacts represent more
of the underlying objects) or similarity is closeness (e.g.,
similar objects are positioned more closely to each other)
often unconsciously shape the way we think and act [48].
In the following, we present a few examples of visualiza-
tion that explicitly state the use of metaphors. For example,
Waguespack [49] used geometrical figures as a metaphor for
coding constructs to teach programming concepts. Boyle and
Gray [50] used 3D structures to visualize database query
results, using attributes such as size and position to convey in-
formation. More immersive and advanced usages of metaphors
include colored virtual reality tunnels for program analysis
and comprehension of concurrent programs [51], [52], or
interactive map-like interfaces to visualize academic research
fields and their similarity to each other [53].

B. Software Cities and Related Metaphors

As explained in Section I, Knight and Munro [15], [16]
promoted the use of metaphors for software visualizations,
especially their metaphor of a software world. As an alternative
to software worlds, 3D city visualizations emerged. While

early 3D city visualization contained a lot of details and so-
phisticated layouts [54], most modern software cities are based
on tree maps that have been extended to three dimensions [55].
New stable tree map algorithms [56], [57] may improve the
process of laying out software cities in the future.

Software cities and similar metaphors have been applied
in a variety of domains [29], [58]. For example, Langelier
et al. [44], [59] as well as Bohnet and Döllner [60] used
software cities to visualize quality metrics of software systems.
Wettel and Lanza [8], [17]–[21] used software cities to visually
explore the evolution of large-scale software system over
time. Steinbrückner and Lewerentz [61], [62] adopted and
extended this idea by visualizing the development history of
software systems using elevated city maps. Software cities
have been applied in the domains of concurrency visualiza-
tion [22], software component communication and dependency
visualization [11], [23]–[26], software performance visualiza-
tion [63], [64], business process visualization [65], and test
case analysis [66], [67]. Software cities have also been used
in virtual reality [13], [14], [64], [68] and have been integrated
into computer games such as Minecraft [69]. To the best of
our knowledge, we are the first to employ the software city
visualization metaphor in the domain of memory monitoring.

X. CURRENT LIMITATIONS AND FUTURE WORK

In this section, we discuss current limitations of our work
and how we will address them in the future.

A. User Study

We believe that memory cities are a useful metaphor to
inspect memory growth, especially for novice users that could
otherwise be easily overwhelmed if the visualized data was
presented in raw format or tables. We presented case studies to
demonstrate the usefulness of memory cities and to showcase
how they can be used to inspect real-world applications.
Nevertheless, a more thorough evaluation is still missing. We
thus plan to conduct a user study in the future to compare the
performance of participants who use memory cities with the
performance of those who use other tools.

B. Expert Mode

Currently, a primary focus of memory cities is to make
the task of memory leak analysis more novice-friendly. For
this, we rely on a small set of visual attributes, namely area,
height, position, color, and opacity. In their taxonomy of
software maps (the term software city is not uniquely defined
in the software cartography domain), Limberger et al. [29]
presented a large set of visual attributes that can be used
to map data to the software city metaphor. However, they
also mention that a complex mapping [...] should be used for
complex tasks or expert systems only. Thus, we plan to further
expand the feature set of memory cities in the future, including
the use of more complex visual mappings such as a more
advanced growth visualization using different object shapes
and juxtaposition. These “expert mode features” should not be
enabled by default but could be switched on by experienced

memory analysts. Memory cites can also be expanded to
support other typical memory analysis tasks such as memory
churn analysis [70], [71] or memory bloat analysis [72]–[76].

XI. CONCLUSION

In this paper, we presented our memory cities approach
to visualize memory monitoring data using the software city
metaphor. We discussed how a heap state, more specifically
its heap objects, can be grouped into a tree, and how such a
tree can be visualized as districts and buildings. Our approach
is not only able to display a single heap state, but can also
visualize the memory evolution over time by using static
animation positioning and time traveling. Our approach can
animate the memory evolution of an application as a city
that evolves over time, where growing buildings hint at a
proliferation of objects that could be the result of a possible
memory leak. Such growing buildings are further highlighted
using color and opacity.

We implemented our approach as a standalone 3D visualiza-
tion tool using Unity and presented case studies on different
applications to show its feasibility and usefulness. Memory
cities have especially been designed with a focus on easy ac-
cessibility even for novice users. We hope that they can assist
experienced users as well as users with a limited background
in memory analysis to visually inspect their applications for
memory anomalies and problems. We also think that memory
cities and their immersive visualizations could even be used
for other tasks besides typical memory analysis. For example,
they could be used in software engineering education to teach
students about the risks of careless use of memory in a less
theoretical but more tangible way.

XII. ACKNOWLEDGEMENT

The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for
Research, Technology and Development, and Dynatrace is
gratefully acknowledged.

REFERENCES

[1] M. Weninger, L. Makor, and H. Mössenböck, “Memory Cities:
Visualizing Heap Memory Evolution Using the Software City Metaphor
- Artifact (Binaries, Data Sets, Video, Instructions),” 2020. [Online].
Available: http://doi.org/10.5281/zenodo.3991785

[2] G. H. Xu and A. Rountev, “Precise Memory Leak Detection for
Java Software Using Container Profiling,” ACM Trans. Softw. Eng.
Methodol., vol. 22, no. 3, pp. 17:1–17:28, 2013. [Online]. Available:
http://doi.org/10.1145/2491509.2491511

[3] M. Weninger, E. Gander, and H. Mössenböck, “Analyzing
the Evolution of Data Structures Over Time in Trace-
Based Offline Memory Monitoring,” in Proc. of the 9th
Symp. on Software Performance (SSP), 2018, pp. 64–
66. [Online]. Available: http://pi.informatik.uni-siegen.de/stt/39 3/01
Fachgruppenberichte/SSP18/WeningerGanderMoessenboeck18.pdf

[4] ——, “Analyzing Data Structure Growth Over Time to Facilitate
Memory Leak Detection,” in Proc. of the 2019 ACM/SPEC Int’l. Conf.
on Performance Engineering (ICPE), 2019, pp. 273–284. [Online].
Available: http://doi.org/10.1145/3297663.3310297

[5] Oracle. (2020) VisualVM. [Online]. Available: http://visualvm.github.io/
[6] Eclipse Foundation. (2020) Eclipse Memory Analyzer (MAT). [Online].

Available: http://unity.com/

[7] B. Cornelissen, A. Zaidman, A. van Deursen, and B. V. Rompaey,
“Trace Visualization for Program Comprehension: A Controlled
Experiment,” in Proc. of the 17th IEEE Int’l. Conf. on Program
Comprehension (ICPC), 2009, pp. 100–109. [Online]. Available:
http://doi.org/10.1109/ICPC.2009.5090033

[8] R. Wettel, M. Lanza, and R. Robbes, “Software Systems as Cities:
A Controlled Experiment,” in Proc. of the 33rd Int’l. Conf. on
Software Engineering (ICSE), 2011, pp. 551–560. [Online]. Available:
http://doi.org/10.1145/1985793.1985868

[9] F. Fittkau, S. Finke, W. Hasselbring, and J. Waller, “Comparing
Trace Visualizations for Program Comprehension Through Controlled
Experiments,” in Proc. of the 23rd IEEE Int’l. Conf. on Program
Comprehension (ICPC), 2015, pp. 266–276. [Online]. Available:
http://doi.org/10.1109/ICPC.2015.37

[10] F. Fittkau, A. Krause, and W. Hasselbring, “Hierarchical Software
Landscape Visualization for System Comprehension: A Controlled
Experiment,” in Proc. of the 3rd IEEE Working Conf. on Software
Visualization (VISSOFT), 2015, pp. 36–45. [Online]. Available:
http://doi.org/10.1109/VISSOFT.2015.7332413

[11] ——, “Software Landscape and Application Visualization for System
Comprehension with ExplorViz,” Inf. Softw. Technol., vol. 87, pp.
259–277, 2017. [Online]. Available: http://doi.org/10.1016/j.infsof.2016.
07.004

[12] A. F. Blanco, J. P. S. Alcocer, and A. Bergel, “Effective Visualization
of Object Allocation Sites,” in Proc. of the IEEE Working Conference
on Software Visualization (VISSOFT), 2018, pp. 43–53. [Online].
Available: http://doi.org/10.1109/VISSOFT.2018.00013

[13] S. Romano, N. Capece, U. Erra, G. Scanniello, and M. Lanza, “On
The Use of Virtual Reality in Software Visualization: The Case of
the City Metaphor,” Inf. Softw. Technol., vol. 114, pp. 92–106, 2019.
[Online]. Available: http://doi.org/10.1016/j.infsof.2019.06.007

[14] ——, “The City Metaphor in Software Visualization: Feelings,
Emotions, and Thinking,” Multim. Tools Appl., vol. 78, no. 23,
pp. 33 113–33 149, 2019. [Online]. Available: http://doi.org/10.1007/
s11042-019-07748-1

[15] C. Knight and M. Munro, “Virtual but Visible Software,” in Proc. of
the Int’l. Conf. on Information Visualisation, (IV), 2000, pp. 198–205.
[Online]. Available: http://doi.org/10.1109/IV.2000.859756

[16] ——, “Comprehension with[in] Virtual Environment Visualisations,” in
Proc. of the 7th Int’l. Workshop on Program Comprehension (IWPC),
1999, pp. 4–11. [Online]. Available: http://doi.org/10.1109/WPC.1999.
777733

[17] R. Wettel and M. Lanza, “Visualizing Software Systems as Cities,”
in Proc. of the 4th IEEE Int’l. Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT), 2007, pp. 92–99. [Online].
Available: http://doi.org/10.1109/VISSOF.2007.4290706

[18] ——, “Program Comprehension Through Software Habitability,” in
Proc. of the 15th Int’l. Conf. on Program Comprehension (ICPC), 2007,
pp. 231–240. [Online]. Available: http://doi.org/10.1109/ICPC.2007.30

[19] ——, “Visual Exploration of Large-Scale System Evolution,” in Proc.
of the 15th Working Conf. on Reverse Engineering (WCRE), 2008, pp.
219–228. [Online]. Available: http://doi.org/10.1109/WCRE.2008.55

[20] ——, “CodeCity: 3D Visualization of Large-Scale Software,” in Comp.
Proc. of the 30th Int’l. Conf. on Software Engineering (ICSE Comp.),
2008, pp. 921–922. [Online]. Available: http://doi.org/10.1145/1370175.
1370188

[21] R. Wettel, “Visual exploration of large-scale evolving software,”
in Comp. of the 31st Int’l. Conf. on Software Engineering (ICSE
Comp.), 2009, pp. 391–394. [Online]. Available: http://doi.org/10.1109/
ICSE-COMPANION.2009.5071029

[22] J. Waller, C. Wulf, F. Fittkau, P. Dohring, and W. Hasselbring,
“Synchrovis: 3D Visualization of Monitoring Traces in the City
Metaphor for Analyzing Concurrency,” in Proc. of the 1st IEEE
Working Conf. on Software Visualization (VISSOFT), 2013, pp. 1–4.
[Online]. Available: http://doi.org/10.1109/VISSOFT.2013.6650520

[23] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring, “Live Trace
Visualization for Comprehending Large Software Landscapes: The
ExplorViz Approach,” in Proc. of the 1st IEEE Working Conf. on
Software Visualization (VISSOFT), 2013, pp. 1–4. [Online]. Available:
http://doi.org/10.1109/VISSOFT.2013.6650536

[24] F. Fittkau, A. van Hoorn, and W. Hasselbring, “Towards a Dependability
Control Center for Large Software Landscapes,” in Proc. of the 10th
European Dependable Computing Conf., 2014, pp. 58–61. [Online].
Available: http://doi.org/10.1109/EDCC.2014.12

[25] F. Fittkau, P. Stelzer, and W. Hasselbring, “Live Visualization of Large
Software Landscapes for Ensuring Architecture Conformance,” in Proc.
of the European Conf. on Software Architecture (ECSA), 2014, pp.
28:1–28:4. [Online]. Available: http://doi.org/10.1145/2642803.2642831

[26] F. Fittkau, S. Roth, and W. Hasselbring, “ExplorViz: Visual Runtime
Behavior Analysis of Enterprise Application Landscapes,” in Proc. of
the European Conf. on Information Systems (ECIS), 2015. [Online].
Available: http://aisel.aisnet.org/ecis2015 cr/46

[27] M. Weninger, L. Makor, and H. Mössenböck, “Memory Leak
Visualization using Evolving Software Cities,” in Proc. of the
10th Symp. on Software Performance (SSP), 2019, pp. 44–
46. [Online]. Available: http://pi.informatik.uni-siegen.de/stt/39 4/01
Fachgruppenberichte/SSP2019/SSP2019 Weninger.pdf

[28] S. dos Santos and K. Brodlie, “Gaining Understanding of Multivariate
and Multidimensional Data Through Visualization,” Computers &
Graphics, vol. 28, no. 3, pp. 311 – 325, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0097849304000251

[29] D. Limberger, W. Scheibel, J. Döllner, and M. Trapp, “Advanced
Visual Metaphors and Techniques for Software Maps,” in Proc.
of the 12th Int’l. Symp. on Visual Information Communication
and Interaction (VINCI), 2019, pp. 11:1–11:8. [Online]. Available:
http://doi.org/10.1145/3356422.3356444

[30] M. Weninger et al. (2020) AntTracks. [Online]. Available: http:
//mevss.jku.at/AntTracks

[31] P. Lengauer, V. Bitto, and H. Mössenböck, “Accurate and Efficient
Object Tracing for Java Applications,” in Proc. of the 6th ACM/SPEC
Int’l. Conf. on Performance Engineering (ICPE), 2015, pp. 51–62.
[Online]. Available: http://doi.org/10.1145/2668930.2688037

[32] ——, “Efficient and Viable Handling of Large Object Traces,”
in Proc. of the 7th ACM/SPEC Int’l. Conf. on Performance
Engineering (ICPE), 2016, pp. 249–260. [Online]. Available: http:
//doi.org/10.1145/2851553.2851555

[33] P. Lengauer, V. Bitto, S. Fitzek, M. Weninger, and H. Mössenböck,
“Efficient Memory Traces with Full Pointer Information,” in Proc. of
the 13th Int’l. Conf. on Principles and Practices of Programming on
the Java Platform: Virtual Machines, Languages, and Tools (PPPJ),
2016, pp. 4:1–4:11. [Online]. Available: http://doi.org/10.1145/2972206.
2972220

[34] V. Bitto, P. Lengauer, and H. Mössenböck, “Efficient Rebuilding
of Large Java Heaps from Event Traces,” in Proc. of the
Int’l. Conf. on Principles and Practices of Programming on
The Java Platform (PPPJ), 2015, pp. 76–89. [Online]. Available:
http://doi.org/10.1145/2807426.2807433

[35] M. Weninger, P. Lengauer, and H. Mössenböck, “User-centered Offline
Analysis of Memory Monitoring Data,” in Proc. of the 8th ACM/SPEC
on Int’l. Conf. on Performance Engineering (ICPE), 2017, pp. 357–360.
[Online]. Available: http://doi.org/10.1145/3030207.3030236

[36] M. Weninger and H. Mössenböck, “User-defined Classification
and Multi-level Grouping of Objects in Memory Monitoring,”
in Proc. of the 2018 ACM/SPEC Int’l. Conf. on Performance
Engineering (ICPE), 2018, pp. 115–126. [Online]. Available: http:
//doi.org/10.1145/3184407.3184412

[37] M. Weninger, E. Gander, and H. Mössenböck, “Utilizing Object
Reference Graphs and Garbage Collection Roots to Detect Memory
Leaks in Offline Memory Monitoring,” in Proc. of the 15th Int’l. Conf.
on Managed Languages & Runtimes (ManLang), 2018, pp. 14:1–14:13.
[Online]. Available: http://doi.org/10.1145/3237009.3237023

[38] M. Weninger, L. Makor, E. Gander, and H. Mössenböck, “AntTracks
TrendViz: Configurable Heap Memory Visualization Over Time,”
in Comp. of the 2019 ACM/SPEC Int’l. Conf. on Performance
Engineering (ICPE), 2019, pp. 29–32. [Online]. Available: http:
//doi.org/10.1145/3302541.3313100

[39] M. Weninger, E. Gander, and H. Mössenböck, “Detection of Suspicious
Time Windows In Memory Monitoring,” in Proc. of the 16th
ACM SIGPLAN Int’l. Conf. on Managed Programming Languages
and Runtimes (MPLR), 2019, pp. 95–104. [Online]. Available:
http://doi.org/10.1145/3357390.3361025

[40] B. Johnson and B. Shneiderman, “Tree-Maps: A Space-Filling
Approach to the Visualization of Hierarchical Information Structures,”
in Proc. of the IEEE Conf. on Visualization, 1991, pp. 284–291.
[Online]. Available: http://doi.org/10.1109/VISUAL.1991.175815

[41] B. Shneiderman, “Tree Visualization with Tree-Maps: 2-D Space-Filling
Approach,” ACM Trans. Graph., vol. 11, no. 1, pp. 92–99, 1992.
[Online]. Available: http://doi.org/10.1145/102377.115768

[42] M. Bruls, K. Huizing, and J. J. van Wijk, “Squarified Treemaps,”
in Proc. of the Joint Eurographics and IEEE TCVG Symp.
on Visualization (VisSym), 2000, pp. 33–42. [Online]. Available:
http://doi.org/10.1007/978-3-7091-6783-0 4

[43] M. Weninger, P. Grünbacher, E. Gander, and A. Schörgenhumer,
“Evaluating an Interactive Memory Analysis Tool: Findings from
a Cognitive Walkthrough and a User Study,” Proc. ACM Hum.-
Comput. Interact., vol. 4, no. EICS, Jun. 2020. [Online]. Available:
http://doi.org/10.1145/3394977

[44] G. Langelier, H. A. Sahraoui, and P. Poulin, “Exploring the
Evolution of Software Quality with Animated Visualization,” in
Proc. of the IEEE Symp. on Visual Languages and Human-
Centric Computing (VL/HCC), 2008, pp. 13–20. [Online]. Available:
http://doi.org/10.1109/VLHCC.2008.4639052

[45] W. Scheibel, M. Trapp, D. Limberger, and J. Döllner, “A Taxonomy
of Treemap Visualization Techniques,” in Proc. of the 15th Int’l.
Joint Conf. on Computer Vision, Imaging and Computer Graphics
Theory and Applications (VISIGRAPP), 2020, pp. 273–280. [Online].
Available: http://doi.org/10.5220/0009153902730280

[46] G. Belov, W. Du, M. G. de la Banda, D. Harabor, S. Koenig, and
X. Wei, “From Multi-Agent Pathfinding to 3D Pipe Routing,” in Proc.
of the Int’l. Symp. on Combinatorial Search (SOCS), 2020, pp. 11–19.
[Online]. Available: http://aaai.org/ocs/index.php/SOCS/SOCS20/paper/
view/18513

[47] P. Caserta, O. Zendra, and D. Bodenes, “3D Hierarchical Edge
bundles to Visualize Relations in a Software City Metaphor,” in
Proc. of the 6th IEEE Int’l. Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT), 2011, pp. 1–8. [Online].
Available: http://doi.org/10.1109/VISSOF.2011.6069451

[48] G. Lakoff, Master Metaphor List. University of California, 1994.
[49] L. J. W. Jr., “Visual Metaphors for Teaching Programming Concepts,”

in Proc. of the SIGCSE Techn. Symp. on Comp. Sci. Ed., 1989, pp.
141–145. [Online]. Available: http://doi.org/10.1145/65293.71203

[50] J. Boyle and P. M. D. Gray, “The Design of 3D Metaphors for
Database Visualisation,” in Proc. of the 3rd IFIP 2.6 Working Conf.
on Visual Database Systems, vol. 34, 1995, pp. 185–202. [Online].
Available: http://doi.org/10.1007/978-0-387-34905-3 12

[51] B. Reitinger, D. Kranzlmüller, and J. Volkert, “The MOST Immersive
Approach for Parallel and Distributed Program Analysis,” in Proc.
of the Int’l. Conf. on Information Visualisation (IV). IEEE
Computer Society, 2001, pp. 517–522. [Online]. Available: http:
//doi.org/10.1109/IV.2001.942105

[52] B. Reitinger, D. Kranzlmüller, and A. Ferko, “Program Visualization
Through Visual Metaphors,” in Proc. of the Int’l. Conf. in Central
Europe on Computer Graphics, Visualization and Computer Vision,
2003. [Online]. Available: http://wscg.zcu.cz/wscg2003/Papers 2003/
J79.pdf

[53] A. Hiniker, S. R. Hong, Y. Kim, N. Chen, J. D. West, and C. R.
Aragon, “Toward the Operationalization of Visual Metaphor,” J. Assoc.
Inf. Sci. Technol., vol. 68, no. 10, pp. 2338–2349, 2017. [Online].
Available: http://doi.org/10.1002/asi.23857

[54] T. Panas, R. Berrigan, and J. C. Grundy, “A 3D Metaphor for Software
Production Visualization,” in Proc. of the Seventh Int’l. Conf. on
Information Visualization (IV), 2003, pp. 314–319. [Online]. Available:
http://doi.org/10.1109/IV.2003.1217996

[55] T. Bladh, D. A. Carr, and J. Scholl, “Extending Tree-Maps to Three
Dimensions: A Comparative Study,” in Proc. of the 6th Asia Pacific
Conf. on Computer Human Interaction (APCHI), 2004, pp. 50–59.
[Online]. Available: http://doi.org/10.1007/978-3-540-27795-8 6

[56] W. Scheibel, C. Weyand, and J. Döllner, “EvoCells - A Treemap
Layout Algorithm for Evolving Tree Data,” in Proc. of the 13th Int’l.
Joint Conf. on Computer Vision, Imaging and Computer Graphics
Theory and Applications (VISIGRAPP), 2018, pp. 273–280. [Online].
Available: http://doi.org/10.5220/0006617102730280

[57] M. Sondag, B. Speckmann, and K. Verbeek, “Stable Treemaps via Local
Moves,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 1, pp. 729–738,
2018. [Online]. Available: http://doi.org/10.1109/TVCG.2017.2745140

[58] P. Caserta and O. Zendra, “Visualization of the Static Aspects of
Software: A Survey,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 7,
pp. 913–933, 2011. [Online]. Available: http://doi.org/10.1109/TVCG.
2010.110

[59] G. Langelier, H. A. Sahraoui, and P. Poulin, “Visualization-
based Analysis of Quality for Large-scale Software Systems,”
in Proc. of the 20th IEEE/ACM Int’l. Conf. on Automated

Software Engineering (ASE), 2005, pp. 214–223. [Online]. Available:
http://doi.org/10.1145/1101908.1101941

[60] J. Bohnet and J. Döllner, “Monitoring Code Quality and Development
Activity by Software Maps,” in Proc. of the 2nd Workshop on
Managing Technical Debt (MTD), 2011, pp. 9–16. [Online]. Available:
http://doi.org/10.1145/1985362.1985365

[61] F. Steinbrückner and C. Lewerentz, “Representing Development
History in Software Cities,” in Proc. of the ACM Symp. on Software
Visualization (SOFTVIS), 2010, pp. 193–202. [Online]. Available:
http://doi.org/10.1145/1879211.1879239

[62] ——, “Understanding software evolution with software cities,”
Information Visualization, vol. 12, no. 2, pp. 200–216, 2013. [Online].
Available: http://doi.org/10.1177/1473871612438785

[63] K. Ogami, R. G. Kula, H. Hata, T. Ishio, and K. Matsumoto,
“Using High-Rising Cities to Visualize Performance in Real-
Time,” in Proc. of the IEEE Working Conference on Software
Visualization (VISSOFT), 2017, pp. 33–42. [Online]. Available:
http://doi.org/10.1109/VISSOFT.2017.25

[64] L. Merino, M. Hess, A. Bergel, O. Nierstrasz, and D. Weiskopf,
“PerfVis: Pervasive Visualization in Immersive Augmented Reality for
Performance Awareness,” in Comp. of the ACM/SPEC International
Conference on Performance Engineering (ICPE), 2019, pp. 13–16.
[Online]. Available: http://doi.org/10.1145/3302541.3313104

[65] S. Saito, “ProcessCity - Visualizing Business Processes as City
Metaphor,” in Proc. of the CAiSE Forum on Information Systems
Engineering in Responsible Information Systems, 2019, pp. 207–214.
[Online]. Available: http://doi.org/10.1007/978-3-030-21297-1 18

[66] A. Sosnówka, “Test City Metaphor as Support for Visual Testcase
Analysis Within Integration Test Domain,” in Proc. of the Federated
Conf. on Computer Science and Information Systems, 2013, pp. 1353–
1358. [Online]. Available: http://ieeexplore.ieee.org/document/6644194/

[67] ——, “Test City Metaphor for Low Level Tests Restructuration in Test
Database,” in Proc. of the 8th Int’l. Conf. on Evaluation of Novel
Approaches to Software Engineering (ENASE), 2013, pp. 141–150.
[Online]. Available: http://doi.org/10.1007/978-3-642-54092-9 10

[68] F. Fittkau, A. Krause, and W. Hasselbring, “Exploring Software Cities
in Virtual Reality,” in Proc. of the 3rd IEEE Working Conf. on Software
Visualization (VISSOFT), 2015, pp. 130–134. [Online]. Available:
http://doi.org/10.1109/VISSOFT.2015.7332423

[69] G. Balogh and Á. Beszédes, “CodeMetrpolis - A Minecraft based
Collaboration Tool for Developers,” in Proc. of the IEEE Working
Conf. on Software Visualization (VISSOFT), 2013, pp. 1–4. [Online].
Available: http://doi.org/10.1109/VISSOFT.2013.6650528

[70] C. U. Smith and L. G. Williams, “Software Performance Antipatterns,”
in Proc. of the Int’l. Workshop on Software and Performance (WOSP),
2000, pp. 127–136. [Online]. Available: http://doi.org/10.1145/350391.
350420

[71] M. Peiris and J. H. Hill, “Automatically Detecting ”Excessive
Dynamic Memory Allocations” Software Performance Anti-Pattern,”
in Proc. of the 7th ACM/SPEC Int’l. Conf. on Performance
Engineering (ICPE). ACM, 2016, pp. 237–248. [Online]. Available:
http://doi.org/10.1145/2851553.2851563

[72] N. Mitchell and G. Sevitsky, “The Causes of Bloat, the Limits of
Health,” in Proc. of the 22nd Annual ACM SIGPLAN Conf. on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2007, pp. 245–260. [Online]. Available: http://doi.org/10.
1145/1297027.1297046

[73] G. H. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky,
“Software Bloat Analysis: Finding, Removing, and Preventing
Performance Problems in Modern Large-scale Object-oriented
Applications,” in Proc. of the Workshop on Future of Software
Engineering Research (FoSER), 2010, pp. 421–426. [Online]. Available:
http://doi.org/10.1145/1882362.1882448

[74] G. H. Xu and A. Rountev, “Detecting Inefficiently-used Containers to
Avoid Bloat,” in Proc. of the ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), 2010, pp. 160–173.
[Online]. Available: http://doi.org/10.1145/1806596.1806616

[75] N. Mitchell, E. Schonberg, and G. Sevitsky, “Four Trends Leading to
Java Runtime Bloat,” IEEE Software, vol. 27, no. 1, pp. 56–63, 2010.
[Online]. Available: http://doi.org/10.1109/MS.2010.7

[76] G. H. Xu, N. Mitchell, M. Arnold, A. Rountev, E. Schonberg,
and G. Sevitsky, “Scalable Runtime Bloat Detection Using Abstract
Dynamic Slicing,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 3, pp.
23:1–23:50, 2014. [Online]. Available: http://doi.org/10.1145/2560047

5.3 Tree Visualizations

This section includes two papers [328, 330] on how to visualize the evolution
of memory trees over time using the well-known tree visualization techniques
sunburst and icicle.

Work-In-Progress Paper:
Markus Weninger, Lukas Makor, Hanspeter Mössenböck:
Heap Evolution Analysis Using Tree Visualizations. In Proceedings of the
11th Symposium on Software Performance, SSP 2020, Leipzig, Germany,
November 12 - 13, 2020 (moved online).

Full Paper:
Markus Weninger, Lukas Makor, Hanspeter Mössenböck:
Memory Leak Analysis using Time-Travel-based and Timeline-based Tree
Evolution Visualizations. In Proceedings of the Conference on Smart Tools
and Applications in Graphics, STAG 2020, Virtual Event, Italy, November
12-13, 2020. - Best Paper

Artifact:
The prototype of the visualization tool is available at
http://bit.ly/STAG-MemoryTreeVizTool, a video of the tool can be found
at http://bit.ly/STAG-MemoryTreeVizVideo.

118

http://bit.ly/STAG-MemoryTreeVizTool
http://bit.ly/STAG-MemoryTreeVizVideo

Heap Evolution Analysis Using Tree Visualizations

Markus Weninger?, Lukas Makor?⊗, Hanspeter Mössenböck?

{firstname.lastname@jku.at}
? Institute for System Software, Johannes Kepler University, Linz, Austria

⊗ Christian Doppler Laboratory MEVSS, Johannes Kepler University, Linz, Austria

Abstract

Memory anomalies such as memory leaks can dramat-
ically impact application performance and can even
lead to crashes. Thus, supporting developers in under-
standing the heap memory behavior of their systems is
essential. Unfortunately, most memory analysis tools
lack advanced visualizations that could facilitate de-
velopers in analyzing suspicious memory behavior.

To analyze heap memory, it is common to group
the heap’s objects, for example, by their types or by
their allocation sites. Using multiple grouping crite-
ria thus results in a tree-shaped representation of the
heap content. Such a heap tree is then typically pre-
sented textually in a tree table.

In this paper, we present ongoing research on using
well-known tree visualization techniques to visualize
such heap trees as well as their evolution over time.
Such visualizations may ease the detection of prolifer-
ating heap objects, facilitating memory leak analysis.

To demonstrate the feasibility and applicability of
the presented approach, we implemented a web-based
visualization tool and integrated it into AntTracks,
our trace-based memory monitoring tool.

1 Introduction

Modern programming languages such as Java use
garbage collection to automatically reclaim objects
that are no longer reachable from static fields or
thread-local variables. While this prevents a num-
ber of programming errors, certain problems such as
memory leaks can still occur. For example, a devel-
oper may forget to remove objects from their contain-
ing long-living data structure. Consequently, these
objects cannot be reclaimed by the garbage collector
and thus accumulate over time [11].

Memory leaks cause more frequent garbage collec-
tions, which can have a significant negative perfor-
mance impact. Worse, running out of memory even
crashes the application. Thus, it is essential to provide
tools to facilitate developers in detecting proliferating
heap objects in their applications.

Even though data visualization [5] can help to con-
vey information faster [6] and can aid in identifying
patterns [7], most state-of-the-art memory monitoring
tools do not take advantage of visualizations (except
for time-series charts) and often present data in the
form of tables and lists.

In this paper, we present work-in-progress to visu-
alize memory evolution over time using tree visual-
izations. Our approach groups similar heap objects
based on properties such as type, allocation site, or
allocating thread into a heap tree (see Section 2). We
then use well-known tree visualizations, i.e., the sun-
burst plot [1] and the icicle plot [9] to visualize the
heap content at a single point in time (see Section 3).
Generating heap trees at multiple points in time en-
ables users to step through time to inspect the moni-
tored application’s heap evolution over time (see Sec-
tion 4). This helps users to recognize suspiciously
growing object groups that may hint at memory leaks.

2 Data Collection

To inspect the heap at single point in time, most tools
use heap dumps. Yet, to visualize the heap’s evolu-
tion over time, we need continuous information about
its objects. Since regularly dumping the heap would
incur too much run-time overhead (as the application
is halted during the dump), we use the AntTracks
VM [8], a modified Java virtual machine based on
the Java Hotspot VM, to collect continuous mem-
ory traces (which introduces only around 5% run-time
overhead [8]). We can reconstruct the heap state from
such a trace at every garbage collection point. For ev-
ery heap object, a number of properties can be recon-
structed, including its address, type, allocation site,
and the thread that allocated it. The heap objects
can then be grouped by a user-defined combination of
these properties which results in a heap tree [10].

3 Heap State Visualization

There is ample work on how to visualize tree-shaped
data. Based on user studies that evaluated the use-
fulness [2] and aesthetics [3] of tree visualizations, we
decided to use the sunburst plot as well as the icicle
plot to visualize heap trees.

a()

b()

c()

d()

e()

a()

f()

Heap

Pers

String

Buf

(a) Tree.

Heap Pers

String

Buf

a()

b()

c()
d()

e()

a()

f()

(b) Sunburst.

Heap

Pers

String

Buf

a()

b()

c()
d()

e()

a()

f()

(c) Icicle.

Figure 1: Three visualizations showing the same data.

3.1 Tree Visualizations

In a heap tree (Figure 1a), each tree node represents a
group of heap objects. A good heap tree visualization
should show the parent/child relationships as well as
the number of objects/bytes represented by a specific
node; the latter can be expressed as node size, but is
often missing in simple tree visualizations. Thus, the
sunburst plot (Figure 1b) as well as the the icicle plot
(Figure 1c) use variable-sized graphical elements to
visualize nodes. The sunburst plot uses ring segments,
where the angular size of the ring segments encodes a
value. The icicle plot uses rectangles to encode a value
using the rectangle’s height. Instead of using explicit
links to depict the tree hierarchy, in the sunburst plot
the tree hierarchy is moving outwards, starting at a
root circle in the middle. Similarly, in the icicle plot
the tree hierarchy is moving from left to right.

To compare these tree visualizations, Figure 1a
through Figure 1c visualize the same data. Imagine
that the underlying heap tree was generated by group-
ing all heap objects by their types, and all objects of
the same type by their allocation sites. The gray root
node (Heap) represents the whole heap. The nodes on
the first level represent different types. For example,
we can see that the heap consists of objects of the
types Pers (blue), String (orange), and Buf (green).
In the sunburst and icicle plot we can further see
that 50% of the heap space is taken up by objects
of type Pers. On the second level, allocation sites are
shown. There we can see that objects of type Pers

have been allocated at four different allocation sites,
most of them at site a().

3.2 Handling Huge Trees

Heap trees can be too wide or too deep to be visualized
as a whole. For example, real-world applications use
objects of hundreds of different types, thus grouping
the heap objects by type would result in a tree with
hundreds of siblings, i.e., a wide tree. On the other
hand, using multiple grouping criteria may lead to
a tree with lots of levels, i.e., a deep tree. Thus, we
apply tree pruning to narrow trees and provide a drill-
down feature to hide deep tree levels by default.

Tree Pruning To reduce a heap tree’s width, we
only keep nodes that represent large object groups
(i.e., those objects that most likely accumulated due
to a memory leak), while smaller object groups are
merged into artificial “Other” nodes. More specifi-
cally, we sort the child nodes of every node by their
size (i.e., by their object count or byte count) and
(1) keep the largest child nodes until they represent
90% of the objects on the current tree branch, yet we
(2) keep a maximum of 9 child nodes. The remaining
nodes are merged into an “Other” node.

Drill Down We only show two tree levels with the
possibility to drill down into a certain tree branch.
Clicking on a non-leaf node selects it as the new root

of the visualization. Figure 2 depicts an icicle that
groups all heap objects by allocating thread, then by
type and finally by allocation site. The left-hand
side shows the icicle without drill-down (the alloca-
tion sites are not visible since only two levels are
shown). The right-hand side shows the icicle after
drilling down into the node Thread 2. To step out
again, the user can click on the Thread 2 root node.

Root Thread 1 Integer Integer main()

Drill down
into
Thread 2

Thread 3

Date

Integer

String
Date

String

String

Date

foo()

main()

bar()
baz()

Thread 2

Thread 2

Figure 2: A drill-down feature enables users to ex-
plore deeper tree levels by selecting new tree roots.

4 Heap Evolution Visualization

It is not only possible to visualize the heap state at a
single point in time, but also to visualize its evolution
over time. For this, we use time traveling [4], a tech-
nique we already successfully applied in our Memory
Cities visualization technique [12]. In time travelling,
users can step back and forth through time, either
using buttons or a time slider. After each step, the
visualization updates itself to reflect the current heap
state. Knowing which kinds of objects accumulate
over time can greatly reduce the amount of source
code that has to be inspected to fix a possible leak.

4.1 Stable Layout

A problem when switching from one point in time
to another is that the order of the tree nodes could
change. For example, if sibling nodes are ordered by
size, and if their sizes change, the order of the nodes
changes as well, which makes it hard to keep track of
the evolution of different tree nodes.

In a stable layout, every node is assigned a sort po-
sition (based on a certain criterion) across all points
in time once after all trees have been computed. This
means that every node stays at the same relative po-
sition, e.g., at the second position, even if it grows or
shrinks over time. In our heap evolution visualization,
we currently sort all nodes based on their end size, i.e.,
based on their size in the last tree. For example, in
Figure 3, the blue heap object group has the largest
end size and is thus positioned first in both sunbursts.

4.2 Example

We implemented the presented approach as a d3.js

web application1. In Figure 3, we show a composi-
tion of tool screenshots taken while inspecting Dyna-
trace easyTravel, a state-of-the-art demo application

1Prototype with example data hosted on http://ssw.jku.

at/General/Staff/Weninger/AntTracks/SSP20/WebTreeViz/

2

Figure 3: Heap evolution time travel through easyTravel shown at three different points in time t1, t2, and t3.

that simulates a broken travel agency website. As
apparent in the time-series chart, easyTravel’s back-
end exhibits continuous memory growth. t1 through
t3 exemplarily show our time travel sunburst visual-
ization at three different points in time. The first
tree level (inner ring) indicates the type, the second
level depicts allocation sites. We can clearly see that
the blue (type Location) and orange (type Date) seg-
ments grow. Both of these types are allocated only at
a single allocation site each (as each type only has a
single circle segment on the second level). Knowing
which types accumulate the most objects (Location
and Date) and where these objects are allocated (at
a specific method in the class JourneyJpaProvider)
makes it easy to locate the problematic code location.

5 Conclusion and Future Work

In this paper, we presented our approach to apply tree
visualizations to facilitate heap memory analysis. We
discussed how a heap state, more specifically its heap
objects, can be grouped into a heap tree and how such
a tree can be visualized using existing tree visualiza-
tion techniques. We also visualize the heap evolution
over time, where growing graphical elements hint at
proliferating heap objects. These objects could be the
result of a possible memory leak, which can then be
inspected in more detail on the source code level based
on information provided by the tree visualization.

Since this work is still in progress, various possi-
bilities exist for future work. For example, our tool
currently displays a single tree visualization, depicting
the heap’s composition at a given point in time, and
this visualization is updated when moving through
time (a technique called time traveling). In the fu-
ture, we plan to implement a timeline view. In this
view, based on a number of points in time selected
by the user, multiple tree visualizations are generated
and displayed next to each other, similar to an inter-
active version of Figure 3. This should make it even
easier for the user to detect growth trends.

6 Acknowledgement

The financial support by the Austrian Federal Min-
istry for Digital and Economic Affairs, the National
Foundation for Research, Technology and Develop-
ment, and Dynatrace is gratefully acknowledged.

References

[1] J. Stasko and E. Zhang. “Focus+Context Dis-
play and Navigation Techniques for Enhancing
Radial, Space-filling Hierarchy Visualizations”.
In: VISSOFT. 2000, pp. 57–65.

[2] S. T. Barlow and P. Neville. “A Comparison of
2-D Visualizations of Hierarchies”. In: INFO-
VIS. 2001, pp. 131–138.

[3] N. Cawthon and A. V. Moere. “The Effect of
Aesthetic on the Usability of Data Visualiza-
tion”. In: IV. 2007, pp. 637–648.

[4] R. Wettel and M. Lanza. “Visual Exploration
of Large-Scale System Evolution”. In: WCRE.
2008, pp. 219–228.

[5] J. Heer, M. Bostock, and V. Ogievetsky. “A
Tour through the Visualization Zoo”. In: ACM
Queue 8.5 (2010), p. 20.

[6] M. O. Ward, G. G. Grinstein, and D. A. Keim.
Interactive Data Visualization - Foundations,
Techniques, and Applications. A K Peters, 2010.

[7] S. Murray. Interactive Data Visualization for
the Web. O’Reilly Media, 2013.

[8] P. Lengauer, V. Bitto, and H. Mössenböck. “Ac-
curate and Efficient Object Tracing for Java Ap-
plications”. In: ICPE. 2015, pp. 51–62.

[9] I. Bacher, B. M. Namee, and J. D. Kelleher.
“Using Icicle Trees to Encode the Hierarchical
Structure of Source Code”. In: EuroVis. 2016,
pp. 97–101.

[10] M. Weninger and H. Mössenböck. “User-defined
Classification and Multi-level Grouping of Ob-
jects in Memory Monitoring”. In: ICPE. 2018,
pp. 115–126.

[11] M. Weninger, E. Gander, and H. Mössenböck.
“Analyzing Data Structure Growth Over Time
to Facilitate Memory Leak Detection”. In:
ICPE. 2019, pp. 273–284.

[12] M. Weninger, L. Makor, and H. Mössenböck.
“Memory Cities: Visualizing Heap Memory Evo-
lution Using the Software City Metaphor”. In:
VISSOFT. 2020.

3

STAG: Smart Tools and Applications in Graphics (2020)
S. Biasotti, R. Pintus and S. Berretti (Editors)

Memory Leak Analysis using Time-Travel-based and
Timeline-based Tree Evolution Visualizations

M. Weninger1 and L. Makor1,2 and H. Mössenböck1

1Johannes Kepler University Linz, Institute for System Software, Austria
2Johannes Kepler University Linz, Christian Doppler Laboratory MEVSS, Austria

Abstract
Memory leaks occur when no longer needed objects are unnecessarily kept alive. They can have a significant negative perfor-
mance impact, leading to a crash in the worst case. Thus, tool support for heap evolution analysis, especially memory leak
analysis, is essential. Unfortunately, most memory analysis tools lack advanced visualizations to facilitate this task.
In this paper, we present an approach to use well-known tree visualization techniques for memory growth visualization. Our
approach groups heap objects into memory trees based on a user-defined set of properties such as their types or their allocation
sites at multiple points in time. We present two novel approaches to inspect how these trees evolve over time: In our time-travel-
based visualization, a single space-filling tree visualization shows the monitored application’s heap memory at a given point
in time. Users can step back and forth in time, causing the visualization to update itself. In our timeline-based visualization, a
time-series chart depicts the overall memory consumption over time. Above this chart, multiple memory tree visualizations are
shown side-by-side for a number of user-selected points in time. Using these techniques to visually inspect the evolution of the
heap over time should enable users to gain new insights and to detect (problematic) memory trends in their applications.
To demonstrate the feasibility and applicability of the presented approach, we integrated it into AntTracks, a trace-based mem-
ory monitoring tool and applied it in two memory leak case studies.

CCS Concepts
•General and reference → Performance; •Software and its engineering → Software performance; Software maintenance
tools; •Information systems → Data analytics; Information extraction; •Human-centered computing → Interactive systems
and tools; Visualization techniques; Visual analytics; Information visualization;

1. Introduction

Many modern programming languages such as Java use a garbage
collector (GC) to automatically reclaim heap objects that are no
longer reachable from static variables or thread-local variables (i.e.,
GC roots). Even though automatic memory management prevents
certain memory-related mistakes, various problems can still occur.
Memory leaks are very common defects [GCS∗20] and occur when
objects remain reachable even though they are no longer needed.
For example, a developer may forget to correctly clear a long-living
data structure. Consequently, its objects cannot be reclaimed by the
GC and thus accumulate over time [WGM18a, WGM19a].

Memory leaks can have a significant performance impact, lead-
ing to a crash in the worst case. Therefore, it is essential to provide
tooling for memory analysis. Yet, existing tools have two major
drawbacks: most of them (1) inspect the heap only at a single point
in time and (2) do not use advanced visualizations. For example,
existing tools such as VisualVM [Ora20] or Eclipse Memory Ana-
lyzer (MAT) [Ecl20] use heap dumps to inspect the heap at a sin-
gle point in time. Yet, to detect and inspect trends in the memory

behavior, which is needed to investigate memory leaks, the heap
has to be compared at multiple points in time [WMGM19]. Those
tools that do support memory evolution analysis often present the
raw data in tables and do not employ visualization techniques.
This is unfortunate, since domains such as software evolution and
program comprehension have shown that using graphical means
can help users in understanding and interpreting systems and their
growth [CZvDR09, WLR11, FKH15, FFHW15, FKH17, BAB18].

In this paper, we tackle both of the mentioned problems by pre-
senting an approach to visualize the heap memory evolution over
time using tree visualizations. In order to create useful heap vi-
sualizations, the heap objects have to be brought into a suitable
structure first. Many tools group heap objects based on a certain
property (e.g., type or allocation site). Using multiple grouping
criteria results in a hierarchical grouping structure, i.e., a mem-
ory tree [WLM17, WM18]. We record memory traces that allow
us to create memory trees of a monitored application at multiple
points in time, each representing the state of the heap at a certain
point in time. In this work, we present a time travel visualization
approach that enables users to step through the individual points

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.
This is the author’s version of the work. The definitive version was published in the Pro-
ceedings of the Conference on Smart Tools and Applications for Graphics.
https://doi.org/10.2312/stag.20201241

M. Weninger & L. Makor & H. Mössenböck / Memory Leak Analysis using Time-Travel-based and Timeline-based Tree Evolution Visualizations

in time, as well as a timeline visualization approach that visualizes
the heap at multiple points in time in juxtaposition side-by-side.
This way, we enable users to recognize trends in the memory be-
havior of the monitored application to identify accumulating object
groups, thereby gaining new insights that help to locate and resolve
memory leaks. The contributions of this paper are:

• a suggestion of tree visualizations suitable for memory visual-
ization based on a requirements catalog (Section 3).
• an approach to visualize a single heap state using the previously

selected tree visualizations (Section 4).
• two novel approaches to visualize the evolution of the heap

over time: the time-travel-based approach (Section 5.3) and the
timeline-based approach (Section 5.4).
• an implementation of the presented techniques in the memory

monitoring tool AntTracks (Section 6).
• two memory leak analysis case studies that demonstrate the ap-

proach’s feasibility and applicability (Section 7).

2. Background

This section explains how our approach collects memory data and
how this data is transformed to be suitable for visualization. As
the approach has been integrated into AntTracks, this section gives
a short overview of the tool. AntTracks consists of two parts, the
AntTracks VM [LBM15,LBF∗16,LBM16], a virtual machine based
on the Java Hotspot VM, and the AntTracks Analyzer, a trace-based
memory analysis tool [WLM17, WM18]. We chose this tool since
its source code is publicly available [Wen20] and the authors al-
ready had prior experience with its code base.

2.1. Trace Recording

While heap dumps are good enough to perform analyses at a single
point in time, they fall short compared to continuous memory trac-
ing approaches when performing analyses over time [WGM19a].
Thus, the AntTracks VM records memory events such as object
allocations or objects moves during garbage collection and stores
them in a trace file [LBM15]. This approach introduces a run-time
overhead of about 5%, but provides more fine-grained memory in-
formation than heap dumps. To keep the size of the trace file low,
the AntTracks VM tries to avoid storing redundant data [LBM16].

2.2. Heap State Reconstruction and Memory Trees

The AntTracks Analyzer uses the recorded trace file as input to
reconstruct the memory data and provides various features to ana-
lyze this data. By incrementally parsing the recorded trace file, the
tool is able to reconstruct a heap state for each garbage collection
point [BLM15]. A heap state is a set of heap objects that were live
in the monitored application at a certain point in time. Properties
such as the address, type, allocation site, and allocating thread can
be reconstructed for each heap object.

One of the core features of the AntTracks Analyzer is to perform
object classification and multi-level grouping [WLM17, WM18].
This approach groups the heap objects into a hierarchical memory
tree based on a user-defined set of criteria (called classifiers), e.g.,
based on their types, allocation sites, or allocating threads. Every

node in such a tree represents a set of objects that share the same
properties, also called an object group. An exemplary memory tree
created using the allocating thread classifier and type classifier is
depicted in Figure 1. The root node of the memory tree represents
the whole heap, every node represents an object group. For exam-
ple, the node T1 represents objects 0, 1 and 2, which were allocated
by thread T1. The Integer node below T1 represents objects 0 and
1, which were allocated by thread T1 and are of type Integer.

Heap

T1 T2

Integer String String

1. Classify by
allocating thread

2. Classify by type

… Tree node … Object

0 1

i

2 4

40 1 32

0 1 32 4

3

Figure 1: A memory tree that resulted from first grouping all ob-
jects by their allocating threads and then by their types.

3. Tree Visualizations

Memory traces enable reconstructing a vast amount of information
about all heap objects that have been live at some point in time in
the monitored application. Since presenting this data with raw num-
bers would most probably overwhelm the user, we chose tree visu-
alizations as a means of data visualization [HBO10]. Data visual-
ization can help to convey information faster [KK91, WGK10] and
can facilitate the identification of patterns [War13, Mur13] which
can lead to new insights [War13]. This section discusses different
properties of tree visualization and presents a requirements catalog
we used to select two tree visualizations that seem to be adequate
for an interactive heap evolution visualization.

3.1. Tree Properties and Requirements Catalog

Tree visualizations are the most common type of visualization to
depict hierarchies such as memory trees [SZ00]. Consequently, am-
ple research has been performed on tree visualizations, which re-
sulted in a vast number of tree visualization techniques. For exam-
ple, treevis.net [Sch11] lists more than 300 publications on
tree visualizations. However, not all tree visualization techniques
are suitable for visualizing the heap memory evolution over time.

In general, different tree visualizations use different approaches
to display a tree’s content information as well as its structural infor-
mation. Content information associates data of the underlying tree
nodes to visual attributes of the nodes (such as node size, color,
or transparency). Structural information concerns the tree’s hier-
archy and can either be expressed explicitly or implicitly [JS91] .
Explicit visualizations, also called node-link visualizations, use ex-
plicit graphical elements such as lines between nodes to indicate re-
lationships. Implicit visualizations, also called space-filling visual-
izations, indicate the relationships of the nodes via spatial arrange-
ment, e.g., containment [SS06]. Various works provide further and
more detailed taxonomies on tree visualizations [Sch11, STLD20].

To identify tree visualizations suitable for memory evolution vi-
sualization, we define four requirements that are vital to help users
in gaining insights into the heap’s evolution over time.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

M. Weninger & L. Makor & H. Mössenböck / Memory Leak Analysis using Time-Travel-based and Timeline-based Tree Evolution Visualizations

a()

b()

c()

d()

e()

a()

f()

Heap

Pers

String

Buf

(a) Node-link diagram.

a()

b()

c()

d()

e()

a() f()

Heap
Pers String

Buf

(b) Treemap.

Heap Pers

String

Buf

a()

b()

c()
d()

e()

a()

f()

(c) Sunburst.

Heap

Pers

String

Buf

a()

b()

c()
d()

e()

a()

f()

(d) Horizontal icicle.
Figure 2: Four different tree visualization techniques depicting the same memory tree.

1. A node’s content information (e.g., its number of heap objects)
should at least be represented by size, following the visualiza-
tion metaphor more is bigger [Lak94, HHK∗17].

2. Updating hundreds of nodes should be feasible in real-time
since our approach revolves around an interactive visualization.
It must not involve inconvenient latency since this complicates
making observations and drawing generalizations [LH14]. Fur-
thermore, it has been shown that users tend to use an interactive
system less often if it exhibits interaction latency [Bru09].

3. Since we want to make the tool accessible to novice users, the
visualization has to be easy to understand, even for inexperi-
enced users. Explicit explanation should not be necessary. Thus,
we do not search for novel and experimental visualization tech-
niques, but rather want to use visualizations that have been em-
pirically proven to be effective, efficient and easy to use.

4. The tree visualization has to support a stable layout of evolving
data over time. As Hahn et al. [HTMD14] state layout stability is
considered essential for [...] visual analysis tasks such as com-
paring hierarchies and attributes of such hierarchies’ nodes,
and tracking changes to hierarchies over time, which are com-
mon tasks in memory analysis. When visually exploring data,
users create cognitive maps that are based on spatial relations
and attributes of the presented data [Kit94]. Consequently, we
look for visualizations that support a stable layout, i.e., a layout
that requires few changes to the user’s cognitive map as the spa-
tial relations mostly stay intact when updating the visualization.

3.2. Exemplary Tree Visualizations

Figure 2 shows four different tree visualizations, all of which depict
the same tree. This memory tree was generated by grouping all heap
objects by their types, and all objects of the same type by their al-
location sites. The gray Heap root node represents the whole heap,
nodes on the first level represent different types. We can see that
the heap consists of objects of the types Pers (blue), String (or-
ange), and Buf (green). In Figure 2b through Figure 2d we can fur-
ther see that 50% of the heap is taken up by objects of type Pers.
On the second level we can see that the Pers objects have been
allocated in four different methods, most of them in method a().

3.3. Selection of Tree Visualization Techniques

Most explicit visualizations (such as the node-link diagram in Fig-
ure 2a) do not use variable-sized nodes, making it hard to distin-

guish nodes that represent few or many objects. As this contradicts
our first requirements, no explicit visualizations were chosen for
our approach.

We also excluded visualizations that require complex layout cal-
culations, as they cannot be updated fast enough to not disturb the
users during analysis (requirement three). Examples for excluded
visualizations encompass variational circular treemaps [ZL15] or
GosperMaps [AHL∗13], since calculating their layout based on a
few hundred nodes already takes seconds.

To fulfill the third requirement, we explored existing study re-
sults. Barlow and Neville [BN01] performed two experiments to
compare the performance of icicle visualizations, tree ring visual-
izations (a visualization similar to the sunburst visualization) and
treemap visualizations. They found that icicle and tree ring both
worked quite well, while treemap worked significantly worse than
the other tree visualizations. Cawthon and Moere [CM07] con-
ducted an online survey to evaluate the aesthetics and task perfor-
mance of eleven visualization techniques. With regard to aesthet-
ics, sunburst was the clear winner, while in terms of correctness
and response time, both sunburst and icicle were among the best
techniques. Treemap again ranked among the worst techniques.

The fourth requirement, i.e., that the chosen visualizations have
to support stable layouts, is discussed in more detail in Section 5.1.

As icicle and sunburst fulfill all our requirements and consis-
tently ranked among the best tree visualization techniques in the
discussed studies, both were chosen to be used for our heap evo-
lution analysis. Consequently, we chose to not include treemaps
due to their negative study results. Nevertheless, treemap algo-
rithms are still useful. For example, they are successfully used to
generate layouts for software maps and software cities [LSDT19]
such as CodeCity [WL07, WLR11], SynchroVis [WWF∗13], Ex-
plorViz [FKH17], or Memory Cities [WMM19, WMM20].

3.4. Chosen Tree Visualizations

This section shortly explains the sunburst and icicle visualizations
that were chosen to be part of our heap visualization approach.

Sunburst As shown in Figure 2c, sunburst is a radial space-filling
visualization [SZ00]. In a sunburst, the root node of the hierarchy is
depicted as a circle in the center of the visualization. This circle is
surrounded by multiple levels of circular ring segments where each

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.
This is the author’s version of the work. The definitive version was published in the Pro-
ceedings of the Conference on Smart Tools and Applications for Graphics.
https://doi.org/10.2312/stag.20201241

M. Weninger & L. Makor & H. Mössenböck / Memory Leak Analysis using Time-Travel-based and Timeline-based Tree Evolution Visualizations

ring segment represents a tree node. The tree hierarchy is moving
outwards, i.e., each tree level is further away from the center. The
sunburst visualization is adjacency-based, meaning that the chil-
dren of a node are positioned next to each other on the next level
within the angular sweep of their parent. The angular size of the
segment is based on an attribute of that node, in our case the num-
ber of objects or bytes of the respective heap object group.

Icicle Icicle is another space-filling visualization [HBO10]. Simi-
lar to sunburst, it is adjacency-based, meaning that the children of
each node are positioned next to each other on the next level within
the extent of their parent. In a horizontal icicle [BNK16] (as shown
in Figure 2d), each rectangle has the same width and its height is
based on some attribute of its respective tree node.

4. Heap State Visualization

A memory tree, i.e., the result of grouping heap objects based on
common properties, is the basis for our heap state visualization.
Figure 3 shows an example of the same memory tree being dis-
played in our tool, once as an icicle and once as a sunburst.

Problems that can arise are that memory trees can be too wide or
too deep to be visualized as a whole. For example, real-world ap-
plications use objects of hundreds of different types, thus grouping
the heap objects by type would result in a tree with hundreds of sib-
lings, i.e., a wide tree. On the other hand, using multiple grouping
criteria may lead to a tree with lots of levels, i.e., a deep tree. Thus,
we apply tree pruning to narrow trees and provide a drill-down fea-
ture to hide deep tree levels by default. This section discusses these
techniques in more detail.

Figure 3: Screenshots of a memory tree visualized in our tool, once
as an icicle and once as a sunburst.

4.1. Tree Pruning

The goal of tree pruning is to keep only the most significant nodes
and to hide less important ones. In memory leak analysis, we are in-
terested in nodes that represent large object groups, as their objects
potentially accumulated due to a memory leak. Thus, unimportant
smaller object groups can be merged. In our implementation, we
sort the child nodes of every node by their size (i.e., by their ob-
ject count or byte count) and (1) keep the largest child nodes until
they represent 90% of the objects on the current tree branch, yet
we (2) keep a maximum of 9 child nodes. The remaining nodes are
merged into an artificial “Other” node.

4.2. Drill-Down

As the screen space is limited, it is neither feasible nor reasonable to
display the full hierarchy of deep trees. Consequently, we decided
to only display two levels below the root node by default, with
the possibility to drill-down into deeper tree branches. By click-
ing on a non-leaf node, the selected node becomes the new root
of the visualization. Figure 4 depicts an icicle that was created us-
ing the allocating thread, type and allocation site classifiers. On the
left, the visualization is shown without drill-down. On the right, the
drill-down has been performed on the node Thread 2. The orange
and green rectangles highlight the node selected for drill-down as
well as its children. Additionally, the allocation sites of the objects
that were allocated by Thread 2 are now shown in the drilled-down
view. While in a drill-down, the user can click on the root node to
step up one level again.

Root Thread 1 Integer Integer main()

Drill down
into
Thread 2

Thread 3

Date

Integer

String
Date

String

String

Date

foo()

main()

bar()
baz()

Thread 2

Thread 2

Figure 4: Drilling down into a node in the initial icicle (left) results
in the selected node becoming the root of the visualization (right).

4.3. Local View and Global View

Showing only a limited number of tree levels enables us to dis-
play the shown nodes with reasonable size. Thus, also more room
is available for text within the nodes (e.g., type names or method
names). However, limiting the number of shown levels comes at
the cost of losing the hierarchy overview, e.g., how many levels re-
ally exist. Users may also possibly lose track of their current drill-
down position within the hierarchy after multiple drill-down steps,
putting potential additional cognitive load on the user [TM04].

To tackle these problems, we use two synchronized visualiza-
tions next to each other. The first one, called the local view, only
displays the currently selected node and its two sublevels (as dis-
cussed before). Additionally, a second view called the global view
displays the full hierarchy, independent of the tree depth or the cur-
rently selected drill-down node. An example for this can be seen in
Figure 5, where an icicle is shown that was generated using the allo-
cating thread, type and allocation site classifiers. The local view on
the left shows the Thread 2 node (that has been selected via drill-
down) as the root as well as its two direct sublevels. The global
view on the right shows the full hierarchy, i.e., all tree levels, with
the drill-down node highlighted. The other tree branches are set
to semi-transparent. Having these two visualizations next to each
other solves the problems of losing track in the overall hierarchy.
To further make orientation easier, in addition to highlighting the
currently selected node, when the user hovers a node in the local
view we also highlight the respective node in the global view. This
makes it easier to spot its position within the hierarchy. Local and
global view (including an example) will be revisited in Section 5.3.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

M. Weninger & L. Makor & H. Mössenböck / Memory Leak Analysis using Time-Travel-based and Timeline-based Tree Evolution Visualizations

IntegerInteger main()

Thread 3

Date

String

String

Date

foo()

main()

bar()
baz()

Thread 2 methA()

methB()

methC()

methD()

Thread 1

G
lo

b
al

 V
ie

w

L
o

ca
l V

ie
w

Integer

String

Thread 2
foo()
main()
bar()

Date

main()

baz()

Root

Figure 5: The local view (left) shows the current drill-down node
as root and two more levels, while the global view (right) shows the
whole hierarchy with highlighted drill-down branch.

5. Heap Evolution Visualization

Visualizing the heap evolution means to not only visualize the state
of the heap at a single point in time, but to visualize its evolu-
tion across multiple points in time. To narrow down the search
space, users can select a time window of interest for visualiza-
tion [WGM19b]. Within the selected time window, a user-selected
list of classifiers is used to group all live heap objects into memory
trees at multiple points in time. This results in a sequence of mem-
ory trees, where each tree represents the heap state of the monitored
application at a certain point in time. In this section, we discuss pre-
processing steps to achieve a stable layout of the tree visualizations
across multiple points in time, as well as a technique to better visu-
alize absolute growth. Following, we present two novel approaches
to inspect the evolution of these trees: the time-travel-based ap-
proach and the timeline-based approach.

5.1. Stable Layout

Visualizations that show the evolution of a system have to be care-
fully designed. A major risk is that a small change in the underlying
data can result in vastly different layouts being generated. For ex-
ample, between two points in time it can happen that the order of
the tree nodes would change. Imagine two sibling nodes that are
ordered by size: when their size, e.g., heap object count, changes,
the order of their nodes changes as well. Such a behavior would
make it unnecessarily hard to keep track of the evolution of differ-
ent tree nodes. Thus, it is of utmost importance to ensure that our
tree visualizations exhibit a stable layout across all points in time.

Static Position Animation One way to achieve a stable layout is
the static position animation approach [LSP08, WL08]. In it, all
visual elements stay in the same place throughout the whole evolu-
tion and just grow and shrink within a fixed area reserved for them.
This area is calculated based on the maximum size that the element
will reach at any point in time. A downside of this approach is that
it wastes lots of space when an element is not at its maximum size
(or worse, not shown at all). Also, it may work well for certain vi-
sualizations such as treemaps but not for most other tree visualiza-
tions. For example, applying this approach to an icicle would lead
to empty spaces between the rectangles if they are not at their max-
imum size. As such a layout might rather distract than help users,
we decided to implement a relaxed version of it that we call relative
position animation.

1. String (+2000)
2. Integer (+700)
3. Date (+100)
4. Stack (-650)

T = 1

Prune trees

①

③

String
1000

Integer
800

Stack
700

Heap
2600

Date
100

Integer
2000

Date
700

String
600

Heap
3600

Stack
300

String
3000

Integer
1500

Date
200

Heap
4750

Stack
50

String
1000

Integer
800

Date
100

Heap
2600

Stack
700

String
600

Integer
2000

Date
700

Heap
3600

Stack
300

String
3000

Integer
1500

Date
200

Heap
4750

Stack
50

String
+2000

Integer
+700

Date
+100

Heap
+2150

Stack
-650

T = 2 T = 3

Meta tree

Calculate meta tree
and determine order

Sort all nodes in
each tree②

String
1000

Integer
800

Other
800

Heap
2600

String
600

Integer
2000

Other
1000

Heap
3600

String
3000

Integer
1500

Other
250

Heap
4750

Figure 6: Preprocessing steps applied before heap evolution visu-
alization: (1) meta tree calculation, (2) sorting, and (3) pruning.

Relative Position Animation Relative position animation means
that the absolute position of a tree node might change when step-
ping through time, but the order of the nodes will stay the same.
This is achieved by assigning a sort position (based on a certain
criterion) to each node. This sort position is fixed across all points
in time and is calculated for all nodes once after all memory trees
have been computed. Weninger et al. [WMGM19] already used a
similar concept in another memory evolution visualization. There,
they used various sorting strategies, including start size sorting, end
size sorting and absolute growth sorting, which we also support for
our tree visualizations. When applying the start size or the end size
sorting strategy, all nodes in all trees are sorted by their object count
or byte count at the start or end of the inspected time window re-
spectively. Yet, we found that the absolute growth sorting strategy
is usually the most useful strategy for investigating memory leaks.
When applying the absolute growth sorting strategy, the absolute
growth of each node between the first and the last point in time
is calculated and stored in a meta tree. The first step in Figure 6
depicts how such a meta tree is calculated based on the nodes’ ab-
solute growth and how the meta tree is used to create a fixed sort
order. In the second step of Figure 6, all nodes in each tree are
sorted based on this sort order.

Tree Pruning Revisited In Section 4.1, we described tree prun-
ing for a single memory tree by keeping the largest tree nodes.
When pruning trees for heap evolution visualization, this pruning
is slightly adjusted. Now, those nodes that have been ranked first
based on the sorting strategy are preserved (instead of selecting
them based on the current size). This ensures as few node additions
and removals as possible between multiple points in time, while

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.
This is the author’s version of the work. The definitive version was published in the Pro-
ceedings of the Conference on Smart Tools and Applications for Graphics.
https://doi.org/10.2312/stag.20201241

M. Weninger & L. Makor & H. Mössenböck / Memory Leak Analysis using Time-Travel-based and Timeline-based Tree Evolution Visualizations

T=1 T=2
Heap 100 200
— A 50 60
— B 30 60
— C 20 80

Heap

A

B

C

Heap

A

B

C

t T=1 T=2
Figure 7: Unscaled visualizations may hide absolute growth.

T=1 T=2
Heap 100 200
— A 50 60
— B 30 60
— C 20 80

Heap
A

B
C Heap

A

B

C

t T=1 T=2
Figure 8: Scaled visualizations reveal absolute growth.

still benefiting from tree pruning. In the example in Figure 6, the
sorted trees are pruned in the third step by preserving the first two
nodes per tree, even though they might not be the biggest ones at
that point in time (as is the case for String in the tree at T = 2).

5.2. Absolute Growth Visualization

A problem of our chosen tree visualizations is that they use the
same amount of screen space to visualize any heap, independent of
the heap’s size. Figure 7 illustrates this problem. At time T = 1, the
heap has a size of 100MB, and at time T = 2 it has a size of 200MB,
i.e., it doubled in size. Yet, the resulting visualizations do not reflect
this. For example, by only looking at the tree visualizations, one
may think that the number of A objects shrank between the two
points in time, while the contrary is the case. Thus, we support to
display scaled visualizations, as shown in Figure 8. For example,
icicles are scaled along the y-axis based on the heap size at the
respective point in time, where the largest heap within the analyzed
time window uses the whole height. This should make it easier for
users to comprehend the absolute growth of the heap over time.

Unscaled visualizations, i.e., visualizations that use the whole
available space, are especially useful when text should be dis-
played. This is the reason why we use an unscaled visualization
as the local view of our tool, which will be explained in more detail
in Section 5.3. Scaled visualizations are more helpful when com-
paring the heap state of a system at multiple points in time, thus the
timeline-based approach (which will be explained in more detail in
Section 5.4) uses a scaled visualization by default.

5.3. Time-Travel-based Approach

In the context of visualization, Wettel and Lanza [WL08] define
time traveling as stepping back and forth through time while the
visualization updates itself to reflect the current state. Other mem-
ory evolution visualization approaches [WMM19, WMM20] also
successfully used time travelling as their means of evolution visu-
alization, which inspired us to also use this interaction technique
for our memory tree evolution visualization.

Figure 9 shows a snapshot of our tool. On the bottom half the
tool shows our time-travel-based visualization. It shows the heap
at the currently selected point in time, once in 1 local mode and

once in 2 global mode. Users are provided with 3 buttons to
go to the next and the previous heap state, as well as a slider to

Figure 9: Overview of our visualization tool. The bottom-left visu-
alization shows (1) the drilled-down local view of the heap, the
bottom-right visualization shows (2) the global view with high-
lighted drill-down node and highlighted hover node. On the top
right, the (3) time controls and the (4) visualization options can be
found. Beside them, the (5) timeline-based visualization is situated.

move through time. When stepping through time, the visualization
updates itself to show the memory tree at the given time. To make
these updates more appealing, we leverage various animation fea-
tures. For example, when the visualized data changes, the existing
nodes do not snap to their new location but their positions and their
sizes are gradually adjusted to match their new values, an approach
called tweening [Wil09]. If a node was selected for drill-down, this
selection is also preserved when stepping through time. At any time
during analysis, the user 4 can switch between the different vi-
sualizations, i.e., sunburst and icicle (beside being able to change
other settings). The visualizations are synchronized, i.e., the cur-
rent drill-down node (if any) and all user-chosen settings such as
metric (i.e., either object count or byte count) are preserved. Thus,
users are able to continue at the exact same state of the analysis at
which they were before they switched the visualization type.

5.4. Timeline-based approach

While the time-travel-based approach displays only one tree visu-
alization (or more specifically, two, i.e., the local and the global
view) at a time, the timeline-based visualization displays multiple
tree visualizations, each representing the heap at a different point in
time, in juxtaposition side-by-side. The name timeline-based stems
from the fact that users can select which points in time to visual-
ize by selecting them on a time-series chart, i.e., on a timeline. By
comparing these tree visualizations with each other, the user should
be able to detect changes over time in the heap composition.

In the upper left part of Figure 9 at 5 , our timeline-based vi-
sualization can be seen. We display the overall heap consumption
in a time-series line chart with clickable data points. Clicking them
toggles the visualization of the tree visualization of the heap at the
respective point in time. The tree at the currently selected point

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

M. Weninger & L. Makor & H. Mössenböck / Memory Leak Analysis using Time-Travel-based and Timeline-based Tree Evolution Visualizations

in time is always shown in the timeline. Since the visualizations
in the timeline view are quite small, it is not possible to display
reasonable sized text within the node elements. Nevertheless, com-
paring the visualizations with each other quickly provides insight
into the general evolution of the heap. Thus, the timeline-based vi-
sualization (overview) and the local view of the time-travel-based
visualization (detailed analysis) complement each other well.

Figure 10 shows another example of the timeline view with four
icicle visualizations, each depicting the heap state at a different
point in time. The trees have been generated using the type clas-
sifier, followed by the allocation site classifier. This example uses
scaled icicle visualizations, as explained in Section 5.2. Thus, the
growth of the grey rectangle reflects the heap’s overall growth. As
the first level represents objects of different types, we can see that
at any point in time the heap mostly consists of four different types.
Looking at the second level, we can see that the blue and the orange
types have two different allocation sites each (where one of the two
created far more objects than the other one), while the green and
violet objects all have been allocated within a single method each.

Figure 10: The timeline view shows the evolution of the heap over
time by showing its state at multiple points in time in juxtaposition.

6. Implementation Details

We implemented our approach as a Javascript web application that
heavily uses the D3.js library. This library provides many utility
functions to create hierarchical visualizations [BOH11, CPRG16].
The implemented web application was integrated into AntTracks,
which is a JavaFX-based application, using a JavaFX WebView. Af-
ter loading a trace file, the user can select a time window and a list
of classifiers which are used to classify the heap at multiple points
within the selected time window. Subsequently, the resulting se-
quence of memory trees is converted to JSON and sent to the tree
visualization web application via WebSockets [FM11, WPJR11].
Using this JSON interface, our visualization tool could also be
used by other monitoring tools than AntTracks. A prototype of the
tool can be found at http://bit.ly/STAG-MemoryTreeVizTool.
This prototype also contains the data used in the following
two case studies. A video explaining the tool can be found at
http://bit.ly/STAG-MemoryTreeVizVideo.

7. Case Studies

To demonstrate the feasibility of our approach, we searched online
for real-world applications that contain memory leaks to showcase
how to investigate them. In the following, we present the analysis
of a memory leak in the Commons HttpClient library, as well as the
analysis of a memory leak in the Dynatrace easyTravel application.

7.1. Commons HttpClient

Finding applications or libraries that contain memory leaks re-
quires lots of effort, since their source code and the needed build
tools have to be publicly available. To find the memory leak-
ing library discussed in this section, we browsed Apache’s issue
tracker [Apa20] for the keyword leak. This way, we found an old
issue regarding a memory leak in the Commons HttpClient library,
a library that can be used to send HTTP requests. As the library
was completely unknown to us authors, it seemed like a good ex-
ample to check if our tree visualizations are useful to detect ac-
cumulating objects even in an unknown application. We down-
loaded the affected version 3.0.1 [Apa06] and built a small driver
application [WM20], which creates HTTP connections in multiple
batches, where in each batch 10,000 connections are created and
deleted shortly thereafter.

To analyze the memory behavior of our driver application, we
recorded a memory trace and inspected it using AntTracks. One
would expect to see spikes in the memory usage, as it should go up
when the connections are created and should go down after their
deletion. Yet, contrary to this expectation, Figure 11 shows that the
memory consumption continuously rose. It seems as if only a part
of the objects that were allocated during every batch are actually
garbage-collected afterwards. To create the tree visualizations in
Figure 12 through Figure 14, we grouped the heap objects by type
and allocation site and sorted them by absolute growth.

We started our analysis by comparing the first two sunbursts in
Figure 12. The first sunburst depicts the heap at the first memory
consumption peak, while the second sunburst depicts the heap at
the first dip. What immediately catches one’s eye is that the percent-
age of the heap that is occupied by the red type (i.e., the memory
tree’s artificial Other node) shrank significantly between the peak
and the dip, while the relative amount of memory occupied by ob-
jects of the other types grew. Looking at the next two sunbursts we
can see that this trend continues. In the end, around 90% of the
heap are occupied by objects of only six different types. The local
view of the time-travel-based visualizations at this point in time is
also shown in Figure 13. All of these types except HostParams
(brown) are allocated at a single allocation site each (since all types
only have a single node on the second level).

To better grasp how the absolute sizes of the nodes develop over
time, the scaling feature of our icicle views is used in Figure 14.
Comparing the first icicle to the last icicle immediately indicates
that the heap grew several-fold. Furthermore, we again can see that
nearly the complete growth accounts to six different types.

To find the reason for the memory leak, the allocation
sites of the types that grew the most are inspected. We
can see that nearly all LinkedList objects were allocated
in the constructor of MultiThreadedHttpConnection-
Manager$HostConnectionPool, which is the type that grew
the third most (green). The main allocation site of that type is
the method MultiThreadedHttpConnectionManager$-
ConnectionPool::getHostPool(). This provided us with
enough information to investigate that method in the source code.
There we found that the MultiThreadedHttpConnection-
Manager$HostConnectionPool objects are added to a map,
yet they are not removed from that map when the connection is

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.
This is the author’s version of the work. The definitive version was published in the Pro-
ceedings of the Conference on Smart Tools and Applications for Graphics.
https://doi.org/10.2312/stag.20201241

M. Weninger & L. Makor & H. Mössenböck / Memory Leak Analysis using Time-Travel-based and Timeline-based Tree Evolution Visualizations

Figure 11: AntTracks reports continuous memory growth in
HttpClient.

Figure 12: Timeline view with unscaled sunbursts.

Figure 13: Final sunburst at the end of the time window.

Figure 14: Timeline view with scaled icicles.

deleted, resulting in a memory leak. This causes the connection
pool (and all other objects referenced by it) to accumulate over
time. Fixing the code by correctly removing the objects from the
map once the connections are closed gets rid of the memory leak
and leads to the expected memory behavior, as shown in Figure 15.

7.2. easyTravel

The second investigated application is Dynatrace easyTravel. Dy-
natrace focuses on application performance monitoring (APM) and

Figure 15: Expected spike pattern after fixing the memory leak.

distributes easyTravel as their state-of-the-art demo application. It
is a multi-tier application for a travel agency, using a Java back-
end. An automatic load generator distributed together with easy-
Travel can simulate accesses to the service. When easyTravel is
started, different problem patterns can be enabled and disabled, one
of which is a hidden memory leak somewhere in the backend.

Our heap evolution visualization grouped the heap at multiple
points in time using three classifiers: containing data structure,
type, and closest domain call site. The first classifier groups objects
based on the data structure(s) they are contained in. If an object is
contained in a single data structure it is assigned the group “<Data
structure type> (allocated in <Data structure allocation site>)”,
for example “HashMap (allocated in MyClass::myMethod())”, oth-
erwise it is either assigned the group “Not contained in a data struc-
ture” or “Contained in multiple data structures”. This way, single
data structures that keep alive a lot of objects can easily be detected.
The third classifier, i.e., closest domain call site, differs from the
normal allocation site classier as it returns the method call within
easyTravel’s code base that caused the allocation even if the allo-
cation itself is hidden inside a third-party framework.

Figure 16 shows the local view of our time-travel-based sunburst
visualization at three different points in time. The nodes within
the trees have been sorted by absolute growth, i.e., independent
of which sunburst we look at, we can automatically infer that the
object group represented by the blue segment (i.e., objects stored
in a ConcurrentHashMap data structure that has been allo-
cated in method findLocations() of class JourneySer-
vice) grows the most over the selected time window. This also
becomes apparent when comparing the sunburst at time t1 to the
sunburst at time t3. While all other data structure segments (inner
circle segments) shrink, the segment of the suspicious Concur-
rentHashMap grows strongly. By hovering over the circle seg-
ment at both points in time, we can find out that the Concurren-
tHashMap only makes up 11.8% of the heap at t1, while it makes
up 39.5% at t3.

Figure 17 shows the sunburst at t3, with a drill-down performed
on the ConcurrentHashMap. We can see that around 45% of
the objects stored in this data structure are each of type Location
and Date. Due to the drill-down, we can now also see the third tree
level, i.e., the closest domain call sites. Since Location as well as
Date both only have one child node, we know that all allocations
of these objects are caused by a single method each.

The collected information greatly helps to locate and fix the
problem. The method in which the Location objects depicted in
Figure 17 are added to the suspicious ConcurrentHashMapwas
easily found. Its name locationCache and its use in the code

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

M. Weninger & L. Makor & H. Mössenböck / Memory Leak Analysis using Time-Travel-based and Timeline-based Tree Evolution Visualizations

Figure 16: Heap evolution time travel through easyTravel shown at three different points in time t1, t2, and t3. This indicates a leak involving
a data structure of type ConcurrentHashMap that has been allocated in method findLocations() of class JourneyService
(inner blue circle segment). This data structure accumulates Location and Date objects over time (outer blue circle segments).

Figure 17: Drill-down into the suspicious Concurren-
tHashMap data structure at timestamp t3.

reveal that this map should serve as a cache for location searches.
Once a search has been executed for a given QueryKey, a list of
Location objects is stored. Subsequent searches for the same key
should find the respective entry in the map. However, QueryKey
neither implements hashCode nor equals. Thus, every request
(even for an already existing key) resulted in a cache miss, which
led to this typical memory leak. We were able to easily resolve this
problem by implementing the two mentioned methods accordingly.

8. Related Work

As ample work regarding tree visualizations has already been pre-
sented throughout this work, this section focuses on visualizations
in the domain of memory monitoring. Most memory visualizations

revolve around object (reference) graph visualization. A pure object
graph consists of nodes representing heap objects and edges that
represent the references between them [PNC98]. Even though such
a graph could be directly visualized as a node-link diagram [ZZ01],
the size of modern applications (having millions of live objects)
renders approaches that display every heap object as a separate
node infeasible. Thus, most approaches create ownership trees us-
ing the concept of object ownership [PNC98, Mit06, WGM18b]
based on the dominator relation [LT79]. Ownership trees can be
used to detect objects that keep many other objects alive.

Reiss [Rei09, Rei10] visualizes the aggregated ownership graph
in an icicle-like visualization using coloring, hatching, hue and sat-
uration. The approach by Hill et al. [HNP00,HNP02] plots the evo-
lution of ownership trees in a scalable tree visualization that shares
visual similarities with flame graph [Gre16a, Gre16b]. Mitchell et
al. [MSS09] apply further transformations on ownership trees to de-
tect costly data structures, which are then displayed in a node-link
diagram. Heapviz [AKG∗10, KAG∗13] is a tool that also displays
data structures on different levels of detail, arranging collapsible
nodes in a radial node-link diagram. The work by De Pauw and
Sevitsky [DPS00] is one of the few object graph visualization ap-
proaches that does not utilize the dominator relation. Instead, they
extract reference patterns, i.e., repetitive reference sequences in the
heap object graph, and visualize occurrences of these patterns. The
detection of these patterns can be restricted to those objects that
have been created between two heap snapshots (i.e., potentially
leaking objects), which then can be explored visually.

Our approach is orthogonal to these existing visualization ap-
proaches. Most object reference graph visualizations focus on the
analysis of the keep-alive relation between objects (e.g., which ob-
jects keep alive objects of type B). Yet, this expects the user to
already know which objects need to be inspected in more detail.
This is where our approach comes into play. It gives the user visual
information about which objects accumulate over time, as these are
the objects that are most likely the result of a memory leak. For
example, it may report that objects of type B that are allocated in
method MyClass:myMethod() consistently increased in num-

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.
This is the author’s version of the work. The definitive version was published in the Pro-
ceedings of the Conference on Smart Tools and Applications for Graphics.
https://doi.org/10.2312/stag.20201241

M. Weninger & L. Makor & H. Mössenböck / Memory Leak Analysis using Time-Travel-based and Timeline-based Tree Evolution Visualizations

ber over time. Thus, the main focus of this work lies in the detection
of growing heap object groups. Nevertheless, the information pro-
vided by our visualizations may not only help in detecting growing
object groups, but are also often already detailed enough to help in
fixing a leak. As shown in Section 7, knowing which kinds of ob-
jects accumulate, where these accumulating objects are allocated
and in which data structures they are stored (information that can
be provided by our approach) is often enough to be able to locate
and fix a problem in the source code. Thus, our approach can be
used on its own, or in combination with existing graph-based anal-
ysis techniques if additional information is needed or wanted.

9. Current Limitations and Future Work

In this section, we discuss current limitations of our work and our
tool and how we will address them in the future.

9.1. User Study

We believe that the presented techniques are useful to inspect mem-
ory evolution over time, especially for novice users that could oth-
erwise easily be overwhelmed if the visualized data was presented
in raw format or tables. We presented case studies to demonstrate
how tree visualization can be used in the domain of memory mon-
itoring and how users are able to understand and reason about the
memory behavior of real world applications. Even though existing
work suggests that tree visualizations are useful for a variety of
analysis tasks [WTM06, Teo07, BPP17], a more thorough evalua-
tion is planned. We want to conduct a user study to compare the
performance of participants who use tree visualizations to inspect
an application’s memory behavior with the performance of partici-
pants who use other graphical and textual representations.

9.2. Information Highlighting and Guidance

Even though information visualization has the potential to ease
the analysis of the underlying data, a person still requires a fair
amount of background knowledge and experience to perform mem-
ory analysis effectively. Especially novice users often lack this ex-
perience and consequently struggle when using memory analysis
tools [WGGS20]. In the future, we want to further increase the ac-
cessibility of our tree visualizations by making their use easier. The
tool should automatically detect suspicious memory behavior, e.g.,
growing object groups, and then guide the user through the analysis
by explaining the steps that have to be performed, alongside auto-
matic highlighting of important information in the visualization.

9.3. Reference Visualization

As shown, our current visualizations are a great way to detect and
inspect growth over time. Yet, once we know which objects accu-
mulate over time (often objects of a few different types allocated at
a few different allocation sites), most of the further analysis hap-
pens on the source code level in the IDE. Objects accumulate over
time if they are directly or indirectly referenced by a GC root. For
example, as presented in Section 7.1, objects of one type that were
stored in a map caused objects of multiple different types to accu-
mulate. Thus, the references between objects can be a vital infor-
mation in the analysis of memory leaks. In the future, we plan to

extend our tree visualization to support the depiction of references
between object groups, for example by using tree visualization that
support hierarchical edge bundling [Hol06, HCvW07, HdRFH12].

9.4. Data Structure Growth Visualization

Currently, our visualization tool can display the evolution of the
whole heap over time by grouping the live heap objects based on a
list of user-defined classifiers at multiple points in time. In the fu-
ture, we want to explore how to use the same tree visualization tech-
niques to display the results of existing analysis features that yet
lack visualization support. Inspired by related work on data struc-
ture visualization [AKG∗10, KAG∗13], one of AntTracks’s analy-
sis features that we want to enrich using our visualizations is its
automatic data structure growth analysis [WGM18a, WGM19a].
This feature automatically detects strongly growing data structures
in a monitored application and reports them to the user for more
detailed inspection using drill-down operations within a tree table.
Since the visualization of evolutionary data as well as drilling down
on the data are core features of our approach, we plan to integrate
our tree visualizations with the existing data structure analysis.

10. Conclusions

In this paper, we presented our approach to apply tree visualiza-
tions to facilitate the analysis of memory leaks. We discussed how
a heap state, more specifically its heap objects, can be grouped into
a memory tree, and how such a tree can be visualized using exist-
ing tree visualization techniques. We defined a requirements cata-
log that we used to select the sunburst and the icicle visualization
techniques as suitable to display heap memory. We then presented
techniques how to reduce a memory tree’s complexity by pruning it
and how a drill-down functionality can be used in the selected visu-
alizations to enable detailed analyses of the heap composition. Our
approach is not only able to display a single heap state, but can also
visualize the memory evolution over time in two different ways:
a timeline-based approach that displays the visualized state of the
heap at multiple point in time side-by-side, and a time-travel-based
approach for detailed analyses. Growing elements in these visual-
izations hint at an accumulation of heap objects that could be the
result of a possible memory leak.

We implemented our approach as a D3.js web application that
supports various convenience features such as animations when
moving between points in time. We presented case studies in which
we performed memory analyses of different applications to show
the approach’s feasibility and usefulness. We hope that our tree vi-
sualizations can aid experienced users as well as users with a lim-
ited background in memory analysis in visually inspecting and an-
alyzing the memory behavior of their applications.

Acknowledgment

The financial support by the Austrian Federal Ministry for Digital
and Economic Affairs, the National Foundation for Research, Tech-
nology and Development, and Dynatrace is gratefully acknowl-
edged.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

M. Weninger & L. Makor & H. Mössenböck / Memory Leak Analysis using Time-Travel-based and Timeline-based Tree Evolution Visualizations

References

[AHL∗13] AUBER D., HUET C., LAMBERT A., RENOUST B., SAL-
LABERRY A., SAULNIER A.: GosperMap: Using a Gosper Curve for
Laying Out Hierarchical Data. IEEE Trans. Vis. Comput. Graph. 19, 11
(2013), 1820–1832. URL: https://doi.org/10.1109/TVCG.
2013.91, doi:10.1109/TVCG.2013.91. 3

[AKG∗10] AFTANDILIAN E., KELLEY S., GRAMAZIO C., RICCI N. P.,
SU S. L., GUYER S. Z.: Heapviz: Interactive Heap Visualization
for Program Understanding and Debugging. In Proc. of the ACM
Symposium on Software Visualization (SOFTVIS) (2010), pp. 53–62.
URL: https://doi.org/10.1145/1879211.1879222, doi:
10.1145/1879211.1879222. 9, 10

[Apa06] APACHE SOFTWARE FOUNDATION: Commons HttpClient
version 3.0.1, 2006. URL: https://mvnrepository.com/
artifact/commons-httpclient/commons-httpclient/
3.0.1. 7

[Apa20] APACHE SOFTWARE FOUNDATION: Issue tracker for Http-
Client, 2020. URL: https://issues.apache.org/jira/
projects/HTTPCLIENT/issues. 7

[BAB18] BLANCO A. F., ALCOCER J. P. S., BERGEL A.: Ef-
fective Visualization of Object Allocation Sites. In Proc. of the
IEEE Working Conference on Software Visualization (VISSOFT) (2018),
pp. 43–53. URL: https://doi.org/10.1109/VISSOFT.
2018.00013, doi:10.1109/VISSOFT.2018.00013. 1

[BLM15] BITTO V., LENGAUER P., MÖSSENBÖCK H.: Efficient Re-
building of Large Java Heaps from Event Traces. In Proc. of the Int’l.
Conf. on Principles and Practices of Programming on The Java Platform
(PPPJ) (2015), pp. 76–89. URL: https://doi.org/10.1145/
2807426.2807433, doi:10.1145/2807426.2807433. 2

[BN01] BARLOW S. T., NEVILLE P.: A Comparison of 2-
D Visualizations of Hierarchies. In Proc. of the IEEE Sym-
posium on Information Visualization (INFOVIS) (2001), pp. 131–
138. URL: https://doi.org/10.1109/INFVIS.2001.
963290, doi:10.1109/INFVIS.2001.963290. 3

[BNK16] BACHER I., NAMEE B. M., KELLEHER J. D.: Using Icicle
Trees to Encode the Hierarchical Structure of Source Code. In Proc.
of the Eurographics Conf. on Visualization (EuroVis) (2016), pp. 97–
101. URL: https://doi.org/10.2312/eurovisshort.
20161168, doi:10.2312/eurovisshort.20161168. 4

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3 Data-Driven
Documents. IEEE Trans. Vis. Comput. Graph. 17, 12 (2011), 2301–
2309. URL: https://doi.org/10.1109/TVCG.2011.185,
doi:10.1109/TVCG.2011.185. 7

[BPP17] BIUK-AGHAI R. P., PANG P. C., PANG B.: Map-like Visu-
alisations vs. Treemaps: An Experimental Comparison. In Proc. of the
10th Int’l. Symposium on Visual Information Communication and Inter-
action (VINCI) (2017), ACM, pp. 113–120. URL: https://doi.
org/10.1145/3105971.3105976, doi:10.1145/3105971.
3105976. 10

[Bru09] BRUTLAG J.: Speed Matters for Google Web Search,
2009. URL: https://ai.googleblog.com/2009/06/
speed-matters.html. 3

[CM07] CAWTHON N., MOERE A. V.: The Effect of Aesthetic on the
Usability of Data Visualization. In Proc. of the 11th Int’l. Conf. on In-
formation Visualisation (IV) (2007), pp. 637–648. URL: https://
doi.org/10.1109/IV.2007.147, doi:10.1109/IV.2007.
147. 3

[CPRG16] CALLEYA J., PAWLING R., RYAN C., GASPAR H. M.: Using
Data Driven Documents (D3) to Explore a Whole Ship Model. In Proc.
of the 11th System of Systems Engineering Conf. (SoSE) (2016), pp. 1–6.
URL: https://doi.org/10.1109/SYSOSE.2016.7542947,
doi:10.1109/SYSOSE.2016.7542947. 7

[CZvDR09] CORNELISSEN B., ZAIDMAN A., VAN DEURSEN A.,
ROMPAEY B. V.: Trace Visualization for Program Comprehension:

A Controlled Experiment. In Proc. of the 17th IEEE Int’l. Conf. on
Program Comprehension (ICPC) (2009), pp. 100–109. URL: https:
//doi.org/10.1109/ICPC.2009.5090033, doi:10.1109/
ICPC.2009.5090033. 1

[DPS00] DE PAUW W., SEVITSKY G.: Visualizing Reference Patterns
for Solving Memory Leaks in Java. Concurrency - Practice and Expe-
rience 12, 14 (2000), 1431–1454. URL: https://doi.org/10.
1002/1096-9128(20001210)12:14<1431::AID-CPE542>
3.0.CO;2-2, doi:10.1002/1096-9128(20001210)12:
14<1431::AID-CPE542>3.0.CO;2-2. 9

[Ecl20] ECLIPSE FOUNDATION: Eclipse Memory Analyzer (MAT),
2020. URL: https://www.eclipse.org/mat/. 1

[FFHW15] FITTKAU F., FINKE S., HASSELBRING W., WALLER J.:
Comparing Trace Visualizations for Program Comprehension Through
Controlled Experiments. In Proc. of the 23rd IEEE Int’l. Conf. on Pro-
gram Comprehension (ICPC) (2015), pp. 266–276. URL: https:
//doi.org/10.1109/ICPC.2015.37, doi:10.1109/ICPC.
2015.37. 1

[FKH15] FITTKAU F., KRAUSE A., HASSELBRING W.: Hierar-
chical Software Landscape Visualization for System Comprehen-
sion: A Controlled Experiment. In Proc. of the 3rd IEEE Work-
ing Conf. on Software Visualization (VISSOFT) (2015), pp. 36–
45. URL: https://doi.org/10.1109/VISSOFT.2015.
7332413, doi:10.1109/VISSOFT.2015.7332413. 1

[FKH17] FITTKAU F., KRAUSE A., HASSELBRING W.: Soft-
ware Landscape and Application Visualization for System Compre-
hension with ExplorViz. Inf. Softw. Technol. 87 (2017), 259–
277. URL: https://doi.org/10.1016/j.infsof.2016.
07.004, doi:10.1016/j.infsof.2016.07.004. 1, 3

[FM11] FETTE I., MELNIKOV A.: The WebSocket Protocol. RFC 6455
(2011), 1–71. URL: https://doi.org/10.17487/RFC6455,
doi:10.17487/RFC6455. 7

[GCS∗20] GHANAVATI M., COSTA D., SEBOEK J., LO D., ANDRZE-
JAK A.: Memory and Resource Leak Defects and their Repairs in Java
Projects. Empirical Software Engineering 25, 1 (2020), 678–718. URL:
https://doi.org/10.1007/s10664-019-09731-8, doi:
10.1007/s10664-019-09731-8. 1

[Gre16a] GREGG B.: The Flame Graph. ACM Queue 14, 2 (2016), 10.
URL: https://doi.org/10.1145/2927299.2927301, doi:
10.1145/2927299.2927301. 9

[Gre16b] GREGG B.: The Flame Graph. Commun. ACM 59, 6 (2016),
48–57. URL: https://doi.org/10.1145/2909476, doi:10.
1145/2909476. 9

[HBO10] HEER J., BOSTOCK M., OGIEVETSKY V.: A Tour through
the Visualization Zoo. ACM Queue 8, 5 (2010), 20. URL: http://
doi.acm.org/10.1145/1794514.1805128, doi:10.1145/
1794514.1805128. 2, 4

[HCvW07] HOLTEN D., CORNELISSEN B., VAN WIJK J. J.: Trace
Visualization Using Hierarchical Edge Bundles and Massive Sequence
Views. In Proc. of the 4th IEEE Int’l. Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT) (2007), pp. 47–54. URL:
https://doi.org/10.1109/VISSOF.2007.4290699, doi:
10.1109/VISSOF.2007.4290699. 10

[HdRFH12] HOP W., DE RIDDER S., FRASINCAR F., HOGENBOOM
F.: Using Hierarchical Edge Bundles to Visualize Complex Ontolo-
gies in GLOW. In Proc. of the ACM Symposium on Applied Computing
(SAC) (2012), pp. 304–311. URL: https://doi.org/10.1145/
2245276.2245338, doi:10.1145/2245276.2245338. 10

[HHK∗17] HINIKER A., HONG S. R., KIM Y., CHEN N., WEST
J. D., ARAGON C. R.: Toward the Operationalization of Vi-
sual Metaphor. J. Assoc. Inf. Sci. Technol. 68, 10 (2017), 2338–
2349. URL: https://doi.org/10.1002/asi.23857, doi:
10.1002/asi.23857. 3

[HNP00] HILL T., NOBLE J., POTTER J.: Scalable Visualisations

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.
This is the author’s version of the work. The definitive version was published in the Pro-
ceedings of the Conference on Smart Tools and Applications for Graphics.
https://doi.org/10.2312/stag.20201241

M. Weninger & L. Makor & H. Mössenböck / Memory Leak Analysis using Time-Travel-based and Timeline-based Tree Evolution Visualizations

with Ownership Trees. In Proc. of the 37th Int’l. Conf. on Tech-
nology of Object-Oriented Languages and Systems (TOOLS) (2000),
pp. 202–213. URL: https://doi.org/10.1109/TOOLS.
2000.891370, doi:10.1109/TOOLS.2000.891370. 9

[HNP02] HILL T., NOBLE J., POTTER J.: Scalable Visualizations of
Object-Oriented Systems with Ownership Trees. J. Vis. Lang. Com-
put. 13, 3 (2002), 319–339. URL: https://doi.org/10.1006/
jvlc.2002.0238, doi:10.1006/jvlc.2002.0238. 9

[Hol06] HOLTEN D.: Hierarchical Edge Bundles: Visualization of Ad-
jacency Relations in Hierarchical Data. IEEE Trans. Vis. Comput.
Graph. 12, 5 (2006), 741–748. URL: https://doi.org/10.
1109/TVCG.2006.147, doi:10.1109/TVCG.2006.147. 10

[HTMD14] HAHN S., TRÜMPER J., MORITZ D., DÖLLNER J.: Vi-
sualization of Varying Hierarchies by Stable Layout of Voronoi
Treemaps. In Proc. of the 5th Int’l. Conf. on Information Visual-
ization Theory and Applications (IVAPP (2014), pp. 50–58. URL:
https://doi.org/10.5220/0004686200500058, doi:10.
5220/0004686200500058. 3

[JS91] JOHNSON B., SHNEIDERMAN B.: Tree-Maps: A Space-
Filling Approach to the Visualization of Hierarchical Information
Structures. In Proc. of the IEEE Conf. on Visualization (1991),
pp. 284–291. URL: https://doi.org/10.1109/VISUAL.
1991.175815, doi:10.1109/VISUAL.1991.175815. 2

[KAG∗13] KELLEY S., AFTANDILIAN E., GRAMAZIO C., RICCI N. P.,
SU S. L., GUYER S. Z.: Heapviz: Interactive Heap Visualization
for Program Understanding and Debugging. Information Visualiza-
tion 12, 2 (2013), 163–177. URL: https://doi.org/10.1177/
1473871612438786, doi:10.1177/1473871612438786. 9,
10

[Kit94] KITCHIN R. M.: Cognitive maps: What are they and why
study them? Journal of Environmental Psychology 14, 1 (1994),
1–19. URL: https://doi.org/10.1016/S0272-4944(05)
80194-X, doi:10.1016/S0272-4944(05)80194-X. 3

[KK91] KAMADA T., KAWAI S.: A General Framework for Visualiz-
ing Abstract Objects and Relations. ACM Trans. Graph. 10, 1 (1991),
1–39. URL: https://doi.org/10.1145/99902.99903, doi:
10.1145/99902.99903. 2

[Lak94] LAKOFF G.: Master Metaphor List. University of California,
1994. 3

[LBF∗16] LENGAUER P., BITTO V., FITZEK S., WENINGER M.,
MÖSSENBÖCK H.: Efficient Memory Traces with Full Pointer In-
formation. In Proc. of the 13th Int’l. Conf. on Principles and Prac-
tices of Programming on the Java Platform: Virtual Machines, Lan-
guages, and Tools (PPPJ) (2016), pp. 4:1–4:11. URL: https://doi.
org/10.1145/2972206.2972220, doi:10.1145/2972206.
2972220. 2

[LBM15] LENGAUER P., BITTO V., MÖSSENBÖCK H.: Accurate and
Efficient Object Tracing for Java Applications. In Proc. of the 6th
ACM/SPEC Int’l. Conf. on Performance Engineering (ICPE) (2015),
pp. 51–62. URL: https://doi.org/10.1145/2668930.
2688037, doi:10.1145/2668930.2688037. 2

[LBM16] LENGAUER P., BITTO V., MÖSSENBÖCK H.: Efficient and
Viable Handling of Large Object Traces. In Proc. of the 7th ACM/SPEC
Int’l. Conf. on Performance Engineering (ICPE) (2016), pp. 249–260.
URL: https://doi.org/10.1145/2851553.2851555, doi:
10.1145/2851553.2851555. 2

[LH14] LIU Z., HEER J.: The Effects of Interactive Latency on Ex-
ploratory Visual Analysis. IEEE Trans. Vis. Comput. Graph. 20, 12
(2014), 2122–2131. URL: https://doi.org/10.1109/TVCG.
2014.2346452, doi:10.1109/TVCG.2014.2346452. 3

[LSDT19] LIMBERGER D., SCHEIBEL W., DÖLLNER J., TRAPP M.:
Advanced Visual Metaphors and Techniques for Software Maps. In
Proc. of the 12th Int’l. Symposium on Visual Information Communication
and Interaction (VINCI) (2019), pp. 11:1–11:8. URL: https://doi.
org/10.1145/3356422.3356444, doi:10.1145/3356422.
3356444. 3

[LSP08] LANGELIER G., SAHRAOUI H. A., POULIN P.: Explor-
ing the Evolution of Software Quality with Animated Visualiza-
tion. In Proc. of the IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC) (2008), pp. 13–20. URL:
https://doi.org/10.1109/VLHCC.2008.4639052,
doi:10.1109/VLHCC.2008.4639052. 5

[LT79] LENGAUER T., TARJAN R. E.: A Fast Algorithm for Finding
Dominators in a Flowgraph. ACM Trans. Program. Lang. Syst. 1, 1
(1979), 121–141. URL: https://doi.org/10.1145/357062.
357071, doi:10.1145/357062.357071. 9

[Mit06] MITCHELL N.: The Runtime Structure of Object Ownership.
In Proc. of the 20th European Conf. on Object-oriented Programming
(ECOOP) (2006), pp. 74–98. URL: https://doi.org/10.1007/
11785477_5, doi:10.1007/11785477_5. 9

[MSS09] MITCHELL N., SCHONBERG E., SEVITSKY G.: Mak-
ing Sense of Large Heaps. In Proc. of the 23rd European
Conf. on Object-Oriented Programming (ECOOP) (2009), pp. 77–97.
URL: https://doi.org/10.1007/978-3-642-03013-0_5,
doi:10.1007/978-3-642-03013-0_5. 9

[Mur13] MURRAY S.: Interactive Data Visualization for the Web.
O’Reilly Media, Inc., 2013. 2

[Ora20] ORACLE: VisualVM: All-in-One Java Troubleshooting Tool,
2020. URL: https://visualvm.github.io/. 1

[PNC98] POTTER J., NOBLE J., CLARKE D. G.: The Ins and Outs of
Objects. In Proc. of the Australian Software Engineering Conf. (ASWEC)
(1998), pp. 80–89. URL: https://doi.org/10.1109/ASWEC.
1998.730915, doi:10.1109/ASWEC.1998.730915. 9

[Rei09] REISS S. P.: Visualizing the Java Heap to Detect Memory Prob-
lems. In Proc. of the 5th IEEE Int’l. Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT) (2009), pp. 73–80. URL:
https://doi.org/10.1109/VISSOF.2009.5336418, doi:
10.1109/VISSOF.2009.5336418. 9

[Rei10] REISS S. P.: Visualizing the Java Heap. In Proc. of the 32nd
ACM/IEEE Int’l. Conf. on Software Engineering (2010), pp. 251–254.
URL: https://doi.org/10.1145/1810295.1810344, doi:
10.1145/1810295.1810344. 9

[Sch11] SCHULZ H.: Treevis.net: A Tree Visualization Reference.
IEEE Computer Graphics and Applications 31, 6 (2011), 11–15.
URL: https://doi.org/10.1109/MCG.2011.103, doi:10.
1109/MCG.2011.103. 2

[SS06] SCHULZ H., SCHUMANN H.: Visualizing Graphs - A Gener-
alized View. In Proc. of the 10th Int’l. Conf. on Information Visu-
alisation (IV) (2006), IEEE Computer Society, pp. 166–173. URL:
https://doi.org/10.1109/IV.2006.130, doi:10.1109/
IV.2006.130. 2

[STLD20] SCHEIBEL W., TRAPP M., LIMBERGER D., DÖLLNER J.: A
Taxonomy of Treemap Visualization Techniques. In Proc. of the 15th
Int’l. Joint Conf. on Computer Vision, Imaging and Computer Graph-
ics Theory and Applications (VISIGRAPP) (2020), pp. 273–280. URL:
https://doi.org/10.5220/0009153902730280, doi:10.
5220/0009153902730280. 2

[SZ00] STASKO J. T., ZHANG E.: Focus+Context Display and Navi-
gation Techniques for Enhancing Radial, Space-Filling Hierarchy Visu-
alizations. In Proc. of the IEEE Symposium on Information Visualiza-
tion (INFOVIS) (2000), pp. 57–65. URL: https://doi.org/10.
1109/INFVIS.2000.885091, doi:10.1109/INFVIS.2000.
885091. 2, 3

[Teo07] TEOH S. T.: A Study on Multiple Views for Tree Visual-
ization. In Proc. of SPIE - Visualization and Data Analysis (2007),
vol. 6495. URL: https://doi.org/10.1117/12.703076,
doi:10.1117/12.703076. 10

[TM04] TORY M., MÖLLER T.: Human Factors in Visualization
Research. IEEE Trans. Vis. Comput. Graph. 10, 1 (2004), 72–
84. URL: https://doi.org/10.1109/TVCG.2004.1260759,
doi:10.1109/TVCG.2004.1260759. 4

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

M. Weninger & L. Makor & H. Mössenböck / Memory Leak Analysis using Time-Travel-based and Timeline-based Tree Evolution Visualizations

[War13] WARE C.: Chapter One - Foundations for an Applied Sci-
ence of Data Visualization. In Information Visualization (Third
Edition), third edition ed., Interactive Technologies. Morgan Kaufmann,
Boston, 2013, pp. 1 – 30. URL: http://www.sciencedirect.
com/science/article/pii/B9780123814647000016,
doi:https://doi.org/10.1016/B978-0-12-381464-7.
00001-6. 2

[Wen20] WENINGER M.: AntTracks, 2020. URL: http://mevss.
jku.at/AntTracks. 2

[WGGS20] WENINGER M., GRÜNBACHER P., GANDER E., SCHÖR-
GENHUMER A.: Evaluating an Interactive Memory Analysis Tool: Find-
ings from a Cognitive Walkthrough and a User Study. Proc. ACM Hum.-
Comput. Interact. 4, EICS (June 2020). URL: https://doi.org/
10.1145/3394977, doi:10.1145/3394977. 10

[WGK10] WARD M. O., GRINSTEIN G. G., KEIM D. A.: Interactive
Data Visualization - Foundations, Techniques, and Applications. A K Pe-
ters, 2010. URL: http://www.akpeters.com/product.asp?
ProdCode=4735. 2

[WGM18a] WENINGER M., GANDER E., MÖSSENBÖCK H.: Analyz-
ing the Evolution of Data Structures Over Time in Trace-Based Offline
Memory Monitoring. In Proc. of the 9th Symp. on Software Perfor-
mance (SSP) (2018), pp. 64–66. URL: http://pi.informatik.
uni-siegen.de/stt/39_3/01_Fachgruppenberichte/
SSP18/WeningerGanderMoessenboeck18.pdf. 1, 10

[WGM18b] WENINGER M., GANDER E., MÖSSENBÖCK H.: Utilizing
Object Reference Graphs and Garbage Collection Roots to Detect Mem-
ory Leaks in Offline Memory Monitoring. In Proc. of the 15th Int’l. Conf.
on Managed Languages & Runtimes (ManLang) (2018), pp. 14:1–14:13.
URL: https://doi.org/10.1145/3237009.3237023, doi:
10.1145/3237009.3237023. 9

[WGM19a] WENINGER M., GANDER E., MÖSSENBÖCK H.: Analyz-
ing Data Structure Growth Over Time to Facilitate Memory Leak De-
tection. In Proc. of the 2019 ACM/SPEC Int’l. Conf. on Performance
Engineering (ICPE) (2019), pp. 273–284. URL: https://doi.
org/10.1145/3297663.3310297, doi:10.1145/3297663.
3310297. 1, 2, 10

[WGM19b] WENINGER M., GANDER E., MÖSSENBÖCK H.: Detection
of Suspicious Time Windows In Memory Monitoring. In Proc. of the
16th ACM SIGPLAN Int’l. Conf. on Managed Programming Languages
and Runtimes (MPLR) (2019), pp. 95–104. URL: https://doi.
org/10.1145/3357390.3361025, doi:10.1145/3357390.
3361025. 5

[Wil09] WILLIAMS R.: The Animator’s Survival Kit–Revised Edition: A
Manual of Methods, Principles and Formulas for Classical, Computer,
Games, Stop Motion and Internet Animators. Faber & Faber, Inc., 2009.
6

[WL07] WETTEL R., LANZA M.: Visualizing Software Systems as
Cities. In Proc. of the 4th IEEE Int’l. Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT) (2007), IEEE Computer So-
ciety, pp. 92–99. URL: https://doi.org/10.1109/VISSOF.
2007.4290706, doi:10.1109/VISSOF.2007.4290706. 3

[WL08] WETTEL R., LANZA M.: Visual Exploration of Large-Scale
System Evolution. In Proc. of the 15th Working Conf. on Reverse En-
gineering (WCRE) (2008), pp. 219–228. URL: https://doi.org/
10.1109/WCRE.2008.55, doi:10.1109/WCRE.2008.55. 5, 6

[WLM17] WENINGER M., LENGAUER P., MÖSSENBÖCK H.: User-
centered Offline Analysis of Memory Monitoring Data. In Proc.
of the 8th ACM/SPEC on Int’l. Conf. on Performance Engineering
(ICPE) (2017), pp. 357–360. URL: https://doi.org/10.1145/
3030207.3030236, doi:10.1145/3030207.3030236. 1, 2

[WLR11] WETTEL R., LANZA M., ROBBES R.: Software Systems
as Cities: A Controlled Experiment. In Proc. of the 33rd Int’l.
Conf. on Software Engineering (ICSE) (2011), ACM, pp. 551–560.
URL: https://doi.org/10.1145/1985793.1985868, doi:
10.1145/1985793.1985868. 1, 3

[WM18] WENINGER M., MÖSSENBÖCK H.: User-defined Classifica-
tion and Multi-level Grouping of Objects in Memory Monitoring. In
Proc. of the 2018 ACM/SPEC Int’l. Conf. on Performance Engineering
(ICPE) (2018), pp. 115–126. URL: https://doi.org/10.1145/
3184407.3184412, doi:10.1145/3184407.3184412. 1, 2

[WM20] WENINGER M., MAKOR L.: HttpClient Leak
Driver, 2020. URL: https://github.com/NeonMika/
httpclient-leak-driver/. 7

[WMGM19] WENINGER M., MAKOR L., GANDER E., MÖSSENBÖCK
H.: AntTracks TrendViz: Configurable Heap Memory Visualization
Over Time. In Comp. of the 2019 ACM/SPEC Int’l. Conf. on Perfor-
mance Engineering (ICPE) (2019), pp. 29–32. URL: https://doi.
org/10.1145/3302541.3313100, doi:10.1145/3302541.
3313100. 1, 5

[WMM19] WENINGER M., MAKOR L., MÖSSENBÖCK H.: Memory
Leak Visualization using Evolving Software Cities. In Proc. of the
10th Symp. on Software Performance (SSP) (2019), pp. 44–46. URL:
http://pi.informatik.uni-siegen.de/stt/39_4/01_
Fachgruppenberichte/SSP2019/SSP2019_Weninger.
pdf. 3, 6

[WMM20] WENINGER M., MAKOR L., MÖSSENBÖCK H.: Memory
Cities: Visualizing Heap Memory Evolution Using the Software City
Metaphor. In Proc. of the 8th IEEE Working Conference on Software
Visualization (VISSOFT) (2020). 3, 6

[WPJR11] WESSELS A., PURVIS M., JACKSON J., RAHMAN S. S.:
Remote Data Visualization through WebSockets. In Proc. of the
8th Int’l. Conf. on Information Technology: New Generations (ITNG)
(2011), pp. 1050–1051. URL: https://doi.org/10.1109/
ITNG.2011.182, doi:10.1109/ITNG.2011.182. 7

[WTM06] WANG Y., TEOH S. T., MA K.: Evaluating the Ef-
fectiveness of Tree Visualization Systems for Knowledge Discov-
ery. In Proc. of the Joint Eurographics - IEEE VGTC Symposium
on Visualization (EuroVis) (2006), pp. 67–74. URL: https://
doi.org/10.2312/VisSym/EuroVis06/067-074, doi:10.
2312/VisSym/EuroVis06/067-074. 10

[WWF∗13] WALLER J., WULF C., FITTKAU F., DOHRING P., HAS-
SELBRING W.: Synchrovis: 3D Visualization of Monitoring Traces
in the City Metaphor for Analyzing Concurrency. In Proc. of the
1st IEEE Working Conf. on Software Visualization (VISSOFT) (2013),
pp. 1–4. URL: https://doi.org/10.1109/VISSOFT.2013.
6650520, doi:10.1109/VISSOFT.2013.6650520. 3

[ZL15] ZHAO H., LU L.: Variational Circular Treemaps for In-
teractive Visualization of Hierarchical Data. In Proc. of the
IEEE Pacific Visualization Symposium (PacificVis) (2015), pp. 81–
85. URL: https://doi.org/10.1109/PACIFICVIS.2015.
7156360, doi:10.1109/PACIFICVIS.2015.7156360. 3

[ZZ01] ZIMMERMANN T., ZELLER A.: Visualizing memory graphs.
In Software Visualization (2001), pp. 191–204. URL: https:
//doi.org/10.1007/3-540-45875-1_15, doi:10.1007/
3-540-45875-1_15. 9

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.
This is the author’s version of the work. The definitive version was published in the Pro-
ceedings of the Conference on Smart Tools and Applications for Graphics.
https://doi.org/10.2312/stag.20201241

Chapter 6

User Guidance and User
Behavior

6.1 Automatic Detection of Suspicious Time

Windows

This section includes the paper [319] on how to detect suspicious time win-
dows that hint at possible memory leaks or high memory churn.

Paper:
Markus Weninger, Elias Gander, Hanspeter Mössenböck:
Detection of Suspicious Time Windows in Memory Monitoring. In Proceed-
ings of the 16th ACM SIGPLAN International Conference on Managed Pro-
gramming Languages and Runtimes, MPLR 2019, Athens, Greece, October
21-22, 2019.

135

Detection of Suspicious Time Windows
in Memory Monitoring

Markus Weninger
Institute for System Software

CD Laboratory MEVSS
Johannes Kepler University

Linz, Austria
markus.weninger@jku.at

Elias Gander
CD Laboratory MEVSS

Johannes Kepler University
Linz, Austria

elias.gander@jku.at

Hanspeter Mössenböck
Institute for System Software
Johannes Kepler University

Linz, Austria
hanspeter.moessenboeck@jku.at

Abstract
Modern memory monitoring tools do not only offer analyses
at a single point in time, but also offer features to analyze the
memory evolution over time. These features provide more
detailed insights into an application’s behavior, yet they also
make the tools more complex and harder to use.

Analyses over time are typically performed on certain time
windows within which the application behaves abnormally.
Such suspicious time windows first have to be detected by
the users, which is a non-trivial task, especially for novice
users that have no experience in memory monitoring.
In this paper, we present algorithms to automatically de-

tect suspicious time windows that exhibit (1) continuous
memory growth, (2) high GC utilization, or (3) high memory
churn. For each of these problems we also discuss its root
causes and implications.
To show the feasibility of our detection techniques, we

integrated them into AntTracks, a memory monitoring tool
developed by us. Throughout the paper, we present their
usage on various problems and real-world applications.

CCS Concepts • Software and its engineering → Soft-
ware defect analysis; Software performance; •Mathemat-
ics of computing→ Time series analysis.

Keywords Memory Monitoring, Automatic Time Window
Detection, Memory Leak Analysis, Memory Churn Analysis

ACM Reference Format:
Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2019.
Detection of Suspicious Time Windows in Memory Monitoring. In
Proceedings of the 16th ACM SIGPLAN International Conference on
Managed Programming Languages and Runtimes (MPLR ’19), October

MPLR ’19, October 21–22, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 16th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes (MPLR ’19), October 21–22, 2019,
Athens, Greece, https://doi.org/10.1145/3357390.3361025.

21–22, 2019, Athens, Greece. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3357390.3361025

1 Introduction
Modern programming languages such as Java use automatic
garbage collection. Heap objects that are no longer reachable
from so-called GC roots (e.g., from static fields or thread-local
variables) are automatically reclaimed by a garbage collector
(GC). Nevertheless, memory problems can still occur even
in garbage-collected languages.
A memory leak [13] occurs if objects that are no longer

needed remain reachable from GC roots due to program-
ming errors. This leads to a continuously growing memory
consumption which can cause the application to run out of
memory, crashing it in the worst case [19].
Even though modern garbage collectors execute certain

garbage-collection-related operations concurrently to the
application [8, 12, 18], many garbage collection algorithms
require stop-the-world pauses, i.e., the application is halted
while the GC is running. Such GC phases can make up a
significant portion of the application’s run time.
A high memory churn rate stems from frequent unneces-

sary creation and collection of objects, also known as ex-
cessive dynamic allocations [40–42]. This leads to increased
work for allocating these objects on the heap and an in-
creased number of garbage collections, which can have a
negative impact on an application’s performance.
Such memory anomalies manifest themselves in various

ways. They lead to different patterns in metrics such as mem-
ory consumption, GC frequency, or GC time. Inspecting and
interpreting visualizations of thesemetrics, either in a tabular
form or as time-series charts, can be hard for users, especially
if they do not have a background in memory analysis.
The aim of this work is to ease the use of memory moni-

toring tools for novice users. To do so, we free users from
the task of searching for different types of suspicious time
windows by providing algorithms that automatically detect
them. Thus, our contributions are:

1. different algorithms and heuristics to automatically
detect suspicious time windows with
a. continuous memory growth (see Section 3.2).
b. high GC utilization (see Section 3.3).

MPLR ’19, October 21–22, 2019, Athens, Greece Markus Weninger, Elias Gander, and Hanspeter Mössenböck

c. high memory churn (see Section 3.4).
including discussions on the root causes and the im-
plications of the different types of memory anomalies.

2. a working implementation of our approach in the of-
fline memory monitoring tool AntTracks Analyzer.

2 Background
AntTracks consists of two parts: The AntTracks VM [23–25],
a virtual machine based on the Java Hotspot VM [47], and
the AntTracks Analyzer [2, 51–56], a trace-based memory
analysis tool. Since the techniques presented in this paper
have been integrated into AntTracks, this section discusses
memory traces and how AntTracks uses them.

2.1 Memory Snapshots versus Memory Traces
Many state-of-the-art tools use memory snapshots, i.e., heap
dumps, for memory analysis, whereas AntTracks uses mem-
ory traces.While heap dumpsmay be sufficient for heap state
analysis at a single point in time, it has been shown that they
are not well suited for memory analysis over time [51]. This
has various reasons. One of them is that heap dumps do
not preserve object identities, i.e., one cannot distinguish
whether two objects in two different heap dumps are the
same or not.
Trace-based approaches try to circumvent the shortcom-

ings of snapshots by continuously recording information
while an application runs. Beside typicalmemory traces [5, 15,
16, 34, 35, 58, 61] that encodememory- andGC-related events
such object allocations, object deaths, or object field accesses,
there also also other trace types such as execution traces that
rather focus on call hierarchy information [6, 17, 46].

2.2 Trace Recording by the AntTracks VM
The AntTracks VM records memory events such as object
allocations and object movements during GC by writing
them into trace files [24]. Trace recording introduces a low
run-time overhead of about 5%. Information about GC roots
and the references between objects can also be added to the
trace [23, 53]. To reduce the trace size, the AntTracks VM
does not record any redundant data and applies compres-
sion [25].

2.3 AntTracks Analyzer
2.3.1 Reconstruction
The AntTracks Analyzer is able to parse a trace file by in-
crementally processing its events, which enables it to recon-
struct the heap state for every garbage collection point [2].
A heap state is the set of heap objects that were live in the
monitored application at a certain point in time. For every
heap object, a number of properties can be reconstructed,
including its address, its type, its allocation site, the heap
objects it references, and the heap objects it is referenced by.

2.3.2 Analysis
The AntTracks Analyzer’s core mechanism is object clas-
sification and multi-level grouping [54, 56] in which heap
objects can be grouped according to certain criteria such as
type, allocation site, allocating thread, and so on.

Various techniques to analyze the memory evolution over
time have been presented in the past. For example, the ap-
proach described in [51, 52] detects the common problem of
data structure growth. Handled incorrectly, data structures
are often the root cause of memory leaks. In [55], we present
an analysis technique that visualizes how the heap compo-
sition (i.e., the heap classified by a given object classifier
combination) develops over time. All these approaches rely
on a previously selected time window. By detecting suitable
time windows automatically, such analysis techniques may
be easier to apply for novice users.

3 Approach
This section explains howwe support users to detect memory
anomalies in an application’s memory behavior. We present
three different time window types, discuss their root causes
and implications, and show heuristics and algorithms to
automatically detect them. For each time window type, we
also show an example on howAntTracks detects a suspicious
time window in a real-world application and discuss how
this window covers the problem’s root cause.

3.1 Desired Window Characteristics
An ideal time window would outline just that portion of
the program that should be investigated to find and remove
the root cause of the underlying problem. Thus, we define
characteristics that a detected time windows should exhibit.

Size Constraints First, detected time windows are desired
to be short since one or more analysis techniques will be
applied on the selected time window. The run time of most of
these techniques depends on the number of garbage collec-
tions covered by the window. Despite this, windows should
also cover a minimum number of garbage collections to pre-
vent them from being only short, less important outliers.

Relevance The detected time windows should cover allo-
cations and objects related to the underlying problem and
as little noise, i.e., allocation and objects not related to the
problem, as possible. If a window contained noise, e.g., allo-
cations that are not relevant to a memory leak, the noise will
also distort the results of analyses applied on the window.
This makes it harder to reveal the root cause of the problem.

For example, a memory leak might manifest itself only
after a certain point in time. Before that point, fluctuations
in the memory can happen due to various reasons such as
initialization procedures. These fluctuations are irrelevant
for memory leak analysis, i.e., noise, and should be excluded
from the detected time window.

Detection of Suspicious Time Windows in Memory Monitoring MPLR ’19, October 21–22, 2019, Athens, Greece

Maximum Intensity Problems such as high garbage col-
lection overhead generally do not persist throughout the
whole application, but rather occur as hotspots. A detection al-
gorithm should find the window that covers the most intense
hotspot, e.g., the window with the highest overall garbage
collection overhead.

Severity Since the aim of this work is to support novice
users by automatically detecting suspicious time windows,
every detection algorithm has to define thresholds to decide
whether a detected time window is indeed suspicious. Win-
dows that are not considered to be suspicious should not be
presented to the users. For example, a detected garbage col-
lection overhead hotspot may only be considered suspicious
if the garbage collection overhead over the window exceeds
a certain threshold, e.g., 10%.

3.2 Memory Leak Window
If a Java application contains a memory leak, certain objects
are unintentionally kept alive, causing them to accumulate
over time even though they are no longer needed. Conse-
quently, the occupied heap space grows until the application
runs out of memory, causing it to crash.
Unfortunately, such a growth trend may be difficult to

recognize in a long running application’s memory evolution,
especially for novice users. Section 3.2.1 discusses the reasons
for this in more detail. Thus, we present two algorithms to
automatically detect time windows with suspicious growth
trends, freeing the user from this task.

3.2.1 Trace Preprocessing
Detecting a memory-leak-induced growth trend based on
the occupied heap memory can be difficult. First, the growth
might be slow and only significant after the application has
run for a long time. Additionally, the occupied memory fluc-
tuates due to garbage collections, which makes it harder to
see a clear trend. Finally, growth trends can be masked by
floating garbage, that is, objects that are no longer reachable
but have not been garbage collected yet. Thus, our approach
detects growth trends based on the reachable memory, that is,
the part of the heap memory that is reachable from GC roots.
The reachable memory is unaffected by garbage collections
and free from floating garbage which makes it the ideal basis
to detect memory-leak-induced growth trends.

To calculate the reachable memory of a certain heap state,
we start at the GC roots. By following all references recur-
sively, we find all live objects on the heap. Summing up their
sizes results in the amount of reachable memory, i.e., the
memory in the heap that is alive.

This reachable memory calculation happens during trace
file parsing, i.e., when the trace file is read for the first time.
Calculating the reachable memory for every reconstructed
heap state can slow down this parsing process. If perfor-
mance is of concern to the user, AntTracks allows them to

enable sampled reachable memory calculation, i.e., to cal-
culate the reachable memory only for certain heap states.
When sampling is enabled, by default the reachable memory
is calculated only for every second reconstructed heap state,
i.e., at every other garbage collection, roughly cutting the
time spent on reachable memory calculation in half. In our
experience, this sampling frequency works well with the al-
gorithms presented in Section 3.2.2. Nevertheless, users can
adjust the sampling frequency to either reduce the parsing
time or to increase the precision of the resulting reachable
memory trend.

3.2.2 Automatic Time Window Detection
In the following, we present two algorithms to detect a time
window with a growth trend in reachable memory. Both
algorithms operate on a time series of reachable memory that
was collected according to the preprocessing steps defined
in Section 3.2.1.

Linear-regression-based Algorithm
This algorithm starts with an initial window that (1) includes
the end of the application and (2) covers the last 10% of all
garbage collection points. It performs a linear regression [30]
over all reachable memory data points covered by the win-
dow and stores the slope of the linear regression line together
with the current time window.

Next, the window is expanded to cover one more data
point. Again, the algorithm performs a linear regression and
stores the slope together with the time window. It continues
in this way until the last time window, ranging from the
application’s start to the application’s end, has been handled.
Among all the stored windows, the one with the greatest
regression line slope is chosen as the resulting time window.
Finally, we also require that its regression slope is positive.

Figure 1 illustrates this algorithm. The plot shows 5 of the
regression lines that would be calculated in the course of the
algorithm. The regression line E has the greatest slope. Thus,
the algorithm would return the window ranging from 1200
ms to 1500 ms. Note that due to limited space, we did not
plot all regression lines.

Heuristic-based Algorithm
While the linear-regression-based algorithm is straightfor-
ward and easy to implement, the windows it detects do not
always fulfill the criteria we defined in Section 3.1. This
problem will be discussed in more detail in Section 3.2.3.
Considering the shortcomings of the linear-regression-

based algorithm, we introduced a second time window de-
tection algorithm. This algorithm mimics the way a human
would search for a continuous memory growth: Find the
longest time window over which the memory grows more-
or-less continuously, allowing minor drops.
From the time series of reachable memory data points,

the algorithm extracts the longest time window in which
(1) the end of the application is included and (2) every data

MPLR ’19, October 21–22, 2019, Athens, Greece Markus Weninger, Elias Gander, and Hanspeter Mössenböck

Figure 1. The linear-regression-based algorithm chooses the
time windows with the steepest regression slope (E).

point within the window fulfills the growth condition. A data
point fulfills the growth condition if its reachable memory
is greater than that of the previous one. If this is not the
case, a data point may still fulfill the growth condition if its
reachable memory (1) is greater than the reachable memory
of the window’s first data point and (2) is at least 75% of the
maximum reachable memory of all previous data points in
the window. This heuristic requires a detected window to
have an overall positive growth in reachable memory, but
tolerates smaller drops.

The detection algorithm consists of the following steps. It
starts with a window spanning only the application’s first
reachable memory data point. Next, it takes the second data
point and tests whether it fulfills the growth condition with
respect to the first point. If this is the case, the window is
expanded up to this point. Otherwise, the current window
is discarded and the algorithm starts again with a window
spanning only the second data point. The algorithm contin-
ues in this way until the application’s last data point has been
handled. Finally, to make sure that the detected time window
is long enough to be meaningful, the algorithm checks if the
time window covers at least 10% of all garbage collections.

Figure 2 illustrates this algorithm. The initial time window
starts at 0 ms and is expanded up to the first drop. Here the
reachable memory drops by 50%. Thus, the current window
is discarded and a new time window starts after the drop.
From there on, the window can be expanded up to the end
of the application because the second encountered drop is
not strong enough.

Narrowing the Time Window In many applications, the
reachable memory growth is not equally strong over the
whole detected window. In such cases it is often possible
to find a shorter subwindow with a higher growth rate. As
stated in Section 3.1, a short time window is desired since
subsequent analyses take less time to complete. Additionally,

Figure 2. The heuristic-based algorithm detects the longest
window without strong drops in the reachable memory.

if the growth over the shorter subwindow is caused by the
memory leak, the problematic objects will stand out even
more during the analysis. Consequently, the causes of the
memory leak will be easier to recognize. Nevertheless, there
is a chance that the strong growth covered by the shorter
subwindow is actually unrelated to the memory leak, which
instead manifests itself only in the slow and steady growth
over the full time window. Thus, in AntTracks we decided
to present both of these windows to the users. We leave it to
their choice whether they want to perform a quick inspection
of the strongest growth subwindow first.
When calculating a subwindow, we determine its mini-

mum and maximum size. We define the minimum size as
10% of all reachable memory data points in the long window
and the maximum size as 50% of all reachable memory data
points in the long window. In any case, the minimum size
must be at least two data points.

The algorithm takes the first data point in the longwindow
as a starting point and builds all possible windows that (1)
start at this data point, (2) end at another data point and
(3) meet the size constraints. For all these windows, it then
calculates the reachable memory growth per second and
chooses the one with the quickest growth. This time window
is remembered and the process is repeated with the next data
point as starting point. This is repeated until all data points
in the long window have been used as starting point. As a
result, the algorithm remembered one window for each data
point. Among all these windows, it again chooses the one
with the quickest growth.

3.2.3 Examples
As already mentioned, the heuristic-based algorithm has
been developed to overcome the flaws of the linear-regression-
based algorithm which does not always fulfill the desired
characteristics defined in Section 3.1. Figure 3 illustrates this
problem. While both algorithms detect the same time win-
dow in the first two examples on the top half, in the third
example the linear-regression-based algorithm includes a
presumably irrelevant spike. The linear-regression-based al-
gorithm performs even worse in the three examples on the
bottom half of Figure 3. In these examples, it includes the

Detection of Suspicious Time Windows in Memory Monitoring MPLR ’19, October 21–22, 2019, Athens, Greece

Figure 3. Six exemplarymemory evolutions and the detected
time windows (red = linear regression, blue = heuristic).

Figure 4. EasyTravel’s memory evolution and the memory
leak time window (yellow) detected by the heuristic-based
algorithm.

whole application in the detected time window instead of
just the final period of suspicious growth. Depending on the
analysis technique that should be applied on the time win-
dow, the noise included in these time windows may make it
difficult to recognize the root cause of the suspicious growth.

3.2.4 Case Study: Dynatrace EasyTravel
To show how our approach can be used in AntTracks, we
apply it on the Dynatrace easyTravel application [11]. Dyna-
trace focuses on application performance monitoring (APM)
and distributes easyTravel as their state-of-the-art demo ap-
plication. It is a multi-tier application for a travel agency,
using a Java backend. An automatic load generator can sim-
ulate accesses to the service. When easyTravel is started,
different problem patterns can be enabled and disabled, one
of which is a hidden memory leak somewhere in the backend.
Figure 4 shows the memory evolution of the application

and the time window that has been detected automatically
using the heuristic-based memory leak time window detec-
tion algorithm. After an initial peak (which is not included
in the final time window), the memory mostly grows, except
for a drop at around 150, 000ms , which is small enough to
be tolerated by the algorithm.

This time window can be inspected with different analysis
techniques. For example, the time window could be checked
for growing data structures, as done in [51]. The less noise
the window contains, the easier it becomes for users to spot
those data structures that are involved in the memory leak.

3.3 High GC Overhead Analysis
The garbage collection overhead is the ratio between the time
spent on garbage collections and the application’s overall run
time. The duration of a garbage collection partly depends on
the number of surviving objects. The more objects survive,
the more moves have to be executed by the garbage collector.
This leads to increased garbage collection times.

To reduce an application’s garbage collection overhead,
users should inspect the time window that exhibits the high-
est GC overhead. In this time window, analysis techniques
to identify those objects that survive and thus slow down
the collections could be applied. Yet, according to our ex-
perience, most novice users disregard problematic garbage
collector behavior and only focus on the memory evolution
when inspecting an application. Thus, we support them by
detecting the time window with the highest GC overhead
automatically.

3.3.1 Time Window Detection
On the other hand, windows that cover a very large num-
ber of garbage collections might take too long to analyze.
They also do not provide more insight because a shorter
window will still reveal the reasons for the high garbage
collection overhead. Thus, algorithms should only looks for
windows that cover at least 5 garbage collections and do not
cover more than 50 garbage collections. The numbers used
as smallest and largest window size have proven to work
well in most scenarios.

We assume that we know the start time and the end time
of each garbage collection in the application. To find the
window with the highest garbage collection overhead that
meets the window size constraint, our algorithm performs
the following steps: First, it selects a start timestamp for the
time window. In the first iteration, the start timestamp is the
trace’s very first timestamp, i.e., the timestamp that marks
the start of the application. It then builds all windows that (1)
start at this timestamp, (2) meet the size constraint, and (3)
end at the end of a garbage collection. Figure 5 demonstrates
the first iteration of the algorithm where windows A to E are
built from the initial timestamp. For each of these windows,
the garbage collection overhead is calculated by dividing the
time spent in garbage collections over the window by the
duration of the window. Among all windows constructed
this way, the algorithm remembers the one with the highest
garbage collection overhead. In the example in Figure 5, this
would be window C.

In the following iterations, the start timestamp moves
forward such that every end of a garbage collection serves
as start timestamp once. For every start timestamp then
again all valid windows are built and the one with the high-
est garbage collection overhead is remembered. Figure 6
shows the remembered window for each start timestamp
(windows 1○ to 5○). Among these windows, the algorithm

MPLR ’19, October 21–22, 2019, Athens, Greece Markus Weninger, Elias Gander, and Hanspeter Mössenböck

Figure 5. Windows A-E are all the valid windows that start
at the first timestamp. Window C is the one with the highest
garbage collection overhead.

finally chooses the one with the highest overhead. This final
window has the highest overhead of all possible windows
that meet the size constraint. In the example in Figure 6, this
would be window 3○.

The final window is only accepted if it has a overhead
of at least 10%. This threshold prevents us from detecting a
window with a generally low garbage collection overhead.

3.3.2 Case Study: AntTracks
We applied AntTrack’s garbage collection overhead window
detection mechanism on AntTracks itself. As shown in Fig-
ure 7, it was able to detect the time window with the highest
garbage collection overhead that meets the window size con-
straints. The time window covers the most intense part of
a garbage collection overhead hotspot. By analyzing which
objects had to be moved by the GC most often during this
window, we were able to find and fix a bottleneck involving
long[] objects that were created in AntTracks when pointer
information was read from trace files.

3.4 High Memory Churn Analysis
As we have seen before, garbage collections are slower the
more objects survive. Analogously, they are fast when many
objects die. Yet, even these fast garbage collections have to
pause the application. These stop-the-world pauses require
all application threads to halt at so-called safepoints, i.e.,
at specific instructions that block the executing thread if
necessary, before the GC can start to work.
Even though modern garbage collectors such as Shenan-

doah [12] or the Z GC [48, 49] perform certain operations
concurrently to the running application, nearly all garbage
collectors still have to use stop-the-world pauses at some
points. When many garbage collections occur over a short
time span, these pauses can lead to a significant overhead.

Figure 6. Windows 1○- 5○ are the windows with the high-
est garbage collection overhead for each start timestamp.
Window 3○ is the one with the highest overhead overall.

A typical cause for frequent garbage collections are objects
that are allocated in great numbers and turn into garbage
shortly after their allocation.
In the next section, we present an algorithm that detects

suspicious time windows based on an application’s mem-
ory churn rate. The memory churn rate is the frequency at
which the application discards memory within a certain time
window. This hints at a wasteful use of objects, i.e., an un-
necessarily high amount of short-living object allocations.
Often, algorithms can be adjusted to use fewer temporary
objects, which leads to two improvements: (1) Less time is
spent for the allocation of objects, and (2) the number of
garbage collections is reduced. A common case for the ex-
cessive use of temporary objects in Java is the boxing of
primitives.

3.4.1 Time Window Detection
To detect the time window with the highest memory churn
rate we basically use the algorithm described in Section 3.3.1.
The only difference is that this time the algorithm searches
for the window with the highest memory churn rate instead

Figure 7. Automatically detected GC overhead window in
AntTracks, highlighted in yellow from around 26, 000ms to
40, 000ms.

Detection of Suspicious Time Windows in Memory Monitoring MPLR ’19, October 21–22, 2019, Athens, Greece

Figure 8. Automatically detected time window with high
memory churn in the finagle-http benchmark (global view
and zoomed-in view).

1 val response: Future[http.Response] = client(request)
2 for (i <- 0 until NUM_REQUESTS) {
3 Await.result(response.onSuccess { rep: http.Response =>
4 totalLength += rep.content.length })}

Listing 1. Problematic part of the method
FinagleHttp.runIteration.

of the highest garbage collection overhead. To do so, it calcu-
lates the churn rate of a window by dividing the total number
of bytes freed within the window by the window’s duration.
To calculate the number of freed bytes for a given garbage
collection, all we need to know is the size of the heap before
the collection and after the collection.

3.4.2 Example: Finagle-http
Renaissance [33] is a benchmark suite composed of modern,
real-world, concurrent, and object-oriented workloads that
exercise various concurrency primitives of the JVM. Since
this benchmark suite is rather new, it has not yet been the
subject of a memory study [26]. Thus, it is perfectly suited
to test whether AntTracks is able find memory problems in
real-world applications unknown to the inspector.

First, we downloaded the benchmark suite 1 in version 0.9
and created a trace file of every benchmark. Then, we loaded
these trace files into AntTracks and inspected the automati-
cally detected time windows. One benchmark that attracted
our attention was finagle-http. According to the bench-
mark’s documentation, it sends many small Finagle HTTP
requests to a Finagle HTTP server and awaits response. This
benchmark exhibits a high memory churn. Its memory evolu-
tion and the automatically detected memory churn window
can be seen in Figure 8.

1Renaissance benchmark suite: https://renaissance.dev/

1 val response: Future[http.Response] = client(request)
2 val h = { rep: http.Response => totalLength += rep.content.length }
3 for (i <- 0 until NUM_REQUESTS) Await.result(response.onSuccess(h))

Listing 2. Fixed version of the method
FinagleHttp.runIteration.

Inspecting this memory churn using AntTracks’s short-
lived objects analysis feature revealed that the type
FinagleHttp$$anonfun$runIteration$1$$... has a high
churn rate. The naming pattern reveals that these are Scala
objects, more specifically, anonymous functions, which are
allocated in the method runIteration of the benchmark’s
main class FinagleHttp. Since such a rapid allocation and
collection of anonymous functions is unlikely to be inten-
tional, we looked up the method’s source code. The problem-
atic part can be seen in Listing 1. In the loop, a lot of anony-
mous function objects are created, waiting for an HTTP
request to succeed to increment the counter totalLength.
Listing 2 shows our fix for this problem. Only a single re-
sponse handler is created which is reused for every HTTP
request. This fix reduces the overall amount of allocated
temporary objects by about 25%.

3.5 Window Detection Performance
The complexity of all algorithms is O(n), where n is the
number of garbage collections covered by the trace file. For
example, applied on the trace of the Dynatrace EasyTravel
application that has been shown in Section 3.2.4, which cov-
ers about 700 garbage collections, the different time window
detection algorithms take between 5ms and 30ms on av-
erage. Thus, our algorithms can scale up to process data
reconstructed from traces that cover thousands of garbage
collections.

4 Related Work
Memory Leak Detection To support memory leak detec-
tion, various approaches and tools have been developed over
the last years. Šor and Srirama [45] classify these approaches
into the following groups:

1. Online approaches that actively monitor and interact
with the running virtual machine, separated into ap-
proaches that
a. measure staleness [3, 14, 35, 36, 38, 59]. The longer

an object is not used, the staler it becomes. Stale-
ness analysis tries to reveal objects that do not get
collected by the GC but become stale, since they
are most likely to be leaking. The challenge these
approaches face is that tracking object accesses is
extremely expensive.

b. detect growth [4, 20, 21, 43, 44]. These approaches
group the live heap objects (usually either by their
types or allocation sites) and detect growth using
various metrics.

MPLR ’19, October 21–22, 2019, Athens, Greece Markus Weninger, Elias Gander, and Hanspeter Mössenböck

2. Offline approaches that collect information about an ap-
plication for later analysis, separated into approaches
that
a. analyze heap dumps and other kinds of captured state [22,

27–29]. Compared to online approaches, offline ap-
proaches often perform more complicated analyses
based on the object reference graph, involving graph
reduction, graph mining and ownership analysis.

b. use visualization to aid leak detection [7, 31, 37].
c. employ static source code analysis [9, 60].

3. Hybrid approaches that combine online features as well
as offline features [10, 39, 58].

In this taxonomy, AntTracks would be classified as a hy-
brid approach. It collects detailed memory traces online using
its VM, while the processing of these traces happens offline.
Its offline analysis tool mostly focuses on the visualization
and automatic detection of heap growth.

MemoryChurnAnalysis For example, Peiris andHill [32]
presented EMAD, the Excessive Memory Allocation Detec-
tor. Compared to AntTracks, which detects memory churn
offline using memory traces, EMAD uses dynamic binary
instrumentation and exploratory data analysis to determine
whether an application performs excessive dynamic memory
allocations.

5 Limitations
One limitation of our work is its currently limited evaluation
based on a small set of use cases. We plan to find more open-
source projects that suffered from memory anomalies in the
past which we can use to build a reference set of real-world
applications. This collection could then be used to evaluate
memory monitoring tools.
In addition to that, we are currently conducting a user

study. One goal of this study is to see how well people with
different backgrounds are able to detect suspicious time win-
dows themselves. Preliminary results suggest that novice
users are not always able to recognize suspicious memory
growth in an application. Also, it seems that most users also
underestimate the possible severity of high memory churn.

6 Future Work
User Study As stated in the previous section, we are cur-
rently conducting a user study with university students hav-
ing various levels of expertise. The aim of the study is to
gain insights on how well the study participants are able
to analyze memory anomalies with AntTracks and which
features they would expect from a memory monitoring tool
in general. This could help the community to improve the
quality of memory monitoring tools.

Visualization Many of AntTracks’s analysis features com-
municate their results in form of tables, line charts or stacked

area charts. We plan to evaluate alternative visualization ap-
proaches, for example, an application’s memory evolution
could also be displayed as small multiples [50] or as a soft-
ware city [57]. To investigate keep-alive relationships i a
heap state, we plan to support users by displaying aggre-
gated heap objects as graphs [1].

Guided Exploration The aim of this work is to automate
the first step of memory evolution analysis over time, namely
the selection of a suspicious time window. Nevertheless, once
a time window is selected, an appropriate analysis approach
has to be selected, and the users are left on their own during
this analysis. Thus, we are currently integrating features
into AntTracks that we call guided exploration. The goal of
guided exploration is to lead users through AntTracks’s dif-
ferent analysis views. Within each view, those parts that
contain the most information should automatically be de-
tected, highlighted and explained to the user. This way, we
want to achieve a learning-by-doing effect, with the goal
that AntTracks should be usable by users without any prior
memory monitoring experience.

7 Conclusion
In this paper, we presented an approach to automatically
detect time windows that show typical behaviors of various
memory anomalies. Freeing users from this non-trivial task
enables them to focus more on finding the root cause of the
problem. Especially inexperienced users that often struggle
to recognize anomalies on their own profit from this feature.
The first type of memory anomaly that our approach is

able to automatically detect is continuous memory growth
caused by memory leaks.
The second type are windows that suffer from high GC

overhead. High GC overhead can stem from two main root
causes. Either the individual garbage collections within the
time window took a long time, or a very high number of
garbage collections had to be performed.

The third type of suspicious time windows we are able to
detect are those that show high memory churn. High memory
churn is caused by objects that are frequently allocated and
freed shortly after their allocation. This also leads to a high
number of garbage collections.
These algorithms to automatically select suspicious time

windows have been integrated into AntTracks, a memory
monitoring tool developed by us. Throughout the paper,
their applicability was shown by applying them to different
real-world applications.

Acknowledgments
The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for
Research, Technology and Development, and Dynatrace is
gratefully acknowledged.

Detection of Suspicious Time Windows in Memory Monitoring MPLR ’19, October 21–22, 2019, Athens, Greece

References
[1] Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci,

Sara L. Su, and Samuel Z. Guyer. 2010. Heapviz: Interactive Heap
Visualization for Program Understanding and Debugging. In Proc. of
the 5th Int’l Symp. on Software Visualization (SOFTVIS ’10).

[2] Verena Bitto, Philipp Lengauer, and Hanspeter Mössenböck. 2015.
Efficient Rebuilding of Large Java Heaps from Event Traces. In Proc.
of the Principles and Practices of Programming on The Java Platform
(PPPJ ’15).

[3] Michael D. Bond and Kathryn S. McKinley. 2006. Bell: Bit-encoding
Online Memory Leak Detection. In Proc. of the 12th Int’l Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS XII).

[4] K. Chen and J. Chen. 2007. Aspect-Based Instrumentation for Locat-
ing Memory Leaks in Java Programs. In Proc. of the 31st Annual Int’l
Computer Software and Applications Conf. (COMPSAC ’07).

[5] Trishul Chilimbi, Richard Jones, and Benjamin Zorn. 2000. Designing
a Trace Format for Heap Allocation Events. In Proc. of the 2nd Int’l
Symposium on Memory Management (ISMM ’00).

[6] Bas Cornelissen, Andy Zaidman, Danny Holten, Leon Moonen, Arie
van Deursen, and Jarke J. van Wijk. 2008. Execution trace analy-
sis through massive sequence and circular bundle views. Journal of
Systems and Software 81, 12 (2008), 2252 – 2268.

[7] Wim De Pauw and Gary Sevitsky. 1999. Visualizing Reference Patterns
for Solving Memory Leaks in Java. In Proc. of the European Conference
on Object-Oriented Programming (ECOOP ’99).

[8] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. 2004.
Garbage-first Garbage Collection. In Proc. of the 4th Int’l Symposium
on Memory Management (ISMM ’04).

[9] Dino Distefano and Ivana Filipović. 2010. Memory Leaks Detection in
Java by Bi-abductive Inference. In Proc. of the Int’l Conf. on Fundamental
Approaches to Software Engineering (FASE 2010).

[10] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. 2007. Blended
Analysis for Performance Understanding of Framework-based Appli-
cations. In Proc. of the 2007 Int’l Symposium on Software Testing and
Analysis (ISSTA ’07).

[11] Dynatrace. 2019. Demo Applications: easyTravel. https://community.
dynatrace.com/community/display/DL/Demo+Applications+-
+easyTravel

[12] Christine H. Flood, Roman Kennke, Andrew Dinn, Andrew Haley, and
Roland Westrelin. 2016. Shenandoah: An Open-source Concurrent
Compacting Garbage Collector for OpenJDK. In Proc. of the 13th Int’l
Conf. on Principles and Practices of Programming on the Java Platform:
Virtual Machines, Languages, and Tools (PPPJ ’16).

[13] Mohammadreza Ghanavati, Diego Costa, Artur Andrzejak, and Janos
Seboek. 2018. Memory and Resource Leak Defects in Java Projects: An
Empirical Study. In Proc. of the 40th Int’l Conf. on Software Engineering:
Comp. Proc. (ICSE ’18).

[14] Matthias Hauswirth and Trishul M. Chilimbi. 2004. Low-overhead
Memory Leak Detection Using Adaptive Statistical Profiling. In Proc. of
the 11th Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS XI).

[15] Matthew Hertz, Stephen M Blackburn, J Eliot B Moss, Kathryn S.
McKinley, and Darko Stefanović. 2002. Error-free Garbage Collection
Traces: How to Cheat and Not Get Caught. In Proc. of the 2002 ACM
SIGMETRICS Int’l Conf. on Measurement and Modeling of Computer
Systems (SIGMETRICS ’02).

[16] Matthew Hertz, Stephen M. Blackburn, J. Eliot B. Moss, Kathryn S.
McKinley, and Darko Stefanović. 2006. Generating Object Lifetime
Traces with Merlin. ACM Trans. Program. Lang. Syst. 28, 3 (May 2006),
476–516.

[17] Swaminathan Jayaraman, Bharat Jayaraman, and Demian Lessa. 2017.
Compact Visualization of Java Program Execution. Software: Practice
and Experience 47, 2 (2017), 163–191.

[18] Richard Jones, Antony Hosking, and Eliot Moss. 2016. The garbage col-
lection handbook: the art of automatic memory management. Chapman
and Hall/CRC.

[19] Maria Jump and Kathryn S. McKinley. 2007. Cork: Dynamic Memory
Leak Detection for Garbage-collected Languages. In Proc. of the 34th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL ’07).

[20] Maria Jump and Kathryn S. McKinley. 2007. Cork: Dynamic Memory
Leak Detection for Garbage-collected Languages. In Proc. of the 34th
Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages (POPL ’07).

[21] Maria Jump and Kathryn S. McKinley. 2009. Detecting Memory Leaks
in Managed Languages with Cork. Software: Practice and Experience
40, 1 (2009).

[22] Evan K. Maxwell, Godmar Back, and Naren Ramakrishnan. 2010. Diag-
nosing Memory Leaks using Graph Mining on Heap Dumps. In Proc. of
the ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining
(KDD ’10).

[23] Philipp Lengauer, Verena Bitto, Stefan Fitzek, Markus Weninger, and
Hanspeter Mössenböck. 2016. Efficient Memory Traces with Full
Pointer Information. In Proc. of the 13th Int’l. Conf. on Principles and
Practices of Programming on the Java Platform: Virtual Machines, Lan-
guages, and Tools (PPPJ ’16).

[24] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2015.
Accurate and Efficient Object Tracing for Java Applications. In Proc. of
the 6th ACM/SPEC Int’l. Conf. on Performance Engineering (ICPE ’15).

[25] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2016.
Efficient and Viable Handling of Large Object Traces. In Proc. of the
7th ACM/SPEC Int’l Conf. on Performance Engineering (ICPE ’16).

[26] Philipp Lengauer, Verena Bitto, Hanspeter Mössenböck, and Markus
Weninger. 2017. A Comprehensive Java Benchmark Study on Mem-
ory and Garbage Collection Behavior of DaCapo, DaCapo Scala, and
SPECjvm2008. In Proc. of the 8th ACM/SPEC on Int’l Conf. on Perfor-
mance Engineering (ICPE ’17).

[27] Nick Mitchell. 2006. The Runtime Structure of Object Ownership.
In Proc. of the 20th European Conf. on Object-Oriented Programming
(ECOOP ’06).

[28] Nick Mitchell and Gary Sevitsky. 2003. LeakBot: An automated and
lightweight tool for diagnosing memory leaks in large Java applica-
tions. In Proc. of the European Conference on Object-Oriented Program-
ming (ECOOP ’03).

[29] Nick Mitchell and Gary Sevitsky. 2007. The Causes of Bloat, the Limits
of Health. In Proc. of the 22nd Annual ACM SIGPLAN Conf. on Object-
oriented Programming Systems and Applications (OOPSLA ’07).

[30] Raymond H Myers and Raymond H Myers. 1990. Classical and modern
regression with applications. Vol. 2. Duxbury press Belmont, CA.

[31] Wim De Pauw and Gary Sevitsky. 2000. Visualizing Reference Patterns
for SolvingMemory Leaks in Java. Concurrency: Practice and Experience
12, 14 (2000).

[32] Manjula Peiris and James H. Hill. 2016. Automatically Detecting
"Excessive Dynamic Memory Allocations" Software Performance Anti-
Pattern. In Proc. of the 7th ACM/SPEC on Int’l Conf. on Performance
Engineering (ICPE ’16).

[33] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Du-
boscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex
Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019.
Renaissance: Benchmarking Suite for Parallel Applications on the JVM.
In Proc. of the 40th ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI 2019).

[34] J. Qian and X. Zhou. 2012. Inferring weak references for fixing Java
memory leaks. In Proc. of the 2012 28th IEEE Int’l Conf. on Software
Maintenance (ICSM ’12).

[35] Derek Rayside and Lucy Mendel. 2007. Object Ownership Profiling: A
Technique for Finding and Fixing Memory Leaks. In Proc. of the 22nd
IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE ’07).

MPLR ’19, October 21–22, 2019, Athens, Greece Markus Weninger, Elias Gander, and Hanspeter Mössenböck

[36] Derek Rayside, Lucy Mendel, and Daniel Jackson. 2006. A Dynamic
Analysis for Revealing Object Ownership and Sharing. In Proc. of the
Int’l Workshop on Dynamic Systems Analysis (WODA ’06).

[37] S. P. Reiss. 2009. Visualizing The Java Heap to Detect Memory Prob-
lems. In Proc. of the 5th IEEE Int’l Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT ’09).

[38] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. 2001. Heap Profiling
for Space-efficient Java. In Proc. of the ACM SIGPLAN 2001 Conf. on
Programming Language Design and Implementation (PLDI ’01). ACM,
New York, NY, USA, 104–113. https://doi.org/10.1145/378795.378820

[39] Ran Shaham, Elliot K. Kolodner, and Shmuel Sagiv. 2000. Automatic
Removal of Array Memory Leaks in Java. In Proc. of the 9th Int’l Con-
ference on Compiler Construction (CC ’00).

[40] Connie U. Smith and Lloyd G. Williams. 2000. Software Performance
Antipatterns. In Proc. of the 2nd Int’l Workshop on Software and Perfor-
mance (WOSP ’00).

[41] Connie U. Smith and Lloyd G. Williams. 2002. New Software Perfor-
mance Antipatterns: More Ways to Shoot Yourself in the Foot. In Intl.
CMG Conf.

[42] Connie U. Smith and Lloyd G. Williams. 2003. More New Software
Performance Antipatterns: Even More Ways to Shoot Yourself in the
Foot. In Intl. CMG Conf.

[43] V. Sor, P. Oü, T. Treier, and S. N. Srirama. 2013. Improving Statistical
Approach for Memory Leak Detection Using Machine Learning. In
Proc. of the 2013 IEEE Int’l Conf. on Software Maintenance (ICSM ’13).

[44] Vladimir Šor, Nikita Salnikov-Tarnovski, and Satish Narayana Srirama.
2011. Automated Statistical Approach for Memory Leak Detection:
Case Studies. In On the Move to Meaningful Internet Systems (OTM
2011).

[45] Vladimir Šor and Satish Narayana Srirama. 2014. Memory leak detec-
tion in Java: Taxonomy and classification of approaches. Journal of
Systems and Software 96 (2014).

[46] K. Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto, and K. Inoue. 2005.
Extracting sequence diagram from execution trace of Java program.
In Proc. of the 8th Int’l Workshop on Principles of Software Evolution
(IWPSE ’05).

[47] Oracle. 2019. The HotSpot Group. http://openjdk.java.net/groups/
hotspot/

[48] Oracle. 2019. ZGC - The Z Garbage Collector. http://openjdk.java.
net/projects/zgc/

[49] Per Lidén & Stefan Karlsson. 2018. The Z Garbage Collector - An
Introduction, FOSDEM 2018. http://cr.openjdk.java.net/~pliden/slides/
ZGC-FOSDEM-2018.pdf

[50] Stef van den Elzen and Jarke J. van Wijk. 2013. Small Multiples, Large
Singles: A New Approach for Visual Data Exploration. Comput. Graph.
Forum 32 (2013).

[51] MarkusWeninger, Elias Gander, and Hanspeter Mössenböck. 2019. An-
alyzing Data Structure Growth Over Time to Facilitate Memory Leak
Detection. In Proc. of the 2019 ACM/SPEC Int’l Conf. on Performance
Engineering (ICPE ’19).

[52] Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2018.
Analyzing the Evolution of Data Structures Over Time in Trace-Based
Offline Memory Monitoring. In Proc. of the 9th Symposium on Software
Performance (SSP ’18).

[53] Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2018.
Utilizing Object Reference Graphs and Garbage Collection Roots to
Detect Memory Leaks in Offline Memory Monitoring. In Proc. of the
15th Int’l Conf. on Managed Languages & Runtimes (ManLang ’18).

[54] MarkusWeninger, Philipp Lengauer, and Hanspeter Mössenböck. 2017.
User-centered Offline Analysis of Memory Monitoring Data. In Proc.
of the 8th ACM/SPEC on Int’l Conf. on Performance Engineering (ICPE
’17).

[55] Markus Weninger, Lukas Makor, Elias Gander, and Hanspeter Mössen-
böck. 2019. AntTracks TrendViz: Configurable Heap Memory Visual-
ization Over Time. In Companion of the 2019 ACM/SPEC Int’l Conf. on
Performance Engineering (ICPE ’19).

[56] Markus Weninger and Hanspeter Mössenböck. 2018. User-defined
Classification andMulti-level Grouping of Objects inMemoryMonitor-
ing. In Proc. of the 9th ACM/SPEC Int’l Conf. on Performance Engineering
(ICPE ’18).

[57] RichardWettel and Michele Lanza. 2007. Visualizing Software Systems
as Cities. In Proc. of the 4th IEEE Int’l Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT ’07).

[58] Guoqing Xu, Michael D. Bond, Feng Qin, and Atanas Rountev. 2011.
LeakChaser: Helping Programmers Narrow Down Causes of Mem-
ory Leaks. In Proc. of the 32nd ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI ’11).

[59] Guoqing Xu and Atanas Rountev. 2008. Precise Memory Leak Detec-
tion for Java Software Using Container Profiling. In Proc. of the 30th
Int’l Conf. on Software Engineering (ICSE ’08).

[60] Dacong Yan, Guoqing Xu, Shengqian Yang, and Atanas Rountev. 2014.
LeakChecker: Practical Static Memory Leak Detection for Managed
Languages. In Proc. of the Annual IEEE/ACM Int’l Symposium on Code
Generation and Optimization (CGO ’14).

[61] H. Yu, X. Shi, and W. Feng. [n.d.]. LeakTracer: Tracing leaks along the
way. In Proc. of the 2015 IEEE 15th Int’l Working Conf. on Source Code
Analysis and Manipulation (SCAM ’15).

6.2 Cognitive Walkthrough and User Study

This section includes the paper [321] on our usability assessment of AntTracks
as well as our user study with novices in memory analysis.

Paper:
Markus Weninger, Paul Grünbacher, Elias Gander, Andreas Schörgenhumer:
Evaluating an Interactive Memory Analysis Tool: Findings from a Cognitive
Walkthrough and a User Study. In Proceedings of the ACM on Human Com-
puter Interaction, Vol. 4 (EICS), June 2020.

146

75

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study

MARKUS WENINGER, Institute for System Software, Johannes Kepler University Linz, Austria
PAUL GRÜNBACHER, Institute for Software Systems Engineering, Johannes Kepler University Linz,
Austria
ELIAS GANDER, Christian Doppler Laboratory MEVSS, Johannes Kepler University Linz, Austria
ANDREAS SCHÖRGENHUMER, Christian Doppler Laboratory MEVSS, Johannes Kepler University
Linz, Austria

Memory analysis tools are essential for finding and fixing anomalies in the memory usage of software
systems (e.g., memory leaks). Although numerous tools are available, hardly any empirical studies exist on
their usefulness for developers in typical usage scenarios. Instead, most evaluations are limited to reporting
performance metrics. We thus conducted a study to empirically assess the usefulness of the interactive memory
analysis tool AntTracks Analyzer. Specifically, we first report findings from assessing the tool using a cognitive
walkthrough, guided by the Cognitive Dimensions of Notations Framework. We then present the results of a
qualitative user study involving 14 subjects who used AntTracks to detect and resolve memory anomalies. We
report lessons learned from the study and implications for developers of interactive memory analysis tools.
We hope that our results will help researchers and developers of memory analysis tools in defining, selecting,
and improving tool capabilities.

CCS Concepts: • General and reference → Evaluation; Metrics; Performance; • Human-centered com-
puting→User studies;Usability testing;Walkthrough evaluations;Empirical studies inHCI;Graph-
ical user interfaces; User centered design; • Information systems→Users and interactive retrieval; • Software
and its engineering→ Software performance.

Additional Key Words and Phrases: Interactive Memory Analysis Tools; Cognitive Walkthrough; Cognitive
Dimensions; User Study; Usefulness; Usability; Utility; Assessment

ACM Reference Format:
MarkusWeninger, Paul Grünbacher, Elias Gander, andAndreas Schörgenhumer. 2020. Evaluating an Interactive
Memory Analysis Tool: Findings from a Cognitive Walkthrough and a User Study. Proc. ACM Hum.-Comput.
Interact. 4, EICS, Article 75 (June 2020), 37 pages. https://doi.org/10.1145/3394977

1 INTRODUCTION
Interactive memory analysis tools collect, process, transform, and visualize information about
the memory footprint of software systems. Snapshot-based tools analyze a single point in time
while trace-based tools allow users to explore a period of time [109]. For example, many tools
present the heap state of an application as a type histogram displaying the number of objects and
bytes allocated for each type. Analyzing such information allows users to detect potential memory
anomalies and to reveal their root cause.
Authors’ addresses: Markus Weninger, markus.weninger@jku.at, Institute for System Software, Johannes Kepler University
Linz, Altenberger Straße 69, Linz, 4040, Austria; Paul Grünbacher, paul.gruenbacher@jku.at, Institute for Software Systems
Engineering, Johannes Kepler University Linz, Altenberger Straße 69, Linz, 4040, Austria; Elias Gander, elias.gander@jku.at,
Christian Doppler Laboratory MEVSS, Johannes Kepler University Linz, Altenberger Straße 69, Linz, 4040, Austria; Andreas
Schörgenhumer, andreas.schoergenhumer@jku.at, Christian Doppler Laboratory MEVSS, Johannes Kepler University Linz,
Altenberger Straße 69, Linz, 4040, Austria.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in Proceedings of the ACM on Human-Computer Interaction, https://doi.org/10.1145/3394977.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:2 Markus Weninger et al.

Existing interactive memory analysis tools provide a variety of capabilities to analyze different
aspects of memory usage. For example, the Eclipse Memory Analyzer (MAT) [29] and VisualVM [91]
are the most commonly used open source memory analysis tools for Java.While MAT purely focuses
on memory analysis, VisualVM is a more general performance analysis tool including advanced
memory analysis features. Kieker [58, 112, 113] is a well-known general performance framework for
monitoring and analyzing the run-time behavior (including memory) of concurrent or distributed
software systems. Well-known examples of commercial tools providing memory analysis features
are the Dynatrace application performance monitoring (APM) platform [28] and the JProfiler [30],
which offers memory profiling and a heap walker for Java applications.

So far, most memory analysis tools have been evaluated with a focus on their performance
overhead and feasibility while only little empirical research exists on their usefulness in practical
environments and for realistic usage scenarios. The term usefulness captures a tool’s utility, i.e., to
what degree it allows users to achieve their goals, and its usability, i.e., how well users can make use
of the offered features. The study by Zaman et al. [130] is an exception in the field of performance
engineering, as the authors show for two enterprise systems that test-based performance analyses
need to be complemented with user-centric assessments to better understand user-perceived quality.
The authors strongly argue that performance engineering should use the knowledge on how to
conduct user-centric analysis from other fields.

This paper thus reports findings of a cognitive walkthrough to assess the usability of an interactive
memory analysis tool. We also conducted a qualitative study to analyze the behavior of users
analyzing memory anomalies in a realistic context. We performed our research using AntTracks, a
memory monitoring system which comprises the AntTracks VM [65–67], a custom virtual machine
based on the Java Hotspot VM [87], and the AntTracks Analyzer [7, 116–119, 121, 122, 124], a trace-
based memory analysis tool. The AntTracks VM records memory events such as object allocations
and object movements during garbage collection (GC) by writing them into trace files [65–67].
The AntTracks Analyzer then parses trace files by incrementally processing these events, thereby
allowing to reconstruct the heap state for every GC point [7]. Various memory analyses can be
performed with AntTracks, including heap state analysis [116, 121, 124], data structure growth
analysis [117, 119], and heap evolution visualization [122].
Specifically, the contributions of our work encompass (1) a discussion of common memory

analysis activities and tool capabilities based on existing research and tools (Section 3), (2) a
realization of these capabilities in the AntTracks Analyzer memory analysis tool (Section 4),
including an assessment based on a cognitive walkthrough following the Cognitive Dimensions
(CD) of Notations Framework (Section 5), (3) the design (Section 6) and results (Section 7) of a
usefulness study involving 14 participants who used AntTracks in two realistic analysis scenarios,
and (4) general recommendations for researchers and developers of interactive memory analysis
tools we derived from lessons learned during the study (Section 8) as well as a discussion on how
we used these recommendations to further improve AntTracks (Section 9). Section 10 discusses
threats to validity and Section 11 concludes the paper.

2 RESEARCH METHOD
The field of human-computer interaction (HCI) distinguishes inspection-based and test-based
approaches [47] to evaluate the usability of software systems. Inspection-based techniques aim
at assessing and improving interactive systems by checking them against some standard, such as
Nielsen’s usability attributes [82] or the Cognitive Dimensions (CD) of Notations Framework [8, 9,
11, 39–41]. Test-based techniques, on the other hand, involve end users in the evaluation.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:3

Memory analysis is a highly complex and interactive process. Thus, our research method relies
on both inspections and testing. Specifically, we investigated two research questions on the use-
fulness of interactive memory analysis tools using the example of AntTracks: (RQ1) Regarding
usability we assessed AntTracks’ memory analysis capabilities from the perspective of software
engineers, guided by the CD framework and Nielsen’s usability attributes. (RQ2) Regarding utility
we conducted a user study analyzing a real-world Java web application with seeded memory defects.
Based on the results and lessons learned, we synthesized recommendations intended to support
developers of interactive memory analysis tools. We conducted our research in four steps:

Identification of Memory Analysis Activities. We studied related research and features of state-of-
the-art memory analysis tools to identify important memory analysis activities benefiting from tool
support. In addition to that, we present how these memory analysis activities manifest themselves
in the memory monitoring tool AntTracks, the main subject of this study.

CognitiveWalkthrough and Tool Improvement. To assess AntTracks’ usability, we first performed a
cognitive walkthrough of the identified activities using the CD framework, which offers a vocabulary
for discussing usability issues and their trade-offs. The CD framework has been used successfully to
assess software tools [5, 61, 72, 94, 95], visual diagrams [10], temporal specification notations [63, 64],
or visual modeling languages [22, 125]. Table 1 shows a summary of these dimensions. A detailed
description of the framework and the cognitive dimensions can be found online [40]. The primary
aim of this cognitive walkthrough was to reveal and fix possible usability flaws before conducting
the user study and to define the scope for the user study.

User Study. We designed our study based on the findings from the CD assessment and the
guidelines for conducting empirical studies by Runeson and Höst [101]. Software engineering
students from our university used AntTracks to investigate the memory evolution of an application
to detect anomalies such as memory leaks or high memory churn (cf. Section 6). For each anomaly,
the participants aimed at revealing its root cause using the memory analysis. During this process,
we asked each study participant to ‘think aloud’ [47], i.e., to describe what they were doing and to
comment on any concerns. The participants were interviewed on the utility of the tool [23] and
also completed a usability questionnaire [82].

Table 1. Cognitive dimensions used for the walkthrough (taken from [40]).

Dimension Description

Abstraction types and availability of abstraction mechanisms
Closeness of Mapping closeness of representation to domain
Consistency similar semantics are expressed in similar syntactic forms
Diffuseness verbosity of language
Error-proneness notation invites mistakes
Hard Mental Operations high demand on cognitive resources
Hidden Dependencies important links between entities are not visible
Premature Commitment constraints on the order of doing things
Progressive Evaluation work-to-date can be checked at any time
Provisionality degree of commitment to actions or marks
Role-expressiveness the purpose of a component is readily inferred
Secondary Notation extra information in means other than formal syntax
Viscosity resistance to change
Visibility ability to view components easily

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:4 Markus Weninger et al.

Derivation of Implications. Finally, we synthesized recommendations and lessons learned based
on the detailed results and feedback obtained from the study. In addition, we discuss how these
recommendations were used to further improve AntTracks.

3 MEMORY ANALYSIS ACTIVITIES
We present key activities supported by interactive memory analysis tools based on our experiences
and related work. We focus on memory analysis for managed languages such as Java or C#. We
will show that the tools vary regarding their support, e.g., some tools only visualize raw data and
leave the analysis to the users, while other tools automate certain analyses activities.

3.1 Collecting Memory Data
Basic tools for snapshot-based inspections of memory usage mostly rely on heap dumps, which
can be created by tools such as HPROF [88, 92] or jmap [86]. The following techniques are used for
analyzing more specific details of snapshots or memory usage over time [6]: (1) Amodified execution
environment such as a custom Java VM that can access internal information; (2) a sampling-based
approach, e.g., an agent using the Java VM Tool Interface [90] to receive periodical callbacks about
memory-relevant events in the application; or (3) an instrumentation-based approach that relies on
adding code to an existing application, either before compilation (e.g., AspectJ [57]) or at run time
(e.g., ASM [14, 15, 62] or Javassist [17, 18]).

3.2 Detection of Memory Anomalies
Before inspecting an application in detail, memory analysis tools support users in detecting memory
anomalies such as memory leaks, high memory churn, memory bloat, or unusual GC behavior.

3.2.1 Memory Leaks.
Memory leaks [35] in managed languages occur if objects no longer needed remain reachable from
garbage collection roots (e.g., static fields or local variables) due to programming errors. For example,
objects may accumulate over time when a developer forgets to remove them from long-living data
structures [117]. Such leaks lead to a growing memory footprint, which at some point will cause
an application to crash. There are two main approaches to detect memory leaks: (1) Techniques
detecting staleness [12, 44, 96, 128] assume that objects not used for a long time are likely involved
in a memory leak. However, the proposed techniques are hardly used outside academia due to their
high costs of tracking objects. (2) Techniques detecting growth [16, 54, 78, 108] are thus still the
de-facto standard in state-of-the-art memory analysis tools and mostly rely on users interpreting
visualizations. For example, VisualVM [91] periodically plots the memory footprint in a time-series
chart. The user then has to check for suspicious sections of continuous growth that might hint at a
memory leak. Similarly, JConsole [85] can read a running application’s Java Management Beans to
plot the currently occupied heap memory separated by eden space, survivor space, and old space.

3.2.2 Memory Churn.
Memory churn occurs when large numbers of short-living objects are created by an application,
thereby causing many garbage collections. Such excessive dynamic allocation behavior [106]
typically has a negative impact on performance. However, obtaining the information on how long
objects survive before dying is expensive [45, 99, 100]. Most tools are thus limited to analyzing the
number of allocations, but not the exact lifetime of objects. Objects frequently allocated in bursts
typically do not survive for a long time and thus the high allocation rate already indicates memory
churn. Memory churns can be detected either by visually spotting spike patterns in memory charts
(i.e., high consumption of memory followed by many object deaths) or by plotting the number of

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:5

allocations over time (i.e., detecting allocation-intensive time windows), as for example done in
Dynatrace [28] or Kieker [58, 112, 113].

3.2.3 Memory Bloat.
Memory bloat [52, 77, 127] describes the inefficient use of memory for achieving seemingly simple
tasks. It is often caused by heavily using (object-oriented) abstractions such as over-generalized data
structures. Most techniques for detecting memory bloat thus focus on analyzing data structures
requiring many auxiliary objects [79] or the inefficient usage of data structures operations for
adding, getting, or removing elements [126, 129].

3.2.4 Unusual GC Behavior.
The behavior of the GC can also indicate memory problems. Instead of looking at the memory
behavior of an application, this anomaly is detected by inspecting the garbage collector, e.g., by
measuring GC overhead via the garbage collection count and the garbage collection duration [68].

3.3 Inspection of Memory Anomalies
Once a suspicious memory behavior is detected, the user can inspect a single point in time or a
time interval to reveal the root cause of the problem.

3.3.1 Single Point in Time.
The most common technique is a heap state analysis, which relies on reconstructing the objects that
were alive at a certain point in time. For every object on the heap, a number of properties can be
reconstructed depending on the tool: these may include the object’s address, its type, its allocation
site, the heap objects it references, the heap objects it is referenced by, the thread allocating the
object, and a list of root pointers referencing it. Users can then examine (groups of) objects on the
heap or study metrics about the heap state. Object-based techniques allow to inspect heap objects in
a bottom-up or top-down fashion [116]. In the bottom-up approach the user searches for big object
groups (e.g., objects of the same type) and then tries to free them. The most common visualization
to find these object groups is a type histogram grouping all heap objects by their types, and also
showing the memory occupied by each type. The object type(s) consuming most memory can
then be inspected in detail. Some tools support users by displaying the path to the GC roots, while
other approaches assist users by displaying the code that has allocated the objects. Visualization
approaches [2, 46, 73, 76, 97, 102, 131] aggregating the object graph (e.g., based on its dominator
tree [69, 75, 116]) are useful to analyze the heap’s composition. A user following the top-down
approach first selects a GC root or a heap object that keeps alive many other objects. The user then
inspects the objects reachable from this root or object and searches for possible cut points in the
path [116, 117]. Metric-based techniques derive metrics from the heap state that allow to analyze
the heap state by revealing fields, objects, classes or packages that are likely involved in memory
anomalies [19, 20, 79].

3.3.2 Evolution over Time.
A number of tools also allow to analyze the memory usage evolution of an application over
time [24, 25, 78, 118], in its basic form by comparing heap states. In MAT [29], for example, users
can compare two heap states by computing a delta type histogram diagram to identify objects with
high growth rates. In Dynatrace [28] users can show the number of objects allocated in the selected
time interval. Extensively allocated objects can then be considered for reuse, caching, or removal.
Other approaches allow to automatically detect growing data structures [117, 119], or to visualize
the evolution of the memory composition over time [122, 123].

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:6 Markus Weninger et al.

4 OVERVIEW OF ANTTRACKS
The first result of the AntTracks project [115] was a custom Java VM for efficiently collecting detailed
memory traces [66]. The AntTracks Analyzer then started as a research prototype for reconstructing
heap states from these memory trace files [7]. The tool is now an interactive memory analysis
tool for the detection and inspection of various memory anomalies. We selected the AntTracks
tool as subject for this study as it is a publicly available1 and covers more memory analysis tasks
than alternative tools. For example, AntTracks can perform detailed analyses over time due to its
trace-based nature, while other publicly available tools such as MAT [29] or VisualVM [91] are
restricted to snapshot-based (dump-based) analyses. Another reason for selecting AntTracks was
the high familiarity of some authors with its code base. The goal of the cognitive walkthrough
was to reveal and fix major flaws before the user study, so detailed knowledge of the tool and its
implementation was essential.

In the following, we give an overview of a subset of AntTracks Analyzer’s features, organized by
the memory analysis activities presented in Section 3.

4.1 Memory Growth Detection — Overview
Users working with the AntTracks Analyzer first open a trace file recorded with the AntTracks
custom VM. The file contains information on the memory behavior of the monitored application.
The application overview (see Figure 1a) opens upon loading and shows the memory footprint and
GC overhead as time-series charts. A continuous growth of the memory footprint, for instance,
may indicate a memory leak. This overview is intentionally kept simple. For example, to avoid
terminology unknown to the user, the memory footprint chart only contains a single time series
showing the occupied memory. Moreover, it only shows data points marking the end of garbage
collections, thereby resulting in a smoother trend line2.

4.2 Memory Growth Inspection: Evolution over Time — TrendViz View
If a user detects a time window with suspicious memory growth, AntTracks’ TrendViz view [122]
allows to inspect the memory evolution during this time window in more detail. The first step is to
define properties based on which the heap objects are grouped during analysis (see Figure 1b). For
this purpose, AntTracks provides a variety of different object classifiers [121, 124], each of which
groups heap objects based on a different criterion. For example, the type classifier groups all objects
by their type name, e.g., java.util.HashMap. A user can select multiple classifiers for grouping
the heap, which results in a classification tree. For example, using the type classifier followed by
the allocation site classifier first groups all objects based on their types, and then further groups all
objects of a given type based on the source code location they were allocated at. The AntTracks
TrendViz visualizes the evolution of the heap based on the selected classifiers (see Figure 1c). When
opening the view, a single chart shows only the evolution of the first level of the classification tree,
e.g., the evolution of the objects grouped by type. The user can then display further charts for the
next levels of the classification tree, e.g., the evolution of the allocation sites of a selected type. For
example, in Figure 1c the most-allocated type Product has been selected by the user in the top
chart (highlighted in yellow), and a second chart below displays this type’s allocation sites. This
way users can interactively collect information about suspicious objects accumulating over time.

1AntTracks download link: http://ssw.jku.at/General/Staff/Weninger/AntTracks/Publish/
2The occupied memory is generally higher when a garbage collection starts, however, the spikes between garbage collection
starts and ends are not relevant for the purpose of detecting memory leaks.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:7

(a) The Overview plots the application’s memory footprint and GC overhead and allows to select a suspicious
memory leak time window.

(b) Users can choose from a list of classifier combina-
tions to group heap objects.

(c) The TrendViz view displays the heap evolution
grouped by the selected classifier combination.

(d) The heap state view displays the classified heap at
a certain point in time as a tree table.

(e) The graph view highlights the paths from a selected
group of objects (shown at the bottom) to its most
important GC roots (colored nodes).

Fig. 1. Memory leak analysis in AntTracks.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:8 Markus Weninger et al.

4.3 Memory Growth Inspection: Single Point in Time — Heap State View + Graph View
Users analyzing memory growth over time often reveal suspicious objects that accumulate memory.
These objects can then be further inspected at a specific point in time. For example, after a memory
growth analysis, AntTracks may suggest to inspect the heap state at the end of the previously
selected time window. At this point, all objects that have accumulated during this time window are
present in the heap and can thus be easily inspected. AntTracks can visualize the heap state using
a table-based or graph-based analysis.

4.3.1 Table-based Analysis — Heap State View.
When inspecting a specific heap state, the user first selects a classifier combination (cf. Figure 1b)
for grouping the heap objects. The resulting classification tree is displayed in a tree table on the
heap state view, as shown in Figure 1d. In this table, the user can further inspect suspicious objects
previously identified in the trend view. For example, this view allows to inspect the GC closures of
an object group [116], i.e., the objects kept alive by a certain object group, or a tabular visualization
of the path to the closest GC root [116], similar to VisualVM [91].

4.3.2 Graph-based Analysis — Graph View.
Further analyses are needed if a user detects a suspiciously large group of objects being kept alive.
This can happen in garbage-collected languages if objects are still directly or indirectly reachable
from GC roots such as local variables or static fields. In this case, the user needs to inspect the
paths to these GC root to find ways for reducing the number of paths.

The most convenient way to inspect the paths to GC roots is the graph view shown in Figure 1e.
Initially, this view only shows a single node representing the set of suspicious objects. By selecting
the node the user can apply the Path to GC roots operation, which traverses the references pointing
to the given objects recursively until GC roots are found. To keep the number of displayed nodes
low, objects of the same type are grouped into a single node. Nodes are labeled with their objects’
type name and the number of objects belonging to them. Edge labels show how many objects of
the top node reference how many objects of the bottom node. GC roots are displayed as special
nodes that are highlighted by a colored background. After performing the path to GC roots action,
the user can explore the resulting paths and detect the GC roots referencing most objects. To make
objects eligible for garbage collections, a developer can then ‘cut’ the paths to these GC roots by
setting references to null or by removing objects from their containing data structures.

4.4 Memory Churn Detection — Details View
In case of memory churn the performance degradation is caused by the creation and garbage
collection of many short-living objects [106]. In AntTracks suspicious time windows with high
memory churn can be detected in the details view, which plots thememory footprint at the beginning
and at the end of every garbage collection (cf. Figure 2a). The memory occupied at the start of a
garbage collection is usually much higher than at its end, i.e., the garbage collections appear as
spikes. A user aiming to detect high memory churn needs to look for high and frequent spikes in
this memory footprint chart.

4.5 Memory Churn Inspection: Evolution over Time — Short-living Objects View
Once a suspicious memory churn time window is detected, the goal of the developer is to reduce
the number of allocations. This is achieved by determining the types and allocation sites of the
objects responsible for most of the garbage within this window. This information is then used to
track down the frequent allocations in the source code to fix the problem.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:9

(a) The Details view plots the application’s detailed memory footprint and GC pauses and allows to select a
suspicious memory churn time window.

(b) The charts on the short-living objects view show the monitored application’s garbage collection behavior.

(c) The tree table on the short-living objects view enables users to drill down into object
groups causing suspiciously high memory churn.

Fig. 2. Memory churn analysis in AntTracks.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:10 Markus Weninger et al.

AntTracks detects short-living objects based on the number of garbage collections they sur-
vived. This object age information is then visualized in the short-living objects view comprising an
overview tab presenting various garbage collection metrics to give a first impression of garbage
composition (cf. Figure 2b), and an inspection tab depicting all garbage-collected objects in a tree
table using AntTracks’ classification mechanism (cf. Figure 2c). The overview tab helps the user
to familiarize with the garbage collector activity in the selected time window. For example, pie
charts reveal the object types and allocation sites producing most garbage. By selecting a chart
entry the user can switch to the inspection tab to further investigate the respective objects. The
inspection tab uses a tree table, similar to the one used on the heap state view, to display the garbage
collected objects. Inspecting this tree allows users to determine the objects which did not survive a
single garbage collection and to investigate their types, allocation sites, and the methods calling
the allocating method.

5 COGNITIVE WALKTHROUGH OF ANTTRACKS
We first performed a cognitive walkthrough of the AntTracks Analyzer using the CD framework
to assess its usability and to select specific usability aspects for in-depth investigation in the user
study. Specifically, three authors of this paper (two of which are familiar with AntTracks’ source
code) independently assessed AntTracks’ different views used during typical memory analysis
activities. To do so, every assessor performed a memory leak analysis on the Dynatrace easyTravel
application [27] and a memory churn analysis on the http-finagle benchmark of the Renaissance
benchmark suite [93]. Both of these applications have already been used in related work to present
typical memory problems [118].
As cognitive dimensions are designed as ‘discussion tools’ [40], every assessor took notes for

each view based on the 14 cognitive dimensions defined in the CD framework [8]. They also rated
each cognitive dimension on each view using a color-based three-level classification: (1) green – no
issues found, (2) yellow – room for improvement, and (3) red – serious flaws.

After every assessor had independently performed these tasks, their results were merged based
on their ratings and their notes during a discussion session. For the rating, they always took the
lowest rating of all three assessors as the joint result to ensure all concerns are addressed, i.e., if
two assessors rated a CD as green and one rated it as red, the joint rating was red. Each author’s
notes and comments were merged and discussed to ensure a common understanding.

This merging session resulted in a single spreadsheet shown in Figure 3. The assessor comments
are only partially shown due to space constraints. Six cognitive dimensions were regarded as
cross-cutting, i.e., affecting the whole application. Overall, 43 view-CD-pairs were rated as yellow
(room for improvement) and seven cognitive dimension on two different views were rated as red
(serious usability flaws). The serious flaws had to be fixed before the user study to prevent obvious
showstoppers during the study.
Due to their high number, further evaluating all of these issues during the user study would

have been infeasible. Thus, the assessors jointly selected the 27 most interesting usability issues
(highlighted using black font and thick borders in Figure 3). A list of these cognitive dimensions
can also be found in Table 2. This table contains one entry for every view in AntTracks alongside
its respective memory analysis activity. For every view, it lists the cognitive dimensions chosen
for further investigation during the user study. For each cognitive dimension, we agreed on the
methods how data for evaluating the respective cognitive dimension should be collected during
the user study: By observation (OBS) of user activities and think-aloud statements or by a specific
question in the interview (INT) at the end of the study. The last column shows the degree of support
of a cognitive dimension based on the results of the user study. These results will be discussed in
more detail in Section 7.2.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:11

Task
Detection:

Memory
Growth

Inspection:
Evolution
over Time

Inspection:
Single Point

in Time

Inspection:
Single Point

in Time

Detection:
Memory Churn

Inspection:
Evolution
over Time

Cross-Cutting

AntTracks
View

Overview TrendViz View
Heap State

View
Graph View Details View

Short-living
Objects View

Abstraction
Overview uses easy

terminology.
Abstraction into

chart series ->
improve by ...

Maybe terminology?

Data structure DSL ...

Nodes represent
groups of objects ->
understandable? ...

GC chart Is the content of the
tree view clear?

Terminology, icons,
etc.

Closeness of
Mapping

GC chart Drill-down feature may
not be clear.

The hierarchical ...

Tree visualized as
hierarchical

TreeTableView.

How to display
different elements

(Objects, GC roots, ...

GC chart Tree visualized as
hierarchical

TreeTableView.

Consistency
Evolution data is by
default presented as
charts in AntTracks.

Hierarchical data is by
default presented as

TreeTableView ...

To achieve
immersion and
closeness of ...

Other column names
than on heap state

view.

Are there annoying
inconsistencies?

Diffuseness
Overcrowded

classifier selection,
also see viscosity.

Classifier selection is
too complex.

Highlight most ...

Test that not too
many different no-
tations are used, ...

Explanatory text is too
long.

Many charts on
overview - too many?

Unnecessary or
unnecessarily

complex views?

Error-
proneness

Possible flaw: Chart
interaction.

Positive: Zoom ...

Opertations in context
menu clear?

User-defined ...

Make sure that
operations that would

create too ...

See Overview (Chart
interactions)

Hard Mental
Operations

Do users recognize
growing memory as

problem?

See abstraction &
closeness of mapping.

User is free to use any
classifier com-bination.

Certain ...

Even though users
can inspect graphs,
the detection of ...

Interpretation of
charts hard?

Normal classification
trees.

Hidden
Dependencies

Zoom is synced,
selection is synced.

Highlight selection in
parent chart better.

Also display ...

BUG: New
classification in heap

state may ...

Link from pie chart to
table clear?

Are there any
dependencies that

we did not find yet?

Premature
Commitment

Time window has to be
selected beforehand ...

Time has to be selected
beforehand

Time has to be selected
beforehand.

Once nodes are ...

Order of operations,
etc.

Progressive
Evaluation

User can check how
many of the suggested

time ...

Selected value is
shown for every level.

The more levels, ...

Position withing
classification tree

determines progress.

User can always check
the path he/she has

already ...

Provisionality
Can open a new heap

state without
problems, can ...

All settings can be
changed arbitrarily.

Abortion of long
running operations is

possible.

View is always reset-
able. Future work:
"What-if"-games.

Role-
expressivness

Memory chart clear.
GC chart probably not

directly clear.

Is it clear what a
single chart is

showing?

Should be clear, ask
if the tree table

visualization was ...

Are the different
types of nodes clear?

Charts maybe not
clear, check if users
understand what ...

Do users understand
the charts?

Secondary
Notation

Viscosity
Inflexibility of the

classifier selection.
Classifiers cannot ...

Order of classifiers
cannot be changed
using drag-and-...

Graph grows rather
fast.

Order of classifiers
cannot be changed
using drag-and-...

Visibility
New overview tab was

implemented: Now
Memory + GC ...

Drill-down feature
has been improved
(with table, etc.) ...

Should be clear, ask if
the tree table

visualization was ...

Legend was needed. Many charts at once,
may be

overwhelming.

Tab system.

Do users find out ...

Co
gn

it
iv

e
D

im
en

si
on

s

Fig. 3. The spreadsheet documents the results of the CD assessment. Each column represents an activity
(cf. row 1) performed on one of AntTracks’ views (cf. row 2). Each of the 14 cognitive dimensions [8] is shown
in a separate row. A green cell represents a CD for which no issues were found on the respective view, a
yellow cell highlights a CD with room for improvement on the respective view, and a red cell depicts serious
problems (requiring fixes before the user study). The cell texts show parts of the notes taken by the inspectors
during the walkthrough. Highlighted view-CD-pairs (cells with black text and thick border) have been chosen
to be evaluated in more detail during the user study.

In the following, we present the assessors’ feedback to the cognitive dimensions selected for
detailed inspection during the user study. The user study design as well as the interview questions
have been adjusted to gain as much insight as possible into these possible usability flaws.

5.1 Memory Growth Detection — Overview
Error-proneness, i.e., the notation invites errors, has been recognized as a likely problematic cognitive
dimension in the overview. The most common operations on this view are chart interactions such
as the selection of a single point in time (to select a heap state to be analyzed) or the selection of a
time window (to select an interval for heap evolution analysis). Various interaction mechanisms
(clicking, double-clicking, dragging, etc.) for different actions exist and vary across applications,
which can easily lead to misuse. Hard mental operations also require attention in the user study.
Even though users can be expected to spot continuous growth in a time-series chart, novice users
might not relate such patterns to possible memory leaks that should be investigated further.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:12 Markus Weninger et al.

Table 2. The cognitive dimensions that were chosen based on the results of the cognitive walkthrough to be
inspected in more detail during the user study using observations (OBS) and interview questions (INT).

Activity /
Capability Tool Views Cognitive

Dimension
Assessment in
User Study

Study Result
(cf. Section 7.2)

Detection:
Memory Growth Overview Error-proneness

Hard Mental Operations
OBS + INT
OBS + INT

-
o

Inspection:
Evolution over Time

AntTracks
TrendViz
View

Abstraction
Diffuseness

Role-Expressiveness
Viscosity
Visibility

OBS
OBS

OBS + INT
OBS

OBS + INT

o
+
+
+
o

Inspection:
Single Point in Time

Heap State
View

Diffuseness
Hidden Dependencies
Role-Expressiveness

Viscosity

OBS + INT
OBS

OBS + INT
OBS

+/o
+
o
+/o

Inspection:
Single Point in Time

Graph
Visualization

View

Consistency
Diffuseness

Hard Mental Operations
Role-expressiveness

OBS
OBS

OBS + INT
OBS + INT

+
+
-
-

Detection:
Memory Churn

Details
View

Error-proneness
Hard Mental Operations

Visibility

OBS
OBS
OBS

-
-
+

Inspection:
Evolution over Time

Short-living
objects View

Consistency
Diffuseness

Role-Expressiveness

OBS + INT
OBS

OBS + INT

+
-
o

Cross-Cutting

Abstraction
Consistency
Diffuseness

Hidden Dependencies
Premature Commitment

Visibility

OBS + INT
OBS + INT
OBS + INT

OBS
OBS + INT

OBS

-
+
o
+
+
+

5.2 Memory Growth Inspection: Evolution over Time — TrendViz View
Diffuseness, i.e., the verbosity of the notation, and viscosity, i.e., the resistance to change, both needed
fixing before the user study due to AntTracks’ complex classifier system. Although this system is
very flexible for expert to arbitrarily group heap objects, this flexibility can make the system difficult
to use for novices. In particular, an overwhelmingly large list of available filters and classifiers is
presented to the users (diffuseness), who may struggle to select sensible classifier combinations
without a solid background in memory analysis. Additionally, the selection and arrangement of
these combinations was tedious, for example drag-and-drop features were missing (viscosity). Thus,
we extended AntTracks with pre-defined classifier combinations for common tasks before the
study (cf. Figure 1b). For example, the combination Bottom-up analysis: Domain objects first
applies a filter to omit objects from internal packages (such as java.lang or java.util), and then
groups the remaining objects by their types, followed by their allocation sites and by their call
sites. Visibility, i.e., the ability to view components easily, was another showstopper CD we fixed

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:13

before the user study. The view allows to select a certain object group for drill-down inspection
by clicking on its chart series. Yet, the walkthrough revealed that it might not be obvious that an
object group can be selected by clicking on the chart. Thus, we added a table next to the chart to
make interaction abilities more visible (cf. Figure 1c) and investigated in the study whether users
benefit from this additional table. Abstraction and role expressiveness question if users understand
the meaning and the visualization of the drill-down process, i.e., how a classifier combination and
the resulting classification tree are represented by multiple drillable subcharts displayed below
each other. To emphasize the hierarchical relation between two charts, we added arrows in between
charts before the study, as well as a textual description of the drill-down selection, as shown in
Figure 1c. Another abstraction we considered to simplify analyses in AntTracks regards the way
of presenting allocation sites and method calls. Call chains can become quite long (multiple 10s
of calls) and thus hard to inspect, especially if an application employs various libraries that call
each other. To reduce the amount of entries in such a call chain, AntTracks creates artificial entries
labelled (hidden internal call sites) that combine multiple internal call sites, i.e., calls from
one method to another inside a packages that cannot be modified by the user (such as java.util).
This abstraction may be hard to understand for some users.

5.3 Memory Growth Inspection: Single Point in Time — Heap State View + Graph View
5.3.1 Table-based Analysis — Heap State View.
Diffuseness and viscosity are also relevant on this view since it uses the same classifier system
as the TrendViz view discussed in the previous section. Yet, different classifier combinations are
required on both views, as certain combinations are only sensible when analyzing a single heap
state but not a trend. We thus improved the system by adding even more pre-defined classifier
combinations, but showing only the relevant ones on the respective views. Role expressiveness on
this view’s classifier selection questions whether the different combinations can be distinguished
and understood by the users. For each combination, AntTracks shows its name, a description and
the list of used filters and classifiers, as shown in Figure 1b. We added an interview question to
clarify if this explanation is sufficient for users. Hidden dependencies were another problem that
became apparent during the cognitive walkthrough. Users can select an object group in a heap state
view and then apply various operations, some of which open new windows displaying information
related to the selected object group. If the heap state window changes, for example, by selecting
a different classifier combination, the object groups on the child windows no longer exist in the
parent window, thus breaking (hidden) dependencies. We tried to prevent this problem by opening
a new heap state window every time a new classifier combination is applied.

5.3.2 Graph-based Analysis — Graph View.
Consistency is a concern on this view, since its graph-based visualization strongly differs from
other AntTracks views, most of which use time-series charts and tree tables to display data. Role-
expressiveness has to be evaluated regarding the different types of nodes, edges, color encodings and
other features that are intended to help users to understand the graph but also pose the risk of being
too complex. Diffuseness may also be affected by this graph notation. Grouping objects based on
their type significantly reduces the number of nodes on the screen but requires additional labeling.
This could result in an overly high number of screen objects negatively affecting comprehension
by the user. Hard mental operations have to be performed as users try to spot suspicious GC roots
and suitable cutting points on the paths to them. The view can visualize the heap object graph and
roots to the GC roots, yet this information is only useful if users are able to interpret it correctly.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:14 Markus Weninger et al.

5.4 Memory Churn Detection — Details View
Error-proneness, as in the overview, concerns the interaction with AntTracks’ time-series charts,
which are the main way of visualization on the details view. Visibility asks the question how easily
users can detect time windows with high memory churn, i.e., spike-patterns with frequent and tall
spikes on the chart, on the details view. Hard mental operations are potentially required for users
without experience in memory analysis to correctly interpret such spikes as suspicious.

5.5 Memory Churn Inspection: Evolution over Time — Short-living Objects View
Role-expressiveness should be assessed during the study on AntTracks’ short-living objects view.
Various information (such as garbage composition) is visualized using pie charts, but not all of it
may be clear to the users, e.g., due to the terminology used. Diffuseness is also of interest as the
view contains twelve charts, some of which contain less crucial information and thus could diffuse
the more important information. Consistency regards the tree table on the inspection tab. In other
AntTracks views, the tree table shows the live objects of a certain heap state, while this tree table
shows all objects garbage-collected in the chosen time window. We decided to investigate this
break in consistency in the study.

5.6 Cross-Cutting Dimensions
Several cognitive dimensions were found to be relevant for all views of AntTracks. We decided to
assess in the study if these are well supported. Visibility and preventing hidden dependencies were
our main concerns when choosing a stacked tab arrangement in AntTracks. AntTracks offers a
number of different analysis features, many of which open new (child) views. We thus decided on a
stacked tab system where each tab can again have further child tabs. Abstraction is also important
in nearly all tools. For example, typical abstractions are icons or terminology inherent to the given
domain. Certain abstractions may be hard to understand in which case they should be fixed in the
future. Consistency is important for visualizations in tools. AntTracks mostly uses the same chart
style on all of its views. Also, much of the information in AntTracks is visualized in tables, often
tree tables, since most of its data is arranged in trees (for example classification trees). We included
a question regarding consistency in the study questionnaire to reveal potential inconsistencies.
Diffuseness may concern especially non-expert users. Visualizations should be as clear as possible,
and the study was designed to reveal unnecessary or unnecessarily complex parts of the tool.

6 USEFULNESS STUDY DESIGN
Based on the results of the cognitive walkthrough and the subsequent improvements of the tool,
our qualitative study assessed the usefulness (i.e., usability and utility) of AntTracks’ memory
analysis capabilities. We structured our study using the guidelines by Runeson and Höst [101].
For the design of the study tasks, we followed the recommendations by Ko et al. [59]. Specifically,
we defined six tasks based on the the initial survey of memory analysis activities and capabilities
(cf. Section 3). We iteratively refined these tasks by first testing their difficulty ourselves and then
involving a researcher from our lab who had never used AntTracks before as a pilot user. Based on
the feedback, we adjusted the study method, e.g., we removed ambiguities in the instructions.

6.1 Study Subjects
We selected the study participants from two sources: (i) we invited students from a course on
Java performance monitoring and benchmarking to take part in the study, as the course ensured
basic knowledge about the context and purpose of memory analysis tools (cf. Ko et al.’s inclusion
condition [59]). Ten students agreed to take part in the study. We made clear in the invitation

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:15

Table 3. The study subjects’ experience in software engineering and memory analysis.

Current
Study

Experience in
software engineering

(in years)

Experience in
memory analysis

(in years)

Experience in
AntTracks

1 Bachelor 3 0.1 No
2 Bachelor 6 0.1 No
3 Bachelor 4 0.1 No
4 Bachelor 3 0.1 No
5 Master 7 0.1 Presentations
6 Bachelor 1 0.1 No
7 Bachelor 2.5 0.1 No
8 PhD 7 2.5 Presentations
9 Bachelor 7 3 No
10 Master 5 0.1 Presentation
11 Bachelor 8 0.5 No
12 PhD 10 0.1 Presentations
13 Bachelor 6 1 Presentations
14 PhD 9 0.5 Presentations

AVG 5.6 0.6

that the participation and performance in the study are in no way related to the grading of the
course. (ii) In addition, four researchers from our department accepted to participate. Table 3 shows
a complete list of all participants. None of them had used AntTracks before, yet six of the 14
participant heard about AntTracks in presentations. At the time of the study, nine participants were
in their bachelor’s studies, two pursued a master, and three were enrolled in a PhD program. Their
average experience in software engineering was 5.6 years whereas their average experience with
memory analysis tools was 0.6 years. The ten students attending the Java performance monitoring
and benchmarking course had completed one homework assignment involving the use of a memory
analysis tool such as VisualVM [91] or MAT [29] to inspect the memory behavior of easyTravel [27],
a state-of-the-art demo application by Dynatrace [28] that mimics the server of a travel agency.
Seven of the students reported this assignment as their only memory analysis experience, which
we regarded as an experience of 0.1 years. Besides VisualVM [91] and MAT [29], the participants
already had experience in various tools including Java Melody [51, 71], Android Studio [37, 42],
Valgrind [81, 111], and Java Mission Control [89] (including Java Flight Recorder [84]).

6.2 Study System
We selected the web application JPetStore 6 [80] as our study system. JPetStore has been widely
used in research projects [32, 53, 55, 56, 114]. It models a minimalistic web shop for pets and
uses a clearly structured class hierarchy. Categories (e.g., fish) can contain multiple products (e.g.,
Koi), which in turn can contain multiple items (e.g., spotted Koi and spotless Koi). Categories,
products, and items each have their own web page and can be viewed in a web browser. We chose
JPetStore since its straightforward structure described in a UML [13] class diagram made it easily
comprehensible for the study participants without being familiar with the source code. This helped
to mitigate the risk of participants not finishing the study tasks (cf. [120]). To prepare the system for
the study, we modified the JPetStore source code to contain the following two memory anomalies.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:16 Markus Weninger et al.

(1) Memory Leak Mode: In this configuration, we purposely keep objects alive after their intended
use. Since memory leaks caused by a single object (e.g., a single static list) can easily be
inspected and resolved by a dominator analysis [29], we mimic a more realistic problem
that is harder to resolve due to multi-object ownership [116]. To achieve this, every time a
product web page is requested, the (normally temporary) Product object shown on the page
is stored in and kept alive by two different static lists located in different classes.

(2) Memory Churn Mode: In the original version of JPetStore, displaying a single item results in a
database query using the item’s ID, causing only a single Item Java heap object to be created.
In our modified version, all available items are loaded from the database (a List<Item> of
length 10 000) and the needed item is then extracted from this list. This means that 9 999 Item
heap objects are needlessly created on every request, a typical case of high memory churn.

We created AntTracks trace files before the user study for both the memory leak and the memory
churn mode. In particular, we simulated heavy load of the application by sending numerous requests
to the server, requesting the web pages of random categories, products, and items.

6.3 Study Process and Data Collection
We conducted the study in a separate session with each subject. At the beginning of each session, we
asked the participants to ‘think aloud’ [47, 50, 83] during the study. Specifically, we asked them to
verbally describe what they were doing, to comment on any of their concerns, and to say whatever
comes to their mind while solving the given tasks. A scribe documented the think-aloud statements,
while a moderator watched and guided the subjects through the study and took additional notes
on interesting observations not covered by the think-aloud protocol. Specifically, we conducted the
following process that took approximately one hour per subject:

Preparation. Since the participants worked on the computer of one of the authors, all services
and applications that might have distracted a study participant were closed. Before each session,
we started the AntTracks Analyzer tool and loaded the trace file that was recorded using JPetStore
in memory leak mode. The scribe and moderator prepared their documents to take notes. The
moderator additionally prepared a utility questionnaire for the interview at the end of the session.

Briefing. The moderator explained the goals of the study to the participants and asked for their
consent on the publishing of the findings [59]. Consent was given by signing a form explaining
the study process, the data planned to be collected, and the procedures for storing and processing
this data. The moderator also discussed a briefing sheet explaining the JPetStore domain, basic
workflows of analyzing a memory leak and high memory churn, and the think-aloud process
with the participants. The participants then received a document describing the different tasks to
be performed. To ensure focus, the tasks were introduced one after another as the participants
progressed through them.

Task Execution. The participants completed the following six tasks:
• Memory Leak Detection: They used AntTracks to detect suspicious memory behavior by
inspecting the application’s memory consumption over time in the Overview tab.

• Heap Evolution over Time: The participants selected a suspicious time window and used the
TrendViz feature to identify the domain objects showing the highest memory growth in this
interval. They further checked at which allocation sites these objects were created, and from
which sites they were called.

• Table-based Heap State Analysis: The participants opened the heap state at the end of the se-
lected time frame and performed a bottom-up analysis on the domain objects. They identified
the objects showing suspicious memory growth in the previous analysis.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:17

• Graph-based Heap State Analysis: As a next step, they used the graph visualization to explore
the neighbors of these objects. Objects remain alive if they are (indirectly) referenced by
GC roots. Participants were asked to follow the from-pointers, in particular, thick edges
indicating a large ownership, to find suspicious GC roots. After this analysis, participants
used the application’s source code and aimed to fix the memory bug based on their findings.

• Memory Churn Detection: After fixing the memory leak, the participants analyzed the second
trace file recorded in memory churn mode. They identified suspicious behavior by inspecting
the memory charts in the application’s details view.

• Heap Evolution of Short-living Objects: Participants were asked to select a time window
showing suspicious GC behavior, i.e., frequent collections with high object death rates, for
the short-living objects analysis. They were then asked to locate and fix the memory problem
in the source code based on their findings.

Data Collection. After finishing all tasks the participants completed a usability questionnaire
covering Nielsen’s usability attributes [82] and specific capabilities of AntTracks. The moderator
further conducted a semi-structured interview comprising 17 questions on the tool’s utility and
usability. The questions are based on the utility questionnaire by Davis [23] and usability issues
revealed in the cognitive dimensions assessment (cf. Section 5). More specifically, we included one
question per cognitive dimension classified as Interview in Table 2, such as ‘Did you experience any
problems while selecting a given time or time window?’ (targeting error-proneness on the Overview
and Details view) or ‘Did you experience any problems with the used terminology, i.e., naming of
displayed content and/or icons used?’ (targeting cross-cutting abstraction). During these interviews,
we also collected the demographic information presented in Table 3. Each interview was concluded
with a short debriefing.

Data Analysis and Reporting. After running all sessions we prepared the collected data for analysis.
Overall, 370 observations (26.5 per subject on average), 261 think-aloud statements (18.5 per subject
on average) and 238 interview statements (17 per subject) were recorded by the scribes, some of
which will be quoted in Section 7.2. We labelled all observations, statements and interview answers
to allow their systematic use. For example, as shown in Table 4, the think-aloud statement on
AntTracks’ overview screen ‘In the chart, I can see that my memory grows more and more, that is
not good.’ received the labels ‘Detects Growth In Chart’ as well as ‘Recognizes Growth as Problem’.
We adopted and adjusted an iterative labelling process [35] that is similar to Open Coding [104].
First, a set of possible observation labels and statement labels had to be formed. For this, three of
the authors jointly classified a sample set of the study session transcripts. This helped them to
gain a mutual agreement on the possible labels and the coding process itself. Then each of the
three authors individually coded the remaining observations and statements, while still staying in
contact with each other. This allowed the coders to quickly and collectively decide if a new label
should be introduced in case an observation or statement could not be mapped to an existing label.
In this case, they also went through all previously labelled observations and statements to check if

Table 4. Labeling a think-aloud statement and linking these labels to their relevant cognitive dimensions.

Subj. Task Observation /
Think-aloud statement Labels Relevant cognitive

dimensions

1 1
‘In the chart, I can see that
my memory grows more
and more, that is not good.’

Detects Growth In Chart
Recognizes Growth as Problem

Visibility
Hard mental operations

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:18 Markus Weninger et al.

the new label should also be applied. Finally, the coders had a joint discussion meeting to merge the
three individually labelled lists of observations and statements into a single list, thereby discussing
and resolving possible differences.

Each of the labels was then linked to its relevant cognitive dimensions. For example, in Table 4 the
two labels are related to the cognitive dimensions visibility and hard mental operations respectively.
Discussing the result of the study (cf. Section 7) can then be done view by view, analyzing each
cognitive dimension in question based on the frequency of relevant labels.

7 STUDY RESULTS
We discuss the results regarding the usability of the AntTracks Analyzer memory analysis tool
based on the usability questionnaire and the findings for specific memory analysis tasks. We further
report findings regarding utility. Recommendations derived from these results are then presented
in Section 8.

7.1 UsabilityQuestionnaire
Table 5 depicts the results of the usability questionnaire, which follows Nielsen’s attributes of
usability [82]. In the following, we will summarize the result for each of these attributes.

Table 5. Results of the usability questionnaires. We used a four-point scale (0, 1, 2, 3) for learnability (very hard
to very easy), error prevention (too many errors encountered to no errors encountered), subjective satisfaction
(very bad to very good), and efficiency (very inefficient to very efficient). For memorability, we used a yes/no
question. Aggregations have been performed using the median.

Nielsen’s Attr. / Subj. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Med.

Learnability 3 2.5 2 3 2.5 2 2.5 3 2 2.5 3 2 1.5 2.5 2.5
Overview 3 3 3 3 2 1 2 3 2 2 3 2 2 3 2.5
TrendViz 3 2 2 2 2 2 3 3 2 2 3 2 1 3 2
Heap State 3 3 1 3 3 3 2 3 3 3 3 2 2 1 3
Graph 2 1 0 3 3 0 3 2 2 3 2 1 2 3 2
Details 3 2 3 3 2 2 3 3 3 3 3 3 1 2 3
Short-living Objects 3 3 2 2 3 3 2 2 2 2 2 2 1 2 2

Error Prevention 3 2.5 3 3 3 3 3 2.5 3 3 3 3 3 3 3
Overview 2 2 3 3 2 1 2 2 3 3 3 3 3 3 3
TrendViz 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Heap State 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Graph 3 2 3 3 3 3 3 3 3 1 3 3 3 3 3
Details View 3 2 3 2 2 2 3 2 3 3 3 3 3 3 3
Short-living Objects 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3

Subj. Satisfaction 3 2.5 2 3 2 2.5 3 3 3 2.5 3 2 2.5 2 2.5
Overview 3 3 2 3 2 2 3 3 3 2 3 3 3 3 3
TrendViz 3 2 1 3 2 2 3 3 3 3 3 2 1 2 2.5
Heap State 3 3 2 3 3 3 3 3 3 3 3 2 3 1 3
Graph 3 1 2 3 3 1 3 3 3 3 3 2 2 2 3
Details View 3 2 2 3 2 3 3 3 3 2 3 3 3 3 3
Short-living Objects 2 3 2 3 2 3 3 2 3 2 2 2 2 2 2

Efficiency 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3

Memorability 3 0 3 3 3 3 3 3 3 3 3 3 3 3 3

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:19

Learnability. In general, 13 of 14 subjects found the tool easy or very easy to learn. We see
potential for improvements especially with regard to the learnability of the graph visualization,
which was twice rated as hard to learn and twice as very hard to learn.

Subject S13, who managed to solve all tasks, surprisingly rated three of the six views used during
the study as hard to learn. During the interview, it became apparent that this rating was mainly
due to the subject’s high familiarity with the MAT tool. MAT offers different views and analysis
techniques than AntTracks, which led to some confusion. S3 assessed two of the views as (very)
hard to learn, but repeatedly regarded his background in memory analysis as weak.

Error Prevention. Most participants replied that they did not encounter any errors. Participants
reporting errors on the overview and the details view struggled with zooming and selecting
time windows on the charts. The errors reported for the short-living objects concerned a minor
visualization bug.

Subjective Satisfaction. The participants were, generally speaking, very satisfied with the tool.
The basic views (overview, heap state table, and details view) had the highest ratings, while the
more advanced views (TrendViz view, graph visualization and short-living objects view) were rated
slightly lower. These satisfaction scores coarsely match the learnability scores.
An issue that may explain some of these lower ratings was brought up repeatedly during the

study and the interviews: AntTracks was mainly perceived as a tool aimed at experienced users.
Some novice study participants missed specific guidance that helps them to exploit the tool’s full
potential. Some users also lacked the background knowledge needed to correctly interpret the
visualized data and gain insights from the presented metrics.

Efficiency. We asked all participants if they could productively use the tool in their daily work.
Twelve of the 14 participants answered this question with very efficient and two with efficient. This
supports our belief that by further increasing AntTracks’ learnability, even novice users could use
it efficiently to resolve memory anomalies in their applications.

Memorability. Thirteen of 14 study participants think that they will remember how to work with
AntTracks after not using it for some time. Only one participant answered this question negatively.

7.2 Usability Results for Specific Activities
We now discuss the usability of the AntTracks Analyzer in detail by referring to the think-aloud
statements (THA), observations (OBS), and the answers to the interview questions (INT) obtained
during the study. As discussed in Section 5, we focus on a number of cognitive dimensions per
view during this analysis. For each selected cognitive dimension we provide a study result (listed in
Table 2), a statement summarizing the results, as well as a more detailed study report.

7.2.1 Memory Growth Detection — Overview.
The cognitive dimensions we studied in more detail on this view are the hard mental operations
possibly needed to detect and interpret suspicious memory growth and the error-proneness of
interacting with the time-series charts.

Although all participants could detect thememory growth, only 70% of themmanaged
to select a good time window for analysis. Thirteen out of 14 participant mentioned that the
application contains suspicious memory growth (THA). Similarly, during the interview, all 14
participants stated that they had no problem to detect the memory growth (INT). Nevertheless, we
observed that this did not mean that users could also select a good window for analysis. As shown
in Figure 1a, the memory chart shows a tall memory consumption spike during initialization –
a typical memory pattern that is not related to a memory leak. Still, four of the 14 participants

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:20 Markus Weninger et al.

selected a time window covering the spike instead of the memory growth for further analysis (OBS),
while two other participants expressed (THA) that they probably should investigate the spike in
addition to the continuous memory growth. After the moderator explained that a time window
covering the memory growth should be selected, over half of the participants expressed concerns
regarding the optimal size of the time window (THA). (Hard mental operations: Medium)

Unintuitive controls caused problemswith chart interaction.We observed that AntTracks’
chart interactions confused most of the participants. The text next to the chart explaining the
different ways of interaction was often ignored (OBS). Overall, only three out of 14 participants had
no problems when interacting with the chart (INT). Rather, typical statements were ‘The controls
are not clear and the explanation text is too long’ (THA - S6), ‘How do I select a time window? ’ (THA -
S1, S5), and ‘Intuitively, I would have dragged for time window selection’ (INT - S4). Many participants
rated this fact as an error, which is also reflected in the usability questionnaire (cf. Table 5). (Error-
proneness: Bad)

The position of tabs and buttons led to irritations. Twelve out of 14 participants struggled
to find the button to start the heap evolution analysis (OBS). The AntTracks version used in the
study displayed the list of all open tabs and the list of available operations on the left side of
the screen. Five people suggested to place the list of tabs and operations on the right side of the
screen (INT) (as shown in Figure 1a), since ‘It is typical to look for buttons in the bottom-right
corner’ (INT - S5). (Other findings - Visibility)

7.2.2 Memory Growth Inspection: Evolution over Time — TrendViz View.
We studied five cognitive dimensions on the TrendViz view as shown in Table 2.
AntTracks default classifier combinations allowed novices to select suitable classifiers

for heap object grouping. AntTracks’ classifier selection system has been reworked before the
user study to provide default classifier combinations to choose from, hiding its complex selection
dialog in an expert mode. Except for two participants, one of which wanted to try the expert
mode out of curiosity (OBS - S5, S13), all other participants selected the correct classifiers without
problems by using one of the pre-defined classifier combinations. (Diffuseness: Good; Viscosity:
Good)

Participants succeeded with finding the drill-down feature. We added interactive tables
next to the charts before the study, to allow the users to drill-down by clicking on table entries.
This paid off, as all participants except one discovered the drill-down feature (OBS). During the
interview, we asked the participants whether they were aware of the drill-down feature in the
view. A typical response was ‘No. But I intuitively clicked on the table and expected something to
happen.’ (INT - S1, S7, S9, S10, S11). One participant stated that he ‘would probably have clicked on
the chart if it contained a hover effect combined with a changed mouse cursor and a tool tip’ (INT - S4).
(Visibility: Medium)

Participants understood the drill-down feature and sub-chart dependencies but were
confused by terminology. Eleven subjects had no problem understanding the drill-down fea-
ture (INT), two subjects said it took them some time (INT - S6, S13), and one participant had general
problems to understand the TrendViz view (OBS - S3). When asked whether they understand
what happens when they drill-down, answers included ‘More details of the selected elements are
shown’ (INT - S2), ‘It is like following one branch in a tree’ (INT - S4), and ‘Selecting a type to show
its allocation sites was clear to me’ (INT - S1). Thus, we can conclude that in general the meaning of
the drill-down was clear to the subjects. Yet, we observed that four subjects stopped the drill-down
early due to bad abstraction. Instead of investigating all available four call sites (by performing
four drill-downs) they stopped at the first call site, i.e., ‘(hidden internal call sites)’ (OBS),
as they expected no additional call sites (THA). (Abstraction: Medium; Role-expressiveness: Good)

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:21

7.2.3 Memory Growth Inspection: Single Point in Time — Heap State View.
The cognitive dimensions viscosity, diffuseness, and role-expressiveness on this view are relevant for
the classifier selection, as well as for the view in general. The problem of broken hidden dependencies
was no longer an issue after fixing a potential problem before the study (OBS).

Half of the participants were unaware of the direct switch from heap evolution analy-
sis to heap state analysis. Even though the TrendViz view offers easy switching to the heap state
analysis at the end of the selected time window, seven participants were unaware of that feature
and instead used a complex work around, i.e., going back to the overview screen and manually
selecting this point in time on the chart (OBS). (Viscosity: Medium – Navigation between views)

The participants effectively used the pre-defined classifier combinations for typical
heap state analysis tasks and selected them based on either name or description. In the
interview we asked the participants about the selection of the classifier combination in the heap
state view. Seven said that they selected the correct classifier combination based on its name while
six answered that they used the textual description for selection (INT). Three participants stated that
they additionally checked the set of classifiers to make sure it matches the description (THA). Only
a single participant selected a wrong combination by ignoring all information and by just using
the pre-selected default combination (OBS - S10). (Diffuseness: Good; Viscosity: Good – Classifier
Selection)

Some participants regarded the tree table view as too diffuse.While inspecting the heap
state, three participants mentioned that ‘too much information is shown on the tree table view’ (THA -
S3, S5, S14), and that they wished for a master-detail view (INT) to reduce the view’s diffuseness.
(Diffuseness: Medium – Heap state table)

Hiding the complexity of the classifier systemmade selection easier but half of partic-
ipants no longer understood its full possibilities. In the interview, half of the participants said
that it was obvious how the classification system works and that the pre-defined combinations just
differ in terms of which filters and classifiers are applied (INT). Four said that they were aware of
some classification system, understood the results intuitively, but did not think about how it works
in the background (INT). Three others said that they did not recognize a classifier system as such
but just selected a classifier combination name based on the instructions (INT). (Role-expressiveness:
Medium)

Participants struggled with terminology. We again observed problems regarding the cogni-
tive dimension abstraction, as some people struggled with terminology used on the heap state view.
For example, two participants did not understand the meaning of ‘hidden internal call site’ (THA -
S5, S10), while one could not make sense of the term ‘retained size’ (THA - S6). (Other findings –
Abstraction)

7.2.4 Memory Growth Inspection: Single Point in Time — Graph View.
The object graph visualization in AntTracks enables users to visually explore the paths from a
group of objects to their GC roots. We received valuable feedback during the study regarding this
view.

Meaning of graph view elements not immediately clear. Only five subjects said that all
operations and elements on the view were clear (INT). Four subjects said that they need better
edge labeling (INT) to understand how many objects are kept alive on which path (THA, INT) and
three subjects suggested to explain the operations in more detail, e.g., by using a tool tip (INT). One
subject suggested to reduce the amount of text used in GC root nodes and to highlight different
GC root types in different colors (INT - S8). Two participants generally struggled with using this
view (OBS - S3, S6). For example, one participant did not understand that nodes and edges represent

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:22 Markus Weninger et al.

groups of objects and object references respectively but instead thought the graph would visualize
relationships between outer and inner classes (THA - S6). (Role-expressiveness: Bad)

Graph complexity regarded manageable. Even though the graph view displays many ele-
ments, no participant expressed any concerns, possibly also due to AntTracks’ highlighting of
important edges with thick lines to guide the users. This is further confirmed by the fact that half
of the participants liked this edge highlighting (THA, INT). (Diffuseness: Good)

Interaction in graph-based visualization worked fine.As this is the only view in AntTracks
that does not use tables or time-series charts for visualization, we studied whether participants have
problems with this break in consistency. However, all subjects managed to apply the operations
and use the features for zooming and panning, and no problems with the interaction mechanisms
were found (OBS, THA). (Consistency: Good)

Half of the participants struggled to extract the information needed to fix thememory
leak. Finding themost suspicious GC roots relies on detecting those paths onwhich themost objects
are kept alive. However, as already mentioned, edge labeling was a source of confusion (OBS, THA).
Also, two subjects (correctly) expressed concerns whether thread-local variables (that were at that
time visualized in the same way as the more dangerous static fields) should also be considered as
suspects (THA). In addition, we observed that three participants ignored the fact that the memory
leak was caused by multi-object ownership, i.e., two different static fields kept the same objects
alive, even though they were both shown side by side on the graph view (OBS). (Hard mental
operations: Bad)

Two thirds of the participantsmanaged to trace thememory leak to source code.Overall,
six of the 14 participants were able to identify both static lists that are responsible for the memory
leak within the source code (OBS). Three participants found one of the two sources for the memory
leak, but did not recognize the multi-object ownership in the graph view (OBS). Five participants
were not able to use the insights gained in the tool to make the necessary fixes in the source
code (OBS). (Other findings)

7.2.5 Memory Churn Detection — Details View.
The second part of the study involved the analysis of memory churn. The participants’ first task was
to inspect the development of the application’s memory footprint over time and to look for memory
anomalies using AntTracks’ details view. Since this view uses the same charting technique as the
overview, the problems regarding the error-proneness of chart interactions reported in Section 7.2.1
also affected this view.

Novices struggled with correctly interpreting the spike pattern. The main goal on the
details view is to detect memory churn hotspots based on spike patterns on the memory chart, as
shown on Figure 2a. Twelve of 14 participants recognized this spike pattern (THA). Two participants
wrongly focused on the initial memory spike as discussed in Section 7.2.1 (OBS - S1, S3). Five
participants had no idea whether such spike patterns are abnormal and have to be inspected
further (THA). The statements ranged from ‘I think many short-living objects are normal in Java
applications’ (THA - S12, S13) to ‘It cannot be normal to allocate two million objects when only
showing a few webpages’ (THA - S11). Selecting a good time window for the analysis was also
hard for most participants as the size of the selected time windows varied drastically from 2 to 200
garbage collections (OBS). Very short or very long time windows may distort the analysis result,
and a very large time window may unnecessarily increase the analysis time. (Visibility: Good; Hard
mental operations: Bad)

GC-specific terminology confused some participants. The details view shows three differ-
ent series per memory chart, representing the different generations of the GC: Eden, i.e., objects
that are new and have not yet survived a single garbage collection, Survivor, i.e., objects that have

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:23

survived a few garbage collections, and Old, i.e., objects that have lived for a long time and are
stored separately in the heap in order to speed up frequent garbage collections. Seven participants
stated that these terms are either unknown to them or that they once learned about them but have
forgotten them (THA, INT). (Other findings)

7.2.6 Memory Churn Inspection: Evolution over Time — Short-living Objects View.
The upper half of the short-living objects view presents pie charts showing the types and al-
location sites that caused the most garbage in terms of objects and bytes in the selected time
window (cf. Figure 2b). The bottom half of the view shows charts comparing the selected time
window’s GC frequency and GC overhead with the application’s average. During the study, we
studied the role-expressiveness and diffuseness of these charts. Additionally, the view provides a tree
table view for detailed analysis which we inspected regarding consistency.

All participants managed to extract the information needed to inspect the problem
despite some irrelevant and overly complex charts. All subjects managed to use the charts
to recognize the type that caused the most garbage (OBS). The allocation site pie charts were, in
general, understood but ignored (OBS, THA). Only one participant said that the allocation site
charts are unclear (INT - S13). Yet, four participants expressed that they did not understand the
charts on the bottom half of the screen (INT), while six other participants ignored these charts
because they considered them as not relevant to the problem (INT). (Role-expressiveness: Medium;
Diffuseness: Bad)

The participants had no problems with interpreting the tree table. After inspecting the
charts, the participants switched to the tree table to inspect the garbage created over the selected
time window. Since tree tables in AntTracks are generally used to visualize live objects, we wanted to
know whether the study participants understood that dead objects are shown in this case. Thirteen
participants stated that the content of the tree table was clear to them (INT). Only one participant
replied that he ‘had to think a bit about what the columns mean’ (INT - S8). (Consistency: Good)

Most participants could locate thememory churn location in the source code, six could
to fix the problem. While looking for the root cause of the memory churn, all subjects started
to inspect the top-most table entry, i.e., char arrays that died without surviving a single garbage
collection (OBS). Since domain types (e.g., types that are not part of the Java library) are often
easier to locate in the source code, AntTracks highlights these types in bold to direct the users’
attention to these tree table entries (for example, in Figure 1d the type Product is highlighted as
a domain type). Still, only half of the participants noticed the domain object type that generated
the most garbage (OBS). During the interview, one participant stated that he would ‘probably have
investigated the domain objects if they were not only written in bold, but shown in a separate section
within the tree table, or even as a separate pie chart on the overview’ (INT - S3).

Overall, eleven participants found the problematic method in the source code: all seven partici-
pants who inspected the domain objects in AntTracks and four of the seven subjects who did not
inspect the domain objects in AntTracks. Only six of the eleven subjects who managed to locate
the problematic method were also able to fix the problem. Five of them had inspected the domain
objects (OBS). Subjects who did not focus on the domain objects in AntTracks were looking for
allocations of char arrays (THA), while the others were looking for Item objects (THA). Many
Item objects are created by the problematic code, but since every Item object contains up to eight
String objects each again containing a char array, all these allocations are represented by the
same call site, which obviously confused some of the subjects (OBS). (Other findings)

7.2.7 CD Assessment: Cross Cutting.
Several cognitive dimensions are relevant on all views or relate to the general structure and
organization of AntTracks.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:24 Markus Weninger et al.

Constraints on the order of doing things. Participants did not feel constrained by the tool,
which allows to go back after making a wrong step and to revert earlier actions (OBS). (Premature
commitment: Good)

Basic layout and stacked tabs. We did not detect any hidden dependencies the participants
were not aware of (OBS). When asked what they liked about the tool in general, six participants
said that they like the general layout using stacked tabs and the consistent positioning of tabs and
actions on the screen (INT). (Visibility: Good; Hidden dependencies: Good)

Assumptions made regarding terminology knowledge. We noticed that especially novice
users occasionally struggled with terminology (OBS). For instance, half of the participants did
not know the difference between eden, survivor and old objects on the details view (INT). Two
participants did not understand the difference between an allocation site and a call site (INT -
S7, S12) – a problem also affecting other participants as we suspect based on our observations (OBS).
(Abstraction: Bad)

Consistency of visualizations. The participants did not point out inconsistencies regarding
different means of visualization in AntTracks (INT). AntTracks’ chart syncing, i.e., keeping the
same zoom levels and time selections across multiple charts and views, was positively mentioned
with regard to consistency (INT - S10). (Consistency: Good)

Suggestions for reducing complexity. We interviewed the study participants whether they
considered any of AntTracks’ views or interface elements as unnecessary or overly complex. Eight
participants raised no concerns in this regard (INT). The suggestions for reducing complexity
encompass a master-detail view on the heap state view (INT - S3, S14), the simplification and
improved guidance on the graph visualization (INT - S6, S8, S12), and the removal of some charts
on the short-living objects view (INT). On the positive side, two users commended AntTracks’ good
default settings while keeping expert modes for advanced users (INT - S4, S9). (Diffuseness: Bad)

7.3 Utility
To assess the utility of AntTracks’ views, we first asked subjects whether they liked the flow
suggested by the study, i.e., to first search for memory growth, then visualize the growth using
the AntTracks TrendViz, and then inspect the final heap state followed by an analysis of the heap
object graph. Twelve subjects found the order natural (INT), while two participants stated that they
did not really need the trend analysis (INT - S2, S8). However, we also received positive feedback
for the trend analysis, for example ‘In hindsight, I liked the trend view. Without the study tasks, I
would have directly selected a single point in time because I am used to it’ (INT - S4).

We also asked the participants whether they missed a specific feature or whether they wanted to
make any other comments, resulting in a catalog of 19 feature requests and possible improvements
for AntTracks. The most-wished feature mentioned by five study participants concerns ‘better
guidance’ (INT). This is related to three sub-problems: (1) deriving knowledge from the current
screen, i.e., interpreting the shown data; (2) selecting appropriate steps which should be taken
next based on the findings on the current view; and (3) guidance within the IDE on how to fix
problems in the source code. Three participants wished for ‘more tool tips’ across the various views,
especially on the graph view (INT). Some improvements were suggested by at least two participants,
such as a ‘master-detail view’ for views using tree tables (INT - S3, S5), as well as tutorial videos
explaining how to use the tool (INT - S3, S6). These videos could be uploaded to a video platform
(such as Youtube), as well as directly integrated into AntTracks for ad-hoc learning / learning
by doing [103] (INT). All other suggested improvements were suggested by a single subject and
describe rather minor changes, often with potentially high impact, e.g., zooming with CTRL-key
and mouse wheel (INT - S5) or highlighting the currently hovered line in the tree views for better
orientation (INT - S8). There was also a wish for more automated analyses (INT).

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:25

Finally, we asked the study participants what they liked and disliked about the tool in general.
Most participants mentioned that they liked AntTracks’ general look-and-feel as well as its layout
and visual structure (INT). Four participants said that they liked the charts, i.e., their structure,
labeling and the selection synchronization feature (INT). Two participants mentioned AntTracks’
high productiveness (INT) and also found it intuitive to use (INT). The most disliked aspect of the
tool was the chart interaction. Five participants mentioned that they did not like the way how
zooming and time window selection works (INT), two participants pointed out that AntTracks and
especially its charts react laggy to user input (INT). Four participants said that, although they liked
the way how the tabs and operations are arranged, they should be placed on the right side of the
window since this is where most users look for operation buttons (INT). As already mentioned it
earlier, three participants repeated that they lacked guidance for novice users (INT).

8 RECOMMENDATIONS
Based on the study results presented in the previous section we derived nine general recommenda-
tions for developers of memory analysis tools. Table 6 shows each of these recommendations as
well as cross references to the study results based on which we formulated the recommendation. In
the following, we shortly describe each of them.

Table 6. Summary of recommendations

Name of recommendations Cross references to relevant study results

Use flexible drill-down mechanisms TrendViz view (Section 7.2.2), Heap state view (Section 7.2.3),
Graph view (Section 7.2.4), Short-living objects view (Sec-
tion 7.2.6)

Hide complexity using task-specific de-
fault settings

TrendViz view (Section 7.2.2), Heap state view (Section 7.2.3),
Cross cutting (Section 7.2.7)

Carefully select and explain memory
analysis terminology

TrendViz view (Section 7.2.2), Heap state view (Section 7.2.3),
Details view (Section 7.2.5), Cross cutting (Section 7.2.7)

Show details and advanced analysis re-
sults only on demand

TrendViz view (Section 7.2.2), Heap state view (Section 7.2.3),
Short-living objects view (Section 7.2.6), Cross cutting (Sec-
tion 7.2.7)

Provide support for time selection in
large time series

Overview (Section 7.2.1), Details view (Section 7.2.5)

Ensure a smooth transition from evolu-
tion analysis to snapshot analysis

Heap state view (Section 7.2.3)

Use automation to relieve users from
complex tasks

Overview (Section 7.2.1), Details view (Section 7.2.5), Graph
view (Section 7.2.4)

Provide guidance and explanations to
support exploratory learning of analysis
capabilities

Overview (Section 7.2.1), Graph view (Section 7.2.4), Details
view (Section 7.2.5), Cross cutting (Section 7.2.7)

Provide IDE integration to guide diag-
nosis of memory bugs

Graph view (Section 7.2.4), Short-living objects view (Sec-
tion 7.2.6)

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:26 Markus Weninger et al.

Use flexible drill-down mechanisms. AntTracks heavily relies on its classification system with
multi-level grouping [121, 124]. During the study, we were able to observe that though not all
participants recognized the classification system as such even novice users were able to easily
understand the resulting tree-structured data. Allowing the users to drill down on this data level
by level (e.g., from the whole heap to the most allocation intensive type further to this type’s most
allocation intensive allocation site) enables them to focus on one thing at a time. The same could
be observed on the graph view. The participants performed best when they could focus on one
task, inspecting one path to a GC root at a time, drilling down step by step.

Hide complexity using task-specific default settings. Even though this may sound trivial, we
can clearly see that the study participants profited from pre-defined classifier combinations for
different typical analysis task. Before introducing these pre-defined combinations, AntTracks also
pre-selected a default combination, yet this combination had to be slightly adjusted based on the
task’s analysis goal - a seemingly simple task which nevertheless can demand too much from
novice users. Thus, we suggest to define typical tasks and workflows and provide default settings
for each of them.

Carefully select and explain memory analysis terminology. Probably one of the most clear results
of the study is that AntTracks used too much terminology that is unknown to novice users (such as
allocation site, call site, retained size or the garbage collector’s space names eden, survivor, and old).
Tool developers should aim to improve this situation by reducing the number of complex terms in
situations where they are not really needed and by providing easy-to-understand explanations.

Show details and advanced analysis results only on demand. As stated above, the participants
performed best when they were able to focus on a single task, drilling down on the problem step
by step. This also relates to the well-known visual information-seeking mantra by Shneiderman:
‘Overview First, Zoom and Filter, Details on Demand’ [105]. By first giving an overview and only
showing details on demand, the view’s diffuseness is reduced and its visibility is increased. This
does not only concern the analysis views, but also complex configuration views or settings panes.
For example, AntTracks by default hides the expert mode on the classifier selection view, yet offers
very flexible configuration possibilities on demand. Other examples in AntTracks encompasses the
Overview screen, which shows only two charts, both of which only contain a single chart series,
to be as easy to understand as possible. For more detailed information, the user can switch to the
details view. A counter-example is AntTracks’ short-living objects view, which contained far too
many charts. Since many of these charts are not needed to find the root cause of high memory
churn but rather present general and additional information on the GC activity, they should be
moved to another tab to reduce diffuseness.

Provide support for time selection in large time series. This recommendation is two-fold: First, it
suggests to use well-known and established user input handling on time-series charts, and second it
suggest to provide tool support for intelligent (semi-)automatic selections. For example, regarding
the first recommendation, study participants suggested to use input handling similar to Audacity3.
This application provides a wide array of interaction possibilities such as the selection of time
windows by dragging the mouse, where these time windows can be further modified, for example
moved or resized. Regarding the second recommendation, by analyzing the chart’s underlying time
series data [34], the tool can automatically detect suspicious patterns (such as continuous memory
growth or frequent memory spikes). When such a pattern is detected, the tool can then suggest a

3Audacity [3, 70] is a free, open source, cross-platform audio software.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:27

time windows for memory analysis inspection to the user [118], further reducing the need for hard
mental operations.

Ensure a smooth transition from evolution analysis to snapshot analysis. In general, we can dis-
tinguish two types of analyses that can be performed in memory analysis tools: Analyses that
inspect the application at a given point in time, and analyses that inspect the application’s behavior
over time in a given time window. Both of these analysis types are often interwoven and follow
each other in a typical analysis workflow. For example, when investigating memory leaks, the user
typically first inspects which objects accumulate over time in a certain window, and then inspects
the object graph around these objects at the end of the time window, i.e., at a given point in time, to
find the reason for their accumulation. By defining typical workflows, i.e., typical orders of analysis
steps, users can be better guided through the whole process, making transitions between different
types of analysis easier to follow.

Use automation to relieve users from complex tasks. This recommendation mainly focuses on
reducing the amount of hard mental operations. During the study, especially on the graph view,
the participants expressed desire for automation to reduce the amount of manual work needed
during the analysis. For example, they suggested that paths to the GC roots could automatically
be calculated and analyzed, only showing those most likely involved in a potential memory leak.
The previously mentioned automatic suggestion of suspicious time windows also relates to this
recommendation.

Provide guidance and explanations to support exploratory learning of analysis capabilities. Another
main finding of the study is that novice users, even though often able to ‘see’ suspicious patterns,
cannot correctly interpret them and thus cannot derive the right conclusions. This problem already
became apparent during the first task of the study, in which the users had to inspect a memory
time-series chart and select the most suspicious time window. While all of the participant saw
the continuous memory growth there, 30% of the participants chose another time window. Also,
one of the first questions by a participant was ‘Is there some sort of suggestion available?’. Similar
interpretation problems could be observed throughout the study. We thus suggest that tools should
not only provide the functionality to inspect memory anomalies, but they also need to provide
guidance [33] to support exploratory learning and learning-by-doing [103] and to increase the
tool’s general learnability [1, 60, 82]. Such guidances exist in various forms, ranging from simple
wizards [26, 110] to context-sensitive help systems such as coaches, guides or advisors [26, 74]. For
example, advisors are context-sensitive help systems that usually include hints, tips, reasoning
support, and explanations of complicated concepts, helping novice users to make decisions and
helping to understand why a certain step must be performed or to determine why a certain
decision was suggested. Such help systems, in combination with more recent approaches such as
micro-learning and gamification [38, 43, 49], are often used during the process of onboarding, i.e.,
introducing a new tool or service to a person to ensure success [98, 107].

Provide IDE integration to guide diagnosis of memory bugs. Finally, we suggest a stronger integra-
tion of memory analysis tools with IDEs. Currently, most memory analysis tools are standalone
applications, decoupled from the user’s development environment. Yet, it is this development
environment where the user is expected to fix the just detected memory anomaly, however, without
further guidance. Developing an IDE plugin [4, 21] (and probably even expanding the tool’s capabil-
ities by the use of hybrid static and dynamic analysis [31]) would make it possible to automatically
detect and highlight suspicious code segments and provide further guidance on the source code
level.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:28 Markus Weninger et al.

9 PLANNED IMPROVEMENTS FOR ANTTRACKS BASED ON RECOMMENDATIONS
The previous section distilled a set of recommendations based on the results of our study. We now
report our improvement plans for five areas of AntTracks based on these recommendations.

9.1 Allocation Site Handling
In complex software systems, call chains can become confusingly long. To mitigate this problem,
AntTracks already distinguishes domain call sites likely part of the application under investigation
and non-domain call sites in libraries, for example classes located in packages java.* or javax.*.
Call chains stretching over multiple non-domain call sites are collapsed into a single entry named
hidden internal call sites. In JPetStore, the test system inspected in the study, this often
shortens call chains containing more than 25 entries down to five entries. Unfortunately, we
observed that some participants still struggled with interpreting this entry and they also had
problems to distinguish the terms allocation site and call sites. This means that the presentation of
allocation sites and their call chains has to be further improved as expressed by our recommendation
to carefully select and explain memory analysis terminology. Non-domain call sites could be hidden
completely by default, only displaying them on demand, thereby implementing our recommendation
to show details and advanced analysis results only on demand. For domain call sites, the call distance
could be shown next to them, i.e., either directly called by X or indirectly called by X. Another
planned feature is to show the call chain not textually but visually using a graph. Such a call graph
could also be combined with techniques for hiding internal call sites (discussed above). Finally,
a stronger coupling between the analysis tool and the IDE would realize our recommendation
to provide IDE integration to guide diagnosis of memory bugs. Selecting an allocation site in the
analysis tool could highlight the source code location in the IDE. We expect that this will help
users to interpret the call hierarchy more easily as compared to just looking at the allocation site
information in the analysis tool.

9.2 Domain Filtering
The idea of distinguishing non-domain call sites and domain call sites can also be applied to types,
thereby distinguishing non-domain types and domain types. Our study showed that participants
focusing on domain call sites and domain types were more successful in resolving the underlying
problem in the source code. In AntTracks, domain sites and domain types are currently written in
bold to gain the users’ attention. Another technique to highlight domain objects is to automatically
group non-domain objects and domain objects, thereby implementing our recommendation to
use automation to relieve users from complex tasks. However, not every memory anomaly may be
resolved by just looking at domain objects. For example, applications that mostly work with built-in
data types may not profit from such a feature. Nevertheless, following our recommendation to
hide complexity using task-specific default settings we think that inspecting the domain objects first
reduces task complexity, in many cases already provides useful results, and sometimes even reveals
the root cause of the underlying problem.

9.3 Chart Interaction Behavior
Many study participants were dissatisfied with the way AntTracks handles the zooming and the
selection of time windows on time-series charts. The decision to use this convention was partially
based on the default zooming behavior of the JFreeChart charting library [36], which defines
zooming as mouse drag. We will thus improve AntTracks’ chart interactions, thereby implementing
our recommendation to provide support for time selection in large time series. To this end, we will

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:29

study other tools and applications with similar chart interaction techniques (such as Audacity [3])
and take them as example.

9.4 Graph-based Views
Most state-of-the-art tools rely heavily on the visualization of data using (tree) tables. Yet, ample
scientific work exists onmore advanced features for memory visualization [2, 46, 73, 76, 97, 102, 131].
AntTracks thus already provides a graph-based visualization of the aggregated object graph to
inspect the paths to the GC roots. The study revealed interesting findings in this regard: Firstly, GC
roots were visualized in the same way regardless of their kind. However, thread-local variables are
often very short-living and thus in most cases not relevant for identifying memory leaks. Visualizing
such roots in the same way as more suspicious roots such as long-living static fields can distract
tool users. We thus plan to use different notations to better highlight more suspicious GC roots.
Secondly, the edge labels currently show how many objects from a given edge’s start node reference
objects of the given edge’s target node. This makes it easy to inspect the ownership relationship
between two neighboring nodes, but it remains hard to extract the ownership influence between
two more distant nodes. For example, in Figure 4a, we see a part of the graph visualization the
participants were confrontedwith during the study. It shows that nearly all Product objects (bottom-
most node) are referenced by twelve different Object[] objects, two of which are referenced by
CopyOnWriteArrayList objects and ten are referenced by ArrayList objects. Taking only edge
labeling into account, this notation is not helpful to understand if the CopyOnWriteArrayList
or the ArrayList objects keep alive more Product objects. To this end, we also encoded the
ownership, i.e., how many objects are kept alive by a certain node, into the edge color and width.
Even though the thicker colored edges guided the participant into the right direction, some reported
that they did not understand why certain edges were colored and wider than others. This suggests
that edge labeling and edge highlighting in memory object graphs should not be too general but
problem-driven, as suggested by our recommendation hide complexity using task-specific default
settings. For example, we meanwhile already realized a new graph view in AntTracks supporting
the visualization of ownership edges, see Figure 4b. Instead of labeling edges based on the relation
between two neighboring nodes, it takes one node, i.e., object group, and adjusts all edges and their
labels to highlight those that keep alive most of the selected objects. The labels in Figure 4b now
clearly highlight the path on which most Product objects are owned, i.e., kept alive.

(a) Neighborhood labeling. (b) Ownership labeling.

Fig. 4. Comparison of two edge labeling techniques.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:30 Markus Weninger et al.

9.5 Guidance
Many study participants expressed the risk of not using the tool to its full potential due to their
missing background in memory analysis. They suggested that the tool should provide guidance
features such that even novice users could use it without prior training. Since this was the most
requested feature by the study participants, we have meanwhile extended AntTracks with an
advisor feature realizing our recommendation to provide guidance and explanations to support
exploratory learning of analysis capabilities. This guidance system performs four support operations
on each analysis step: it (1) detects and (2) highlights the most important information on the screen,
(3) explains why this information is important, and (4) suggests which next steps are appropriate
based on these findings. This way, even without prior tool experience, AntTracks now guides
users through the whole analysis process. For example, on the overview and the details views,
AntTracks now automatically detects suspicious time windows, highlights them, explains why these
time windows are considered suspicious and which next analysis steps seem appropriate [118],
additionally realizing our recommendation to provide support for time selection in large time series.

Yet, while AntTracks now may guide users to suspicious allocation sites, they still have to fix the
memory bug in their IDE without any further guidance. We thus further plan to integrate parts
of this guidance also into IDEs, closing the gap of guided analyses in AntTracks and unguided
source code inspection in the IDE, following the recommendation to provide IDE integration to
guide diagnosis of memory bugs.

10 THREATS TO VALIDITY
A threat to construct validity is that our results might be biased due to the system we used during
the study. However, we selected JPetStore because it easy to understand and at the same time
allows to comprehensively assess the key views of AntTracks. Furthermore, JPetStore has also been
used in many other studies [32, 53, 55, 56, 114] since it represents a clearly organized and realistic
web application. Another threat to construct validity is the selection of appropriate tasks for our
user study. To select representative memory analysis tasks, we discussed typical memory analysis
activities by studying related work and state-of-the-art tools and selected the study tasks based
on these activities. We further conducted a pilot study with a PhD student from our lab to further
improve the expressiveness of the tasks.

To ensure external validity, we selected an interactive tool that is representative for the domain of
memory monitoring and analysis. Although the implications we derived from the study depend on
our experiences in using and working with AntTracks, the activities and capabilities are common
in other memory analysis tools, as discussed in Section 3. Another threat is the use of students as
subjects. They were selected based on their participation in a university course that teaches the
basics of monitoring and performance analysis and includes a homework assignment on memory
analysis. This allowed us to ensure that all subjects have a minimum of background knowledge on
the context of the study. We have also shown that most of the subjects are software developers
with several years of experience. Furthermore, it has been argued that the differences between
students and professionals are only minor if they perform relatively small tasks of judgment [48].
While the participation of additional experienced memory analysts may have added further value,
we realized that the findings for our subjects nicely converge and that there were many common
insights. When qualitatively analyzing our results we noticed a certain degree of saturation and
the findings showed that adding more novice participants would not have led to more insights.

Regarding internal validity, the analysis of the collected data still depends on our own interpre-
tation. However, this work was performed by three researchers which had regular joint meetings
to reconcile different interpretations, also checking their results with a fourth senior researcher.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:31

With regard to conclusion validity, the threat consists in the fact that our results are based
on qualitative data [104]. Given that an aim of the study was to investigate the behavior and
opinions of tool users, qualitative research methods are well-suited. We further applied the derived
recommendations to AntTracks to additionally check their validity.

11 CONCLUSIONS
This paper presented the detailed results of assessing the usefulness of memory analysis capabilities
as implemented in the AntTracks Analyzer tool using the cognitive dimensions (CD) of notations
framework and a user study involving 14 subjects. The CD framework serves as a discussion tool
for designers and people who evaluate designs of interactive artifacts, including software tools. We
used the results of the CD assessment and the user study to discuss both specific implications for
AntTracks as well as general recommendations for memory analysis tool developers. Practitioners
and researchers can use our work as one example of how to assess the usability and utility of
interactive memory analysis tools.

Overall, we can conclude that the usability and utility of AntTracks were perceived as very good.
All subjects liked the tool and most of them were able to complete the tasks within the planned time.
However, our observations revealed some issues with regard to diagnosing and fixing problems on
the source code level. Overall, the positive feedback is encouraging given the participants’ limited
background in memory analysis, their missing familiarity with the tool, and the complexity of
the given analysis tasks. The comments and suggestions made by the study participants have
been of great help to further improve our tool. For example, the guidance and support of novice
users requested by many participants is a major focus for our ongoing work. First steps in this
direction have already been taken since the study by introducing a guidance system that assists
users during memory analysis. For example, this system automatically detects suspicious time
windows, highlights them and explains why these time windows are considered suspicious [118].
This frees the users from hard mental operations, teaches them why certain patterns are of interest,
and thus leads to a learning-by-doing effect [103].

In the future we will further improve our tool, especially with regard to novice user support, and
conduct further experiments with other systems and users.

ACKNOWLEDGMENTS
The financial support by the Austrian Federal Ministry for Digital and Economic Affairs, the
National Foundation for Research, Technology and Development, and Dynatrace is gratefully
acknowledged.

REFERENCES
[1] Alain Abran, Adel Khelifi, Witold Suryn, and Ahmed Seffah. 2003. Usability Meanings and Interpretations in ISO

Standards. Software Quality Journal 11, 4 (2003), 325–338. https://doi.org/10.1023/A:1025869312943
[2] Edward Aftandilian, Sean Kelley, Connor Gramazio, Nathan P. Ricci, Sara L. Su, and Samuel Z. Guyer. 2010. Heapviz:

interactive heap visualization for program understanding and debugging. In Proceedings of the ACM 2010 Symposium
on Software Visualization, Salt Lake City, UT, USA, October 25-26, 2010. 53–62. https://doi.org/10.1145/1879211.1879222

[3] Audacity. 2020. Audacity: Free, open source, cross-platform audio software. https://www.audacityteam.org/
[4] Sebastian Baltes, Peter Schmitz, and Stephan Diehl. 2014. Linking sketches and diagrams to source code artifacts.

In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE-22).
743–746. https://doi.org/10.1145/2635868.2661672

[5] Matt Bellingham, Simon Holland, and Paul Mulholland. 2014. A cognitive dimensions analysis of interaction design
for algorithmic composition software. In Proceedings of the 25th Annual Workshop of the Psychology of Programming
Interest Group, PPIG 2014, Brighton, UK, June 25-27, 2014. 18. http://ppig.org/library/paper/cognitive-dimensions-
analysis-interaction-design-algorithmic-composition-software

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:32 Markus Weninger et al.

[6] Verena Bitto and Philipp Lengauer. 2016. Building Custom, Efficient, and Accurate Memory Monitoring Tools for
Java Applications. In Proceedings of the 7th ACM/SPEC International Conference on Performance Engineering, ICPE
2016, Delft, The Netherlands, March 12-16, 2016. 321–324. https://doi.org/10.1145/2851553.2858664

[7] Verena Bitto, Philipp Lengauer, and Hanspeter Mössenböck. 2015. Efficient Rebuilding of Large Java Heaps from
Event Traces. In Proceedings of the Principles and Practices of Programming on The Java Platform, PPPJ 2015, Melbourne,
FL, USA, September 8-11, 2015. 76–89. https://doi.org/10.1145/2807426.2807433

[8] Alan Blackwell and Thomas Green. 2003. CHAPTER 5 - Notational Systems—The Cognitive Dimensions of Notations
Framework. In HCI Models, Theories, and Frameworks. Morgan Kaufmann, San Francisco, 103 – 133. https://doi.org/
10.1016/B978-155860808-5/50005-8

[9] Alan F. Blackwell. 2005. Cognitive Dimensions of Notations. In 2005 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC 2005), 21-24 September 2005, Dallas, TX, USA. 3. https://doi.org/10.1109/VLHCC.2005.26

[10] Alan F. Blackwell. 2008. Cognitive Dimensions of Notations: Understanding the Ergonomics of Diagram Use.
In Diagrammatic Representation and Inference, 5th International Conference, Diagrams 2008, Herrsching, Germany,
September 19-21, 2008. Proceedings. 5–8. https://doi.org/10.1007/978-3-540-87730-1_4

[11] Alan F. Blackwell, Carol Britton, Anna Louise Cox, Thomas R. G. Green, Corin A. Gurr, Gada F. Kadoda, Maria
Kutar, Martin Loomes, Chrystopher L. Nehaniv, Marian Petre, Chris Roast, Chris Roe, Allan Wong, and R. Michael
Young. 2001. Cognitive Dimensions of Notations: Design Tools for Cognitive Technology. In Cognitive Technology:
Instruments of Mind, 4th International Conference, CT 2001, Warwick, UK, August 6-9, 2001, Proceedings. 325–341.
https://doi.org/10.1007/3-540-44617-6_31

[12] Michael D. Bond and Kathryn S. McKinley. 2006. Bell: bit-encoding online memory leak detection. In Proceedings of
the 12th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS
2006, San Jose, CA, USA, October 21-25, 2006. 61–72. https://doi.org/10.1145/1168857.1168866

[13] Grady Booch, James E. Rumbaugh, and Ivar Jacobson. 1999. The Unified Modeling Language User Guide. J. Database
Manag. 10, 4 (1999), 51–52.

[14] Eric Bruneton, Eugene Kuleshov, Andrei Loskutov, and Rémi Forax. 2020. ASM. https://asm.ow2.io/
[15] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: a code manipulation tool to implement adaptable

systems. Adaptable and extensible component systems 30, 19 (2002).
[16] Kung Chen and Ju-Bing Chen. 2007. Aspect-Based Instrumentation for Locating Memory Leaks in Java Programs. In

31st Annual International Computer Software and Applications Conference, COMPSAC 2007, Beijing, China, July 24-27,
2007. Volume 2. 23–28. https://doi.org/10.1109/COMPSAC.2007.79

[17] Shigeru Chiba. 2020. Javassist. https://www.javassist.org/
[18] Shigeru Chiba and Muga Nishizawa. 2003. An Easy-to-Use Toolkit for Efficient Java Bytecode Translators. In

Generative Programming and Component Engineering, Second International Conference, GPCE 2003, Erfurt, Germany,
September 22-25, 2003, Proceedings. 364–376. https://doi.org/10.1007/978-3-540-39815-8_22

[19] Adriana E. Chis. 2008. Automatic detection of memory anti-patterns. In Companion to the 23rd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2008, October 19-13, 2007,
Nashville, TN, USA. 925–926. https://doi.org/10.1145/1449814.1449911

[20] Adriana E. Chis, Nick Mitchell, Edith Schonberg, Gary Sevitsky, Patrick O’Sullivan, Trevor Parsons, and John Murphy.
2011. Patterns of Memory Inefficiency. In ECOOP 2011 - Object-Oriented Programming - 25th European Conference,
Lancaster, UK, July 25-29, 2011 Proceedings. 383–407. https://doi.org/10.1007/978-3-642-22655-7_18

[21] Jürgen Cito, Philipp Leitner, Christian Bosshard, Markus Knecht, GencMazlami, and Harald C. Gall. 2018. Performance-
Hat: augmenting source code with runtime performance traces in the IDE. In Proceedings of the 40th International Con-
ference on Software Engineering: Companion Proceeedings (ICSE 2018). 41–44. https://doi.org/10.1145/3183440.3183481

[22] Karl Cox. 2000. Cognitive Dimensions of Use Cases: Feedback from a student questionnaire. In Proceedings of the
12th Annual Workshop of the Psychology of Programming Interest Group, PPIG 2000, Cosenza, Italy, April 10-13, 2000. 8.
http://ppig.org/library/paper/cognitive-dimensions-use-cases-feedback-student-questionnaire

[23] Fred D. Davis. 1989. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS
Quarterly 13, 3 (1989), 319–340. http://misq.org/perceived-usefulness-perceived-ease-of-use-and-user-acceptance-
of-information-technology.html

[24] Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, John Vlissides, and Jeaha Yang. 2002. Visualizing the
Execution of Java Programs. In Software Visualization. 151–162. https://doi.org/10.1007/3-540-45875-1_12

[25] Wim De Pauw and Gary Sevitsky. 2000. Visualizing reference patterns for solving memory leaks in Java. Concurrency
- Practice and Experience 12, 14 (2000), 1431–1454. https://doi.org/10.1002/1096-9128(20001210)12:14<1431::AID-
CPE542>3.0.CO;2-2

[26] D. Christopher Dryer. 1997. Wizards, Guides, and beyond: Rational and Empirical Methods for Selecting Optimal
Intelligent User Interface Agents. In Proceedings of the 2nd International Conference on Intelligent User Interfaces, IUI
1997, Orlando, Florida, USA, January 6-9, 1997. 265–268. https://doi.org/10.1145/238218.238347

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:33

[27] Dynatrace. 2017. Demo Applications: easyTravel. https://community.dynatrace.com/community/display/DL/Demo+
Applications+-+easyTravel

[28] Dynatrace. 2020. Dynatrace. https://www.dynatrace.com/
[29] Eclipse Foundation. 2020. Eclipse Memory Analyzer (MAT). https://www.eclipse.org/mat/
[30] ej technologies. 2020. JProfiler. https://www.ej-technologies.com/products/jprofiler/overview.html
[31] Michael D. Ernst. 2003. Static and Dynamic Analysis: Synergy and Duality. InWorkshop on Dynamic Analysis (WODA

’03). Portland, OR, USA, 24–27.
[32] Florian Fittkau, Phil Stelzer, and Wilhelm Hasselbring. 2014. Live Visualization of Large Software Landscapes for

Ensuring Architecture Conformance. In Proceedings of the ECSA 2014 Workshops & Tool Demos Track, European
Conference on Software Architecture, 2014, Vienna, Austria. 28:1–28:4. https://doi.org/10.1145/2642803.2642831

[33] Eelke Folmer and Jan Bosch. 2003. Usability patterns in software architecture. In Proc. of the 10th Int’l Conf. on
Human-Computer Interaction (HCII ’03). 93–97.

[34] Tak-Chung Fu. 2011. A review on time series data mining. Eng. Appl. Artif. Intell. 24, 1 (2011), 164–181. https:
//doi.org/10.1016/j.engappai.2010.09.007

[35] Mohammadreza Ghanavati, Diego Costa, Janos Seboek, David Lo, and Artur Andrzejak. 2020. Memory and resource
leak defects and their repairs in Java projects. Empirical Software Engineering 25, 1 (2020), 678–718. https://doi.org/
10.1007/s10664-019-09731-8

[36] David Gilbert. 2020. JFreeChart. http://www.jfree.org/jfreechart/
[37] Google. 2020. Android Studio. https://developer.android.com/studio
[38] Bernhard Göschlberger and Peter A. Bruck. 2017. Gamification in mobile and workplace integrated microlearning. In

Proceedings of the 19th International Conference on Information Integration and Web-based Applications & Services,
iiWAS 2017, Salzburg, Austria, December 4-6, 2017. 545–552. https://doi.org/10.1145/3151759.3151795

[39] Thomas Green. 2000. Instructions and Descriptions: some cognitive aspects of programming and similar activities. In
Proceedings of the working conference on Advanced visual interfaces, AVI 2000, Palermo, Italy, May 23-26, 2000. 21–28.
https://doi.org/10.1145/345513.345233

[40] Thomas Green and Alan Blackwell. 1998. Cognitive Dimensions of Information Artefacts: a tutorial. https://www.cl.
cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf

[41] T. R. G. Green. 1989. Cognitive Dimensions of Notations. In Proceedings of the Fifth Conference of the British Computer
Society, Human-Computer Interaction Specialist Group on People and Computers V. Cambridge University Press, New
York, NY, USA, 443–460. http://dl.acm.org/citation.cfm?id=92968.93015

[42] Ted Hagos. 2019. Android Studio Profiler. In Android Studio IDE Quick Reference. Springer, 73–82.
[43] Juho Hamari, Jonna Koivisto, and Harri Sarsa. 2014. Does Gamification Work? - A Literature Review of Empirical

Studies on Gamification. In 47th Hawaii International Conference on System Sciences, HICSS 2014, Waikoloa, HI, USA,
January 6-9, 2014. 3025–3034. https://doi.org/10.1109/HICSS.2014.377

[44] Matthias Hauswirth and Trishul M. Chilimbi. 2004. Low-overhead memory leak detection using adaptive statistical
profiling. In Proceedings of the 11th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2004, Boston, MA, USA, October 7-13, 2004. 156–164. https://doi.org/10.1145/1024393.
1024412

[45] Matthew Hertz, Stephen M. Blackburn, J. Eliot B. Moss, Kathryn S. McKinley, and Darko Stefanovic. 2006. Generating
object lifetime traces with Merlin. ACM Trans. Program. Lang. Syst. 28, 3 (2006), 476–516. https://doi.org/10.1145/
1133651.1133654

[46] Trent Hill, James Noble, and John Potter. 2002. Scalable Visualizations of Object-Oriented Systems with Ownership
Trees. J. Vis. Lang. Comput. 13, 3 (2002), 319–339. https://doi.org/10.1006/jvlc.2002.0238

[47] Andreas Holzinger. 2005. Usability engineering methods for software developers. Commun. ACM 48, 1 (2005), 71–74.
https://doi.org/10.1145/1039539.1039541

[48] Martin Höst, Björn Regnell, and Claes Wohlin. 2000. Using Students as Subjects—A Comparative Study of Students
and Professionals in Lead-Time Impact Assessment. Empirical Software Engineering 5, 3 (01 Nov 2000), 201–214.

[49] Michal Hucko, Ladislav Gazo, Peter Simún, Matej Valky, Róbert Móro, Jakub Simko, and Mária Bieliková. 2019.
YesElf: Personalized Onboarding for Web Applications. In Adjunct Publication of the 27th Conference on User Modeling,
Adaptation and Personalization, UMAP 2019, Larnaca, Cyprus, June 09-12, 2019. 39–44. https://doi.org/10.1145/3314183.
3324978

[50] MoniqueW.M. Jaspers, Thiemo Steen, Cor van den Bos, andMaudM. Geenen. 2004. The think aloudmethod: a guide to
user interface design. I. J. Medical Informatics 73, 11-12 (2004), 781–795. https://doi.org/10.1016/j.ijmedinf.2004.08.003

[51] JavaMelody. 2020. JavaMelody : monitoring of JavaEE applications (GitHub). https://github.com/javamelody/
javamelody/wiki

[52] Kamil Jezek and Richard Lipka. 2017. Antipatterns causing memory bloat: A case study. In IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering, SANER 2017, Klagenfurt, Austria, February 20-24, 2017.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:34 Markus Weninger et al.

306–315. https://doi.org/10.1109/SANER.2017.7884631
[53] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora. 2009. Automated performance analysis of

load tests. In 25th IEEE International Conference on Software Maintenance (ICSM 2009), September 20-26, 2009, Edmonton,
Alberta, Canada. 125–134. https://doi.org/10.1109/ICSM.2009.5306331

[54] Maria Jump and Kathryn S. McKinley. 2010. Detecting memory leaks in managed languages with Cork. Softw., Pract.
Exper. 40, 1 (2010), 1–22. https://doi.org/10.1002/spe.945

[55] Reiner Jung and Marc Adolf. 2018. The JPetStore Suite: A concise Experiment Setup for Research. In Proc. of the 9th
Symposium on Software Performance (SSP ’18).

[56] Reiner Jung, Marc Adolf, and Christoph Dornieden. 2017. Towards Extracting Realistic User Behavior Models.
Softwaretechnik-Trends 37, 3 (2017). http://pi.informatik.uni-siegen.de/stt/37_3/./01_Fachgruppenberichte/SSP2017_
proceedings/03_Towards_Extracting_Realistic_User_Behavior_Models.pdf

[57] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G. Griswold. 2001. An Overview
of AspectJ. In ECOOP 2001 - Object-Oriented Programming, 15th European Conference, Budapest, Hungary, June 18-22,
2001, Proceedings. 327–353. https://doi.org/10.1007/3-540-45337-7_18

[58] Kieker Project. 2013. Kieker web site. http://kieker-monitoring.net/
[59] A. J. Ko, Thomas D. LaToza, and Margaret M. Burnett. 2015. A practical guide to controlled experiments of software

engineering tools with human participants. Empirical Software Engineering 20, 1 (2015), 110–141. https://doi.org/10.
1007/s10664-013-9279-3

[60] Steinar Kristoffersen. 2008. Learnability and Robustness of User Interfaces - Towards a Formal Analysis of Usability
Design Principles. In Proceedings of the Third International Conference on Software and Data Technologies, Volume
SE/MUSE/GSDCA (ICSOFT’08), José Cordeiro, Boris Shishkov, Alpesh Ranchordas, and Markus Helfert (Eds.). 261–268.

[61] Lisa Maria Kritzinger, Thomas Krismayer, Rick Rabiser, and Paul Grünbacher. 2019. A User Study on the Usefulness
of Visualization Support for Requirements Monitoring. In 7th IEEE Working Conference on Software Visualization.
IEEE, Cleveland, Ohio, USA, 56–66. https://doi.org/10.1109/VISSOFT.2019.00015

[62] Eugene Kuleshov. 2007. Using the ASM framework to implement common Java bytecode transformation patterns.
Aspect-Oriented Software Development (2007).

[63] Maria Kutar, Carol Britton, and Jonathan Wilson. 2000. Cognitive Dimensions: An experience report. In Proceedings
of the 12th Annual Workshop of the Psychology of Programming Interest Group, PPIG 2000, Cosenza, Italy, April 10-13,
2000. 7. http://ppig.org/library/paper/cognitive-dimensions-experience-report

[64] Maria Kutar, Chrystopher L. Nehaniv, Carol Britton, and Sara Jones. 2001. The Cognitive Dimensions of an Artifact
vis-à-vis Individual Human Users: Studies with Notations for the Temporal Specification of Interactive Systems.
In Cognitive Technology: Instruments of Mind, 4th International Conference, CT 2001, Warwick, UK, August 6-9, 2001,
Proceedings. 342–355. https://doi.org/10.1007/3-540-44617-6_32

[65] Philipp Lengauer, Verena Bitto, Stefan Fitzek, Markus Weninger, and Hanspeter Mössenböck. 2016. Efficient Memory
Traces with Full Pointer Information. In Proceedings of the 13th International Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines, Languages, and Tools, Lugano, Switzerland, August 29 - September
2, 2016. 4:1–4:11. https://doi.org/10.1145/2972206.2972220

[66] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2015. Accurate and Efficient Object Tracing for Java
Applications. In Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering, Austin, TX,
USA, January 31 - February 4, 2015. 51–62. https://doi.org/10.1145/2668930.2688037

[67] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2016. Efficient and Viable Handling of Large Object
Traces. In Proceedings of the 7th ACM/SPEC International Conference on Performance Engineering, ICPE 2016, Delft, The
Netherlands, March 12-16, 2016. 249–260. https://doi.org/10.1145/2851553.2851555

[68] Philipp Lengauer, Verena Bitto, Hanspeter Mössenböck, and Markus Weninger. 2017. A Comprehensive Java
Benchmark Study on Memory and Garbage Collection Behavior of DaCapo, DaCapo Scala, and SPECjvm2008. In
Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, ICPE 2017, L’Aquila, Italy,
April 22-26, 2017. 3–14. https://doi.org/10.1145/3030207.3030211

[69] Thomas Lengauer and Robert Endre Tarjan. 1979. A Fast Algorithm for Finding Dominators in a Flowgraph. ACM
Trans. Program. Lang. Syst. 1, 1 (1979), 121–141. https://doi.org/10.1145/357062.357071

[70] Beinan Li, John Ashley Burgoyne, and Ichiro Fujinaga. 2006. Extending Audacity for Audio Annotation. In ISMIR 2006,
7th International Conference on Music Information Retrieval, Victoria, Canada, 8-12 October 2006, Proceedings. 379–380.

[71] João Paulo Magalhães and Luís Moura Silva. 2013. Adaptive monitoring of web-based applications: a performance
study. In Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC ’13, Coimbra, Portugal, March
18-22, 2013. 471–478. https://doi.org/10.1145/2480362.2480454

[72] David Mapelsden, John Hosking, and John Grundy. 2002. Design Pattern Modelling and Instantiation Using DPML.
In Proceedings of the Fortieth International Conference on Tools Pacific: Objects for Internet, Mobile and Embedded
Applications (CRPIT ’02). Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 3–11. http://dl.acm.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:35

org/citation.cfm?id=564092.564094
[73] Mark Marron, César Sánchez, Zhendong Su, and Manuel Fähndrich. 2013. Abstracting Runtime Heaps for Program

Understanding. IEEE Trans. Software Eng. 39, 6 (2013), 774–786. https://doi.org/10.1109/TSE.2012.69
[74] Karen L. McGraw and Bruce A. McGraw. 1997. Wizards, Coaches, Advisors, and More: A Performance Support Primer.

In Human Factors in Computing Systems, CHI ’97: Looking to the Future, Extended Abstracts, Atlanta, Georgia, USA,
March 22-27, 1997. 152–153. https://doi.org/10.1145/1120212.1120318

[75] Nick Mitchell. 2006. The Runtime Structure of Object Ownership. In ECOOP 2006 - Object-Oriented Programming,
20th European Conference, Nantes, France, July 3-7, 2006, Proceedings. 74–98. https://doi.org/10.1007/11785477_5

[76] Nick Mitchell, Edith Schonberg, and Gary Sevitsky. 2009. Making Sense of Large Heaps. In ECOOP 2009 - Object-
Oriented Programming, 23rd European Conference, Genoa, Italy, July 6-10, 2009. Proceedings. 77–97. https://doi.org/10.
1007/978-3-642-03013-0_5

[77] Nick Mitchell, Edith Schonberg, and Gary Sevitsky. 2010. Four Trends Leading to Java Runtime Bloat. IEEE Software
27, 1 (2010), 56–63. https://doi.org/10.1109/MS.2010.7

[78] Nick Mitchell and Gary Sevitsky. 2003. LeakBot: An Automated and Lightweight Tool for Diagnosing Memory Leaks
in Large Java Applications. In ECOOP 2003 - Object-Oriented Programming, 17th European Conference, Darmstadt,
Germany, July 21-25, 2003, Proceedings. 351–377. https://doi.org/10.1007/978-3-540-45070-2_16

[79] Nick Mitchell and Gary Sevitsky. 2007. The causes of bloat, the limits of health. In Proceedings of the 22nd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2007,
October 21-25, 2007, Montreal, Quebec, Canada. 245–260. https://doi.org/10.1145/1297027.1297046

[80] MyBatis. 2016. JPetStore. http://mybatis.org/jpetstore-6/
[81] Nicholas Nethercote and Julian Seward. 2003. Valgrind: A Program Supervision Framework. Electr. Notes Theor.

Comput. Sci. 89, 2 (2003), 44–66. https://doi.org/10.1016/S1571-0661(04)81042-9
[82] Jakob Nielsen. 1993. Usability engineering. Academic Press.
[83] Mie Nørgaard and Kasper Hornbæk. 2006. What do usability evaluators do in practice?: an explorative study of

think-aloud testing. In Proceedings of the Conference on Designing Interactive Systems,University Park, PA, USA, June
26-28, 2006. 209–218. https://doi.org/10.1145/1142405.1142439

[84] Oracle. 2014. Java Flight Recorder. https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/about.htm#
JFRUH170

[85] Oracle. 2018. JConsole. https://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
[86] Oracle. 2018. jmap. https://docs.oracle.com/javase/7/docs/technotes/tools/share/jmap.html
[87] Oracle. 2020. The HotSpot Group. http://openjdk.java.net/groups/hotspot/
[88] Oracle. 2020. HPROF: A Heap/CPU Profiling Tool. https://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html
[89] Oracle. 2020. Java Mission Control. https://openjdk.java.net/projects/jmc/
[90] Oracle. 2020. JVM Tool Interface Version 1.2. https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
[91] Oracle. 2020. VisualVM: All-in-One Java Troubleshooting Tool. https://visualvm.github.io/
[92] Kelly O’Hair. 2004. HPROF: a Heap/CPU profiling tool in J2SE 5.0. Sun Developer Network, Developer Technical Articles

& Tips 28 (2004).
[93] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej,

Yudi Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019. Renaissance: Benchmarking
Suite for Parallel Applications on the JVM. In Proc. of the 40th ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI 2019).

[94] Rick Rabiser, Paul Grünbacher, and Martin Lehofer. 2012. A qualitative study on user guidance capabilities in product
configuration tools. In IEEE/ACM International Conference on Automated Software Engineering, ASE’12, Essen, Germany,
September 3-7, 2012. 110–119. https://doi.org/10.1145/2351676.2351693

[95] Rick Rabiser, Michael Vierhauser, and Paul Grünbacher. 2016. Assessing the usefulness of a requirements monitoring
tool: a study involving industrial software engineers. In Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016 - Companion Volume. 122–131. https://doi.org/10.1145/
2889160.2889234

[96] Derek Rayside and Lucy Mendel. 2007. Object ownership profiling: a technique for finding and fixing memory leaks.
In 22nd IEEE/ACM International Conference on Automated Software Engineering (ASE 2007), November 5-9, 2007, Atlanta,
Georgia, USA. 194–203. https://doi.org/10.1145/1321631.1321661

[97] Steven P. Reiss. 2009. Visualizing the Java heap to detect memory problems. In Proceedings of the 5th IEEE International
Workshop on Visualizing Software for Understanding and Analysis, VISSOFT 2009, Edmonton, Alberta, Canada, September
25, 2009. 73–80. https://doi.org/10.1109/VISSOF.2009.5336418

[98] Jan Renz, Thomas Staubitz, Jaqueline Pollack, and Christoph Meinel. 2014. Improving the Onboarding User Experience
in MOOCs. In Proc. of the 6th Int’l Conf. on Education and New Learning Technologies (EDULEARN ’14).

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

75:36 Markus Weninger et al.

[99] Nathan P. Ricci, Samuel Z. Guyer, and J. Eliot B. Moss. 2011. Elephant Tracks: generating program traces with object
death records. In Proceedings of the 9th International Conference on Principles and Practice of Programming in Java,
PPPJ 2011, Kongens Lyngby, Denmark, August 24-26, 2011. ACM, 139–142. https://doi.org/10.1145/2093157.2093178

[100] Nathan P. Ricci, Samuel Z. Guyer, and J. Eliot B. Moss. 2013. Elephant tracks: portable production of complete and
precise gc traces. In International Symposium on Memory Management, ISMM 2013, Seattle, WA, USA, June 20, 2013.
ACM, 109–118. https://doi.org/10.1145/2491894.2466484

[101] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting case study research in software
engineering. Empirical Software Engineering 14, 2 (2009), 131–164. https://doi.org/10.1007/s10664-008-9102-8

[102] Anthony Savidis and Nikos Koutsopoulos. 2011. Interactive Object Graphs for Debuggers with Improved Visualization,
Inspection and Configuration Features. In Advances in Visual Computing - 7th International Symposium, ISVC 2011,
Las Vegas, NV, USA, September 26-28, 2011. Proceedings, Part I. 259–268. https://doi.org/10.1007/978-3-642-24028-7_24

[103] Roger C Schank, Tamara R Berman, and Kimberli A Macpherson. 1999. Learning by doing. Instructional-design
theories and models: A new paradigm of instructional theory 2, 2 (1999), 161–181.

[104] Carolyn B. Seaman. 1999. Qualitative Methods in Empirical Studies of Software Engineering. IEEE Trans. Software
Eng. 25, 4 (1999), 557–572. https://doi.org/10.1109/32.799955

[105] Ben Shneiderman. 1996. The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In
Proceedings of the 1996 IEEE Symposium on Visual Languages, Boulder, Colorado, USA, September 3-6, 1996. IEEE
Computer Society, 336–343. https://doi.org/10.1109/VL.1996.545307

[106] Connie U. Smith and Lloyd G. Williams. 2000. Software performance antipatterns. In Second International Workshop
on Software and Performance, WOSP 2000, Ottawa, Canada, September 17-20, 2000. 127–136. https://doi.org/10.1145/
350391.350420

[107] Ken Soong, Xin Fu, and Yang Zhou. 2018. Optimizing New User Experience in Online Services. In 5th IEEE International
Conference on Data Science and Advanced Analytics, DSAA 2018, Turin, Italy, October 1-3, 2018. 442–449. https:
//doi.org/10.1109/DSAA.2018.00057

[108] Vladimir Sor, Plumbr Ou, Tarvo Treier, and Satish Narayana Srirama. 2013. Improving Statistical Approach for
Memory Leak Detection Using Machine Learning. In 2013 IEEE International Conference on Software Maintenance,
Eindhoven, The Netherlands, September 22-28, 2013. 544–547. https://doi.org/10.1109/ICSM.2013.92

[109] Vladimir Sor and Satish Narayana Srirama. 2014. Memory leak detection in Java: Taxonomy and classification of
approaches. Journal of Systems and Software 96 (2014), 139–151. https://doi.org/10.1016/j.jss.2014.06.005

[110] Doug Tidwell and Jeanette Fuccella. 1997. TaskGuides: Instant Wizards on the Web. In The 15th Annual International
Conference of Computer Documentation: Crossroads in Communication, SIGDOC 1997, Salt Lake City, Utah, USA, October
19-22, 1997. 263–272. https://doi.org/10.1145/263367.263401

[111] Valgrind Developers. 2020. Valgrind. http://valgrind.org/
[112] André van Hoorn, Matthias Rohr, Wilhelm Hasselbring, Jan Waller, Jens Ehlers, Sören Frey, and Dennis Kieselhorst.

2009. Continuous Monitoring of Software Services: Design and Application of the Kieker Framework. Technical Report
TR-0921. Department of Computer Science, Kiel University, Germany. 27 pages pages.

[113] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. 2012. Kieker: a framework for application performance
monitoring and dynamic software analysis. In Third Joint WOSP/SIPEW International Conference on Performance
Engineering, ICPE’12, Boston, MA, USA - April 22 - 25, 2012. 247–248. https://doi.org/10.1145/2188286.2188326

[114] Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2011. An exploratory study of feature location
process: Distinct phases, recurring patterns, and elementary actions. In IEEE 27th International Conference on Software
Maintenance, ICSM 2011, Williamsburg, VA, USA, September 25-30, 2011. 213–222. https://doi.org/10.1109/ICSM.2011.
6080788

[115] Markus Weninger et al. 2020. AntTracks - Memory Monitoring using Accurate and Efficient Object Tracing for Java
Applications. http://mevss.jku.at/AntTracks

[116] Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2018. Utilizing object reference graphs and garbage
collection roots to detect memory leaks in offline memory monitoring. In Proceedings of the 15th International
Conference on Managed Languages & Runtimes, ManLang 2018, Linz, Austria, September 12-14, 2018. 14:1–14:13.
https://doi.org/10.1145/3237009.3237023

[117] Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2019. Analyzing Data Structure Growth Over Time
to Facilitate Memory Leak Detection. In Proceedings of the 2019 ACM/SPEC International Conference on Performance
Engineering, ICPE 2019, Mumbai, India, April 7-11, 2019. 273–284. https://doi.org/10.1145/3297663.3310297

[118] Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2019. Detection of suspicious time windows in memory
monitoring. In Proceedings of the 16th ACM SIGPLAN International Conference on Managed Programming Languages
and Runtimes, MPLR 2019, Athens, Greece, October 21-22, 2019. 95–104. https://doi.org/10.1145/3357390.3361025

[119] Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2018. Analyzing the Evolution of Data Structures Over
Time in Trace-Based Offline Memory Monitoring. In Proc. of the 9th Symposium on Software Performance (SSP ’18).

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study 75:37

[120] Markus Weninger, Paul Grünbacher, Huihui Zhang, Tao Yue, and Shaukat Ali. 2018. Tool Support for Restricted
Use Case Specification: Findings from a Controlled Experiment. In 25th Asia-Pacific Software Engineering Conference,
APSEC 2018, Nara, Japan, December 4-7, 2018. 21–30. https://doi.org/10.1109/APSEC.2018.00016

[121] Markus Weninger, Philipp Lengauer, and Hanspeter Mössenböck. 2017. User-centered Offline Analysis of Memory
Monitoring Data. In Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, ICPE
2017, L’Aquila, Italy, April 22-26, 2017. 357–360. https://doi.org/10.1145/3030207.3030236

[122] Markus Weninger, Lukas Makor, Elias Gander, and Hanspeter Mössenböck. 2019. AntTracks TrendViz: Configurable
Heap Memory Visualization Over Time. In Companion of the 2019 ACM/SPEC International Conference on Performance
Engineering, ICPE 2019, Mumbai, India, April 07-11, 2019. 29–32. https://doi.org/10.1145/3302541.3313100

[123] Markus Weninger, Lukas Makor, and Hanspeter Mössenböck. 2019. Memory Leak Visualization using Evolving
Software Cities. In Proc. of the 10th Symposium on Software Performance (SSP ’19).

[124] Markus Weninger and Hanspeter Mössenböck. 2018. User-defined Classification and Multi-level Grouping of Objects
in Memory Monitoring. In Proceedings of the 2018 ACM/SPEC International Conference on Performance Engineering,
ICPE 2018, Berlin, Germany, April 09-13, 2018. 115–126. https://doi.org/10.1145/3184407.3184412

[125] Nicholas P. Wilde. 1996. Using Cognitive Dimensions in the Classroom as a Discussion Tool for Visual Language
Design. In Conference on Human Factors in Computing Systems: Common Ground, CHI ’96, Vancouver, BC, Canada,
April 13-18, 1996, Conference Companion. ACM, 187–188. https://doi.org/10.1145/257089.257252

[126] Guoqing (Harry) Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schonberg, and Gary Sevitsky. 2014.
Scalable Runtime Bloat Detection Using Abstract Dynamic Slicing. ACM Trans. Softw. Eng. Methodol. 23, 3 (2014),
23:1–23:50. https://doi.org/10.1145/2560047

[127] Guoqing (Harry) Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, and Gary Sevitsky. 2010. Software bloat
analysis: finding, removing, and preventing performance problems in modern large-scale object-oriented applications.
In Proceedings of the Workshop on Future of Software Engineering Research, FoSER 2010, at the 18th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010.
421–426. https://doi.org/10.1145/1882362.1882448

[128] Guoqing (Harry) Xu and Atanas Rountev. 2008. Precise memory leak detection for java software using container
profiling. In 30th International Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008.
151–160. https://doi.org/10.1145/1368088.1368110

[129] Guoqing (Harry) Xu and Atanas Rountev. 2010. Detecting inefficiently-used containers to avoid bloat. In Proceedings
of the 2010 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2010, Toronto,
Ontario, Canada, June 5-10, 2010. 160–173. https://doi.org/10.1145/1806596.1806616

[130] S. Zaman, B. Adams, and A. E. Hassan. 2012. A Large Scale Empirical Study on User-Centric Performance Analysis.
In 2012 IEEE Fifth International Conference on Software Testing, Verification and Validation. 410–419. https://doi.org/
10.1109/ICST.2012.121

[131] Thomas Zimmermann and Andreas Zeller. 2001. Visualizing Memory Graphs. In Software Visualization, International
Seminar Dagstuhl Castle, Germany, May 20-25, 2001, Revised Lectures. 191–204. https://doi.org/10.1007/3-540-45875-
1_15

Received October 2019; revised November 2019; accepted December 2019

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. EICS, Article 75. Publication date: June 2020.

6.3 Guided Exploration

This section includes the paper that presents our user guidance pipeline called
guided exploration and how it supports users during memory leak and mem-
ory churn analysis.

Paper:
Markus Weninger, Elias Gander, Hanspeter Mössenböck:
Guided Exploration: A Method for Guiding Novice Users in Interactive Mem-
ory Monitoring Tools. In Proceedings of the ACM on Human Computer In-
teraction, Vol. 5 (EICS), June 2021. (in press)

184

209

Guided Exploration: A Method for Guiding Novice Users in
Interactive Memory Monitoring Tools

MARKUS WENINGER, Institute for System Software, Johannes Kepler University Linz, Austria
ELIAS GANDER, Christian Doppler Laboratory MEVSS, Johannes Kepler University Linz, Austria
HANSPETER MÖSSENBÖCK, Institute for System Software, Johannes Kepler University Linz, Austria

Many monitoring tools that help developers in analyzing the run-time behavior of their applications share a
common shortcoming: they require their users to have a fair amount of experience in monitoring applications
to understand the used terminology and the available analysis features. Consequently, novice users who lack
this knowledge often struggle to use these tools efficiently.

In this paper, we introduce the guided exploration (GE) method that aims to make interactive monitoring
tools easier to use and learn. In general, tools that implement GE should provide four support operations on
each analysis step: they should automatically (1) detect and (2) highlight the most important information on
the screen, (3) explain why it is important, and (4) suggest which next steps are appropriate. This way, tools
guide users through their analysis processes, helping them to explore the root cause of a problem. At the same
time, users learn the capabilities of the tool and how to use them efficiently.

We show how GE can be implemented in new monitoring tools as well as how it can be integrated into
existing ones. To demonstrate GE’s feasibility and usefulness, we present how we extended the memory
monitoring tool AntTracks to provided guided exploration support during memory leak analysis and memory
churn analysis. We use these guidances in two user scenarios to inspect and improve the memory behavior of
the monitored applications.

We hope that our contribution will help usability researchers and developers in making monitoring tools
more novice-friendly by improving their usability and learnability.

CCS Concepts: • General and reference → Design; • Software and its engineering → Software system
structures;Dynamic analysis; Software performance; Softwaremaintenance tools; Software design techniques;
Software defect analysis; Maintaining software; •Human-centered computing→ Graphical user interfaces;
User centered design; User interface design; User interface programming.

Additional Key Words and Phrases: Monitoring Tools, Guided Exploration, Advisor, Onboarding, Intelligent
Assistant, Context-Sensitive Help, Program Comprehension, Memory Comprehension, Memory Monitoring,
Memory Leak Analysis, Memory Churn Analysis

ACM Reference Format:
Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2021. Guided Exploration: A Method for Guiding
Novice Users in Interactive Memory Monitoring Tools. Proc. ACM Hum.-Comput. Interact. 5, EICS, Article 209
(June 2021), 34 pages. https://doi.org/10.1145/3461731

Authors’ addresses: Markus Weninger, markus.weninger@jku.at, Institute for System Software, Johannes Kepler Uni-
versity Linz, Altenberger Straße 69, Linz, 4040, Austria; Elias Gander, elias.gander@jku.at, Christian Doppler Labo-
ratory MEVSS, Johannes Kepler University Linz, Altenberger Straße 69, Linz, 4040, Austria; Hanspeter Mössenböck,
hanspeter.moessenboeck@jku.at, Institute for System Software, Johannes Kepler University Linz, Altenberger Straße 69,
Linz, 4040, Austria.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in Proceedings of the ACM on Human-Computer Interaction, https://doi.org/10.1145/3461731.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

209:2 Weninger et al.

1 INTRODUCTION
The complexity of modern software makes monitoring tools essential, as their analysis features
support users in inspecting, understanding, and fixing run-time problems. Unfortunately, most
monitoring tools are designed for experts with extensive knowledge in their respective domain.
Consequently, novices who lack this expertise are often unable to use these tools to their full
potential [57, 79]. For example, Weninger et al. [91] observed during a user study on memory
monitoring tools that especially novice users who were unfamiliar with typical memory monitoring
activities and tool features struggled to extract the insights needed to fix a given problem. They were
often overwhelmed by the complexity and number of available features and said that they wished
to have more guidance throughout the analysis process. Based on these observations, the authors
recommend that memory monitoring tool developers should provide guidance and explanations to
support exploratory learning of analysis capabilities [91].

Having too many and too complex features is a common problem across interactive expert tools,
which makes them hard to use for novice users, as illustrated in Figure 1. For example, in the
memory analysis tool MAT [80], to inspect a suspicious heap object group in more detail, users
are confronted with a long list of analysis features (Figure 1a). In AntTracks [85, 99], users can
define how to group heap objects for inspection based on a number of different properties and
criteria (Figure 1b). Without guidance or hints, novice users may feel overwhelmed and may not be
able to decide which actions to take in a certain situation.

(a) MAT’s type histogram provides a context menu
that offers nine analysis features, six of which have
(many) further sub-decisions.

(b) AntTracks’s classification view offers around 35
grouping criteria for heap objects that can be freely
combined by the user.

Fig. 1. Examples of complex decisions in memory monitoring tools.

In this paper, we present guided exploration (GE), a method that aims to increase the learnability
and usability of monitoring tools, and GE’s application in memory monitoring. In general, to
implement GE, tool developers should first identify their tool’s typical analysis processes. For
example, in a memory monitoring tool, this may be the typical steps performed during memory
leak analysis. GE aims to support users in performing and understanding these steps, especially

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

Guided Exploration: A Method for Guiding Novice Users in Interactive Memory Monitoring Tools 209:3

supporting those users without extensive knowledge in the tool’s domain. To do so, tools that
follow the method of GE should provide the following four support operations on every analysis
step: they should automatically (1) detect and (2) highlight the most important information on the
screen, (3) explain background knowledge and why the highlighted information is important, and
(4) suggest which next steps are appropriate based on the findings.

To demonstrate how GE can be introduced in existing tools, we present how we extended the
interactive memory monitoring tool AntTracks to support GE on its two main analyses: memory
leak analysis and memory churn analysis.

Our main contributions in this work are:
(1) an overview of our general guided exploration method that can be implemented in new

monitoring tools as well as integrated into existing ones, see Section 3.
(2) guided exploration for memory leak analysis, integrated into AntTracks, see Section 4.
(3) guided exploration for memory churn analysis, integrated into AntTracks, see Section 5.
(4) a discussion of preliminary user feedback regarding AntTracks’s GE (Section 6), an outlook

on the possible application of GE in a domain other than memory monitoring (Section 7),
and a discussion of GE’s current limitations and possible future improvements (Section 8).

2 BACKGROUND AND RELATEDWORK
In this section, we first discuss background and related work in the field of Human-Computer Inter-
action, more specifically related work on the usability and ease of use of analysis and monitoring
tools. We then show different kinds of user guidance and how our approach fits into these classi-
fications. Since this work focuses on novice user guidance in memory monitoring tools, we also
introduce general memory monitoring concepts and typical memory problems that developers have
to face. As we have implemented guided exploration in the memory monitoring tool AntTracks,
AntTracks and its core features are also explained.

2.1 Usability, Ease of Use and Learnability
Ample studies have been performed on how to improve the user experience in software tools. For
example, Johnson et al. [33] performed a study on the (under-)use of static analysis tools. Nineteen
of their 20 study participants reported that they felt that many static analysis tools do not present
[...] enough information for them to assess what the problem is, why it is a problem and what they
should be doing differently, i.e., they missed explanations on how to interpret the presented data.
Christakis and Bird [10] report that many of their findings match those of Johnson et al. In a
study conducted by Riemenschneider and Hardgrave [70], ease of use (including learnability) was
shown to be the major determinant for tool usage, i.e., ease of use is paramount for tools to attract
and hold users. Holding users is important, since a continuous use of monitoring tools, especially
application performance management (APM) tools, can have a positive impact on the quality of
software [77]. Despite this, Tarek et al. [2] conclude their work on the effectiveness of APM tools
as [...] the reporting capability of APM tools must be improved to reduce the effort that is required to
analyze detected performance regressions. The logical consequence that follows from these results
is that developers have to improve their tools’ usability to reach a broad range of users. While
some approaches try to achieve this using user-specific data aggregation [64, 82], our GE approach
focuses on increased learnability by guiding the user through analysis processes.

2.2 User Guidance
The idea of user guidance is not new. Folmer and Bosch [18] classify two general guidance patterns
that are typically used to increase tool usability [1, 38, 54]: (1) wizards and (2) context-sensitive help.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

209:4 Weninger et al.

Most wizards are implemented as a rigid, linear series of dialog views [12]. These views ask
a number of questions and then use this information to automate certain tasks [81]. Modern
approaches involve the generation of user-specific wizards [102].
Various approaches exist for context-sensitive help [78], such as coaches [50], guides [12] or

advisors [50]. Coaches are often implemented as context-sensitive hints or tips and typically provide
the user “how to” information to overcome minor hurdles. Guides can be thought of as “intelligent
coaches”, as they only display hints or tips whenever and wherever it is most likely useful, reacting
to the user’s behavior. Coaches, guides, and more recent approaches such as micro-learning and
gamification [22, 23, 28] are often used during onboarding [67], i.e., while introducing a person to
a new tool to improve the person’s success using it [76]. Our approach differs from coaches and
guides as GE does not only explain possible next steps or display certain hints, but it provides full
guidance throughout a given task, including automatic decision making based on the underlying
data. Thus, it better fits the description of an advisor system. Advisors are context-sensitive help
systems that provide hints, tips, reasoning support, and explanations of complicated concepts. They
help novice users to make decisions, to understand why certain steps should be performed, and to
determine why certain decisions were suggested.

Rabiser et al. [62] provide a framework to compare monitoring approaches based on 21 different
characteristics, including typical characteristics relating to guidance such as target group, needed
skills, input guidance, and output guidance. They then compared 32 existing monitoring approaches
and tools based on this framework. Even though they report that some monitoring tools partly
provide certain unstructured guidance, they conclude that many approaches do not provide much
end-user tool support [...] and generally only very few provide fully-fledged tools with visualizations
and guidance for users. The target user group seems to be mainly (experienced) engineers [62].
To the best of our knowledge we are the first to describes a general guidance method in the

context of interactive monitoring tools, especially in the domain of memory monitoring.

2.3 Memory Analysis
To reduce the risk for memory-related problems, modern programming languages such as Java
use garbage collection (GC) to automatically reclaim unused memory. During a garbage collection,
objects that are no longer (indirectly) reachable from GC roots (i.e., static fields and local variables)
are automatically reclaimed, freeing up their reserved memory. This relieves programmers from
the error-prone task of manual memory management. Nevertheless, garbage collection comes with
its own set of possible memory problems that can slow down applications if developers handle
object allocations and object storage carelessly. In the worst case, problems such as memory leaks
can even crash the application.
Memory leaks occur when objects that are no longer needed remain reachable from GC roots

due to programming errors [48]. For example, a developer may forget to remove objects from
long-living data structures once they are not needed anymore. These objects cannot be reclaimed
by the GC and will therefore accumulate over time [86, 88].
Another common memory anomaly that is often overlooked by novice users is high memory

churn. High memory churn, also called excessive dynamic allocations [60, 75] or high allocation
density [13], occurs when objects are (unnecessarily) allocated in high frequencies, just to be
reclaimed shortly after their creation. For example, high memory churn is often the result of
heavily-executed loops that contain allocations of short-living objects. This leads to increased work
for allocating these objects on the heap and to an increased number of garbage collections to collect
them, both of which negatively impact an application’s performance.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

Guided Exploration: A Method for Guiding Novice Users in Interactive Memory Monitoring Tools 209:5

2.4 Introduction to AntTracks
This section presents the basics of AntTracks, a trace-based memory monitoring tool consisting
of the AntTracks VM [39–41] (a modified Java Hotspot VM) and the AntTracks Analyzer [5, 86–
90, 93, 94, 99]. We use AntTracks as an example throughout the paper to showcase how existing
monitoring tools can be extended and refactored to support GE. We chose this tool since its source
code is publicly available [85] and the authors already had prior experience with its code base.

2.4.1 Trace Recording by the AntTracks VM. The AntTracks VM records events such as object
allocations and object movements during garbage collection by writing them into trace files [39, 40],
introducing a run-time overhead of about 5%. To reduce the trace size, the VM does not record any
redundant data and applies compression [41].

2.4.2 Reconstruction in the AntTracks Analyzer. The AntTracks Analyzer processes the events
stored in a trace file, reconstructing the heap state at every garbage collection point [5]. A heap
state is a set of heap objects that were live in the monitored application at a certain point in time.
Properties such as the the address, the type, the allocation site, and the allocating thread can be
reconstructed for each heap object, as well as GC root information and information about the
references between the heap objects.

The tool’s core mechanism is object classification in combination with multi-level grouping [93,
99]. A classifier groups heap objects according to a certain criterion such as type, allocation site,
or allocating thread. Grouping the heap objects according to the classification results of multiple
classifiers results in a hierarchical memory tree. A common classifier combination is to group all
heap objects by their types and then by their allocation sites, as exemplarily shown in Figure 2.
Yellow rectangles represent tree nodes and blue circles represent the objects that were classified
into the respective tree branch. For example, the objects 0 to 3 are of type Object[], of which the
objects 0, 1 and 3 have been allocated in the method Stack:init() and object 2 has been allocated
in the method MyService:foo().

root

Object[] LinkedList

Stack:init() MyService:foo() X:meth()

1. Classify by type

2. Classify by
allocation site

… Tree node … Object

0 1 3

i

2 4

40 1 32

0 1 32 4

Fig. 2. A memory tree that first groups all objects by their types and then by their allocation sites.

Memory traces are used as a data basis for a variety of analyses within AntTracks. Two of
these analysis, as well as their new guided exploration features, will be explained in more detail in
Section 4 (memory leak analysis) and Section 5 (memory churn analysis).

3 GUIDED EXPLORATION
Without training, especially novice users may struggle to understand analysis features, terminology,
metrics or visualizations in state-of-the-art interactive monitoring tools due to their steep initial
learning curve. Being a novice monitoring tool user does not imply general inexperience. For
example, even experienced software developers may have never used a memory monitoring tool
before they encounter their first application crash due to a memory leak, which makes them a novice

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

209:6 Weninger et al.

in the domain of memory analysis. By incorporating learning-by-doing [71], our guided exploration
method intends to simplify the onboarding process for this kind of users. As the method’s name
suggests, tools implementing guided exploration should guide novice users through their analysis
processes, helping them to explore the collected data until the root cause of a problem is found.

Even though the focus of this work is to present how GE can be applied in memory monitoring
tools, this section presents the general idea of GE. As we discuss in Section 7, we think that GE
may be a suitable guidance pattern for monitoring tools of other domains too, and thus we plan to
further explore possible applications of GE in other domains in future work.

Section 3.1 discusses which steps are necessary before GE can be integrated into a tool. Section 3.2
explains GE’s four user support operations (depicted in Figure 4) in detail: Detection, Highlighting,
Explanation, and Suggestion. These four user support operations can be gradually introduced in
existing monitoring tools view by view, step by step.

3.1 Mapping of Analysis Process Steps to Views
Before introducing guided exploration in a monitoring tool, the tool developers have to define
its typical analysis processes (such as memory leak analysis in a memory monitoring tool) and
the steps performed within these processes. To do so, we suggest to create a (simple) process or
task model. Various task model notations exist, for example ConcurTaskTrees [58], Task Flow [37],
useML [51], or visualizations similar to UML statechart diagrams [46]. They all strive to capture
the most important elements describing how a task (i.e., an activity that should be performed in
order to reach a certain goal) is carried out by a particular user in a given context or in a given
scenario [21, 45]. In the case of guided exploration, these task models should be designed from
the perspective of novice users. This means that, even though analysis tasks (e.g., memory leak
analysis) can often be performed in different ways across a number of multiple steps, the model
should contain the typical flow of steps that should be performed to achieve the task’s goal. Tool
developers and domain experts should be able to derive such a model, describing the “default” steps
novice users should learn to perform, i.e., those steps that should be supported with GE in the
future. Each step can then be mapped to one of the tool’s views to determine those views that have
to be modified in order to support GE.

Overview

Load
trace file

Overview

Inspect memory
evolution

TrendViz view

Visualize growth per
object type in window

Time window with
continous memory growth?

Yes

Heap graph view

Indentify relevant
GC roots

selected
strongest
growing
type(s) loaded

selected
window

IDE

Inspect and fix
source code

finished
analysis

Fig. 3. Simplified task model of the typical steps performed during memory leak analysis, mapped to their
corresponding AntTracks views.

For example, in Section 4 we show how GE has been implemented in AntTracks to guide users
on the search for memory leaks. A typical memory leak analysis process, as shown in Figure 3,
is (1) to search for a time window with continuous memory growth, (2) to find those objects that
accumulate over time within this time window, and (3) to identify the GC roots that keep these
accumulating objects alive. In AntTracks, each of these analysis steps is performed on a separate
view, for each of which the four guided exploration support operations depicted in Figure 4 and
explained in Section 3.2 have been implemented.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

Guided Exploration: A Method for Guiding Novice Users in Interactive Memory Monitoring Tools 209:7

3.2 Guided Exploration Support Operations
This section discusses the four GE support operations a tool should perform on each analysis step:
(1) First, the tool should automatically detect potential problems, i.e., suspicious patterns. (2) To help
users in understanding from where the automatically gained insight was derived, the respective
user interface (UI) region should be visually highlighted. (3) Since the user may require background
knowledge to comprehend certain terminology and the highlighted information, explanations
should discuss why the highlighted information is interesting. (4) Finally, based on the problem
and the detected information, subsequent analysis steps should be suggested.
Since tools can greatly differ in their look-and-feel, we did not come up with a general rule

on how to visualize notifications that a suspicious pattern has been found. It is thus up to the
tool developer to appropriately inform the user about new guidance information. For example,
in AntTracks, if guidance information is available a guidance button in the form of a light bulb is
shown next to the respective UI element. Clicking such a light bulb then highlights the respective
UI element and provides explanations and suggestions. This way of visualization was developed
based on preliminary user feedback, as we will discuss in Section 6. Also, tool developers should
keep guidance support optional, as experienced users may prefer to perform inspections without
guidance elements visible.

Moni

Monitoring
Data

(2)
Highlight

(3)
Explain

(4)
Suggest

repeat

respective
UI element

rationale next analysis step

Monitoring Tool
(1)

Detect
suspicious

pattern

Application

Fig. 4. The four guidance operations of GE: (1) Detection, (2) Highlighting, (3) Explanation, and (4) Suggestion.

Detection describes the task of automatically detecting potential problems, i.e., suspicious
metrics or patterns.

Every view in an interactive monitoring tool is developed with the intention of supporting the
user in achieving a certain goal. To this end, different kinds of visualizations are used to present
data to the user. In non-guiding tools, it is up to the user to interpret these visualizations and to
derive insights and findings from them. For example, a tool may present time-series charts for users
to detect abnormal program behavior patterns. Others present tables, expecting the user to search
for suspicious entries, e.g., metrics exceeding certain thresholds.

Most of these tasks require domain expertise that novice users generally do not have. For example,
novice memory monitoring tool users may not search for data structures with a large retained size,
i.e., the number of objects that are kept alive by a data structure [87], if this definition is unknown
to the user. Thus, the first support operation of GE is to automatically detect suspicious patterns
that may hint at problems in the monitored application. We think that intelligent tools should
be able to perform this task, at least to a certain degree. After all, non-guiding tools expect their
users to be able to detect suspicious patterns on their own, based on the displayed information.
Since both the tool and the user have access to the same information, the tool should be capable of
performing the same detection task, even if only detecting more obvious patterns using heuristics.
Even though the problem patterns that need to be detected may differ from domain to domain,

we found certain similarities across different monitoring tools regarding the data they operate
on and how this data is presented to users. Many monitoring tools inspect the evolution of a
system, i.e., the evolution of certain metrics over time. These metric changes are often visualized

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

209:8 Weninger et al.

using charts, primarily time-series charts. Users are then expected to detect suspicious patterns
within this evolution. Automated time series analysis [19] (using features such as regression
analysis [53], seasonal and trend analysis [84], prediction [73], forecasting [4], or clustering and
anomaly detection [43]) is a major research field in the domain of knowledge discovery and data
mining. For example, time series analysis is used in memory monitoring to automatically detect
suspicious time windows during which a monitored application behaves abnormally with regard
to memory utilization [89].

Another typical way of depicting information is through the use of (hierarchical) tables, where
features such as filtering or sorting should help the user to detect entries that (do not) meet certain
criteria or those that exceed given thresholds. Such tasks may also be supported by automatic
detection algorithms. For example, in the domain of memory monitoring, some memory inefficien-
cies and anti-patterns can automatically be detected based on memory metrics that exceed certain
limits [8, 9]. Intelligent user interfaces [24, 30, 34, 49] often also apply artificial intelligence and
machine learning for pattern detection, for example, by performing clustering or outlier detection.
Also, research in the field of recommender systems [16, 65] may provide interesting ideas and
algorithms that could be incorporated into the automated detection of patterns in monitoring tools.

Highlighting the relevant region on the user interface helps users to understand where the
automatically gained insight can be found if the view was inspected manually.

The goal of GE is not to remove visualizations from monitoring tools, but to help users to
understand and interpret these visualizations better. Thus, once a potential problem is detected, the
UI region / element relevant for its detection should be highlighted. Different types and arrangements
of UI elements may use different kinds of highlighting. The kind of highlighting should be chosen
based on known UI design principles such as the principles of highlighting [44] or color coding [100].
Further, the developers should make sure that the style of highlighting is consistent throughout all
views that support guided exploration [6]. For example, Figure 5 shows how AntTracks highlights
rows in its tree tables by displaying them with a different background color.

Fig. 5. AntTracks now automatically detects and highlights suspicious parts, for example data structures that
keep many other objects alive (i.e., those data structures that have a high retained size).

Explanations should help users in understanding why the highlighted information is important.
They should clarify used terminology and concepts that are needed to understand the problem.

Let’s continue with the example from Figure 5. First, AntTracks automatically detects objects
with a high retained size [87], i.e., objects that keep a large number of other objects alive, and then

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

Guided Exploration: A Method for Guiding Novice Users in Interactive Memory Monitoring Tools 209:9

highlights these objects on the view (in this case six HashMap objects allocated at the same allocation
site). Without knowing what a high retained size means or how to interpret it, the user will not
be able to make sense of the highlighted information. Thus, the user can choose to display an
explanation that should clarify needed background knowledge, terminology, as well as the rationale
why the given pattern is considered suspicious.

Figure 6 exemplarily shows how AntTracks handles this in its guidance pop-ups. First, the
explanation describes what retained size means (background knowledge + terminology), fol-
lowed by an explanation of the currently highlighted area, i.e., “Over 22% of this heap is kept
alive by 6 data structures of type HashMap that have been allocated in the constructor of class
SetMultimap” (rationale).

Suggestions on which steps could or should be taken next to make it easier for the user to
understand what operations are possible and why they might be useful.

Interactive monitoring tools often provide a vast amount of analysis features that can be applied
in different situations. Intended for expert users, this flexibility may intimidate and overwhelm
novice users. Despite the multitude of available features, as discussed in Section 3.1, most analysis
processes have a default flow of tasks. Suggestions should guide the user through this process. We
also recommend to not only display these suggestions as plain text, but to provide shortcuts to
automatically perform the suggested actions. For example, Figure 6 shows how AntTracks presents
suggested operations as buttons that automatically perform the next step.

Fig. 6. This explanation and suggestion pop-up is shown upon user request in AntTracks when data structures
with large ownership are detected. It explains terminology, e.g., retained size, and explains which insights
might be gained following the provided suggestions.

4 GUIDED EXPLORATION OF MEMORY LEAKS
In this section, we present how we integrated guided exploration into AntTracks to facilitate the
analysis of memory leaks. In Section 4.1, we describe a typical memory leak analysis process and
how this process is mapped to AntTracks’s views. In Section 4.2, we describe how AntTracks’s
views have been extended to support the four guided exploration operations Detection, Highlighting,
Explanation, and Suggestion. To showcase how these new guidances support users in comprehending
and investigating memory leaks, we use AntTracks’s new guided exploration and its suggestions
to investigate and fix an application that contains a memory leak.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

209:10 Weninger et al.

4.1 Mapping of Memory Leak Analysis Process Steps to Views
There are various ways to detect and analyze memory leaks. For example, AntTracks can detect
memory leaks by searching for growing data structures and inspecting those with the strongest
growth in more detail [86, 88]. Thus, we extended AntTracks’s data structure growth analysis by
implementing guided exploration for it.

Yet, not every memory monitoring tool can access data structure information in the monitored
application. Thus, we will focus on a more general memory leak analysis process that is not specific
to AntTracks, which is visualized as a simplified task model in Figure 7. It consists of the following
three steps:
(1) Detect a time window with continuous memory growth, i.e., a continues time frame in which

object accumulate over time.
(2) Find out which kinds of objects accumulate over time in this window.
(3) Find those GC roots that keep these strongly accumulating objects alive.

In AntTracks, each step is performed on a different view:
(1) The Overview view plots the application’s memory evolution and GC activity in time-series

charts. A growing number of heap objects over time may hint at a possible memory leak.
(2) The AntTracks TrendViz view [94] shows how the heap evolves over time, i.e., which objects

(grouped by, e.g., their types) accumulate the most.
(3) The Heap graph view interactively visualizes a heap state in a graph-based visualization.

It can be used to inspect keep-alive relations to drill-down to the root cause of a possible
memory leak.

Overview

Load
trace file

Overview

Inspect memory
evolution

TrendViz view

Visualize growth per
object type in window

Time window with
continous memory growth?

Yes

Heap graph view

Indentify relevant
GC roots

selected
strongest
growing
type(s) loaded

selected
window

IDE

Inspect and fix
source code

finished
analysis

Fig. 7. Simplified task model of the typical steps performed during memory leak analysis, mapped to their
corresponding AntTracks views.

The first two views have already existed in AntTracks and have been extended to provided
guided exploration as part of this work. The heap graph view has been newly developed from
scratch, including its GE support.

The analysis steps shown in Figure 7 are not restricted to AntTracks but can also be performed
in a similar way in other memory monitoring tools such as VisualVM [56] or MAT [80]. Thus, the
GE support operations that have been integrated into AntTracks could be integrated into these
tools in a similar fashion as well.

4.2 Guided Exploration Support Operations for Memory Leak Analysis
AntTracks now provides GE on the three views identified in Section 4.1. In this section, for each
view we explain its general functionality and its new GE support operations Detection, Highlighting,
Explanation and Suggestion.
To showcase how GE in AntTracks now supports users in comprehending and investigating

memory leaks, we present how the newly introduced guidance features have been used to inspect
Dynatrace easyTravel [14]. Dynatrace focuses on application performance monitoring (APM) and
distributes easyTravel as their state-of-the-art memory leak demo application. It is a multi-tier
application for a travel agency, using a Java backend and an automatic load generator simulating

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

Guided Exploration: A Method for Guiding Novice Users in Interactive Memory Monitoring Tools 209:11

accesses to the service. All automatically detected and highlighted problem patterns are shown in
Figure 8 and will be explained in detail in the following.

(a) The overview view highlights an automatically detected memory leak time window.

(b) AntTracks TrendViz shows how objects of various types accumulate over time.

(c) The graph view highlights the path from a selected group of objects (i.e., Date) to its most important
garbage collection root (i.e., the static field locationCache), i.e., the path on which most Date objects are
potentially kept alive.

Fig. 8. Memory leak analysis in AntTracks.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

209:12 Weninger et al.

4.2.1 Overview View.
The overview (Figure 9) view gives the user a general impression on the application’s memory
behavior. For example, a time-series chart plots the monitored application’s memory footprint over
time. Users can select a single point in time to inspect the heap state at that point, or they can
select a time window, i.e., two points in time, to inspect the heap evolution over this window.
We observed at different occasions, e.g., during studies or when AntTracks was used during

hands-on tool presentations, that especially novice users are in need of guidance and support. Some
users lacked the background knowledge to recognize abnormal behavior as such, or they struggled
to select a suitable point in time or a suitable time window for certain analysis features. GE on
AntTracks’s overview view should help the users by automating these steps.

Detection. Weninger et al. [89] showed how to automatically detect suspicious time windows
in memory monitoring. We apply their heuristic-based algorithm that mimics human behavior
to search for a memory leak window, i.e., a window with a continuous growth (except for minor
drops) of reachable memory.

Highlighting. If a suspicious time window that may be the result of a possible memory leak is
found, is is highlighted with a yellow rectangular overlay, as shown in Figure 8a.

Explanation. AntTracks explains to the user why the detected time windowmay be connected to a
memory leak: AntTracks has detected a time window over which the reachable memory is continuously
growing. This is an indicator for a possible memory leak. If a memory leak exists, typically objects of a
few common types accumulate over time.

Fig. 9. The Overview provides initial information to asses the overall memory and garbage collection behavior
of the monitored application.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

Guided Exploration: A Method for Guiding Novice Users in Interactive Memory Monitoring Tools 209:13

Suggestion. We suggest the user to apply the AntTracks TrendViz [94] feature to explore how the
heap’s contents changed over time in order to detect if certain types of objects accumulate over
time.

Figure 8a shows the memory evolution of easyTravel over time, including an automatically
detected and highlighted memory leak time window. AntTracks explains that the window exhibits
strong memory growth (about 400%) up until the end of the application, an indication for a memory
leak. It is worth mentioning that the initial memory spike during application startup is not part of
this window. Objects allocated during this spike are freed shortly after and thus have no relevance
for the memory leak, a fact that is obvious for experts (and the time window algorithm) but novice
users may not be aware of. Following the suggestion, we applied the AntTracks TrendViz feature on
the time window.

4.2.2 AntTracks TrendViz View.

The AntTracks TrendViz view [94] (Figure 10) classifies the live heap objects at every garbage
collection based on a list of selected classifiers, as explained in Section 2.4. The evolution of the

Fig. 10. The TrendViz view provides information on the heap evolution over time, i.e., which kinds of objects
accumulated the most, including a drill-down feature to inspect suspicious object groups in more detail.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

209:14 Weninger et al.

resulting memory trees is then visualized using time-series charts. Without guidance, users would
have to select this list of classifiers on their own. Since GE aims to especially help novice users,
we free them from this task by grouping the heap objects automatically by their types and their
allocation sites. When opening the view, the evolution of the first level of the memory trees, i.e.,
the evolution of the objects grouped by type, is visualized, as shown on the top of Figure 10 and in
Figure 8b. This is where GE comes into play.

Detection. We automatically detect the type of which the most objects accumulated over time. In
easyTravel, the objects that accumulated the most are objects of type Date, as shown in Figure 8b.
Objects of this type are most probably involved in a possible memory leak. If multiple types
exhibit similar strong growth (such as Location), all of them are suggested to the user for further
inspection.

Highlighting. The chart series and the table entry of the suspicious type will be highlighted
(yellow overlay) as shown in Figure 8b.

Explanation. AntTracks’s explanatory text for the strongest growing type(s) reads “Over the
selected time window, the number of <type> objects increased by <absolute growth>. This corresponds
to <relative growth>% of the total heap growth and could be an indication of a memory leak.”

Suggestion. The view provides two suggestions: Either to stay on the view to drill-down to
inspect where the suspicious objects have been allocated, or to go to the heap graph view to visually
inspect the GC roots that keep the suspicious objects alive. Following the first suggestion opens a
second time-series chart below the current one, which shows the evolution of the second level of
the memory trees. For example, selecting the Date objects for drill-down opens a second chart that
shows where the Date objects have been allocated over time, as shown on the bottom of Figure 10.
The same detection, highlighting and explanation steps as described above are then performed for
the allocation sites, and users are suggested to visualize the objects of the strongest growing type
that have been allocated at the allocation-heaviest allocation site in the heap graph view.

Figure 8b shows the memory evolution of easyTravel, grouped by type, on the AntTracks
TrendViz view. Using the Type classifier as first grouping criterion was automatically performed
by GE as we followed the suggestion on the overview. On the TrendViz view, AntTracks’s GE
automatically detected that the objects that accumulated the most in easyTravel in the selected time
window are those of type Date (highlighted in yellow) and Location. AntTracks’s GE explains that
the Date objects are the major suspects for a possible memory leak since about 30% of the overall
heap growth can be accounted to them. We then followed the suggestion to use the heap graph
view to inspect the paths to the GC roots and thus find out which objects and GC roots (indirectly)
keep the Date objects alive.

4.2.3 Heap Graph View.

Objects are kept alive because they are directly or indirectly reachable from GC roots. The heap
graph view (Figure 11) is a newly introduced analysis view in AntTracks that is used to visually
explore the references between heap objects and GC roots. This view was developed with GE
support from the start to help users in detecting and understanding suspicious paths from objects
to their GC roots, called bottom-up analysis. In the following, we will briefly explain the view’s
interaction features before we present its guided exploration operations.

A heap may contain millions of objects, each of them referencing other objects. Thus, visualizing
every object as a separate node and every reference as a separate edge is not feasible. Instead, our

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

Guided Exploration: A Method for Guiding Novice Users in Interactive Memory Monitoring Tools 209:15

Fig. 11. The Heap graph view provides inspection features to analyze keep-alive relations between objects,
paramount information to find the culprits of a possible memory leak.

(a) When opening the graph view,
a single node is shown.

(b) Applying the Points to operation
on a node ...

(c) ... will show its referenced ob-
jects, again grouped by type.

Fig. 12. Neighborhood analysis in the graph view.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

209:16 Weninger et al.

Fig. 13. The heap graph view groups objects by their types and extracts objects into separate nodes if they
would be part of multiple nodes.

approach groups objects of the same type. When opening the heap graph view for objects of a
specific type (e.g., inspecting all String objects), only a single node will be shown (for example
87.734 strings aggregated into a single node in Figure 12a). Users can explore the neighbors of a
node by applying the Points To and Pointed From operations. These operations show the objects
referenced by the node’s objects or the objects referencing the node’s objects respectively (again
grouped into nodes based on their types). For example, applying the Points To operation (Figure 12b)
on the String node will show all char[] objects referenced by the strings, as shown in Figure 12c.
Applying these neighborhood operations multiple times could lead to a situation in which one

object is contained in two different nodes, which is illustrated on the left of Figure 13. The two
top-most nodes represent objects of type A and type B, respectively. Assume that these objects point
to objects of type C, namely the objects of type A point to the objects 1, 2 and 3, and the objects
of type B point to the objects 1, 4 and 5. Since object 1 would be present in two different nodes,
we extract it into a separate node, as shown on the right of Figure 13. Thus, after each operation
that added nodes to the graph, we apply this technique on the whole graph to ensure that no heap
object is contained in more than one graph node.
The view also supports operations that do not only involve the direct neighbors, but also

operations to inspect paths. One of these operations is the Paths to GC Roots operation, which
shows every path to GC roots starting from a selected node. Such a path represents a chain of
objects that keep each other alive, starting at the object pointed by the GC root. While certain
kinds of GC path inspection are also possible in other memory tools, nearly all these tools do not
visualize these paths by graphical means but only in tree views. This has certain drawbacks. First,
unwinding long paths in a tree view can be tedious. Second, it easily becomes confusing if multiple
paths are shown. Third, tree views cannot display circular reference patters. And lastly, most tools
only support the inspection of GC root paths for a single object, not for object groups.

Since it can be rather complex to apply this view’s features correctly and to interpret the resulting
graph, AntTracks’s guided exploration supports the user in multiple phases:

Detection #1. When the graph view is initially opened, a single node is shown, representing the
heap objects for which we want to explore the paths to the GC roots.

Highlighting #1. This node is animated to draw attention to the fact that nodes are clickable.

Explanation #1. Since the user may have never investigated a memory problem before, AntTracks
explains that the highlighted objects are kept alive because they are (indirectly) reachable from
some GC roots that have yet to be explored.

Suggestion #1. To find out which GC roots keep the objects alive, we suggest to perform the Paths
to Most Interesting GC Roots operation, an operation similar to the Path to GC Roots operations
explained earlier. To create the paths to all roots, the Pointed From operation is automatically

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

Guided Exploration: A Method for Guiding Novice Users in Interactive Memory Monitoring Tools 209:17

applied multiple times, each time on the graph nodes that have been created in the previous step,
until every path reaches a GC root. The Paths to Most Interesting GC Roots, instead of applying the
Pointed From operation to every newly created node, applies this operation only to those nodes
that reach at least 5% of the objects of the clicked node. For example, in Figure 8c, the first Pointed
From operation is applied to the Date node, which creates nodes for Location, PolicySubject,
TypedValue and so on. While the Path to GC Roots algorithm would continue with all these nodes,
the Paths to Most Interesting GC Roots algorithm only continues with the Location node. This is
repeated until the graph cannot be expanded anymore, which results in the state shown in Figure 8c.

Detection #2. Once the most important paths to the GC roots are shown, we automatically detect
the path that reaches the most objects of the selected node, i.e., the path on which most objects
may be kept alive.

Highlighting #2. The detected path is highlighted in red, and the thickness of the edges is adjusted
according to the number of reachable objects, as shown in Figure 8c.

Explanation #2. In the example from Figure 8c, we explain that 135, 026 Date objects are reachable
from the leftmost path, while only 1, 061 are reachable from the second-leftmost path. Consequently,
we point out to the user that it is much more important to inspect the leftmost path than any
other path. Once the most suspicious path is highlighted and its importance is explained, it is up
to the user to try to “cut” the path somewhere. This cut must happen on the source code level by
setting references that keep objects alive to null, or by removing objects from their containing
data structures.

Suggestion #2. We currently suggest the user to start the source code inspection at the GC root
and to traverse the references according to the types shown in the heap graph view. In future work,
we will improve this suggestion step, for example by taking into account data structure boundaries
or by including static source code analysis.

To inspect the root cause of easyTravel’s memory leak, we followed the suggestion to apply the
Paths to Most Interesting GC Roots operation to find those GC roots that keep most of the Date
objects alive. The result of this operation, including GE’s highlighting, can be seen in Figure 8c.
AntTracks’s guided exploration explains that many Date objects are alive because they are reachable
from objects along the path highlighted in red. The current GE implementation in AntTracks
verbalizes the problem in the following way: 135, 026 Dates are kept alive by 135, 026 Locations.
These Locations are kept alive by 1, 071 ArrayLists. These ArrayLists are kept alive by a single
ConcurrentHashMap. This ConcurrentHashMap is kept alive by a single AtomicReference. Finally,
this AtomicRefernce is kept alive because it is stored in a static field called locationCache in the
class JourneyService. To reduce the number of Date objects, you have to cut this path somewhere.
You can achieve this by setting references to null, or by removing objects from their containing data
structures. Also check why the Date objects are added in the first place. Are they contained in the
mentioned data structures on purpose?

With this information, the user should be able to locate the reported objects in the source code. In
this example, we looked up the variable name locationCache and checked the variable’s usage. As
the name suggests, the map serves as a cache, but its implementation was broken. There is a single
line in the source code where new ArrayList<Location> objects are added if no matching key
is already found in the cache. However, the class used as key in the ConcurrentHashMap neither
implemented hashCode nor equals. Thus, every request (even for an already existing key) resulted
in a cache miss and ultimately led to the problem that too many Location objects and Date objects

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

209:18 Weninger et al.

were created and kept alive. Implementing the two missing methods immediately resolved the
problem.

5 GUIDED EXPLORATION OF MEMORY CHURN
To provide support for memory churn analysis, AntTracks encompasses a short-living objects
view [90] that enables users to inspect those objects that are allocated in large quantities and die
shortly afterwards. GE should help users to detect time windows that exhibit suspicious memory
churn behavior as well as to guide them in finding those source code locations that should be
inspected to reduce the churn.

5.1 Mapping of Memory Churn Analysis Process Steps to Views
The overall goal of memory churn analysis is to reduce the number of allocations happening in
memory churn hotspots. Figure 14 shows a simplified model of such a memory churn analysis
process. The first step is to detect a time window that covers a memory churn hotspot, i.e., a time
window with strongly fluctuating memory utilization. The user then has to find out which types of
objects are responsible for the churn and where these objects have been allocated. These locations
can then be inspected in the source code to fix the problem. In AntTracks, these tasks are performed
on two different views:
(1) The Details view plots a detailed evolution of the memory footprint, where certain patterns

indicate churn.
(2) The Short-living objects view drills down into suspicious object groups to extract their types

and allocation sites.
Both mentioned views already existed in AntTracks and have been extended with GE support as

part of this work.

Overview

Load
trace file

Details view

Inspect memory
evolution

Short-living objects view

Indentify object types with
strongest contribution

to memory churn

Time window with strongly
fluctuating memory utilization?

Yes

Short-living objects view

Indentify allocation
sites with strongest
contribution to churn

selected
strongest
churning
type(s) loaded

selected
window

IDE

Inspect and fix
source code

finished
analysis

Fig. 14. Simplified task model of the typical steps performed during memory churn analysis, mapped to their
corresponding AntTracks views.

5.2 Guided Exploration Support Operations for Memory Churn Analysis
In this section, we show how GE is now supported in the two views identified in Section 5.1. We
explain the views’ general features and their newly supported GE support operations Detection,
Highlighting, Explanation, and Suggestion.

To showcase how GE in AntTracks now supports users in analyzing and fixing memory churn,
we present how the newly introduced guidance features have been used to inspect a benchmark of
the Renaissance benchmark suite [61]. This suite is composed of modern, real-world, concurrent,
and object-oriented workloads. Since this benchmark suite is rather new, it has not yet been the
subject of a detailed memory study [42]. Thus, it is perfectly suited to test whether AntTracks’s
GE is able to guide users to the root cause of memory problems in applications even unknown
to the inspector. We downloaded the benchmark suite in version 0.9, created a trace file of every
benchmark and loaded these trace files into AntTracks and inspected the memory churn time
windows that were automatically detected by GE. One benchmark that attracted our attention was

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

Guided Exploration: A Method for Guiding Novice Users in Interactive Memory Monitoring Tools 209:19

finagle-http. According to the benchmark’s documentation, it sends many small Finagle HTTP
requests to a Finagle HTTP server and awaits response. All automatically detected and highlighted
problem patterns in this application are shown in Figure 15 and will be explained in detail in the
following.

5.2.1 Details View.
The details view (Figure 16) plots the memory consumption GC-wise, i.e., the view’s plots contain
one data point at the beginning of a garbage collection (high memory consumption) and one at the
end (low memory consumption). Thus, every garbage collection appears as a spike. When users
investigate this view without guidance, they have to know that their task is to detect a time window

(a) Automatically detected memory churn hotspot in the finagle-http benchmark.

(b) The guidance on the short-living objects reports that nearly all died objects did so without surviving a
single garbage collection.

(c) Inspecting the types of the frequently dying objects reveals four types (that are automatically detected)
that seem suspicious.

(d) Inspecting the allocation sites of these frequently dying objects leads to the source code locations that
have to be checked.

Fig. 15. Memory churn analysis in AntTracks.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

209:20 Weninger et al.

that contains high and frequent spikes. Yet, observing and interviewing memory monitoring
tool users revealed that especially novices are often not aware of other memory problems beside
memory leaks. They often lacked background knowledge to recognize high memory churn patterns
as suspicious and worthy of inspection, a reason why we try to ease memory churn detection and
analysis using guided exploration through the following support operations.

Detection. We apply the automatic memory churn time window detection algorithm byWeninger
et al. [89] to detect memory churn hotspots.

Highlighting. Detected memory churn hotspots are highlighted with a yellow overlay (see Fig-
ure 15a), similar to memory leak time windows, following the HCI principle consistency [6].

Explanation. We explain the term memory churn, since most novice users may not be familiar
with it: AntTracks detected a time window where your application throws away over <garbage> MB
per second, which is called high memory churn. This occurs when many short-living objects are being
allocated in a short time span, leading to frequent garbage collections. Please note that too many GCs
can slow down your application even if the GCs themselves are very quick.

Suggestion. Our suggestion to the user is to use the short-living objects view to find out which
objects cause the memory churn and where these objects have been allocated.

The mentioned memory churn hotspot detection algorithm is automatically run by AntTracks’s
GE every time a trace file is loaded. If such a hotspot is detected, as it was the case for the finagle-http
benchmark, AntTracks suggests the user to switch to the details view to visualize it. Figure 15a
shows the automatically detected memory churn hotspot in the finagle-http benchmark, for which
AntTracks explains that about 500 MB are allocated and freed every second within the highlighted

Fig. 16. The Details view provides more detailed information about the memory behavior, enabling the
detection of spike patterns that hint at memory churn.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

Guided Exploration: A Method for Guiding Novice Users in Interactive Memory Monitoring Tools 209:21

time window. Based on this, it suggests to explore the objects that make up this garbage in more
detail on the short-living objects view.

5.2.2 Short-living Objects View.
The short-living objects view (Figure 17) calculates the age of each object that died within a selected
time window. It uses this information to guide users to those objects that die shortly after their
allocation, which are the major reason for memory churn. We define the age of a heap object as the
number of garbage collections it survived. Even though more detailed death time algorithms exist,
AntTracks uses this simple age definition as it can be reconstructed during trace parsing without
additional overhead [90]. For example, the Merlin algorithm [25] used by Elephant Tracks [68, 69]
can calculate more exact object death times, yet it causes a several 100-fold increase in the analyzed
application’s run time [101].
The short-living objects view in AntTracks introduces a new classifier: the Age classifier. As

shown in Figure 15b, applied on a died object, the age classifier returns the string “<x> GCs survived”
as its classification. Like most views in AntTracks, the short-living objects view uses a tree table
view to display the objects that were freed by the garbage collector. By default, these died objects
are grouped first by age, then by type, and then by allocation site. They are sorted based on the
number of objects that have been collected by the GC in the selected time window.

To make it easier for novices to learn and interpret this view, GE automatically detects suspicious
objects and presents them to the user in multiple steps.

Detection #1. As the first classifier applied on the died objects is theAge classifier, we automatically
detect how many objects died without surviving a single garbage collection.

Highlighting #1. Figure 15b shows how we highlight objects in the tree table view by assigning a
special background color to the respective rows.

Fig. 17. The Short-living objects view helps the user to drill-down into object groups that contributed the most
to the memory churn.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

209:22 Weninger et al.

Explanation #1. A text explains that allocating large numbers of objects only to discard them
shortly afterwards greatly increases the GC frequency which impacts the performance, followed
by the info that x% of the objects that died in the selected time window did not even survive a single
garbage collection. The text also explains that especially objects that do not even survive a single
garbage collection are the main reason for memory churn and that they should be investigated.

Suggestion #1. As a next step, we suggest the user to expand the 0 GCs survived row to check the
types of the objects that died without surviving a single garbage collection.

Detection #2. GE detects those types that caused the most garbage within the selected time
window. We empirically tested this view on various applications and determined that those types
that account for at least 10% of the garbage should be highlighted. If no type accounts for at least
10% of the garbage, the type of which the most objects died is selected.

Highlighting #2. Figure 15c shows an example where four types are highlighted since each of
them makes up about 25% of the overall garbage.

Explanation #2. Following text informs the users about suspicious types: <x> types have been
detected as the major suspects for memory churn: <list of types>. They account for <y>% of all objects
that died without surviving a single garbage collection.

Suggestion #2. For each suspicious type, GE suggests to inspect its allocation sites by expanding
the type’s row.

Detection #3. Among all allocation sites, the one at which the most objects were allocated
is detected. According to our experience, most memory churn hotspots are caused by a single
allocation site.

Highlighting #3. Again, the respective tree row is highlighted, as shown in Figure 15d.

Explanation #3. AntTracks explains that an allocation site is the location in the code at which
an object has been created, and that allocation sites where many short-living objects are created
should be inspected in the source code. We further provide hints on what typical root causes
of memory churn might look like. For example, allocations inside heavily-executed loops are
dangerous. Another typical mistake is the careless adding and removing of boxed primitives to data
structures, e.g., ArrayList<Integer>. Every time a primitive is added to such a data structure it is
wrapped into a heap object, which can cause unnecessary memory overhead. One last example
is the careless use of streams. Typical mistakes are (1) to perform multiple map operations that
unnecessarily create many short-living intermediate objects, or (2) to use map when working with
primitives instead of using the respective memory-efficient mapping operation such as mapToInt, or
(3) to use filter operations too late in the chain of operations, leading to unnecessary operations
and allocations to be performed.

Suggestion #3. We suggest to review the source code with regard to whether the executed
allocations are really necessary. To reduce the number of allocations, existing objects could be
reused [29, 47], for example by implementing a caching strategy and/or by using design patterns
such as the prototype pattern or the flyweight pattern [20]. Future work encompasses to statically
inspect the suspicious allocation site to derive context information about the allocations and to
give more precise suggestions to the user.

When investigating the finagle-http benchmark, the first thing that is highlighted on this view is
that over 99.9% of the objects that died in the selected time window (10, 012, 077 out of 10, 019, 784)

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

Guided Exploration: A Method for Guiding Novice Users in Interactive Memory Monitoring Tools 209:23

1 val response: Future[http.Response] = client(request)
2 for (i <- 0 until NUM_REQUESTS) {
3 Await.result(response.onSuccess { rep: http.Response =>
4 totalLength += rep.content.length
5 })
6 }

Listing 1. Problematic part of FinagleHttp.runIteration().

1 val response: Future[http.Response] = client(request)
2 val h = { rep: http.Response => totalLength += rep.content.length }
3 for (i <- 0 until NUM_REQUESTS) Await.result(response.onSuccess(h))

Listing 2. Fixed version of FinagleHttp.runIteration().

did not even survive a single garbage collection, as shown on Figure 15b. Following the suggestion
to inspect the types of the died objects (shown in Figure 15c) reveals that most of the died objects
are divided almost equally among four types. It may be worth to mention that finagle-http is a
Scala application, which typically produces longer type names than Java. For each of the four
types, GE suggests to expand the respective row and to inspect the allocation sites of the different
types. In this case, all objects of a given type that died in the selected time window were allocated
at a single allocation site. The allocation sites of the first three types are within library methods
which we cannot modify. Yet, the fourth type’s allocation site is located in the FinagleHttp class,
the benchmark’s main class (see Figure 15d). Since Scala type names and allocation sites can be
quite hard to read, we integrated rudimentary support into AntTracks’s GE to translate them. For
example, in the explanation text it translates FinagleHttp$$anonfun$runIteration$1$$... to
anonymous Scala function objects that have been allocated in method runIteration of the class
FinagleHttp.
Since such a rapid allocation and collection of anonymous function objects is unlikely to be

intentional, we looked up the method’s source code. Listing 1 shows the problematic part. In the
loop, a large number of anonymous function objects are created that wait for an HTTP request to
succeed before incrementing the counter totalLength. Listing 2 shows our fix for this problem.
Only a single response handler is created which is reused for every HTTP request. This fix reduced
the overall amount of allocated temporary objects by about 25% and sped up the application by
about 5%.

6 PRELIMINARY USER FEEDBACK
Even though a detailed user study is still missing (but planned as future work, see Section 8), we
wanted to gather preliminary user feedback to get a general idea of how AntTracks’s new GE
features may help novice users. To this end, we asked three PhD students and two master students
that work as assistants at our institute1 to use AntTracks and its new guidance features. All of them
have a background in computer science and software engineering, and the participants reported
experience in software development ranging from four to eight years. None of them had used
AntTracks before and all of them stated that they had no background in memory analysis (i.e.,
they classified themselves as novices with regard to memory analysis). In separate sessions, each
participant was given a memory leak and a memory churn analysis task, both of which were taken
from a user study on the usability of memory monitoring tools [91]. We asked the participant
to ‘think aloud’ [27, 31, 55], i.e., to describe what they are doing, to comment on any of their
1None of them is involved in the development of AntTracks or this research.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

209:24 Weninger et al.

concerns, and to say whatever comes to their mind while solving the given tasks. This way, we
were able to collect a number of interesting observations and think-aloud statements, which we used
in combination with feedback collected during a short final interview to initially assess AntTracks’s
GE system.

6.1 Study System
We selected the web application JPetStore 6 [52] as our study system. JPetStore has been widely
used in research projects [17, 32, 35, 36, 83]. It models a minimalistic web shop for pets and uses
a clearly structured class hierarchy. We chose JPetStore since its straightforward structure can
be expressed well in a simple UML class diagram [7]. This UML diagram was handed out at the
beginning of each session, which made it easy for the participants to comprehend the system’s
structure without being familiar with its source code. This helped to mitigate the risk of participants
not finishing the study tasks [92]. To prepare the system for the study, we modified the JPetStore
source code to contain two memory anomalies. We seeded the system with a memory leak by
keeping shop item objects alive after their web page has been requested and a memory churn
hotspot by using a Java stream inefficiently to process database responses.

We created AntTracks trace files before the user study for both the memory leak and the memory
churn problem. In particular, we simulated heavy load by sending numerous requests to the different
web pages of the application.

6.2 Tasks
The participants were given the trace files and had to complete the following five tasks. On each
view, they were allowed to use AntTracks’s GE features to receive guidance by the tool:

• Memory leak detection, i.e., they had to recognize and correctly classify a suspicious memory
growth time window as such.

• Trend analysis, i.e., the participants had to find out which kinds of objects accumulated the
most over this window.

• Graph-based GC root analysis, i.e., on the graph view, the participants had to find out which
GC roots cause the memory leak. They were then shown the source code to try to fix the
problem.

• Memory churn detection, i.e., after (hopefully) fixing the memory leak, the participants had to
recognize and correctly classify a memory churn hotspot (i.e., a frequent spike pattern in the
memory chart).

• Short-living objects analysis, i.e., they had to collect information (such as object types and
allocation sites) about the churning objects. They were then again asked to locate and fix the
memory problem in the source code based on their findings.

6.3 Feedback
All users were able to find the problematic source code locations relevant to the memory problems
and actively expressed that they liked the guidance system (“The light bulbs were great if you
got lost or did not know what to do”). They stated that the analysis flow and the hints during the
memory leak analysis (cf. Section 4) as well as the memory churn analysis (cf. Section 5) are well
chosen (“The number and order of steps seemed natural to me”). All users agreed that the amount of
text shown in the individual hints is reasonable and not overwhelming. Despite their length, the
explanations of common root causes for an observed problem and how to fix them (e.g., a list of
possible root causes for high memory churn) have been praised as being very helpful to novices

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

Guided Exploration: A Method for Guiding Novice Users in Interactive Memory Monitoring Tools 209:25

(“Experienced or power users may not need them, but they were great help for me as a beginner”). One
user also positively highlighted the use of formatting in the information text.

Nevertheless, some participants also reported that, even though the guidance helped them to find
the problematic source code locations, they struggled to fix the problem (“I know that the problem is
due to a lot of Strings and Products being allocated here, but I cannot find out how to fix it; I think
it has something to do with this stream”). This suggests that future work should explore how we can
further support users after their final analysis step in the monitoring tool, for example by adding
guidance features to the IDE.

One improvement we already implemented based on this preliminary feedback concerns the way
how we present available hints. In our initial version, each view had a single light bulb in its top-left
corner that stored all the hints for this view. If new hints became available, e.g., after performing a
certain action, they would be added to that light bulb’s list of hints. The users expressed that they
would rather have a separate light bulb for every hint that is placed next to the UI element it refers
to. This makes it more clear when a new hint becomes available, as a new light bulb appears.
As a final question, we asked the users whether they think that they would have been able to

use AntTracks to find the root causes of the problems without guidance. All of them said that they
think they would have eventually succeeded using a trial-and-error approach. However, all of them
also stated that they are certain that it would have taken them far more time to complete the tasks.

7 GUIDED EXPLORATION IN ANOTHER DOMAIN: THREAD LOCK CONTENTION
MONITORING

While the main focus of this work was to show how GE can be integrated into an interactive
memory monitoring tool, we are confident that the general GE method presented in Section 3 can
also be useful for monitoring tools of other domains. While more work and research still has to be
performed in this direction, we initially asked authors2 of an interactive thread lock contention
monitoring tool [26, 72] on their opinion whether they think if GE could also be integrated into
their tool.

In their positive response, they outlined how they would proceed to integrate guided exploration.
They explained the typical analysis process for lock contention, all its involved steps and outlined
how these steps map to views in their tool. Even though GE has not yet been integrated into their
tool, we will outline their detailed response on how they could use GE to guide users on their
search for thread locking problems in their applications.

7.1 Mapping of Thread Lock Contention Analysis Process Steps to Views
According to the tool authors, users who use their tool for the first time are mostly interested in
(1) which shared resource (monitor) is blocking threads the most, (2) which method spends the
most time waiting for the resource and (3) which method holds the resource the most and thus
causes the most waiting time. This well-defined default analysis flow is also visualized in Figure 18.
The analysis steps for all these tasks happen on the same view of their tool, its drill-down view.

Overview

Load
trace file

Drill-down view

Find most-blocking
resource (monitor)

Drill-down view

Identify method with
highest waiting time

Drill-down view

Indentify method that
causes waiting time

longest-
waiting
method
selected loaded

resource
selected

IDE

Inspect and fix
source code

finished
analysis

Fig. 18. Simplified task model of the typical steps performed during thread lock contention analysis, mapped
to views in the monitoring tool.

2None of them is involved in the development of AntTracks or this research.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

209:26 Weninger et al.

Fig. 19. The drill-down view in this thread lock contention monitoring tool could also be extended with guided
exploration features (slightly modified figure taken with permission from [74] - Figure 4.4).

7.2 Guided Exploration Support Operations for Thread Lock Contention Analysis
The tool authors replied that they think that users could be guided well through the mentioned
analysis steps and their tool’s drill-down view (Figure 19) using on the four GE support operations
detection, highlighting, explanation and suggestion. They also mentioned that they think that a
“lightbulb-based” info mechanism to inform users about possible guidances, similar to the one used
in AntTracks, could be easily integrated. In the following, we report their ideas on how to integrate
GE’s guidance operations into their tool.

Detection #1. Once a trace file (containing information about lock contentions that happened
in the monitored application) has been loaded, the user can select criteria based on which the
drill-down view groups the data. By default, the data is automatically grouped to best support the
default task given in Figure 18. In this grouping, the first level of the tree splits all lock contentions
that happened based on the resources that caused them. Following our GE method, the authors
would improve their tool to automatically detect the resource that caused the most waiting time.

Highlighting #1. Since the majority of their UI is also structured in a table view (see Figure 19),
highlighting could work in a similar way to how it is performed in AntTracks, i.e., by using colored
overlays.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

Guided Exploration: A Method for Guiding Novice Users in Interactive Memory Monitoring Tools 209:27

Explanation #1. They would explain to the user that lock contention happens when a thread T2
wants to lock a resource R, but that resource is already locked by another thread T1. T2 thus has
to wait until R is released by T1, an undesired behavior in multi-threaded applications. Their tool
would continue to explain that it just detected the resource that caused the most waiting time, and
that the locks involving this resource should be inspected in more detail.

Suggestion #1. They would inform the user that they should expand the respective tree row to
inspect where the most threads are waiting for the shared resource.

Detection #2. The second tree level groups all lock contentions involving a given shared resource
by the methods in which threads had to wait for the resource. The tool could automatically detect
the method where threads hat to wait the most.

Highlighting #2. Again, the respective tree view row could be highlighted with an overlay.

Explanation #2. The tool authors would first introduce certain terminology such as contending
method or contending stack trace. Following, they would explain that the highlighted row shows
the method that had to wait the most for the most-blocking shared resource.

Suggestion #2. Since we just found the method that had to wait the most, the last vital information
is to find out where the lock was held the most during this waiting time. Thus, the tool would
suggest to step one level deeper into the tree to gather this information.

Detection #3. On the final tree level, the tool would automatically search for the method that
caused the most waiting time by holding the respective shared resource while another thread
wanted to obtain it.

Highlighting #3. Again, the respective tree view row could be highlighted with an overlay.

Explanation #3. After the final piece of information was collected, the explanation would sum-
marize which object caused the most waiting time, where threads were waiting the most for this
object, and where the object was mostly held while others were waiting.

Suggestion #3. To investigate the problem in the source code, the tool would suggest to look
up both mentioned methods. Most locks in Java are caused by requests to shared resources in
synchronized blocks in the form of synchronized(sharedResource) {...} or by operations
performed by classes of the java.util.concurrent package. It is the developer’s task to ensure
that these locked regions span as few operations as possible, and that locking is only performed
where needed.

Even though further evaluation is needed, this detailed description by the lock contention
monitoring tool authors fosters our belief that the GE method can also be useful to monitoring tool
developers of various monitoring domains.

8 CURRENT LIMITATIONS AND FUTUREWORK
In this section, we discuss current limitations of the general GE approach, GE in the memory
monitoring tool AntTracks, and how we plan to tackle these limitations in future work.

8.1 Guided Exploration in AntTracks
The main focus of this work was to explore how novice users could be better guided in interactive
memory monitoring tools such as AntTracks. While the reactions during a preliminary user

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

209:28 Weninger et al.

feedback (see Section 6) were promisingly positive, our approach still has limitations that should
be investigated in the future.

User Study. Based on the preliminary feedback we collected, we strongly believe that GE in
AntTracks makes it easier to use and learn the tool, especially for novice users without expertise
in memory monitoring. We presented user scenarios to demonstrate the usefulness of GE and to
showcase how the guidance supports users when inspecting applications. Nevertheless, a more
thorough evaluation is still missing. We thus plan to conduct a user study to compare the perfor-
mance of participants who use AntTracks’s GE support with the performance of those who try to
resolve memory problems without guidance. It would also be interesting to check whether GE is
helpful to both novice users as well as advanced users, or if advanced users prefer to use the tool
without guidance.

Guided Exploration Integration in IDEs. Currently, there is a clear separation between the guided
analyses in AntTracks and unguided source code inspection in the IDE. For example, after users
were guided to a suspicious allocation site in AntTracks, they still have to fix the source code in
their IDE without further guidance. Developing an IDE plugin [3, 11] and using hybrid static and
dynamic analysis [15] would allow us to highlight suspicious code segments in the IDE, continuing
GE on the source code level.

Heap Graph Visualization. In Section 4, we presented AntTracks’s new heap graph view to inspect
a heap state in a visual way. This feature is still under development and evolves constantly. In
the future, we plan to report in more detail on this new visualization technique, how it compares
to other techniques for heap visualization [59, 66, 95–98], and how its guidance can be further
extended.

8.2 Guided Exploration in General
In general, our GE method presented in Section 3 is not restricted to the domain of memory
monitoring. Yet, while its core idea could also be useful to monitoring tools of other domains, future
work still has to be performed to evaluate the approach’s general applicability across domains.

Generalization. To mitigate the generalizability problem of our approach, we asked other mon-
itoring tool developers for their opinion regarding the feasibility of implementing GE in their
tool and if they think that their users would profit from it, as shown in Section 7. Despite their
positive feedback and a detailed explanation on how the would integrate GE into their tool, more
monitoring tools from different domains should be inspected for possible GE support in the future.
Furthermore, the GE process outlined in Section 3 currently serves more as an overview of the

four guidance operations (detection, highlighting, explanation and suggestion). Yet, we did not
discuss in detail how to implement them, for example based on certain characteristics themonitoring
tool exhibits. Rabiser et el. [62, 63] already explored various kinds of characteristics based on which
different monitoring tools could be classified and compared, even across different domains. We think
that it may be possible to link certain characteristics of a tool to suggested ways of how to implement
the different guidance operations, for example different ways of problem detection or highlighting.
Such relations between tool characteristics and possible guidance operation implementations could
be explored and discussed in more detail in the future.

Guided Exploration Tool Integration. In this work, we presented how GE has been integrated
into AntTracks, using clickable lightbulb icons near UI elements for which guidances exist. Yet,
we are certain that there are other possibilities on how to visualize guidances. To explore these
possibilities, for example, one could organize a workshop where the participants should inspect

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

Guided Exploration: A Method for Guiding Novice Users in Interactive Memory Monitoring Tools 209:29

existing monitoring tools and discuss commonalities across them. Separated into groups, they could
work out GE prototypes, i.e., how they would integrate guidance into these tools, and comment on
each others ideas. These discussions could lead to a more detailed description and understanding
of the GE approach in the future, as well as to better ways on how to visually support it.

Rule-based Guidance Definition. AntTracks uses a consistent way to display explanations and
suggestions throughout its various views. Unfortunately, the code to detect suspicious information
as well as to highlight the respective UI region is currently hard-coded within every view.

In the future, instead of modifying the underlying source code, we would like to be able to define
rules for guided exploration externally using a domain specific language that allows definitions
such as “If pattern X is detected: highlight UI element Y, show explanation text Z, suggest steps A and
B”. On the one hand, this poses various challenges such as how to access and abstract the data used
by the view or how to specify (customized) UI element highlighting. On the other hand, it would
make it much easier to integrate guided exploration into other tools besides AntTracks.

9 CONCLUSIONS
In this work, we presented guided exploration, a method that can be integrated into interactive
monitoring tools in order to improve their learnability and usability. The goal of guided exploration
is to support novice users, i.e., users who may lack the experience to recognize and analyze program
behavior anomalies on their own. Guided exploration makes a tool easier to use by guiding users
through the analysis process and helping them to explore the collected data until the root cause of
a problem is found.
In general, guided exploration is an iteration of four support operations performed by a tool.

According to GE, a tool should automatically (1) detect the most interesting piece of information in
the current view, (2) highlight the UI elements where this information can be found, (3) explain the
required background knowledge and the rationale why the highlighted information is important,
and (4) suggest further analysis steps based on these findings.
In this work, we focused on guided exploration in interactive memory monitoring tools. We

integrated our guidance approach into the memory monitoring tool AntTracks, namely for the
processes of memory leak analysis and memory churn analysis. For both analyses, we explained
in detail how the four support operations of guided exploration have been implemented. To
demonstrate their applicability, we presented two user scenarios where two applications have been
analyzed by following the explanations and suggestions of AntTracks’s new guided exploration
system.
We hope that guided exploration can be of help to researchers and developers of interactive

(memory) monitoring tools to better structure their analysis processes, making themmore accessible
to novice users.

ACKNOWLEDGMENT
The financial support by the Austrian Federal Ministry for Digital and Economic Affairs, the
National Foundation for Research, Technology and Development, and Dynatrace is gratefully
acknowledged.

REFERENCES
[1] Alain Abran, Adel Khelifi, Witold Suryn, and Ahmed Seffah. 2003. Usability Meanings and Interpretations in ISO

Standards. Software Quality Journal 11, 4 (2003), 325–338. https://doi.org/10.1023/A:1025869312943
[2] Tarek M. Ahmed, Cor-Paul Bezemer, Tse-Hsun Chen, Ahmed E. Hassan, and Weiyi Shang. 2016. Studying the

Effectiveness of Application Performance Management (APM) Tools for Detecting Performance Regressions for Web

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

209:30 Weninger et al.

Applications: An Experience Report. In Proceedings of the 13th International Conference on Mining Software Repositories
(MSR). 1–12. https://doi.org/10.1145/2901739.2901774

[3] Sebastian Baltes, Peter Schmitz, and Stephan Diehl. 2014. Linking Sketches and Diagrams to Source Code Artifacts.
In Proceedings of the 22nd ACM SIGSOFT International Symp. on Foundations of Software Engineering (FSE). 743–746.
https://doi.org/10.1145/2635868.2661672

[4] André Bauer, Marwin Züfle, Johannes Grohmann, Norbert Schmitt, Nikolas Herbst, and Samuel Kounev. 2020. An
Automated Forecasting Framework based on Method Recommendation for Seasonal Time Series. In Proceedings of the
ACM/SPEC International Conference on Performance Engineering (ICPE). ACM, 48–55. https://doi.org/10.1145/3358960.
3379123

[5] Verena Bitto, Philipp Lengauer, and Hanspeter Mössenböck. 2015. Efficient Rebuilding of Large Java Heaps from
Event Traces. In Proceedings of the Principles and Practices of Programming on The Java Platform (PPPJ). 76–89.
https://doi.org/10.1145/2807426.2807433

[6] Alan Blackwell and Thomas Green. 2003. CHAPTER 5 - Notational Systems - The Cognitive Dimensions of Notations
Framework. In HCI Models, Theories, and Frameworks. Morgan Kaufmann, 103 – 133. https://doi.org/10.1016/B978-
155860808-5/50005-8

[7] Grady Booch, James E. Rumbaugh, and Ivar Jacobson. 2005. The Unified Modeling Language User Guide - Covers UML
2.0 (Second Edition). Addison-Wesley.

[8] Adriana E. Chis. 2008. Automatic Detection of Memory Anti-Patterns. In Comp. to the 23rd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). 925–926. https:
//doi.org/10.1145/1449814.1449911

[9] Adriana E. Chis, Nick Mitchell, Edith Schonberg, Gary Sevitsky, Patrick O’Sullivan, Trevor Parsons, and John Murphy.
2011. Patterns of Memory Inefficiency. In Proceedings of the 25th European Conference on Object-Oriented Programming
(ECOOP). 383–407. https://doi.org/10.1007/978-3-642-22655-7_18

[10] Maria Christakis and Christian Bird. 2016. What Developers Want and Need from Program Analysis: An Empirical
Study. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering (ASE). 332–343.
https://doi.org/10.1145/2970276.2970347

[11] Jürgen Cito, Philipp Leitner, Christian Bosshard, Markus Knecht, Genc Mazlami, and Harald C. Gall. 2018. Perfor-
manceHat: Augmenting Source Code with Runtime Performance Traces in the IDE. In Comp. of the 40th International
Conference on Software Engineering (ICSE). 41–44. https://doi.org/10.1145/3183440.3183481

[12] D. Christopher Dryer. 1997. Wizards, Guides, and Beyond: Rational and Empirical Methods for Selecting Optimal
Intelligent User Interface Agents. In Proceedings of the 2nd International Conference on Intelligent User Interfaces (IUI).
265–268. https://doi.org/10.1145/238218.238347

[13] Bruno Dufour, Karel Driesen, Laurie Hendren, and Clark Verbrugge. 2003. Dynamic Metrics for Java. In Proceedings
of the 18th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA). 149–168. https://doi.org/10.1145/949305.949320

[14] Dynatrace. 2017. Demo Applications: easyTravel. https://community.dynatrace.com/community/display/DL/Demo+
Applications+-+easyTravel

[15] Michael D. Ernst. 2003. Static and Dynamic Analysis: Synergy and Duality. InWorkshop on Dynamic Analysis (WODA).
24–27. https://homes.cs.washington.edu/~mernst/pubs/staticdynamic-woda2003.pdf

[16] Alexander Felfernig, Gerald Ninaus, Harald Grabner, Florian Reinfrank, Leopold Weninger, Dennis Pagano, and Walid
Maalej. 2013. An Overview of Recommender Systems in Requirements Engineering. In Managing Requirements
Knowledge. 315–332. https://doi.org/10.1007/978-3-642-34419-0_14

[17] Florian Fittkau, Phil Stelzer, and Wilhelm Hasselbring. 2014. Live Visualization of Large Software Landscapes for
Ensuring Architecture Conformance. In Proceedings of the Workshops & Tool Demos Track of the European Conference
on Software Architecture (ECSAW). 28:1–28:4. https://doi.org/10.1145/2642803.2642831

[18] Eelke Folmer and Jan Bosch. 2003. Usability Patterns in Software Architecture. In Proceedings of the 10th International
Conference on Human-Computer Interaction (HCII). 93–97. https://doi.org/10.1109/DSAA.2018.00057

[19] Tak-Chung Fu. 2011. A Review on Time Series Data Mining. Eng. Appl. Artif. Intell. 24, 1 (2011), 164–181. https:
//doi.org/10.1016/j.engappai.2010.09.007

[20] Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides. 1993. Design Patterns: Abstraction and Reuse
of Object-Oriented Design. In Proceedings of the 7th European Conference on Object-Oriented Programming (ECOOP).
406–431. https://doi.org/10.1007/3-540-47910-4_21

[21] Josefina Guerrero García, Jean Vanderdonckt, and Christophe Lemaigre. 2008. Identification Criteria in Task Modeling.
In Proceedings of the 1st TC 13 IFIP Human-Computer Interaction Symposium (HCIS), Vol. 272. 7–20. https://doi.org/10.
1007/978-0-387-09678-0_2

[22] Bernhard Göschlberger and Peter A. Bruck. 2017. Gamification in Mobile and Workplace Integrated Microlearning.
In Proceedings of the 19th International Conference on Information Integration and Web-based Applications & Services

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

Guided Exploration: A Method for Guiding Novice Users in Interactive Memory Monitoring Tools 209:31

(iiWAS) (Salzburg, Austria). 545–552. https://doi.org/10.1145/3151759.3151795
[23] Juho Hamari, Jonna Koivisto, and Harri Sarsa. 2014. Does Gamification Work? - A Literature Review of Empirical

Studies on Gamification. In Proceedings of the 47th Hawaii International Conference on System Sciences (HICSS).
3025–3034. https://doi.org/10.1109/HICSS.2014.377

[24] William E. Hefley and Dianne Murray. 1993. Intelligent User Interfaces. In Proceedings of the 1st International
Conference on Intelligent User Interfaces (IUI). 3–10. https://doi.org/10.1145/169891.169892

[25] Matthew Hertz, Stephen M. Blackburn, J. Eliot B. Moss, Kathryn S. McKinley, and Darko Stefanovic. 2006. Generating
Object Lifetime Traces with Merlin. ACM Trans. Program. Lang. Syst. 28, 3 (2006), 476–516. https://doi.org/10.1145/
1133651.1133654

[26] Peter Hofer, David Gnedt, Andreas Schörgenhumer, and Hanspeter Mössenböck. 2016. Efficient Tracing and Versatile
Analysis of Lock Contention in Java Applications on the Virtual Machine Level. In Proceedings of the 7th ACM/SPEC
International Conference on Performance Engineering (ICPE). 263–274. https://doi.org/10.1145/2851553.2851559

[27] Andreas Holzinger. 2005. Usability Engineering Methods for Software Developers. Commun. ACM 48, 1 (2005), 71–74.
https://doi.org/10.1145/1039539.1039541

[28] Michal Hucko, Ladislav Gazo, Peter Simún, Matej Valky, Róbert Móro, Jakub Simko, and Mária Bieliková. 2019.
YesElf: Personalized Onboarding for Web Applications. In Adjunct Publication of the 27th Conference on User Modeling,
Adaptation and Personalization (UMAP). 39–44. https://doi.org/10.1145/3314183.3324978

[29] Alejandro Infante and Alexandre Bergel. 2017. Object Equivalence: Revisiting Object Equality Profiling (An Experience
Report). In Proceedings of the 13th ACM SIGPLAN International Symp. on Dynamic Languages (DLS). 27–38. https:
//doi.org/10.1145/3133841.3133844

[30] V. López Jaquero, F. Montero, J.P. Molina, and P. González. 2009. Intelligent User Interfaces: Past, Present and Future.
Springer London, 1–12. https://doi.org/10.1007/978-1-84800-136-7_18

[31] Monique W. M. Jaspers, Thiemo Steen, Cor van den Bos, and Maud M. Geenen. 2004. The Think Aloud Method: A
Guide to User Interface Design. I. J. Medical Informatics 73, 11-12 (2004), 781–795. https://doi.org/10.1016/j.ijmedinf.
2004.08.003

[32] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora. 2009. Automated Performance Analysis
of Load Tests. In Proceedings of the 25th IEEE International Conference on Software Maintenance (ICSM). 125–134.
https://doi.org/10.1109/ICSM.2009.5306331

[33] Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and Robert W. Bowdidge. 2013. Why Don’t Software
Developers Use Atatic Analysis Tools to Find Bugs?. In Proceedings of the 35th International Conference on Software
Engineering (ICSE). 672–681. https://doi.org/10.1109/ICSE.2013.6606613

[34] Vivien Johnston. 2019. A Framework for the Development of a Dynamic Adaptive Intelligent User Interface to
Enhance the User Experience. In Proceedings of the 31st European Conference on Cognitive Ergonomics (ECCE). 32–35.
https://doi.org/10.1145/3335082.3335125

[35] Reiner Jung and Marc Adolf. 2018. The JPetStore Suite: A Concise Experiment Setup for Research. In Proceedings of
the 9th Symposium on Software Performance (SSP). http://eprints.uni-kiel.de/48775/

[36] Reiner Jung, Marc Adolf, and Christoph Dornieden. 2017. Towards Extracting Realistic User Behavior Models.
Softwaretechnik-Trends 37, 3 (2017). http://eprints.uni-kiel.de/40365/

[37] Marius Koller and Gerrit Meixner. 2016. Task Models in Practice: Are There Special Requirements for the Use in
Daily Work?. In Proceedings of 18th International Conference on Human-Computer Interaction (HCI) - Theory, Design,
Development and Practice. 488–497. https://doi.org/10.1007/978-3-319-39510-4_45

[38] Steinar Kristoffersen. 2008. Learnability and Robustness of User Interfaces. Towards a Formal Analysis of Usability
Design Principles. In Proceedings of the 3rd International Conference on Software and Data Technologies (ICSOFT),
Volume SE/MUSE/GSDCA. 261–268.

[39] Philipp Lengauer, Verena Bitto, Stefan Fitzek, Markus Weninger, and Hanspeter Mössenböck. 2016. Efficient Memory
Traces with Full Pointer Information. In Proceedings of the 13th International Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines, Languages, and Tools (PPPJ). 4:1–4:11. https://doi.org/10.1145/
2972206.2972220

[40] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2015. Accurate and Efficient Object Tracing for Java
Applications. In Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering (ICPE). 51–62.
https://doi.org/10.1145/2668930.2688037

[41] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2016. Efficient and Viable Handling of Large Object
Traces. In Proceedings of the 7th ACM/SPEC International Conference on Performance Engineering (ICPE). 249–260.
https://doi.org/10.1145/2851553.2851555

[42] Philipp Lengauer, Verena Bitto, Hanspeter Mössenböck, and Markus Weninger. 2017. A Comprehensive Java
Benchmark Study on Memory and Garbage Collection Behavior of DaCapo, DaCapo Scala, and SPECjvm2008.
In Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering (ICPE). 3–14. https:

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

209:32 Weninger et al.

//doi.org/10.1145/3030207.3030211
[43] Jinbo Li, Hesam Izakian, Witold Pedrycz, and Iqbal Jamal. 2021. Clustering-based Anomaly Detection in Multivariate

Time Series Data. Appl. Soft Comput. 100 (2021), 106919. https://doi.org/10.1016/j.asoc.2020.106919
[44] Jie Liang and Mao Lin Huang. 2010. Highlighting in Information Visualization: A Survey. In Proceedings of the 14th

International Conference on Information Visualisation (IV). 79–85. https://doi.org/10.1109/IV.2010.21
[45] Quentin Limbourg and Jean Vanderdonckt. 2003. The Handbook of Task Analysis for Human-Computer Interaction.

CRC Press, Chapter Comparing Task Models for User Interface Design, 135–154.
[46] Víctor López-Jaquero and Francisco Montero Simarro. 2007. Comprehensive Task and Dialog Modelling. In Proceedings

of the 12th International Conference on Human-Computer Interaction (HCI) - Interaction Design and Usability, Vol. 4550.
Springer, 1149–1158. https://doi.org/10.1007/978-3-540-73105-4_125

[47] Darko Marinov and Robert O’Callahan. 2003. Object Equality Profiling. In Proceedings of the ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications (OOPSLA). 313–325. https://doi.org/10.1145/
949305.949333

[48] Evan K. Maxwell, Godmar Back, and Naren Ramakrishnan. 2010. Diagnosing Memory Leaks using Graph Mining on
Heap Dumps. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 115–124. https://doi.org/10.1145/1835804.1835822

[49] Mark T. Maybury. 1999. Intelligent User Interfaces: An Introduction. In Proceedings of the 4th International Conference
on Intelligent User Interfaces (IUI). 3–4. https://doi.org/10.1145/291080.291081

[50] Karen L. McGraw and Bruce A. McGraw. 1997. Wizards, Coaches, Advisors, and More: A Performance Support
Primer. In Ext. Abstr. on Human Factors in Computing Systems (Atlanta, Georgia). 152–153. https://doi.org/10.1145/
1120212.1120318

[51] Gerrit Meixner, Marc Seissler, and Kai Breiner. 2011. Model-Driven Useware Engineering. InModel-Driven Development
of Advanced User Interfaces. 1–26. https://doi.org/10.1007/978-3-642-14562-9_1

[52] MyBatis. 2016. JPetStore. http://mybatis.org/jpetstore-6/
[53] Raymond H Myers and Raymond H Myers. 1990. Classical and modern regression with applications. Vol. 2. Duxbury

press Belmont, CA.
[54] Jakob Nielsen. 1993. Usability Engineering. Academic Press.
[55] Mie Nørgaard and Kasper Hornbæk. 2006. What do Usability Evaluators do in Practice?: An Explorative Study

of Think-aloud Testing. In Proceedings of the Conference on Designing Interactive Systems (DIS). 209–218. https:
//doi.org/10.1145/1142405.1142439

[56] Oracle. 2020. VisualVM: All-in-One Java Troubleshooting Tool. https://visualvm.github.io/
[57] J. D. Ornelas, J. C. Silva, and J. L. Silva. 2016. USS: User support system. In Proceedings of the 11th Iberian Conference

on Information Systems and Technologies (CISTI). 1–6. https://doi.org/10.1109/CISTI.2016.7521412
[58] Fabio Paternò, Cristiano Mancini, and Silvia Meniconi. 1997. ConcurTaskTrees: A Diagrammatic Notation for

Specifying Task Models. In Proceedings of the IFIP TC13 International Conference on Human-Computer Interaction
(INTERACT). 362–369.

[59] Wim De Pauw and Gary Sevitsky. 1999. Visualizing Reference Patterns for Solving Memory Leaks in Java. In
Proceedings of the 13th European Conference on Object-Oriented Programming (ECOOP). 116–134. https://doi.org/10.
1007/3-540-48743-3_6

[60] Manjula Peiris and James H. Hill. 2016. Automatically Detecting "Excessive Dynamic Memory Allocations" Software
Performance Anti-Pattern. In Proceedings of the 7th ACM/SPEC International Conference on Performance Engineering
(ICPE). 237–248. https://doi.org/10.1145/2851553.2851563

[61] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tuma, Martin Studener, Lubomír Bulej,
Yudi Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019. Renaissance: Benchmarking
Suite for Parallel Applications on the JVM. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). 31–47. https://doi.org/10.1145/3314221.3314637

[62] Rick Rabiser, Sam Guinea, Michael Vierhauser, Luciano Baresi, and Paul Grünbacher. 2017. A Comparison Framework
for Runtime Monitoring Approaches. J. Syst. Softw. 125 (2017), 309–321. https://doi.org/10.1016/j.jss.2016.12.034

[63] Rick Rabiser, Klaus Schmid, Holger Eichelberger, Michael Vierhauser, Sam Guinea, and Paul Grünbacher. 2019. A
Domain Analysis of Resource and Requirements Monitoring: Towards a Comprehensive Model of the Software
Monitoring Domain. Inf. Softw. Technol. 111 (2019), 86–109. https://doi.org/10.1016/j.infsof.2019.03.013

[64] Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018. User-Guided Program Reasoning
Using Bayesian Inference. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 722–735. https://doi.org/10.1145/3192366.3192417

[65] Shaina Raza and Chen Ding. 2019. Progress in Context-aware Recommender Systems - An Overview. Comput. Sci.
Rev. 31 (2019), 84–97. https://doi.org/10.1016/j.cosrev.2019.01.001

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

Guided Exploration: A Method for Guiding Novice Users in Interactive Memory Monitoring Tools 209:33

[66] Steven P. Reiss. 2009. Visualizing the Java Heap to Detect Memory Problems. In Proceedings of the 5th IEEE International
Workshop on Visualizing Software for Understanding and Analysis (VISSOFT). 73–80. https://doi.org/10.1109/VISSOF.
2009.5336418

[67] J. Renz, T. Staubitz, J. Pollak, and C. Meinel. 2014. Improving the Onboarding User Experience in MOOCs. In
Proceedings of the 6th International Conference on Education and New Learning Technologies (EDULEARN) (Barcelona,
Spain). 3931–3941.

[68] Nathan P. Ricci, Samuel Z. Guyer, and J. Eliot B. Moss. 2011. Elephant Tracks: Generating Program Traces with Object
Death Records. In Proceedings of the 9th International Conference on Principles and Practice of Programming in Java
(PPPJ). 139–142. https://doi.org/10.1145/2093157.2093178

[69] Nathan P. Ricci, Samuel Z. Guyer, and J. Eliot B. Moss. 2013. Elephant Tracks: Portable Production of Complete
and Precise GC Traces. In Proceedings of the International Symposium on Memory Management (ISMM). 109–118.
https://doi.org/10.1145/2491894.2466484

[70] Cynthia K. Riemenschneider and Bill C. Hardgrave. 2001. Explaining Software Development Tool Use with the
Technology Acceptance Model. Journal of Computer Information Systems (JCIS) 41, 4 (2001), 1–8. https://www.
tandfonline.com/doi/abs/10.1080/08874417.2001.11647015

[71] Roger C Schank, Tamara R Berman, and Kimberli A Macpherson. 1999. Learning by Doing. Instructional-design
theories and models: A new paradigm of instructional theory 2, 2 (1999), 161–181.

[72] Andreas Schörgenhumer, Peter Hofer, David Gnedt, and Hanspeter Mössenböck. 2017. Efficient Sampling-based Lock
Contention Profiling for Java. In Proceedings of the 8th ACM/SPEC International Conference on Performance Engineering
(ICPE). 331–334. https://doi.org/10.1145/3030207.3030234

[73] Andreas Schörgenhumer, Mario Kahlhofer, Paul Grünbacher, and Hanspeter Mössenböck. 2019. Can we Predict
Performance Events with Time Series Data from Monitoring Multiple Systems?. In Companion of the ACM/SPEC
International Conference on Performance Engineering ICPE. 9–12. https://doi.org/10.1145/3302541.3313101

[74] Andreas Schörgenhumer. 2017. Efficient Sampling-based Lock Contention Profiling in Java. Master’s thesis. Johannes
Kepler University, Institute for System Software. https://epub.jku.at/obvulihs/content/titleinfo/1825350

[75] Connie U. Smith and Lloyd G. Williams. 2000. Software Performance Antipatterns. In Proceedings of the Second
International Workshop on Software and Performance (WOSP). 127–136. https://doi.org/10.1145/350391.350420

[76] Ken Soong, Xin Fu, and Yang Zhou. 2018. Optimizing New User Experience in Online Services. In Proceedings of the
5th IEEE International Conference on Data Science and Advanced Analytics (DSAA). 442–449. https://doi.org/10.1109/
DSAA.2018.00057

[77] Miroslaw Staron, Wilhelm Meding, Jörgen Hansson, Christoffer Höglund, Kent Niesel, and Vilhelm Bergmann. 2014.
Dashboards for Continuous Monitoring of Quality for Software Product under Development. In Relating System
Quality and Software Architecture. 209–229. https://doi.org/10.1016/b978-0-12-417009-4.00008-9

[78] Piyawadee Noi Sukaviriya and James D. Foley. 1990. Coupling a UI Framework with Automatic Generation of Context-
Sensitive Animated Help. In Proceedings of the 3rd Annual ACM Symp. on User Interface Software and Technology
(UIST). 152–166. https://doi.org/10.1145/97924.97942

[79] Claudia Szabo. 2015. Novice Code Understanding Strategies during a SoftwareMaintenance Assignment. In Proceedings
of the 37th IEEE/ACM International Conference on Software Engineering (ICSE). 276–284. https://doi.org/10.1109/ICSE.
2015.341

[80] Eclipse Foundation. 2020. Eclipse Memory Analyzer (MAT). https://www.eclipse.org/mat/
[81] Doug Tidwell and Jeanette Fuccella. 1997. TaskGuides: Instant Wizards on the Web. In Proceedings of the 15th Annual

International Conference on Computer Documentation (SIGDOC). 263–272. https://doi.org/10.1145/263367.263401
[82] Omer Tripp, Salvatore Guarnieri, Marco Pistoia, and Aleksandr Aravkin. 2014. ALETHEIA: Improving the Usability

of Static Security Analysis. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security (CCS). 762–774. https://doi.org/10.1145/2660267.2660339

[83] Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2011. An Exploratory Study of Feature Location
Process: Distinct Phases, Recurring Patterns, and Elementary Actions. In Proceedings of the 27th IEEE International
Conference on Software Maintenance (ICSM). 213–222. https://doi.org/10.1109/ICSM.2011.6080788

[84] Qingsong Wen, Jingkun Gao, Xiaomin Song, Liang Sun, Huan Xu, and Shenghuo Zhu. 2019. RobustSTL: A Robust
Seasonal-Trend Decomposition Algorithm for Long Time Series. In Proceedings of the Thirty-Third Conference on
Artificial Intelligence (AAAI). 5409–5416. https://doi.org/10.1609/aaai.v33i01.33015409

[85] Markus Weninger et al. 2020. AntTracks. http://mevss.jku.at/AntTracks
[86] Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2018. Analyzing the Evolution of Data Structures Over

Time in Trace-Based Offline Memory Monitoring. In Proceedings of the 9th Symp. on Software Performance (SSP). 64–66.
http://pi.informatik.uni-siegen.de/stt/39_3/01_Fachgruppenberichte/SSP18/WeningerGanderMoessenboeck18.pdf

[87] Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2018. Utilizing Object Reference Graphs and Garbage
Collection Roots to Detect Memory Leaks in Offline Memory Monitoring. In Proceedings of the 15th International

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

209:34 Weninger et al.

Conference on Managed Languages & Runtimes (ManLang). 14:1–14:13. https://doi.org/10.1145/3237009.3237023
[88] Markus Weninger, Elias Gander, and Hanspeter Mössenböck. 2019. Analyzing Data Structure Growth Over Time

to Facilitate Memory Leak Detection. In Proceedings of the 2019 ACM/SPEC International Conference on Performance
Engineering (ICPE). 273–284. https://doi.org/10.1145/3297663.3310297

[89] MarkusWeninger, Elias Gander, and Hanspeter Mössenböck. 2019. Detection of Suspicious TimeWindows In Memory
Monitoring. In Proceedings of the 16th ACM SIGPLAN International Conference on Managed Programming Languages
and Runtimes (MPLR). 95–104. https://doi.org/10.1145/3357390.3361025

[90] Markus Weninger, Elias Ganer, and Hanspeter Mössenböck. 2020. Investigating High Memory Churn via Object
Lifetime Analysis to Improve Software Performance. In Proceedings of the 11th Symp. on Software Performance (SSP).
http://pi.informatik.uni-siegen.de/stt/39_4/01_Fachgruppenberichte/SSP2019/SSP2019_Weninger.pdf

[91] Markus Weninger, Paul Grünbacher, Elias Gander, and Andreas Schörgenhumer. 2020. Evaluating an Interactive
Memory Analysis Tool: Findings from a Cognitive Walkthrough and a User Study. Proc. ACM Hum.-Comput. Interact.
4, EICS, Article 75 (June 2020), 37 pages. https://doi.org/10.1145/3394977

[92] Markus Weninger, Paul Grünbacher, Huihui Zhang, Tao Yue, and Shaukat Ali. 2018. Tool Support for Restricted Use
Case Specification: Findings from a Controlled Experiment. In Proceedings of the 25th Asia-Pacific Software Engineering
Conference (APSEC). 21–30. https://doi.org/10.1109/APSEC.2018.00016

[93] Markus Weninger, Philipp Lengauer, and Hanspeter Mössenböck. 2017. User-centered Offline Analysis of Memory
Monitoring Data. In Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering (ICPE).
357–360. https://doi.org/10.1145/3030207.3030236

[94] Markus Weninger, Lukas Makor, Elias Gander, and Hanspeter Mössenböck. 2019. AntTracks TrendViz: Configurable
Heap Memory Visualization Over Time. In Comp. of the 2019 ACM/SPEC International Conference on Performance
Engineering (ICPE). 29–32. https://doi.org/10.1145/3302541.3313100

[95] Markus Weninger, Lukas Makor, and Hanspeter Mössenböck. 2019. Memory Leak Visualization using Evolving
Software Cities. In Proceedings of the 10th Symp. on Software Performance (SSP). 44–46. http://pi.informatik.uni-
siegen.de/stt/39_4/01_Fachgruppenberichte/SSP2019/SSP2019_Weninger.pdf

[96] Markus Weninger, Lukas Makor, and Hanspeter Mössenböck. 2020. Memory Cities: Visualizing Heap Memory
Evolution Using the Software City Metaphor. In Proceedings of the Working Conference on Software Visualization,
(VISSOFT). 110–121. https://doi.org/10.1109/VISSOFT51673.2020.00017

[97] MarkusWeninger, Lukas Makor, and Hanspeter Mössenböck. 2020. Heap Evolution Analysis Using Tree Visualizations.
In Proceedings of the 11th Symp. on Software Performance (SSP). http://pi.informatik.uni-siegen.de/stt/39_4/01_
Fachgruppenberichte/SSP2019/SSP2019_Weninger.pdf

[98] Markus Weninger, Lukas Makor, and Hanspeter Mössenböck. 2020. Memory Leak Analysis using Time-Travel-based
and Timeline-based Tree Evolution Visualizations. In Proceedings of the Conference on Smart Tools and Apps for
Graphics - Eurographics Italian Chapter Conference. https://doi.org/10.2312/stag.20201241

[99] Markus Weninger and Hanspeter Mössenböck. 2018. User-defined Classification and Multi-level Grouping of Objects
in Memory Monitoring. In Proceedings of the 2018 ACM/SPEC International Conference on Performance Engineering
(ICPE). 115–126. https://doi.org/10.1145/3184407.3184412

[100] Jen-Her Wu and Yufei Yuan. 2003. Improving Searching and Reading Performance: The Effect of Highlighting and
Text Color Coding. Inf. Manag. 40, 7 (2003), 617–637. https://doi.org/10.1016/S0378-7206(02)00091-5

[101] Guoqing (Harry) Xu. 2013. Resurrector: a Tunable Object Lifetime Profiling Technique for Optimizing Real-World
Programs. In Proceedings of the ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications (OOPSLA). 111–130. https://doi.org/10.1145/2509136.2509512

[102] N. Zhang, N. Jiang, Y. Zhang, and G. Huang. 2010. Towards Automated Generation of User-Specific Eclipse Wizard. In
Proceedings of the International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC).
490–497. https://doi.org/10.1109/CyberC.2010.95

Received February 2021; accepted April 2021

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. EICS, Article 209. Publication date: June 2021.

Chapter 7

Memory Churn

This chapter includes the paper [320] that discusses advanced memory churn
analysis using object lifetime information reconstructed from memory traces.

Paper:
Markus Weninger, Elias Gander, Hanspeter Mössenböck:
Investigating High Memory Churn via Object Lifetime Analysis to Improve
Software Performance. In Proceedings of the 11th Symposium on Software
Performance, SSP 2020, Leipzig, Germany, November 12 - 13, 2020 (moved
online).

219

Investigating High Memory Churn via Object Lifetime Analysis to

Improve Software Performance

Markus Weninger? , Elias Gander⊗ , Hanspeter Mössenböck?

{firstname.lastname@jku.at}
? Institute for System Software, Johannes Kepler University, Linz, Austria

⊗ Christian Doppler Laboratory MEVSS, Johannes Kepler University, Linz, Austria

Abstract

High memory churn occurs when many temporary ob-
jects are created and shortly thereafter collected by
the garbage collector. Such excessive dynamic alloca-
tions negatively impact an application’s performance
because (1) a great number of objects has to be al-
located on the heap and (2) an increased number of
garbage collections is required to collect them.

In this paper, we present ongoing research on how
to support developers in detecting, understanding and
resolving high memory churn in order to improve
their application’s performance. Based on a recorded
memory trace, an algorithm automatically searches
for memory churn hotspots and calculates the age
at which objects die within it, since objects that die
young are the major contributors to memory churn.
Information about these objects, for example their
types and allocation sites, can then be inspected in
order to locate the problematic code locations.

To demonstrate the feasibility and applicability
of our approach, we implemented and present a
new memory churn analysis feature in AntTracks,
our trace-based memory monitoring tool.

1 Introduction

A common performance anti-pattern [1] is high mem-
ory churn. High memory churn, also known as ex-
cessive dynamic allocations [6], denotes the frequent
creation and collection of objects. The time it takes
to allocate these objects, as well as the time spent on
collecting them during garbage collection, both neg-
atively impact an application’s performance. Even
though temporary objects often turn out to be super-
fluous and avoidable through minor adjustments of
the underlying algorithms, most state-of-the-art mem-
ory monitoring tools do not provide analysis features
to inspect memory churn in greater detail but rather
focus on the analysis of memory leaks.

In this paper, we describe an approach to support
developers during the investigation of high memory
churn in garbage-collected languages. To motivate
our work, we present typical causes for high mem-
ory churn in Section 2. In Section 3, we discuss how
our approach automatically detects memory churn
hotspots, i.e., time windows in which unusual amounts

of garbage is collected, based on the evolution of an
application’s memory footprint. If a memory churn
hotspot is detected, we calculate the lifetime of each
object that died within the hotspot, as explained in
Section 4. We perform this calculation since objects
that die shortly after their creation are the main con-
tributors to high memory churn. In Section 5, we dis-
cuss how lifetime information can be combined with
information on other heap object properties (such as
type or allocation site) to point users to code locations
that should be inspected to reduce memory churn.

All concepts presented in this work have been
implemented using our memory monitoring tool
AntTracks 1. AntTracks encompasses two parts: (1) a
modified Java VM that collects memory traces con-
taining information about memory events such as al-
locations or garbage collections [5], and (2) an offline
analysis tool that can reconstruct the monitored ap-
plication’s heap states, i.e., the contents of the heap
at different points in time, based on such a trace [7].

2 Motivation

The careless allocation of objects can lead to high
memory churn that results in run-time overhead
that could easily be prevented. A typical situa-
tion leading to high memory churn is the allocation
of short-living temporary objects within heavily ex-
ecuted loops. Every iteration allocates new objects
that quickly turn into garbage. Another typical prob-
lem is the use of boxed primitives as generic types,
e.g., ArrayList<Integer>. Every time a primitive is
added to such a structure, it is wrapped into a heap
object, which causes unnecessary memory overhead.
One last example is the careless use of streams. Often,
multiple map operations (or similar) are used unneces-
sarily, causing many short-living intermediate objects
to be created. Another classic mistake is to use map

when working with primitives instead of using the re-
spective memory-efficient operation such as mapToInt.

3 Memory Churn Hotspot Detection

The first step when checking an application for high
memory churn is to look for memory churn hotspots.
Figure 1 shows an application that exhibits frequent

1AntTracks available at: http://mevss.jku.at/AntTracks

tall spikes in its memory footprint, a typical memory
churn pattern. The plot depicts the monitored ap-
plication’s memory footprint at the beginning and at
the end of every garbage collection. Since the memory
occupied at the start of a garbage collection is much
higher than at its end, each garbage collection appears
as the falling edge of a spike.

In [9], we presented algorithms to automatically
detect suspicious patterns in an application’s mem-
ory footprint that hint at memory anomalies such as
high memory churn. This feature aims to help novice
users that would otherwise struggle to recognize prob-
lematic patterns on their own. Currently, we only
present the most critical anomalies, e.g., the strongest
memory churn hotspot, to not overwhelm the (novice)
users with too much information. In general, the fol-
lowing steps are performed to find an application’s
strongest memory churn hotspot (as done in Figure 1):

• Construct all possible time windows that cover
between 5 and 50 garbage collections.

• Calculate each window’s garbage per second by
summing the bytes collected within the win-
dow and dividing them by the window’s dura-
tion. Graphically speaking, sum the heights of
all falling edges within the window and divide
them by the window’s width.

• Finally, select the window with the highest
garbage per second. If its garbage per second
is significantly higher than the application’s av-
erage garbage per second, i.e., if it is a hotspot,
report it (e.g., by highlighting in the plot).

Figure 1: Automatically detected time window with
high memory churn (global view and zoomed-in view).

4 Object Lifetime Calculation

To detect which objects die young, we need to know
the time at which a given object was born and when
it died. The Merlin algorithm [2] used by Elephant
Tracks [3] could be used to calculate very exact object
death times, yet it causes a several 100-fold increase
in the analyzed application’s run time [4]. Instead,
we use less exact object ages, namely the number of
garbage collections an object survived. This way, it is

sufficient to know for each object (1) the first garbage
collection following its allocation and (2) during which
garbage collection it was collected. Like most memory
tracers, AntTracks records events at the start and the
end of garbage collections, where garbage collections
are assigned consecutive IDs. As shown in Figure 2,
the birth time of each object is set to the ID of the
garbage collection following the allocation. When the
garbage collector reclaims an object, it is assigned the
ID of the currently running garbage collection as its
free time. It is then straightforward to calculate the
age of a died object by subtracting the two IDs.

... Allocation event A
0
1

0
0 0 - -

0 1 2
B C D E

Birth time:
Free time:... Free event

0 1 2

t
A B B C AC DGC

Start
GC
End

GC
Start

GC
Start

GC
End

GC
EndE

Figure 2: For every heap object, a Birth Time and
Free Time is reconstructed.

5 Memory Churn Suspect Inspection

Many memory analysis tools, including AntTracks,
group heap objects based on one or more criteria (such
as their types) and display the number of objects and
the number of bytes per heap object group [7]. This
typically happens during heap state analysis, i.e., dur-
ing the inspection of the heap at a given point in time.

We suggest a similar approach for memory churn
analysis. Yet, instead of grouping the live objects at
a given point in time, we group all objects that died
within a given time window. This time window can
be manually selected by the user or automatically
detected, as explained in Section 3. We use a new
grouping criterion, the object lifetime grouping, in ad-
dition to existing ones such as type and allocation site.
As shown in Figure 3, this criterion aggregates the
died objects into groups named “<x> GCs survived”.
Next to each group we display the number of objects
and the number of bytes that have been collected by
the garbage collector within the selected time window.
Major memory churn contributors can be revealed by
drilling down into the largest object groups that did
not survive a single garbage collection.

6 Example

Figure 3 through Figure 5 show a complete example
of how AntTracks has been used to investigate a mem-
ory churn hotspot in order to improve the finagle-http
benchmark in the Renaissance benchmark suite [8]
version 0.9.0. As shown in Figure 3, inspecting the
automatically detected memory churn hotspot reveals
that over 99.9% of the died objects (10, 012, 077 out
of 10, 019, 784) did not even survive a single garbage
collection. Inspecting the types of these objects in
Figure 4 reveals that most of them are divided al-
most equally among four types (since finagle-http is a

2

Scala application, its type names are typically longer
than Java type names). Next, we inspected the al-
location sites of these four types and found out that
the allocation sites of the first three types are within
library methods which we cannot modify. Yet, Fig-
ure 5 shows that the allocation site of the fourth type
(which are anonymous function objects) is located in
the FinagleHttp class, the benchmark’s main class.
Since such a rapid allocation and collection of anony-
mous function objects is unlikely to be intentional, we
inspected the method’s source code. In a loop, a lot
of anonymous function objects were created waiting
for an HTTP request to succeed before incrementing
a counter. In our fixed version, only a single response
handler is created which is reused for every HTTP re-
quest. This reduced the overall amount of allocated
temporary objects by about 25% and sped up the ap-
plication by about 5%.

Figure 3: Grouping objects by the number of survived
GCs facilitates high memory churn analysis.

Figure 4: Inspecting the types of the frequently dying
objects reveals major suspect types.

Figure 5: The allocation sites of frequently dying ob-
jects lead to methods that have to be inspected.

7 Conclusion and Future Work

As high memory churn can have a substantial negative
impact on an application’s performance, tool support
to inspect such memory anomalies is essential. In this
work, we discussed common causes for memory churn,
we showed how to automatically detect memory churn
hotspots, we presented how to detect objects that die
shortly after their allocation, and suggested a way how
to utilize and visualize this information for memory
churn analysis. To showcase the applicability of our
approach, we implemented it in our memory monitor-
ing tool AntTracks and presented an example on how
the tool’s new memory churn analysis feature has been
used to improve a real-world benchmark application.

For future work, we currently focus on making
AntTracks (including its new memory churn analy-
sis) more accessible to novice users. As we evaluated
AntTracks’s various capabilities [10], we observed a
need for more guidance during memory anomaly anal-
ysis tasks. This lead us to elaborate recommendations
for memory monitoring tool developers including ‘Use
automation to relieve users from complex tasks’ as
well as ‘Provide guidance and explanations to support
exploratory learning of analysis capabilities’.

8 Acknowledgement

The financial support by the Austrian Federal Min-
istry for Digital and Economic Affairs, the National
Foundation for Research, Technology and Develop-
ment, and Dynatrace is gratefully acknowledged.

References

[1] C. U. Smith and L. G. Williams. “Software
Performance Antipatterns”. In: WOSP. 2000,
pp. 127–136.

[2] M. Hertz et al. “Generating Object Lifetime
Traces with Merlin”. In: ACM Trans. Program.
Lang. Syst. 28.3 (May 2006), pp. 476–516.

[3] N. P. Ricci, S. Z. Guyer, and J. E. B. Moss.
“Elephant Tracks: Portable Production of Com-
plete and Precise GC Traces”. In: ISMM. 2013,
pp. 109–118.

[4] G. Xu. “Resurrector: A Tunable Object Lifetime
Profiling Technique for Optimizing Real-world
Programs”. In: OOPSLA. 2013, pp. 111–130.

[5] P. Lengauer, V. Bitto, and H. Mössenböck. “Ac-
curate and Efficient Object Tracing for Java Ap-
plications”. In: ICPE. 2015, pp. 51–62.

[6] M. Peiris and J. H. Hill. “Automatically Detect-
ing ”Excessive Dynamic Memory Allocations”
Software Performance Anti-Pattern”. In: ICPE.
2016, pp. 237–248.

[7] M. Weninger and H. Mössenböck. “User-defined
Classification and Multi-level Grouping of Ob-
jects in Memory Monitoring”. In: ICPE. 2018,
pp. 115–126.

[8] A. Prokopec et al. “Renaissance: Benchmarking
Suite for Parallel Applications on the JVM”. In:
PLDI. 2019, pp. 31–47.

[9] M. Weninger, E. Gander, and H. Mössenböck.
“Detection of Suspicious Time Windows In
Memory Monitoring”. In: MPLR. 2019, pp. 95–
104.

[10] M. Weninger et al. “Evaluating an Interactive
Memory Analysis Tool: Findings from a Cogni-
tive Walkthrough and a User Study”. In: Proc.
ACM Hum.-Comput. Interact. 4.EICS (June
2020), 75:1–75:37.

3

Part III

Future Work and Conclusions

223

224

Chapter 8

Limitations and Future Work

Although we presented various ways how to analyze memory anomalies in
garbage-collected languages, there is still a number of interesting topics that
can and should be explored in the future. In this section, we describe some
of them and how future work could remove current limitations of this thesis.

8.1 Memory Anomaly Evaluation Suite

All papers in Part II contained evaluations to showcase the approaches’ feasi-
bility and applicability, most of them based on either artificial programs [78]
or performance benchmark applications [25, 230, 265, 293, 295]. Only few
evaluations happened based on real-world applications. In this section, we
discuss why it is hard to find suitable real-world applications to evaluate
memory anomaly analyses and how we hope to resolve this issue.

While artificial programs are well-suited to explain concepts, they often do
not show if an approach is generalizable and scalable. Artificial programs do
not show whether the presented approach would also work well on real-world
applications or if the artificially generated problems even occur in real-world
applications.

Thus, performance benchmark suites such as DaCapo [25],
DaCapo Scala [265, 293], SPECjvm2008 [295] or Renaissance [230] try to
include benchmark applications that mimic real-world behavior. Yet, while
these suites have been used to study general memory and garbage collec-
tion behavior [176], they are not well-suited to evaluate anomaly analysis

225

techniques due to the simple fact that these benchmark applications hardly
contain any memory defects.

Various software repository mining studies [65, 100, 101] suggest that
there are a number of real-world, open-source applications that exhibited
at least one memory-related problem throughout their development. Un-
fortunately, there is no ready-to-use memory anomaly evaluation suite that
contains such reference applications that could serve as a basis for evaluating
and comparing memory anomaly analyses. Currently, one has to put a lot
of work into locating and preparing a single application so that it can be
used as evaluation reference, for example as we did with the memory-leaking
Commons HttpClient library [7, 8, 324]. First, one has to mine software
repositories and issue trackers to find notes or issues on memory problems
that have been resolved in the past. Then, the source code of the respec-
tive application has to be downloaded in the version that still contained the
memory defect before it was fixed. Next, the project has to be built, which,
depending on the project size, can involve quite complicated dependencies
and build steps. Overall, finding and preparing suitable applications for
evaluation is time-consuming and tedious.

Thus, to build a common ground that can be used to evaluate and com-
pare memory anomaly analyses, it would be desirable to collect a suite of
memory anomaly evaluation applications that contain known memory de-
fects. We think that the memory research community could greatly profit
from such a suite. It could be used to re-evaluate the presented approaches in
greater detail, to more thoroughly compare these approaches to others, and
to perform further user studies that do not have to rely on seeded defects.

8.2 Automatic Data Structure Detection

In our current data structure analysis approach, we rely on a domain-specific
language to describe how data structures look like. Even though this ap-
proach works well and is easy to use, it would be more convenient if this step
was not needed, i.e., if AntTracks could detect data structures on its own
without external input.

While related work exists that tries to do exactly this (for example various
work by Mitchell et al. [197, 198, 200–202] or by Chis et al. [56, 57]), all
of them have their own shortcomings or drawbacks, which we will discuss
shortly.

226

Existing approaches either use the object reference graph directly or re-
duce it to some kind of ownership tree and try to detect data structures
based on certain patterns within these graphs or trees. For example, typical
heuristics to detect data structure heads are to look for an object that either
(a) points to an array of reference or (b) points to an object of type T which
in turn points to another object of type T. This would detect data structures
that use an array or linked objects as a backbone. Similar pattern definitions
are then given for backbone structures and leaf structures, where the num-
ber and naming of these structures differs from approach to approach. Yet,
even though many data structures may fit these heuristics, it seems that no
universal approach has been found yet that is able to detect all kinds of data
structures. For example, one simple data structure that many (if not all)
of the cited approaches cannot detect automatically is Java’s HashSet. In
Java, hash sets are implemented by an underlying hash map, i.e., the hash
set object (which should be classified as a head) directly points to another
data structure head. Data structure heads directly pointing to other data
structure heads are a pattern that most algorithms do not handle correctly.
For example, Mitchell and Sevitsky state that they use framework knowledge
to classify the HashSet as “head of collection”, though it would not normally
be classified as such solely on the basis of structure [201].

Thus, future research could use the mentioned related work as an inspira-
tion for more advanced, automatic data structure detection algorithms. We
suggest to use the correct detection of Java’s default data structures as well
as the correct detection of the most-widely used third-party data structures
in Java [65] (without manual intervention such as for HashSet) as a baseline.

8.3 Lifetime Analysis

In our work on memory churn analysis, we presented the concept of heap
object lifetime, i.e., how many garbage collections an object survived before
it died. This metric may not only be useful for memory churn analysis, but
also for various other kinds of analyses, which could be explored in future
research.

One idea is to refine our data structure analysis by lifetime information.
Currently, we detect growing data structures, report them to the user and
show quantitative information, e.g., how many leaves of a certain type have
been there at the beginning and at the end of a given time window. Taking

227

lifetime information into account, we could inform the user also about those
leaf objects that got older, since old objects that have been part of a growing
data structure for a long time are more likely to be part of a possible memory
leak.

8.4 Metric-based Analysis

An interesting topic that we did not explore in greater detail yet revolves
around general memory anti-patterns [56, 57, 135]. For example, Chis et
al. [57] present 11 patterns such as empty collections or fixed-size collections
(instead of arrays) that should be avoided. In their work, they use heap
dumps to analyze applications regarding these metrics, i.e., they calculate
these metrics at a single point in time. While these metrics seem to be a
great way to evaluate the memory health of an application, the usage of
heap dumps leads to the problem that a certain pattern may be present
coincidentally at one point in time, even though this would not be the case
moments later. For example, taking a heap snapshot at the wrong point in
time may detect a lot of empty collections, yet they might be false positives
since they might be filled with objects a few moments later.

Our idea is to perform similar metric-based analyses, however not only
at a single point in time but continuously based on data reconstructed from
memory traces. The more often and the more strongly a certain data struc-
ture exhibits a given inefficiency pattern, the more confidently we could re-
port it as worth for inspection. This would eliminate the unnecessary task
from the user to distinguish critical from non-critical pattern occurrences.

8.5 Visualization Extensions

In this thesis, various visualization techniques such as time-series charts,
memory cities, 2D memory tree visualizations and aggregated object graphs
have been shown. Future work could improve and extend these visualizations
into various directions. For example, even though our memory city approach
supports the visualization of references, its focus is on depicting the evolution
of the heap memory over time. For reference visualization, hierarchical edge
bundling [47, 123, 124, 126] or pipe routing [21] has been employed in various
domains in the past. We could investigate if these techniques or similar

228

approaches can also be used to visualize heap memory and its references.
In addition to that, there are also some other visualization techniques that
could be evaluated whether they are suitable for visualizing heap memory
evolution visualization, one of them being small multiple visualizations [302]
to display the evolution of different parts of the heap side-by-side. Also, the
presented visualization techniques could be integrated more strongly into our
data structure analysis, using them to visualize the growth of data structures
in a more tangible way. The usefulness of such visualizations could then be
evaluated in further user studies [298].

8.6 Using Visualizations in SE Education

We think that our visualizations may not only be helpful to developers to in-
spect memory anomalies in their applications, but also to students who learn
about garbage collection behavior or performance engineering. From our ex-
perience, such topics are often taught in a rather theoretical way, using few to
no visualizations of real applications. This may also be due to the fact that
state-of-the-art monitoring tools (if used for demonstration at all) often lack
interactive visualization techniques. We think that visualizations such as our
memory cities could be used to explain the rationale behind certain memory
pattern in an interesting and memorable way. Memory anomalies that are
usually only explained in a theoretical context become tangible, i.e., they
are raised form a purely syntactical form to a graphical metaphor. Studying
and understanding memory behavior by using visualizations in software en-
gineering education could lead to higher student motivation, better learning
outcomes and hopefully higher student success rates.

8.7 Static and Dynamic Analysis Synergies

Currently, our approach is purely based on information reconstructed from
a memory trace recorded during an application run, i.e., it can be classified
as a pure dynamic analysis. In contrast, as explained in Section 1.3, static
analysis does not rely on data collected during program execution but rather
inspects the source code (or other static artifacts). In the past, both kinds of
analyses have been combined [76, 81] to achieve synergies by merging data
from static and dynamic analyses.

229

One technique where we think that such a hybrid or blended analysis could
lead to more detailed insights is our memory churn analysis. Based on our
experience, we are confident to say that memory churn hotspots are often also
reflected in the source code. For example, many memory churn hotspots are
the result of heavily-executed loops that contain allocations of short-living
objects. As we have shown, our approach is able to detect in which method
problematic objects are created, yet suggestions on how to actually resolve
the problem would require us to have knowledge about the actual source code,
i.e., information that we could acquire through static analysis. Knowing
whether the allocation site of churning heap objects is located within a loop
or in the context of some other typical memory churn pattern would allow us
to provide the developer with more detailed instructions on how to resolve
the problem.

8.8 IDE Integration

To end this section on future work, we want to present our hypothesis that
users could greatly profit from monitoring tools that were integrated more
tightly with IDEs. Taking AntTracks as an example, there is a clear separa-
tion between (a) the (guided) analyses within the monitoring tool that may
lead the user to the root cause of a problem, and (b) the (unguided) inspec-
tion and fixing steps the developers have to perform in the IDE to resolve
the given problem. For example, even after developers used AntTracks to
narrow the possible root cause of a problem down to a single allocation site,
they still have to fix the source code in their IDE without further guidance.
In the future, research should be performed on how information gathered
through monitoring approaches can be efficiently and effectively fed back
into IDEs (scientific contribution), where developing an IDE plugin [16, 60]
for AntTracks (technical contribution) could serve as a case study.

230

Chapter 9

Conclusions

Even though garbage collection reduces the risk of memory-related defects,
certain performance-critical anomalies such as high memory churn or even
crash-prone anomalies such as memory leaks can still occur. To help devel-
opers in detecting, understanding and fixing these anomalies, this thesis has
contributed in various areas of memory analysis using memory traces.

Memory Traces and Their Processing First, we have presented a novel
and versatile grouping system to abstract a heap state into a memory tree
based on a set of object classifiers that group heap objects with respect
to certain properties. This grouping technique allows us to pursue a user-
centered analysis approach in which the users can decide according to which
heap object properties they want to inspect a heap state. During inspection,
the users can drill down into the tree’s different object groups to gather more
information about them. Furthermore, throughout this thesis we have shown
that our memory trees are a versatile data basis for a vast amount of different
(semi-)automatic analyses and visualizations.

Memory traces can not only be used for extracting information to build
memory trees, but they also provide information about the references be-
tween heap objects and how these references change over time. To utilize
this information to its full potential, we further AntTracks’s existing tracing
technique to also collect information about garbage collection (GC) roots
such as thread-local variables or static fields. This GC root information,
together with information about the object references, allows us to pinpoint
objects that keep a large number of other objects alive. We also presented

231

algorithms that focus on multi-object ownership analysis, a problem that is
widely overlooked in related work.

Data Structure Analysis Second, we presented an approach that au-
tomatically detects heavily-growing data structures, ranks them based on
various growth metrics, and displays them to the user for more detailed in-
vestigation. For this, we developed a domain-specific language, which can
be used to describe the shape of arbitrary data structures. Using these de-
scriptions, our approach detects data structures in heap states and — due
to continuous data that can be reconstructed from memory traces — is able
to track these structures as well as their growth across their lifetime. De-
pending on the kind of growth (which can be categorized based on metrics we
developed in this thesis) users are suggested further problem-specific analysis
steps to find out more about the root cause of the growth.

Visualization As many studies and related work have shown, interactive
visualizations can greatly enhance analysis tasks. However, most state-of-
the-art memory monitoring tools lack good visualization support. Thus,
as a third topic, we extensively investigated how memory trees and their
evolution over time can be visualized to support developers in detecting and
analyzing suspicious memory behavior. To this end, we developed three novel
techniques to visualize evolving memory trees: (1) Time-series charts with
a drill-down function, (2) Memory Cities, a 3D software city visualization
in which growing buildings and districts hint at growing object groups in
the heap, as well as (3) traditional 2D tree visualizations, namely icicles and
sunbursts, that have been adjusted and refined to better suit memory analysis
tasks. Our memory cities and tree visualizations were both honored with a
best paper award at international conferences, which gives us confidence that
the presented ideas can be useful for memory analysis, even though detailed
studies have yet to be performed.

User Guidance and User Behavior While many memory analysis ap-
proaches have been evaluated with regard to their performance, i.e., how long
the analyses take to produce a result, there are no proper studies on the us-
ability of memory analysis tools. We filled this gap by performing a cognitive
walkthrough as well as a user study where AntTracks was used to investigate
typical memory anomalies. As the study subjects were no memory analysis

232

experts, this study provided us with valuable insights on how novices use
memory tools and how to support them in a better way. This also led us
to the formulation of nine recommendations for monitoring tool developers
when implementing new analysis features. These recommendations already
influenced a number of improvements to AntTracks itself, most importantly a
guidance method called guided exploration. Guided exploration is a method
for integrating user guidance into monitoring tools by repeatedly performing
four guidance steps: Tools should automatically (1) detect suspicious mem-
ory behavior, (2) highlight information about it on the screen, (3) explain
why this information is important, and (4) suggest appropriate next analysis
steps. This way, the tool guides users through the analysis process, help-
ing them to explore the root cause of a problem. At the same time, users
learn the capabilities of the tool and how to use them efficiently through a
learning-by-doing effect. This should ease the onboarding process for novice
users in expert monitoring tools.

Memory Churn Analysis Combining our multi-level heap object group-
ing mechanism with our guided exploration helped us to develop a convenient
analysis technique to detect, inspect and resolve memory churn, i.e., the
frequent allocation and deallocation of short-living objects. Our approach
automatically detects time windows in which the monitored application ex-
hibited suspicious churn behavior, detects those objects that died at a young
age within this time window, and guides the user to those object types and
allocation sites that caused the churn. AntTracks also provides information
and explanations on how memory churn can be resolved and how typical
memory churn hotspots look like. These features can help novice users to
fix memory churn anomalies, even without a prior background in memory
monitoring.

Summarized Contributions Overall, this thesis presented (1) algorithms
and data structures to aggregate and utilize memory traces, (2) a semi-
automatic approach to detect and inspect suspiciously growing data struc-
tures, (3) visualization techniques to make memory evolution and memory
growth analysis more approachable and tangible, (4) a technique to detect
and inspect high memory churn, (5) a cognitive walkthrough and a user study
to evaluate the usability and usefulness of the presented techniques, as well
as to derive general recommendations for developers of memory monitoring

233

tools, which finally led to (6) a guidance technique called guided exploration
that supports novice users in performing memory analyses.

One goal of this work was to highlight the flexibility and versatility of
memory traces. We wanted to present interesting use cases on how they can
be leveraged to support developers in finding, inspecting and fixing memory
anomalies. Thus, we have shown that temporal information, i.e., information
about the heap evolution over time, can provide detailed insights into memory
trends. Continuous memory information is vital to perform detailed memory
analyses such as automatic data structure analysis. Such analyses would not
be possible by only relying on heap dumps, since dumps lack object identity
information. Even though the generation of memory traces is currently not
widespread in real-world virtual machines, we hope that research such as this
thesis can serve as a motivation to change that.

In addition to theoretical concepts, this thesis resulted in a number of
technical contributions, namely the improvement of the AntTracks VM, the
development of the AntTracks Analyzer tool, our 3D visualization tool Mem-
ory Cities, and our web-based 2D visualization tool WebTreeViz, which are
all publicly available. We used these tools as a proof-of-concept for all pre-
sented ideas to underline their feasibility, applicability and usefulness.

234

Appendices

235

236

Appendix A

Memory Cities Artifact

This instruction document has been submitted as part of our Memory Cities
artifact [329] that accompanied our paper Memory Cities: Visualizing Heap
Memory Evolution Using the Software City Metaphor [326]. The artifact
contains the executable binaries (Windows and Linux), data sets, a video,
and the instruction document.

237

Memory Cities: Visualizing Heap Memory
Evolution Using the Software City Metaphor

Artifact Instructions
Markus Weninger

Institute for System Software
Johannes Kepler University Linz

Linz, Austria
markus.weninger@jku.at

Lukas Makor
CD Laboratory MEVSS

Johannes Kepler University Linz
Linz, Austria

lukas.makor@jku.at

Hanspeter Mössenböck
Institute for System Software

Johannes Kepler University Linz
Linz, Austria

hanspeter.moessenboeck@jku.at

Abstract—This document contains instruction on how to use
the artifact accompanying the paper “Memory Cities: Visualizing
Heap Memory Evolution Using the Software City Metaphor”
presented at VISSOFT 2020. The following abstract is taken
from the paper.

Tool support is essential to help developers understand the
memory behavior of complex software systems. Anomalies such
as memory leaks can dramatically impact application perfor-
mance and can even lead to crashes. Unfortunately, most memory
analysis tools lack advanced visualizations (especially of the
memory evolution over time) that could facilitate developers in
analyzing suspicious memory behavior.

In this paper, we present Memory Cities, a technique to
visualize an application’s heap memory evolution over time using
the software city metaphor. While this metaphor is typically used
to visualize static artifacts of a software system such as class
hierarchies, we use it to visualize the dynamic memory behavior
of an application. In our approach, heap objects can be grouped
by multiple properties such as their types or their allocation
sites. The resulting object groups are visualized as buildings
arranged in districts, where the size of a building corresponds to
the number of heap objects or bytes it represents. Continuously
updating the city over time creates the immersive feeling of an
evolving city. This can be used to detect and analyze memory
leaks, i.e., to search for suspicious growth behavior. Memory
cities further utilize various visual attributes to ease this task.
For example, they highlight strongly growing buildings using
color, while making less suspicious buildings semi-transparent.

We implemented memory cities as a standalone application
developed in Unity, with a JSON-based interface to ensure easy
data import from external tools. We show how memory cites
can use data provided by AntTracks, a trace-based memory
monitoring tool, and present case studies on different applications
to demonstrate the tool’s applicability and feasibility.

Index Terms—Artifact

I. PREFACE

We prepared this artifact according to http://vissoft20.dcc.
uchile.cl/submission.html. The submission guidelines ask for
artifacts that primarily contain software systems (compiled
applications and/or source code) that are available for end
users and researchers who aim at replicating a study, as well as
repositories that contain data involved in a study (e.g., logging
data, system traces, survey raw data, evaluation results), which
are needed to replicate a study.

As software system, we provide a Windows build as well as
a Linux build of the Memory Cities tool. The tool has been
developed using the 3D engine Unity [1]. To follow the artifact
guidelines at https://www.artifact-eval.org/guidelines.html, we
planned to create a VM (Virtualbox/VMWare) image contain-
ing the Memory Cities tool already setup in the intended run-
time environment. Unfortunately, the 3D acceleration needed
to run Memory Cities does not integrate well with virtual
machines. An alternative WebGL build of Memory Cities was
not feasible since the tool needs access to the local file system,
a feature not well supported by WebGL.

As repository, we provide the data used to create Figure 10
(Motivating Example), Figure 11 (Case Study 1) and Figure
12 (Case Study 2) in the original paper. Section V lists the
settings used within Memory Cities to reproduce these figures
based on the provided data.

II. CLAIM

The builds provided in this artifact are slightly polished
versions of those that have been used to create the screenshots
of the original paper. Users can thus expect the same visuals
as presented in the paper. All features discussed in the paper
(e.g., navigation, interaction, heap reference analysis, etc.) are
fully implemented. Only two settings, namely the evolution
animation speed and the switch between the object and byte
metric, have been mentioned in the paper to be user-defined
but are currently only configurable in code. The tool is still
under development, and both settings will be available in the
next release that contains a refactored settings pane.

Regarding reproducibility, we provide usage instructions in
Section IV as well as detailed steps to reproduce Figure 10,
Figure 11 and Figure 12 of the original paper in Section V.

We want to mention that, while Memory Cities are fully
functional and ready to use, we have not yet focused on the
tool’s performance. We are aware that certain parts in the tool
(e.g., the outline drawing of buildings) have the potential for
performance improvements in the future.

The tool has been primarily tested on Windows, but also all
test runs on Linux (Ubuntu) were successful.

Fig. 1. When the tool is started, it asks the user to select the folder that contains the memory tree data that should be visualized. In the screenshot, clicking
“Select” twice loads the data and builds the memory city to reconstruct Figure 10 of the original paper.

III. ARTIFACT CONTENT

This artifact is provided as a .zip file that contains the
following files and directories:

1) Instuctions.pdf, this file.
2) Paper.pdf, the original paper [2]. This documents

assumes that the reader is familiar with the content of
the paper.

3) MemoryCities-Video.mp4, a 5 minute long video
that explains the basics of the Memory Citites tool1. It is
recommended to watch the video before using the tool.

4) MemoryCities-Windows, a folder that contains
the Windows build, most importantly the executable
MemoryCities.exe to run the tool on Windows.

5) MemoryCities-Linux, a folder that contains the
Linux build, most importantly the script Run.sh to run
the tool on a *nix system. If any permission problems
occur, please use chmod to mark the files in this
directory as executable, for example by running chmod
-R 777 . within the directory.

6) PaperData, a folder that contains the subfolders
Fig10, Fig11, and Fig12, which contain the data
used to generate the respective figures in the original
paper.

1The video can also be found online at http://ssw.jku.at/General/Staff/
Weninger/AntTracks/VISSOFT20/MemoryCities.mp4

IV. INSTRUCTION

A. How To Load Data

Upon opening, the tool asks the user to load data based on
which a memory city should be generated. Figure 1 shows
the respective folder chooser. In the provided dataset, the
following folders contain the data used to reconstruct the
respective figures of the original paper:

• PaperData -> Fig10 -> PackageType
• PaperData -> Fig11 ->
TypeAllocationSite

• PaperData -> Fig12 ->
TypeClosestDomainCallSite

We added a sub-folder, e.g., TypeAllocationSite,
for every figure to clarify based on which properties
the heap objects have been grouped - in the case of
TypeAllocationSite by types (districts) and allocation
sites (buildings). These folders contain a number of .json
files that contain information on the grouped heap at different
points in time. The files’ format corresponds to the one
explained in Section IV-B of the original paper.

In Memory Cities, the data is split into (1) tree data that is
mandatory to create a city, and (2) optional pointer information
(as discussed in section VII-D of the original paper). Thus,
a second folder chooser is shown that allows the user to
select a folder that contains a pointed-from-maps and a

Fig. 2. The navigation hints shown in Memory Cities.

points-to-maps folder. For the provided dataset, the same
folder as in the previous step can be selected. For example,
to reconstruct Figure 10 of the original paper, both folder
choosers can be maneuvered to PaperData -> Fig10
-> PackageType as shown in Figure 1. If the user does
not want to load pointer information, the second file chooser
can be closed by clicking on “Cancel”.

B. Evolution Visualization: Time Travel

To visualize the memory evolution over time, Memory
Cities apply time traveling, i.e., stepping back and forth
through the memory history of a system while the city updates
itself to reflect the current state. As shown in Figure 3, time
stepping can be performed manually using buttons or a slider
as well as using the arrow keys on the keyboard. Additionally,
the evolution can also be animated automatically. Users can
pause and restart the animation at any point in time.

Fig. 3. Time travel controls to step through time.

C. Navigation

As listed in Figure 2 (a screenshot taken from the tool),
the camera can be rotated using the right mouse button and
zoomed using the mouse wheel. By dragging the mouse while
the mouse wheel is pressed or by using the keyboard, the user
can move the camera. Memory cities also provide keyboard
shortcuts for typical tasks. For example, pressing the B key
moves the camera into a bird’s eye view, which can be useful
to inspect the district structure.

D. Structure Information

Hovering over a building or district displays information
about its respective heap object group. This information in-
cludes the path from the tree root, e.g., Heap → Type: Per-
son → Allocation Site: foo(), the number of objects and the
number of bytes, as shown in Figure 4.

Besides showing a structure’s information on hover, users
can also click on a structure to highlight it, which is also
shown in Figure 4. The structure stays selected when moving
through time to make it easier to track its evolution.

Fig. 4. Information about a structure is shown when hovering it (gray tool
tip) or when selecting it with a click (selected building is highlighted in blue).

E. Settings

Figure 5 shows the settings available on the right side of
the Memory Cities tool to adjust the appearance of the city.

a) Area mode: Determines the relation between object
count and building size. The “Linear” setting directly maps
the object count to building size (i.e., an increase of objects
by a factor of 2 results in a building with a base area twice
as big). The “Sqrt” setting calculates a building’s size based
on the square root of the object count of the underlying heap
object group and often leads to more appealing-looking cities.

b) Child count: Determines how many children are
shown per tree level, e.g., how many buildings are shown per
district.

c) Show pointers: Enables / Disables the heap object
reference feature that is explained in detail in the original
paper in section VII-D. In general, if this feature is enabled,
clicking on a building will show references between buildings.
Buildings that contain objects that reference objects in the
selected building are connected via a purple frustum. Buildings
that contain objects that are referenced by objects in the select

building are connected via a green frustum. Thick frustums
represent that more objects are involved in the references.

d) Color (Growth): Enables / Disables the coloring of
buildings. The color encodes how strong a building has grown
between the first point in time and the current point in time.

e) Solid buildings: The last two settings, i.e., Solid
building count and Non-solid building opacity, determine how
many buildings should be drawn in solid mode, and which
opacity non-solid buildings should have. Buildings are selected
for solid mode based on their overall growth, i.e., the growth
between the first and the last point in time. For example,
setting Solid building count to 5 and Non-solid building
opacity to 0 will draw all except the 5 strongest growing
buildings transparent, while setting Non-solid building opacity
to 100 will cause all buildings to be drawn in solid mode.

Fig. 5. The available settings to adjust the appearance of Memory Cities.

V. REPRODUCE FIGURES

This section lists all settings to reconstruct Figure 10,
Figure 11, and Figure 12 of the original paper. Minimal
differences between the figures in the original paper and the
cities reconstructed from the data in this artifact can occur.
This is due to the fact that the data provided in this artifact,
i.e., information about the memory evolution of a monitored
application, has been recorded on the different application run
than the data used to generate the paper figures. Since the
garbage collector behaves slightly differently on two different
runs of the same application (e.g., it is triggered at different
times), the resulting cities can vary a little from run to run.

After data loading, specific buildings can be located by
hovering over them and inspecting their information popup.
Clicking on a building with the left mouse button shows the
building’s references.

Figure 10
Title: LinkedList of Persons.
Classifiers: Package (Districts) - Type (Buildings)

Figure 10 (included in this document as Figure 6) is used
in the original paper as a motivating example for the heap
reference analysis.

To reconstruct this figure, load the data (in both
folder choosers) from PaperData -> Fig10 ->
PackageType. Following settings have been used:

• Time: 23/23
• Area Mode: Sqrt
• Child Count: 10
• Show Pointers: True
• Color: True
• Solid Buildings: 10
• Non-solid building opacity: 0%

Figure 11
Title: Commons HttpClient memory leak.
Classifiers: Type (Districts) - Allocation Site (Buildings)

Figure 11 (included in this document as Figure 7) is the first
case study presented in the original paper. It demonstrates the
analysis of a memory leak in the Commons HttpClient library.

To reconstruct this figure, load the data (in both
folder choosers) from PaperData -> Fig11 ->
TypeAllocationSite. Following settings have been
used during heap reference analysis:

• Time: 19/25
• Area Mode: Sqrt
• Child Count: 40
• Show Pointers: True
• Color: True
• Solid Buildings: 10
• Non-solid building opacity: 30%

Figure 12
Title: Dynatrace easyTravel memory leak.
Classifiers: Type (Districts) - Closest Domain Call Site
(Buildings)

Figure 12 (included in this document as Figure 8) is the sec-
ond case study presented in the original paper. It demonstrates
the analysis of a memory leak in the Dynatrace easyTravel
application.

To reconstruct this figure, load the data (in both
folder choosers) from PaperData -> Fig12 ->
TypeClosestDomainCallSite. Following settings have
been used during heap reference analysis:

• Time: 24/24
• Area Mode: Sqrt
• Child Count: 30
• Show Pointers: True
• Color: True
• Solid Buildings: 10
• Non-solid building opacity: 25%

REFERENCES

[1] Unity Technologies. (2020) Unity Website. [Online]. Available: https:
//unity.com

[2] M. Weninger, L. Makor, and H. Mössenböck, “Memory Cities: Visual-
izing Heap Memory Evolution Using the Software City Metaphor,” in
Proc. of the 8th IEEE Working Conference on Software Visualization
(VISSOFT), 2020.

Fig. 6. Figure 10 of the original paper [2].

Fig. 7. Figure 11 of the original paper [2].

Fig. 8. Figure 12 of the original paper [2].

Bibliography

[1] A. Abran, A. Khelifi, W. Suryn, and A. Seffah. Usability Meanings and Interpretations in ISO Standards. Software
Quality Journal, 11(4):325–338, 2003. DOI: https://www.doi.org/10.1023/A:1025869312943.

[2] E. Aftandilian, S. Kelley, C. Gramazio, N. P. Ricci, S. L. Su, and S. Z. Guyer. Heapviz: Interactive Heap Visualization for
Program Understanding and Debugging. In Proceedings of the ACM Symposium on Software Visualization (SOFTVIS),
pages 53–62, 2010. DOI: https://www.doi.org/10.1145/1879211.1879222.

[3] T. M. Ahmed, C. Bezemer, T. Chen, A. E. Hassan, and W. Shang. Studying the Effectiveness of Application Performance
Management (APM) Tools for Detecting Performance Regressions for Web Applications: An Experience Report. In
Proceedings of the 13th International Conference on Mining Software Repositories (MSR), pages 1–12, 2016. DOI:
https://www.doi.org/10.1145/2901739.2901774.

[4] A. M. Alashqur, S. Y. W. Su, and H. Lam. OQL: A Query Language for Manipulating Object-oriented Databases. In
Proceedings of the Fifteenth International Conference on Very Large Data Bases (VLDB), pages 433–442, 1989. URL:
http://www.vldb.org/conf/1989/P433.PDF.

[5] S. Alstrup and P. W. Lauridsen. A Simple Dynamic Algorithm for Maintaining a Dominator Tree. Technical report, 1996.

[6] K. Andrews and H. Heidegger. Information Slices: Visualising and Exploring Large Hierarchies using Cascading, Semi-
Circular Discs. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pages 9–12, 1998.

[7] Apache Software Foundation. Commons HttpClient version 3.0.1, 2006. URL: https://mvnrepository.com/artifact/
commons-httpclient/commons-httpclient/3.0.1. last visited on 2021-04-08.

[8] Apache Software Foundation. Issue tracker for HttpClient, 2021. URL: https://issues.apache.org/jira/projects/
HTTPCLIENT/issues. last visited on 2021-04-08.

[9] D. Auber, C. Huet, A. Lambert, B. Renoust, A. Sallaberry, and A. Saulnier. GosperMap: Using a Gosper Curve for
Laying Out Hierarchical Data. IEEE Trans. Vis. Comput. Graph., 19(11):1820–1832, 2013. DOI: https://www.doi.org/
10.1109/TVCG.2013.91.

[10] Audacity. Audacity: Free, open source, cross-platform audio software, 2021. URL: https://www.audacityteam.org/. last
visited on 2021-04-08.

[11] I. Bacher, B. M. Namee, and J. D. Kelleher. Using Icicle Trees to Encode the Hierarchical Structure of Source Code. In
EuroVis, pages 97–101, 2016. DOI: https://www.doi.org/10.2312/eurovisshort.20161168.

[12] G. Balogh and Á. Beszédes. CodeMetropolis - Code Visualisation in MineCraft. In Proceedings of the IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM), pages 136–141, 2013. DOI: https://www.doi.
org/10.1109/SCAM.2013.6648194.

[13] G. Balogh and Á. Beszédes. CodeMetrpolis - A Minecraft based Collaboration Tool for Developers. In Proceedings of
the IEEE Working Conference on Software Visualization (VISSOFT), pages 1–4, 2013. DOI: https://www.doi.org/10.
1109/VISSOFT.2013.6650528.

[14] G. Balogh, T. Gergely, Á. Beszédes, and T. Gyimóthy. Using the City Metaphor for Visualizing Test-Related Metrics.
In Proceedings of the International Workshop on Validating Software Tests (VST@SANER), pages 17–20, 2016. DOI:
https://www.doi.org/10.1109/SANER.2016.48.

[15] G. Balogh, A. Szabolics, and Á. Beszédes. CodeMetropolis: Eclipse over the City of Source Code. In Proceedings of
the IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM), pages 271–276, 2015.
DOI: https://www.doi.org/10.1109/SCAM.2015.7335425.

243

 https://www.doi.org/10.1023/A:1025869312943
 https://www.doi.org/10.1145/1879211.1879222
 https://www.doi.org/10.1145/2901739.2901774
http://www.vldb.org/conf/1989/P433.PDF
https://mvnrepository.com/artifact/commons-httpclient/commons-httpclient/3.0.1
https://mvnrepository.com/artifact/commons-httpclient/commons-httpclient/3.0.1
https://issues.apache.org/jira/projects/HTTPCLIENT/issues
https://issues.apache.org/jira/projects/HTTPCLIENT/issues
 https://www.doi.org/10.1109/TVCG.2013.91
 https://www.doi.org/10.1109/TVCG.2013.91
https://www.audacityteam.org/
 https://www.doi.org/10.2312/eurovisshort.20161168
 https://www.doi.org/10.1109/SCAM.2013.6648194
 https://www.doi.org/10.1109/SCAM.2013.6648194
 https://www.doi.org/10.1109/VISSOFT.2013.6650528
 https://www.doi.org/10.1109/VISSOFT.2013.6650528
 https://www.doi.org/10.1109/SANER.2016.48
 https://www.doi.org/10.1109/SCAM.2015.7335425

[16] S. Baltes, P. Schmitz, and S. Diehl. Linking Sketches and Diagrams to Source Code Artifacts. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE), pages 743–746, 2014. DOI:
https://www.doi.org/10.1145/2635868.2661672.

[17] S. T. Barlow and P. Neville. A Comparison of 2-D Visualizations of Hierarchies. In Proceedings of the IEEE Symposium on
Information Visualization (INFOVIS), pages 131–138, 2001. DOI: https://www.doi.org/10.1109/INFVIS.2001.963290.

[18] E. T. Barr, C. Bird, and M. Marron. Collecting a Heap of Shapes. In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA), pages 123–133. ACM, 2013. DOI: https://www.doi.org/10.1145/2483760.
2483761.

[19] A. Bauer, M. Züfle, J. Grohmann, N. Schmitt, N. Herbst, and S. Kounev. An Automated Forecasting Framework based
on Method Recommendation for Seasonal Time Series. In Proceedings of the ACM/SPEC International Conference on
Performance Engineering (ICPE), pages 48–55. ACM, 2020. DOI: https://www.doi.org/10.1145/3358960.3379123.

[20] M. Bellingham, S. Holland, and P. Mulholland. A Cognitive Dimensions Analysis of Interaction Design for Algorithmic
Composition Software. In Proceedings of the 25th Annual Workshop of the Psychology of Programming Interest Group
(PPIG), page 18, 2014.

[21] G. Belov, W. Du, M. G. de la Banda, D. Harabor, S. Koenig, and X. Wei. From Multi-Agent Pathfinding to 3D Pipe
Routing. In Proceedings of the International Symposium on Combinatorial Search (SOCS), pages 11–19, 2020. URL:
http://aaai.org/ocs/index.php/SOCS/SOCS20/paper/view/18513.

[22] V. Bitto and P. Lengauer. Building Custom, Efficient, and Accurate Memory Monitoring Tools for Java Applications. In
Proceedings of the 7th ACM/SPEC International Conference on Performance Engineering (ICPE), pages 321–324, 2016.
DOI: https://www.doi.org/10.1145/2851553.2858664.

[23] V. Bitto, P. Lengauer, and H. Mössenböck. Efficient Rebuilding of Large Java Heaps from Event Traces. In Proceedings of
the International Conference on Principles and Practices of Programming on The Java Platform (PPPJ), pages 76–89,
2015. DOI: https://www.doi.org/10.1145/2807426.2807433.

[24] R. P. Biuk-Aghai, P. C. Pang, and B. Pang. Map-like Visualisations vs. Treemaps: An Experimental Comparison. In
Proceedings of the 10th International Symposium on Visual Information Communication and Interaction (VINCI), pages
113–120, 2017. DOI: https://www.doi.org/10.1145/3105971.3105976.

[25] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In Proceedings
of the Annual ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages, and Applications, pages
169–190, 2006. DOI: https://www.doi.org/10.1145/1167473.1167488.

[26] A. Blackwell and T. Green. CHAPTER 5 - Notational Systems—The Cognitive Dimensions of Notations Framework. In
HCI Models, Theories, and Frameworks, Interactive Technologies, pages 103 – 133. 2003. DOI: https://www.doi.org/
10.1016/B978-155860808-5/50005-8.

[27] A. F. Blackwell. Cognitive Dimensions of Notations. In Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), page 3, 2005. DOI: https://www.doi.org/10.1109/VLHCC.2005.26.

[28] A. F. Blackwell. Cognitive Dimensions of Notations: Understanding the Ergonomics of Diagram Use. In Proceedings
of the 5th International Conference on Diagrammatic Representation and Inference, pages 5–8, 2008. DOI: https:

//www.doi.org/10.1007/978-3-540-87730-1_4.

[29] A. F. Blackwell, C. Britton, A. L. Cox, T. R. G. Green, C. A. Gurr, G. F. Kadoda, M. Kutar, M. Loomes, C. L.
Nehaniv, M. Petre, C. Roast, C. Roe, A. Wong, and R. M. Young. Cognitive Dimensions of Notations: Design Tools
for Cognitive Technology. In Proceedings of the 4th Conference on Cognitive Technology, pages 325–341, 2001. DOI:
https://www.doi.org/10.1007/3-540-44617-6_31.

[30] T. Bladh, D. A. Carr, and J. Scholl. Extending Tree-Maps to Three Dimensions: A Comparative Study. In Proceedings
of the 6th Asia Pacific Conference on Computer Human Interaction (APCHI), pages 50–59, 2004. DOI: https://www.
doi.org/10.1007/978-3-540-27795-8_6.

[31] A. F. Blanco, J. P. S. Alcocer, and A. Bergel. Effective Visualization of Object Allocation Sites. In Proceedings of the
IEEE Working Conference on Software Visualization (VISSOFT), pages 43–53, 2018. DOI: https://www.doi.org/10.
1109/VISSOFT.2018.00013.

[32] J. Bohnet and J. Döllner. Monitoring Code Quality and Development Activity by Software Maps. In Proceedings of the 2nd
Workshop on Managing Technical Debt (MTD), pages 9–16, 2011. DOI: https://www.doi.org/10.1145/1985362.1985365.

244

 https://www.doi.org/10.1145/2635868.2661672
 https://www.doi.org/10.1109/INFVIS.2001.963290
 https://www.doi.org/10.1145/2483760.2483761
 https://www.doi.org/10.1145/2483760.2483761
 https://www.doi.org/10.1145/3358960.3379123
http://aaai.org/ocs/index.php/SOCS/SOCS20/paper/view/18513
 https://www.doi.org/10.1145/2851553.2858664
 https://www.doi.org/10.1145/2807426.2807433
 https://www.doi.org/10.1145/3105971.3105976
 https://www.doi.org/10.1145/1167473.1167488
 https://www.doi.org/10.1016/B978-155860808-5/50005-8
 https://www.doi.org/10.1016/B978-155860808-5/50005-8
 https://www.doi.org/10.1109/VLHCC.2005.26
 https://www.doi.org/10.1007/978-3-540-87730-1_4
 https://www.doi.org/10.1007/978-3-540-87730-1_4
 https://www.doi.org/10.1007/3-540-44617-6_31
 https://www.doi.org/10.1007/978-3-540-27795-8_6
 https://www.doi.org/10.1007/978-3-540-27795-8_6
 https://www.doi.org/10.1109/VISSOFT.2018.00013
 https://www.doi.org/10.1109/VISSOFT.2018.00013
 https://www.doi.org/10.1145/1985362.1985365

[33] M. D. Bond and K. S. McKinley. Bell: Bit-encoding Online Memory Leak Detection. In J. P. Shen and M. Martonosi,
editors, Proceedings of the 12th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 61–72, 2006. DOI: https://www.doi.org/10.1145/1168857.1168866.

[34] M. D. Bond and K. S. McKinley. Tolerating Memory Leaks. In Proceedings of the 23rd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages 109–126, 2008.
DOI: https://www.doi.org/10.1145/1449764.1449774.

[35] M. D. Bond and K. S. McKinley. Leak Pruning. In Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), pages 277–288, 2009. DOI: https://www.doi.
org/10.1145/1508244.1508277.

[36] G. Booch, J. E. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide - Covers UML 2.0 (Second
Edition). Addison-Wesley, 2005.

[37] M. Bostock. d3.js, 2021. URL: https://d3js.org/. last visited on 2021-04-08.

[38] M. Bostock, V. Ogievetsky, and J. Heer. D3 Data-Driven Documents. IEEE Trans. Vis. Comput. Graph., 17(12):2301–
2309, 2011. DOI: https://www.doi.org/10.1109/TVCG.2011.185.

[39] J. Boyle and P. M. D. Gray. The Design of 3D Metaphors for Database Visualisation. In Proceedings of the 3rd IFIP
2.6 Working Conference on Visual Database Systems, volume 34, pages 185–202, 1995. DOI: https://www.doi.org/10.
1007/978-0-387-34905-3_12.

[40] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the Future Safe for the Past: Adding Genericity to the Java
Programming Language. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages & Applications (OOPSLA), pages 183–200, 1998. DOI: https://www.doi.org/10.1145/286936.286957.

[41] M. Bruls, K. Huizing, and J. J. van Wijk. Squarified Treemaps. In Proceedings of the Joint Eurographics and IEEE TCVG
Symposium on Visualization (VisSym), pages 33–42, 2000. DOI: https://www.doi.org/10.1007/978-3-7091-6783-0_4.

[42] E. Bruneton, E. Kuleshov, A. Loskutov, and R. Forax. ASM, 2021. URL: https://asm.ow2.io/. last visited on 2021-04-08.

[43] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code manipulation tool to implement adaptable systems. Adaptable
and Extensible Component Systems, 30(19), 2002.

[44] J. Brutlag. Speed Matters for Google Web Search, 2009. URL: https://ai.googleblog.com/2009/06/speed-matters.
html. last visited on 2021-04-08.

[45] J. Calleya, R. Pawling, C. Ryan, and H. M. Gaspar. Using Data Driven Documents (D3) to Explore a Whole Ship
Model. In Proceedings of the 11th System of Systems Engineering Conference (SoSE), pages 1–6, 2016. DOI: https:
//www.doi.org/10.1109/SYSOSE.2016.7542947.

[46] P. Caserta and O. Zendra. Visualization of the Static Aspects of Software: A Survey. IEEE Trans. Vis. Comput. Graph.,
17(7):913–933, 2011. DOI: https://www.doi.org/10.1109/TVCG.2010.110.

[47] P. Caserta, O. Zendra, and D. Bodenes. 3D Hierarchical Edge bundles to Visualize Relations in a Software City Metaphor.
In Proceedings of the 6th IEEE International Workshop on Visualizing Software for Understanding and Analysis (VIS-
SOFT), pages 1–8, 2011. DOI: https://www.doi.org/10.1109/VISSOF.2011.6069451.

[48] I. Cassar, A. Francalanza, L. Aceto, and A. Ingólfsdóttir. A Survey of Runtime Monitoring Instrumentation Techniques .
In Proceedings of the Second International Workshop on Pre- and Post-Deployment Verification Techniques (PrePost),
volume 254, pages 15–28, 2017. DOI: https://www.doi.org/10.4204/EPTCS.254.2.

[49] R. Cattell, D. K. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell, O. Schadow, T. Stanienda, and F. Velez. The
Object Data Standard: ODMG 3.0. 2000.

[50] N. Cawthon and A. V. Moere. The Effect of Aesthetic on the Usability of Data Visualization. In Proceedings of the 11th
International Conference on Information Visualisation (IV), pages 637–648, 2007. DOI: https://www.doi.org/10.1109/
IV.2007.147.

[51] K. Chen and J. Chen. Aspect-Based Instrumentation for Locating Memory Leaks in Java Programs. In Proceedings of
the 31st Annual International Computer Software and Applications Conference (COMPSAC), pages 23–28, 2007. DOI:
https://www.doi.org/10.1109/COMPSAC.2007.79.

[52] S. Chiba. Load-time structural reflection in java. In Proceedings of the 14th European Conference on Object-Oriented
Programming (ECOOP) , pages 313–336, 2000. DOI: https://www.doi.org/10.1007/3-540-45102-1_16.

[53] S. Chiba. Javassist, 2020. URL: https://www.javassist.org/. last visited on 2021-04-08.

245

 https://www.doi.org/10.1145/1168857.1168866
 https://www.doi.org/10.1145/1449764.1449774
 https://www.doi.org/10.1145/1508244.1508277
 https://www.doi.org/10.1145/1508244.1508277
https://d3js.org/
 https://www.doi.org/10.1109/TVCG.2011.185
 https://www.doi.org/10.1007/978-0-387-34905-3_12
 https://www.doi.org/10.1007/978-0-387-34905-3_12
 https://www.doi.org/10.1145/286936.286957
 https://www.doi.org/10.1007/978-3-7091-6783-0_4
https://asm.ow2.io/
https://ai.googleblog.com/2009/06/speed-matters.html
https://ai.googleblog.com/2009/06/speed-matters.html
 https://www.doi.org/10.1109/SYSOSE.2016.7542947
 https://www.doi.org/10.1109/SYSOSE.2016.7542947
 https://www.doi.org/10.1109/TVCG.2010.110
 https://www.doi.org/10.1109/VISSOF.2011.6069451
 https://www.doi.org/10.4204/EPTCS.254.2
 https://www.doi.org/10.1109/IV.2007.147
 https://www.doi.org/10.1109/IV.2007.147
 https://www.doi.org/10.1109/COMPSAC.2007.79
 https://www.doi.org/10.1007/3-540-45102-1_16
https://www.javassist.org/

[54] S. Chiba and M. Nishizawa. An Easy-to-Use Toolkit for Efficient Java Bytecode Translators. In Proceedings of the 2nd
International Conference on Generative Programming and Component Engineering (GPCE), pages 364–376, 2003. DOI:
https://www.doi.org/10.1007/978-3-540-39815-8_22.

[55] T. M. Chilimbi, R. E. Jones, and B. G. Zorn. Designing a Trace Format for Heap Allocation Events. In Proc. of the
International Symposium on Memory Management (ISMM), pages 35–49, 2000. DOI: https://www.doi.org/10.1145/
362422.362435.

[56] A. E. Chis. Automatic Detection of Memory Anti-patterns. In Companion Proceedings of the 23rd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages 925–926, 2008.
DOI: https://www.doi.org/10.1145/1449814.1449911.

[57] A. E. Chis, N. Mitchell, E. Schonberg, G. Sevitsky, P. O’Sullivan, T. Parsons, and J. Murphy. Patterns of Memory
Inefficiency. In Proceedings of the European Conference on Object-Oriented Programming (ECOOP), volume 6813, pages
383–407, 2011. DOI: https://www.doi.org/10.1007/978-3-642-22655-7_18.

[58] M. Christakis and C. Bird. What Developers Want and Need from Program Analysis: An Empirical Study. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software Engineering (ASE), page 332–343, 2016. DOI:
https://www.doi.org/10.1145/2970276.2970347.

[59] M. C. Chuah. Dynamic Aggregation with Circular Visual Designs. In Proceedings of the IEEE Symposium on Information
Visualization (InfoVis), pages 35–43, 1998. DOI: https://www.doi.org/10.1109/INFVIS.1998.729557.

[60] J. Cito, P. Leitner, C. Bosshard, M. Knecht, G. Mazlami, and H. C. Gall. PerformanceHat: Augmenting Source Code
with Runtime Performance Traces in the IDE . In Companion Proceedings of the 40th International Conference on
Software Engineering (ICSE) , pages 41–44, 2018. DOI: https://www.doi.org/10.1145/3183440.3183481.

[61] C. Click, G. Tene, and M. Wolf. The Pauseless GC Algorithm. In M. Hind and J. Vitek, editors, Proceedings of the 1st
International Conference on Virtual Execution Environments (VEE), pages 46–56, 2005. DOI: https://www.doi.org/
10.1145/1064979.1064988.

[62] K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast dominance algorithm. Software Practice & Experience,
4(1-10):1–8, 2001.

[63] B. Cornelissen, A. Zaidman, D. Holten, L. Moonen, A. van Deursen, and J. J. van Wijk. Execution Trace Analysis
Through Massive Sequence and Circular Bundle Views. J. Syst. Softw., 81(12):2252–2268, 2008. DOI: https://www.doi.
org/10.1016/j.jss.2008.02.068.

[64] B. Cornelissen, A. Zaidman, A. van Deursen, and B. V. Rompaey. Trace Visualization for Program Comprehension: A
Controlled Experiment. In Proceedings of the 17th IEEE International Conference on Program Comprehension (ICPC),
pages 100–109, 2009. DOI: https://www.doi.org/10.1109/ICPC.2009.5090033.

[65] D. Costa, A. Andrzejak, J. Seboek, and D. Lo. Empirical Study of Usage and Performance of Java Collections. In
Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering (ICPE), pages 389–400,
2017. DOI: https://www.doi.org/10.1145/3030207.3030221.

[66] D. Costa and R. Matias Jr. Characterization of Dynamic Memory Allocations in Real-World Applications: An Exper-
imental Study. In Proceedings of the 23rd IEEE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), pages 93–101, oct 2015. DOI: https://www.doi.org/10.1109/
MASCOTS.2015.28.

[67] K. Cox. Cognitive Dimensions of Use Cases: Feedback from a Student Questionnaire. In Proceedings of the 12th Annual
Workshop of the Psychology of Programming Interest Group (PPIG), page 8, 2000. URL: http://ppig.org/library/
paper/cognitive-dimensions-use-cases-feedback-student-questionnaire.

[68] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An Efficient Method of Computing Static
Single Assignment Form. In Conference Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages (POPL), pages 25–35, 1989. DOI: https://www.doi.org/10.1145/75277.75280.

[69] F. D. Davis. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of In-
formation Technology. MIS Quarterly, 13(3):319–340, 1989. URL: http://misq.org/

perceived-usefulness-perceived-ease-of-use-and-user-acceptance-of-information-technology.html.

[70] W. De Pauw and G. Sevitsky. Visualizing Reference Patterns for Solving Memory Leaks in Java. Concurrency - Prac-
tice and Experience, 12(14):1431–1454, 2000. DOI: https://www.doi.org/10.1002/1096-9128(20001210)12:14<1431::
AID-CPE542>3.0.CO;2-2.

246

 https://www.doi.org/10.1007/978-3-540-39815-8_22
 https://www.doi.org/10.1145/362422.362435
 https://www.doi.org/10.1145/362422.362435
 https://www.doi.org/10.1145/1449814.1449911
 https://www.doi.org/10.1007/978-3-642-22655-7_18
 https://www.doi.org/10.1145/2970276.2970347
 https://www.doi.org/10.1109/INFVIS.1998.729557
 https://www.doi.org/10.1145/3183440.3183481
 https://www.doi.org/10.1145/1064979.1064988
 https://www.doi.org/10.1145/1064979.1064988
 https://www.doi.org/10.1016/j.jss.2008.02.068
 https://www.doi.org/10.1016/j.jss.2008.02.068
 https://www.doi.org/10.1109/ICPC.2009.5090033
 https://www.doi.org/10.1145/3030207.3030221
 https://www.doi.org/10.1109/MASCOTS.2015.28
 https://www.doi.org/10.1109/MASCOTS.2015.28
http://ppig.org/library/paper/cognitive-dimensions-use-cases-feedback-student-questionnaire
http://ppig.org/library/paper/cognitive-dimensions-use-cases-feedback-student-questionnaire
 https://www.doi.org/10.1145/75277.75280
http://misq.org/perceived-usefulness-perceived-ease-of-use-and-user-acceptance-of-information-technology.html
http://misq.org/perceived-usefulness-perceived-ease-of-use-and-user-acceptance-of-information-technology.html
 https://www.doi.org/10.1002/1096-9128(20001210)12:14<1431::AID-CPE542>3.0.CO;2-2
 https://www.doi.org/10.1002/1096-9128(20001210)12:14<1431::AID-CPE542>3.0.CO;2-2

[71] D. Detlefs, C. H. Flood, S. Heller, and T. Printezis. Garbage-first Garbage Collection. In D. F. Bacon and A. Diwan,
editors, Proceedings of the 4th International Symposium on Memory Management (ISMM) , pages 37–48, 2004. DOI:
https://www.doi.org/10.1145/1029873.1029879.

[72] D. Distefano and I. Filipovic. Memory Leaks Detection in Java by Bi-abductive Inference. In D. S. Rosenblum and
G. Taentzer, editors, Proceedings of the International Conference on Fundamental Approaches to Software Engineering
(FASE), volume 6013, pages 278–292, 2010. DOI: https://www.doi.org/10.1007/978-3-642-12029-9_20.

[73] S. dos Santos and K. Brodlie. Gaining Understanding of Multivariate and Multidimensional Data Through Visualization.
Computers & Graphics, 28(3):311 – 325, 2004. DOI: https://www.doi.org/http://doi.org/10.1016/j.cag.2004.03.013.

[74] D. C. Dryer. Wizards, Guides, and beyond: Rational and Empirical Methods for Selecting Optimal Intelligent User
Interface Agents. In Proceedings of the 2nd International Conference on Intelligent User Interfaces (IUI) , pages 265–
268, 1997. DOI: https://www.doi.org/10.1145/238218.238347.

[75] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic Metrics for Java. In Proceedings of the 18th Annual
ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
149–168, 2003. DOI: https://www.doi.org/10.1145/949305.949320.

[76] B. Dufour, B. G. Ryder, and G. Sevitsky. Blended Analysis for Performance Understanding of Framework-based Appli-
cations. In D. S. Rosenblum and S. G. Elbaum, editors, Proceedings of the ACM/SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), pages 118–128, 2007. DOI: https://www.doi.org/10.1145/1273463.1273480.

[77] Dynatrace. Dynatrace, 2021. URL: https://www.dynatrace.com/. last visited on 2021-04-08.

[78] Dynatrace. Dynatrace Demo Application: easyTravel, 2021. URL: https://github.com/Dynatrace/easyTravel-Docker.
last visited on 2021-04-08.

[79] Eclipse Foundation. Eclipse Memory Analyzer (MAT), 2021. URL: https://www.eclipse.org/mat/. last visited on
2021-04-08.

[80] ej-technologies. JProfiler, 2021. URL: https://www.ej-technologies.com/products/jprofiler/overview.html. last
visited on 2021-04-08.

[81] M. D. Ernst. Static and Dynamic Analysis: Synergy and Duality. In Proceedings of the Workshop on Dynamic Analysis
(WODA), pages 24–27, May 2003.

[82] J. Eve and R. Kurki-Suonio. On Computing the Transitive Closure of a Relation. Acta Informatica, 8:303–314, 1977.
DOI: https://www.doi.org/10.1007/BF00271339.

[83] R. Falke, R. Klein, R. Koschke, and J. Quante. The Dominance Tree in Visualizing Software Dependencies. In Proceedings
of the 3rd IEEE International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT), pages
1–6, 2005. DOI: https://www.doi.org/10.1109/VISSOF.2005.1684311.

[84] A. Felfernig, G. Ninaus, H. Grabner, F. Reinfrank, L. Weninger, D. Pagano, and W. Maalej. An Overview of Recommender
Systems in Requirements Engineering. In Managing Requirements Knowledge, pages 315–332. 2013. DOI: https://www.
doi.org/10.1007/978-3-642-34419-0_14.

[85] I. Fette and A. Melnikov. TheWebSocket Protocol. RFC, 6455:1–71, 2011. DOI: https://www.doi.org/10.17487/RFC6455.

[86] F. Fittkau, S. Finke, W. Hasselbring, and J. Waller. Comparing Trace Visualizations for Program Comprehension Through
Controlled Experiments. In Proceedings of the 23rd IEEE International Conference on Program Comprehension (ICPC),
pages 266–276, 2015. DOI: https://www.doi.org/10.1109/ICPC.2015.37.

[87] F. Fittkau, A. Krause, and W. Hasselbring. Exploring Software Cities in Virtual Reality. In Proceedings of the 3rd IEEE
Working Conference on Software Visualization (VISSOFT), pages 130–134, 2015. DOI: https://www.doi.org/10.1109/
VISSOFT.2015.7332423.

[88] F. Fittkau, A. Krause, and W. Hasselbring. Hierarchical Software Landscape Visualization for System Comprehension:
A Controlled Experiment. In Proceedings of the 3rd IEEE Working Conference on Software Visualization (VISSOFT),
pages 36–45, 2015. DOI: https://www.doi.org/10.1109/VISSOFT.2015.7332413.

[89] F. Fittkau, A. Krause, and W. Hasselbring. Software Landscape and Application Visualization for System Comprehension
with ExplorViz. Inf. Softw. Technol., 87:259–277, 2017. DOI: https://www.doi.org/10.1016/j.infsof.2016.07.004.

[90] F. Fittkau, S. Roth, and W. Hasselbring. ExplorViz: Visual Runtime Behavior Analysis of Enterprise Application
Landscapes. In Proceedings of the European Conference on Information Systems (ECIS), 2015. URL: http://aisel.
aisnet.org/ecis2015_cr/46.

247

 https://www.doi.org/10.1145/1029873.1029879
 https://www.doi.org/10.1007/978-3-642-12029-9_20
 https://www.doi.org/http://doi.org/10.1016/j.cag.2004.03.013
 https://www.doi.org/10.1145/238218.238347
 https://www.doi.org/10.1145/949305.949320
 https://www.doi.org/10.1145/1273463.1273480
https://www.dynatrace.com/
https://github.com/Dynatrace/easyTravel-Docker
https://www.eclipse.org/mat/
https://www.ej-technologies.com/products/jprofiler/overview.html
 https://www.doi.org/10.1007/BF00271339
 https://www.doi.org/10.1109/VISSOF.2005.1684311
 https://www.doi.org/10.1007/978-3-642-34419-0_14
 https://www.doi.org/10.1007/978-3-642-34419-0_14
 https://www.doi.org/10.17487/RFC6455
 https://www.doi.org/10.1109/ICPC.2015.37
 https://www.doi.org/10.1109/VISSOFT.2015.7332423
 https://www.doi.org/10.1109/VISSOFT.2015.7332423
 https://www.doi.org/10.1109/VISSOFT.2015.7332413
 https://www.doi.org/10.1016/j.infsof.2016.07.004
http://aisel.aisnet.org/ecis2015_cr/46
http://aisel.aisnet.org/ecis2015_cr/46

[91] F. Fittkau, P. Stelzer, and W. Hasselbring. Live Visualization of Large Software Landscapes for Ensuring Architecture
Conformance. In Proceedings of the European Conference on Software Architecture (ECSA), pages 28:1–28:4, 2014. DOI:
https://www.doi.org/10.1145/2642803.2642831.

[92] F. Fittkau, A. van Hoorn, and W. Hasselbring. Towards a Dependability Control Center for Large Software Landscapes.
In Proceedings of the 10th European Dependable Computing Conference (EDCC), pages 58–61, 2014. DOI: https:

//www.doi.org/10.1109/EDCC.2014.12.

[93] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring. Live Trace Visualization for Comprehending Large Software Land-
scapes: The ExplorViz Approach. In Proceedings of the 1st IEEE Working Conference on Software Visualization (VIS-
SOFT), pages 1–4, 2013. DOI: https://www.doi.org/10.1109/VISSOFT.2013.6650536.

[94] C. H. Flood, R. Kennke, A. Dinn, A. Haley, and R. Westrelin. Shenandoah: An Open-source Concurrent Compacting
Garbage Collector for OpenJDK. In Proceedings of the 13th International Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines, Languages, and Tools (PPPJ), pages 13:1–13:9, 2016. DOI:
https://www.doi.org/10.1145/2972206.2972210.

[95] E. Folmer and J. Bosch. Usability Patterns in Software Architecture. In Proceedings of the 10th International Con-
ference on Human-Computer Interaction (HCII), pages 93–97, 2003. URL: http://www.grise.upm.es/rearviewmirror/
projects/status/results/patterns.pdf.

[96] T. Fu. A Review on Time Series Data Mining. Eng. Appl. Artif. Intell., 24(1):164–181, 2011. DOI: https://www.doi.
org/10.1016/j.engappai.2010.09.007.

[97] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides. Design Patterns: Abstraction and Reuse of Object-Oriented
Design. In Proceedings of the 7th European Conference on Object-Oriented Programming (ECOOP), pages 406–431, 1993.
DOI: https://www.doi.org/10.1007/3-540-47910-4_21.

[98] E. Gander. Extending the Memory Monitoring Tool AntTracks to Guide Users During Heap Evolution Analysis . Master’s
thesis, Johannes Kepler University, Institute for System Software, 2020. URL: https://epub.jku.at/obvulihs/content/
titleinfo/4741346.

[99] J. G. Garcı́a, J. Vanderdonckt, and C. Lemaigre. Identification Criteria in Task Modeling. In Proceedings of the 1st TC
13 IFIP Human-Computer Interaction Symposium (HCIS), volume 272, pages 7–20, 2008. DOI: https://www.doi.org/
10.1007/978-0-387-09678-0_2.

[100] M. Ghanavati, D. Costa, A. Andrzejak, and J. Seboek. Memory and Resource Leak Defects in Java Projects: An
Empirical Study . In Companion Proceedings of the 40th International Conference on Software Engineering (ICSE) ,
pages 410–411, 2018. DOI: https://www.doi.org/10.1145/3183440.3195032.

[101] M. Ghanavati, D. Costa, J. Seboek, D. Lo, and A. Andrzejak. Memory and Resource Leak Defects and Their Repairs in
Java Projects . Empir. Softw. Eng., 25(1):678–718, 2020. DOI: https://www.doi.org/10.1007/s10664-019-09731-8.

[102] D. Gilbert. JFreeChart, 2021. URL: http://www.jfree.org/jfreechart/. last visited on 2021-04-08.

[103] D. Gilbert. JFreeChart-FX, 2021. URL: https://github.com/jfree/jfreechart-fx. last visited on 2021-04-08.

[104] Google. Android Studio, 2021. URL: https://developer.android.com/studio. last visited on 2021-04-08.

[105] B. Göschlberger and P. A. Bruck. Gamification in Mobile and Workplace Integrated Microlearning. In Proceedings of
the 19th International Conference on Information Integration and Web-based Applications & Services (iiWAS), pages
545–552, 2017. DOI: https://www.doi.org/10.1145/3151759.3151795.

[106] T. Green. Instructions and Descriptions: Some Cognitive Aspects of Programming and Similar Activities. In Proceedings
of the Working Conference on Advanced Visual Interfaces (AVI), pages 21–28, 2000. DOI: https://www.doi.org/10.
1145/345513.345233.

[107] T. Green and A. Blackwell. Cognitive Dimensions of Information Artefacts: a tutorial, 1998. URL: https://www.cl.cam.
ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf. last visited on 2021-04-08.

[108] T. R. G. Green. Cognitive Dimensions of Notations. In Proceedings of the Fifth Conference of the British Computer
Society, Human-Computer Interaction Specialist Group on People and Computers V, pages 443–460, 1989. URL: http:
//dl.acm.org/citation.cfm?id=92968.93015.

[109] B. Gregg. The Flame Graph. ACM Queue, 14(2):10, 2016. DOI: https://www.doi.org/10.1145/2927299.2927301.

[110] B. Gregg. The Flame Graph. Commun. ACM, 59(6):48–57, 2016. DOI: https://www.doi.org/10.1145/2909476.

[111] T. Hagos. Android Studio IDE Quick Reference: A Pocket Guide to Android Studio Development. Apress, 2019.

248

 https://www.doi.org/10.1145/2642803.2642831
 https://www.doi.org/10.1109/EDCC.2014.12
 https://www.doi.org/10.1109/EDCC.2014.12
 https://www.doi.org/10.1109/VISSOFT.2013.6650536
 https://www.doi.org/10.1145/2972206.2972210
http://www.grise.upm.es/rearviewmirror/projects/status/results/patterns.pdf
http://www.grise.upm.es/rearviewmirror/projects/status/results/patterns.pdf
 https://www.doi.org/10.1016/j.engappai.2010.09.007
 https://www.doi.org/10.1016/j.engappai.2010.09.007
 https://www.doi.org/10.1007/3-540-47910-4_21
https://epub.jku.at/obvulihs/content/titleinfo/4741346
https://epub.jku.at/obvulihs/content/titleinfo/4741346
 https://www.doi.org/10.1007/978-0-387-09678-0_2
 https://www.doi.org/10.1007/978-0-387-09678-0_2
 https://www.doi.org/10.1145/3183440.3195032
 https://www.doi.org/10.1007/s10664-019-09731-8
http://www.jfree.org/jfreechart/
https://github.com/jfree/jfreechart-fx
https://developer.android.com/studio
 https://www.doi.org/10.1145/3151759.3151795
 https://www.doi.org/10.1145/345513.345233
 https://www.doi.org/10.1145/345513.345233
https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf
https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf
http://dl.acm.org/citation.cfm?id=92968.93015
http://dl.acm.org/citation.cfm?id=92968.93015
 https://www.doi.org/10.1145/2927299.2927301
 https://www.doi.org/10.1145/2909476

[112] S. Hahn, J. Trümper, D. Moritz, and J. Döllner. Visualization of Varying Hierarchies by Stable Layout of Voronoi
Treemaps. In Proceedings of the 5th International Conference on Information Visualization Theory and Applications
(IVAPP), pages 50–58, 2014. DOI: https://www.doi.org/10.5220/0004686200500058.

[113] J. Hamari, J. Koivisto, and H. Sarsa. Does Gamification Work? - A Literature Review of Empirical Studies on Gamifica-
tion. In Proceedings of the 47th Hawaii International Conference on System Sciences (HICSS), pages 3025–3034, 2014.
DOI: https://www.doi.org/10.1109/HICSS.2014.377.

[114] M. Hauswirth and T. M. Chilimbi. Low-overhead Memory Leak Detection Using Adaptive Statistical Profiling. In
Proceedings of the 11th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 156–164, 2004. DOI: https://www.doi.org/10.1145/1024393.1024412.

[115] J. Heer, M. Bostock, and V. Ogievetsky. A Tour through the Visualization Zoo. ACM Queue, 8(5):20, 2010. DOI:
https://www.doi.org/10.1145/1794514.1805128.

[116] W. E. Hefley and D. Murray. Intelligent User Interfaces. In Proceedings of the 1st International Conference on Intelligent
User Interfaces (IUI), page 3–10, 1993. DOI: https://www.doi.org/10.1145/169891.169892.

[117] M. Hertz, S. M. Blackburn, J. E. B. Moss, K. S. McKinley, and D. Stefanović. Error-free Garbage Collection Traces: How
to Cheat and Not Get Caught. In Proceedings of the ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS), pages 140–151, 2002. DOI: https://www.doi.org/10.1145/511334.
511352.

[118] M. Hertz, S. M. Blackburn, J. E. B. Moss, K. S. McKinley, and D. Stefanović. Generating Object Lifetime Traces with
Merlin. ACM Trans. Program. Lang. Syst., 28(3):476–516, May 2006. DOI: https://www.doi.org/10.1145/1133651.
1133654.

[119] T. Hill, J. Noble, and J. Potter. Scalable Visualisations with Ownership Trees. In Proceedings of the 37th International
Conference on Technology of Object-Oriented Languages and Systems (TOOLS), pages 202–213, 2000. DOI: https:
//www.doi.org/10.1109/TOOLS.2000.891370.

[120] T. Hill, J. Noble, and J. Potter. Scalable Visualizations of Object-Oriented Systems with Ownership Trees. J. Vis. Lang.
Comput., 13(3):319–339, 2002. DOI: https://www.doi.org/10.1006/jvlc.2002.0238.

[121] A. Hiniker, S. R. Hong, Y. Kim, N. Chen, J. D. West, and C. R. Aragon. Toward the Operationalization of Visual
Metaphor. J. Assoc. Inf. Sci. Technol., 68(10):2338–2349, 2017. DOI: https://www.doi.org/10.1002/asi.23857.

[122] P. Hofer, D. Gnedt, A. Schörgenhumer, and H. Mössenböck. Efficient Tracing and Versatile Analysis of Lock Contention
in Java Applications on the Virtual Machine Level. In Proceedings of the 7th ACM/SPEC International Conference on
Performance Engineering (ICPE), pages 263–274, 2016. DOI: https://www.doi.org/10.1145/2851553.2851559.

[123] D. Holten. Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data. IEEE Trans. Vis.
Comput. Graph., 12(5):741–748, 2006. DOI: https://www.doi.org/10.1109/TVCG.2006.147.

[124] D. Holten, B. Cornelissen, and J. J. van Wijk. Trace Visualization Using Hierarchical Edge Bundles and Massive Sequence
Views. In Proceedings of the 4th IEEE International Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT), pages 47–54, 2007. DOI: https://www.doi.org/10.1109/VISSOF.2007.4290699.

[125] A. Holzinger. Usability Engineering Methods for Software Developers. Commun. ACM, 48(1):71–74, 2005. DOI: https:
//www.doi.org/10.1145/1039539.1039541.

[126] W. Hop, S. de Ridder, F. Frasincar, and F. Hogenboom. Using Hierarchical Edge Bundles to Visualize Complex Ontologies
in GLOW. In Proceedings of the ACM Symposium on Applied Computing (SAC), pages 304–311, 2012. DOI: https:
//www.doi.org/10.1145/2245276.2245338.

[127] M. Höst, B. Regnell, and C. Wohlin. Using Students as Subjects—A Comparative Study of Students and Professionals
in Lead-Time Impact Assessment. Empirical Software Engineering, 5(3):201–214, Nov 2000.

[128] M. Hucko, L. Gazo, P. Simún, M. Valky, R. Móro, J. Simko, and M. Bieliková. YesElf: Personalized Onboarding for
Web Applications. In Adjunct Publications of the 27th Conference on User Modeling, Adaptation and Personalization
(UMAP), pages 39–44. ACM, 2019. DOI: https://www.doi.org/10.1145/3314183.3324978.

[129] A. Infante and A. Bergel. Object Equivalence: Revisiting Object Equality Profiling (An Experience Report). In Proceeding
of the 13th ACM SIGPLAN International Symposium on Dynamic Languages (DLS), pages 27–38, 2017. DOI: https:
//www.doi.org/10.1145/3133841.3133844.

[130] T. Janjusic and K. Kavi. Gleipnir: A Memory Profiling and Tracing Tool. SIGARCH Comput. Archit. News, 41(4):8–12,
Dec. 2013. DOI: https://www.doi.org/10.1145/2560488.2560491.

249

 https://www.doi.org/10.5220/0004686200500058
 https://www.doi.org/10.1109/HICSS.2014.377
 https://www.doi.org/10.1145/1024393.1024412
 https://www.doi.org/10.1145/1794514.1805128
 https://www.doi.org/10.1145/169891.169892
 https://www.doi.org/10.1145/511334.511352
 https://www.doi.org/10.1145/511334.511352
 https://www.doi.org/10.1145/1133651.1133654
 https://www.doi.org/10.1145/1133651.1133654
 https://www.doi.org/10.1109/TOOLS.2000.891370
 https://www.doi.org/10.1109/TOOLS.2000.891370
 https://www.doi.org/10.1006/jvlc.2002.0238
 https://www.doi.org/10.1002/asi.23857
 https://www.doi.org/10.1145/2851553.2851559
 https://www.doi.org/10.1109/TVCG.2006.147
 https://www.doi.org/10.1109/VISSOF.2007.4290699
 https://www.doi.org/10.1145/1039539.1039541
 https://www.doi.org/10.1145/1039539.1039541
 https://www.doi.org/10.1145/2245276.2245338
 https://www.doi.org/10.1145/2245276.2245338
 https://www.doi.org/10.1145/3314183.3324978
 https://www.doi.org/10.1145/3133841.3133844
 https://www.doi.org/10.1145/3133841.3133844
 https://www.doi.org/10.1145/2560488.2560491

[131] V. L. Jaquero, F. Montero, J. Molina, and P. González. Intelligent User Interfaces: Past, Present and Future, pages
1–12. 2009. DOI: https://www.doi.org/10.1007/978-1-84800-136-7_18.

[132] M. W. M. Jaspers, T. Steen, C. van den Bos, and M. M. Geenen. The think aloud method: A guide to user interface design.
I. J. Medical Informatics, 73(11-12):781–795, 2004. DOI: https://www.doi.org/10.1016/j.ijmedinf.2004.08.003.

[133] JavaMelody. JavaMelody : monitoring of JavaEE applications, 2020. URL: https://github.com/javamelody/

javamelody/wiki. last visited on 2021-04-08.

[134] S. Jayaraman, B. Jayaraman, and D. Lessa. Compact Visualization of Java Program Execution. Softw. Pract. Exp.,
47(2):163–191, 2017. DOI: https://www.doi.org/10.1002/spe.2411.

[135] K. Jezek and R. Lipka. Antipatterns Causing Memory Bloat: A Case Study. In Proceedings of the 24th IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages 306–315, 2017. DOI: https://www.doi.
org/10.1109/SANER.2017.7884631.

[136] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora. Automated Performance Analysis of Load Tests. In Proceedings
of the 25th IEEE International Conference on Software Maintenance (ICSM), pages 125–134, 2009. DOI: https://www.
doi.org/10.1109/ICSM.2009.5306331.

[137] Jikes RVM Team. The Jikes RVM (Research VM) Project, 2016. URL: https://www.jikesrvm.org. last visited on
2021-04-08.

[138] B. Johnson and B. Shneiderman. Tree-Maps: A Space-Filling Approach to the Visualization of Hierarchical Information
Structures. In Proceedings of the IEEE Conference on Visualization, pages 284–291, 1991. DOI: https://www.doi.org/
10.1109/VISUAL.1991.175815.

[139] B. Johnson, Y. Song, E. R. Murphy-Hill, and R. W. Bowdidge. Why Don’t Software Developers Use Atatic Analysis Tools
to Find Bugs? In Proceedings of the 35th International Conference on Software Engineering (ICSE), pages 672–681,
2013. DOI: https://www.doi.org/10.1109/ICSE.2013.6606613.

[140] V. Johnston. A Framework for the Development of a Dynamic Adaptive Intelligent User Interface to Enhance the User
Experience. In Proceedings of the 31st European Conference on Cognitive Ergonomics (ECCE), pages 32–35, 2019. DOI:
https://www.doi.org/10.1145/3335082.3335125.

[141] R. Jones, A. Hosking, and E. Moss. The Garbage Collection Handbook: The Art of Automatic Memory Management.
Chapman and Hall/CRC, 2016.

[142] R. E. Jones and C. Ryder. A Study of Java Object Demographics. In Proceedings of the 7th International Symposium
on Memory Management (ISMM), pages 121–130, 2008. DOI: https://www.doi.org/10.1145/1375634.1375652.

[143] L. J. W. Jr. Visual Metaphors for Teaching Programming Concepts. In Proceedings of the 20th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE), pages 141–145, 1989. DOI: https://www.doi.org/10.1145/

65293.71203.

[144] M. Jump and K. S. McKinley. Cork: Dynamic Memory Leak Detection for Garbage-collected Languages. In Proceedings of
the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages 31–38,
2007. DOI: https://www.doi.org/10.1145/1190216.1190224.

[145] M. Jump and K. S. McKinley. Dynamic Shape Analysis via Degree Metrics. In Proceedings of the 2009 International
Symposium on Memory Management (ISMM), pages 119–128, 2009. DOI: https://www.doi.org/10.1145/1542431.

1542449.

[146] M. Jump and K. S. McKinley. Detecting Memory Leaks in Managed Languages with Cork. Softw. Pract. Exp., 40(1):1–22,
2010. DOI: https://www.doi.org/10.1002/spe.945.

[147] R. Jung and M. Adolf. The JPetStore Suite: A Concise Experiment Setup for Research. In Proceedings of the 9th
Symposium on Software Performance (SSP), 2018. URL: http://eprints.uni-kiel.de/48775/.

[148] R. Jung, M. Adolf, and C. Dornieden. Towards Extracting Realistic User Behavior Models. Softwaretechnik-Trends,
37(3), November 2017. URL: http://eprints.uni-kiel.de/40365/.

[149] T. Kamada and S. Kawai. A General Framework for Visualizing Abstract Objects and Relations. ACM Trans. Graph.,
10(1):1–39, 1991. DOI: https://www.doi.org/10.1145/99902.99903.

[150] S. Kelley, E. Aftandilian, C. Gramazio, N. P. Ricci, S. L. Su, and S. Z. Guyer. Heapviz: Interactive Heap Visualization for
Program Understanding and Debugging. Information Visualization, 12(2):163–177, 2013. DOI: https://www.doi.org/
10.1177/1473871612438786.

250

 https://www.doi.org/10.1007/978-1-84800-136-7_18
 https://www.doi.org/10.1016/j.ijmedinf.2004.08.003
https://github.com/javamelody/javamelody/wiki
https://github.com/javamelody/javamelody/wiki
 https://www.doi.org/10.1002/spe.2411
 https://www.doi.org/10.1109/SANER.2017.7884631
 https://www.doi.org/10.1109/SANER.2017.7884631
 https://www.doi.org/10.1109/ICSM.2009.5306331
 https://www.doi.org/10.1109/ICSM.2009.5306331
https://www.jikesrvm.org
 https://www.doi.org/10.1109/VISUAL.1991.175815
 https://www.doi.org/10.1109/VISUAL.1991.175815
 https://www.doi.org/10.1109/ICSE.2013.6606613
 https://www.doi.org/10.1145/3335082.3335125
 https://www.doi.org/10.1145/1375634.1375652
 https://www.doi.org/10.1145/65293.71203
 https://www.doi.org/10.1145/65293.71203
 https://www.doi.org/10.1145/1190216.1190224
 https://www.doi.org/10.1145/1542431.1542449
 https://www.doi.org/10.1145/1542431.1542449
 https://www.doi.org/10.1002/spe.945
http://eprints.uni-kiel.de/48775/
http://eprints.uni-kiel.de/40365/
 https://www.doi.org/10.1145/99902.99903
 https://www.doi.org/10.1177/1473871612438786
 https://www.doi.org/10.1177/1473871612438786

[151] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An Overview of AspectJ. In Proceedings
of the 15th European Conference on Object-Oriented Programming (ECOOP), pages 327–353, 2001. DOI: https://www.
doi.org/10.1007/3-540-45337-7_18.

[152] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. Getting started with ASPECTJ. Commun.
ACM, 44(10):59–65, 2001. DOI: https://www.doi.org/10.1145/383845.383858.

[153] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier, and J. Irwin. Aspect-Oriented Programming.
In Proceedings of the 11th European Conference on Object-Oriented Programming (ECOOP), volume 1241, pages 220–242,
1997. DOI: https://www.doi.org/10.1007/BFb0053381.

[154] Kieker Project. Kieker, 2021. URL: http://kieker-monitoring.net/. last visited on 2021-04-08.

[155] R. M. Kitchin. Cognitive Maps: What are they and why study them? Journal of Environmental Psychology, 14(1):1–19,
1994. DOI: https://www.doi.org/10.1016/S0272-4944(05)80194-X.

[156] C. Knight and M. Munro. Comprehension with[in] Virtual Environment Visualisations. In Proceedings of the 7th Inter-
national Workshop on Program Comprehension (IWPC), pages 4–11, 1999. DOI: https://www.doi.org/10.1109/WPC.
1999.777733.

[157] C. Knight and M. Munro. Virtual but Visible Software. In Proceedings of the International Conference on Information
Visualisation (IV), pages 198–205, 2000. DOI: https://www.doi.org/10.1109/IV.2000.859756.

[158] D. E. Knuth. Top-Down Syntax Analysis. Acta Informatica, 1:79–110, 1971. DOI: https://www.doi.org/10.1007/
BF00289517.

[159] A. J. Ko, T. D. LaToza, and M. M. Burnett. A Practical Guide to Controlled Experiments of Software Engineering Tools
with Human Participants. Empirical Software Engineering, 20(1):110–141, 2015. DOI: https://www.doi.org/10.1007/
s10664-013-9279-3.

[160] M. Koller and G. Meixner. Task Models in Practice: Are There Special Requirements for the Use in Daily Work? In
Proceedings of 18th International Conference on Human-Computer Interaction (HCI) - Theory, Design, Development
and Practice, pages 488–497, 2016. DOI: https://www.doi.org/10.1007/978-3-319-39510-4_45.

[161] S. Kristoffersen. Learnability and Robustness of User Interfaces. Towards a Formal Analysis of Usability Design Prin-
ciples. In Proceedings of the 3rd International Conference on Software and Data Technologies (ICSOFT), Volume
SE/MUSE/GSDCA, pages 261–268, 2008.

[162] L. M. Kritzinger, T. Krismayer, R. Rabiser, and P. Grünbacher. A User Study on the Usefulness of Visualization Support
for Requirements Monitoring. In Proceedings of the 7th IEEE Working Conference on Software Visualization (VISSOFT),
pages 56–66, 2019. DOI: https://www.doi.org/10.1109/VISSOFT.2019.00015.

[163] G. Kruk, O. D. S. Alves, and L. Molinari. JavaFX Charts: Implementation of Missing Features. In Proceedings of
the International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS) , number 16, pages
866–868, Jan. 2017. DOI: https://www.doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA186.

[164] J. B. Kruskal and J. M. Landwehr. Icicle Plots: Better Displays for Hierarchical Clustering. The American Statistician,
37(2):162–168, 1983. DOI: https://www.doi.org/10.2307/2685881.

[165] E. Kuleshov. Using the ASM Framework to Implement Common Java Bytecode Transformation Patterns, 2007.

[166] M. Kutar, C. Britton, and J. Wilson. Cognitive Dimensions: An Experience Report. In Proceedings of the 12th Annual
Workshop of the Psychology of Programming Interest Group (PPIG), page 7, 2000. URL: http://ppig.org/library/
paper/cognitive-dimensions-experience-report.

[167] M. Kutar, C. L. Nehaniv, C. Britton, and S. Jones. The Cognitive Dimensions of an Artifact vis-à-vis Individual Human
Users: Studies with Notations for the Temporal Specification of Interactive Systems. In Proceedings of the 4th International
Conference on Cognitive Technology, pages 342–355, 2001. DOI: https://www.doi.org/10.1007/3-540-44617-6_32.

[168] G. Lakoff. Master Metaphor List. University of California, 1994.

[169] G. Langelier and K. Dhambri. Visual Analysis of Azureus using VERSO. In Proceedings of the 4th IEEE International
Workshop on Visualizing Software for Understanding and Analysis (VISSOFT), pages 163–164, 2007. DOI: https:
//www.doi.org/10.1109/VISSOF.2007.4290720.

[170] G. Langelier, H. A. Sahraoui, and P. Poulin. Visualization-based Analysis of Quality for Large-scale Software Systems. In
Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 214–223,
2005. DOI: https://www.doi.org/10.1145/1101908.1101941.

251

 https://www.doi.org/10.1007/3-540-45337-7_18
 https://www.doi.org/10.1007/3-540-45337-7_18
 https://www.doi.org/10.1145/383845.383858
 https://www.doi.org/10.1007/BFb0053381
http://kieker-monitoring.net/
 https://www.doi.org/10.1016/S0272-4944(05)80194-X
 https://www.doi.org/10.1109/WPC.1999.777733
 https://www.doi.org/10.1109/WPC.1999.777733
 https://www.doi.org/10.1109/IV.2000.859756
 https://www.doi.org/10.1007/BF00289517
 https://www.doi.org/10.1007/BF00289517
 https://www.doi.org/10.1007/s10664-013-9279-3
 https://www.doi.org/10.1007/s10664-013-9279-3
 https://www.doi.org/10.1007/978-3-319-39510-4_45
 https://www.doi.org/10.1109/VISSOFT.2019.00015
 https://www.doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA186
 https://www.doi.org/10.2307/2685881
http://ppig.org/library/paper/cognitive-dimensions-experience-report
http://ppig.org/library/paper/cognitive-dimensions-experience-report
 https://www.doi.org/10.1007/3-540-44617-6_32
 https://www.doi.org/10.1109/VISSOF.2007.4290720
 https://www.doi.org/10.1109/VISSOF.2007.4290720
 https://www.doi.org/10.1145/1101908.1101941

[171] G. Langelier, H. A. Sahraoui, and P. Poulin. Exploring the Evolution of Software Quality with Animated Visualization.
In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pages 13–20,
2008. DOI: https://www.doi.org/10.1109/VLHCC.2008.4639052.

[172] P. Laporte. JVM Options - the complete reference, 2021. URL: http://pingtimeout.github.io/jvm-options/. last
visited on 2021-06-15.

[173] P. Lengauer, V. Bitto, S. Fitzek, M. Weninger, and H. Mössenböck. Efficient Memory Traces with Full Pointer Information.
In Proceedings of the 13th International Conference on Principles and Practices of Programming on the Java Platform:
Virtual Machines, Languages, and Tools (PPPJ), pages 4:1–4:11, 2016. DOI: https://www.doi.org/10.1145/2972206.
2972220.

[174] P. Lengauer, V. Bitto, and H. Mössenböck. Accurate and Efficient Object Tracing for Java Applications. In Proceedings
of the 6th ACM/SPEC International Conference on Performance Engineering (ICPE), pages 51–62, 2015. DOI: https:
//www.doi.org/10.1145/2668930.2688037.

[175] P. Lengauer, V. Bitto, and H. Mössenböck. Efficient and Viable Handling of Large Object Traces. In Proceedings
of the 7th ACM/SPEC International Conference on Performance Engineering (ICPE), pages 249–260, 2016. DOI:
https://www.doi.org/10.1145/2851553.2851555.

[176] P. Lengauer, V. Bitto, H. Mössenböck, and M. Weninger. A Comprehensive Java Benchmark Study on Memory and
Garbage Collection Behavior of DaCapo, DaCapo Scala, and SPECjvm2008. In Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering (ICPE), pages 3–14, 2017. DOI: https://www.doi.org/10.1145/
3030207.3030211.

[177] T. Lengauer and R. E. Tarjan. A Fast Algorithm for Finding Dominators in a Flowgraph. ACM Trans. Program. Lang.
Syst., 1(1):121–141, 1979. DOI: https://www.doi.org/10.1145/357062.357071.

[178] B. Li, J. A. Burgoyne, and I. Fujinaga. Extending Audacity for Audio Annotation. In Proceedings of the 7th International
Conference on Music Information Retrieval (ISMIR), pages 379–380, 2006.

[179] J. Li, H. Izakian, W. Pedrycz, and I. Jamal. Clustering-based Anomaly Detection in Multivariate Time Series Data. Appl.
Soft Comput., 100:106919, 2021. DOI: https://www.doi.org/10.1016/j.asoc.2020.106919.

[180] J. Liang and M. L. Huang. Highlighting in Information Visualization: A Survey. In Proceedings of the 14th International
Conference on Information Visualisation (IV), pages 79–85. IEEE Computer Society, 2010. DOI: https://www.doi.org/
10.1109/IV.2010.21.

[181] P. Lidén and S. Karlsson. The Z Garbage Collector - An Introduction, FOSDEM 2018, 2018. URL: http://cr.openjdk.
java.net/~pliden/slides/ZGC-FOSDEM-2018.pdf. last visited on 2021-04-08.

[182] H. Lieberman and C. Hewitt. A Real-time Garbage Collector Based on the Lifetimes of Objects. Commun. ACM,
26(6):419–429, 1983. DOI: https://www.doi.org/10.1145/358141.358147.

[183] D. Limberger, W. Scheibel, J. Döllner, and M. Trapp. Advanced Visual Metaphors and Techniques for Software Maps.
In Proceedings of the 12th International Symposium on Visual Information Communication and Interaction (VINCI),
pages 11:1–11:8, 2019. DOI: https://www.doi.org/10.1145/3356422.3356444.

[184] Q. Limbourg and J. Vanderdonckt. The Handbook of Task Analysis for Human-Computer Interaction, chapter Comparing
Task Models for User Interface Design, pages 135–154. CRC Press, 2003.

[185] Z. Liu and J. Heer. The Effects of Interactive Latency on Exploratory Visual Analysis. IEEE Trans. Vis. Comput. Graph.,
20(12):2122–2131, 2014. DOI: https://www.doi.org/10.1109/TVCG.2014.2346452.

[186] V. López-Jaquero and F. M. Simarro. Comprehensive Task and Dialog Modelling. In Proceedings of the 12th International
Conference on Human-Computer Interaction (HCI) - Interaction Design and Usability, volume 4550, pages 1149–1158.
Springer, 2007. DOI: https://www.doi.org/10.1007/978-3-540-73105-4_125.

[187] J. P. Magalhães and L. M. Silva. Adaptive Monitoring of Web-based Applications: A Performance Study. In Proceedings
of the 28th Annual ACM Symposium on Applied Computing (SAC), pages 471–478, 2013. DOI: https://www.doi.org/
10.1145/2480362.2480454.

[188] L. Makor. Using Tree Visualizations to Facilitate Memory Leak Analysis. Master’s thesis, Johannes Kepler University,
Institute for System Software, 2020. URL: https://epub.jku.at/obvulihs/content/titleinfo/5473677.

[189] D. Mapelsden, J. Hosking, and J. Grundy. Design Pattern Modelling and Instantiation Using DPML. In Proceedings of
the 14th International Conference on Tools Pacific: Objects for Internet, Mobile and Embedded Applications (CRPIT),
pages 3–11, 2002. URL: http://dl.acm.org/citation.cfm?id=564092.564094.

252

 https://www.doi.org/10.1109/VLHCC.2008.4639052
http://pingtimeout.github.io/jvm-options/
 https://www.doi.org/10.1145/2972206.2972220
 https://www.doi.org/10.1145/2972206.2972220
 https://www.doi.org/10.1145/2668930.2688037
 https://www.doi.org/10.1145/2668930.2688037
 https://www.doi.org/10.1145/2851553.2851555
 https://www.doi.org/10.1145/3030207.3030211
 https://www.doi.org/10.1145/3030207.3030211
 https://www.doi.org/10.1145/357062.357071
 https://www.doi.org/10.1016/j.asoc.2020.106919
 https://www.doi.org/10.1109/IV.2010.21
 https://www.doi.org/10.1109/IV.2010.21
http://cr.openjdk.java.net/~pliden/slides/ZGC-FOSDEM-2018.pdf
http://cr.openjdk.java.net/~pliden/slides/ZGC-FOSDEM-2018.pdf
 https://www.doi.org/10.1145/358141.358147
 https://www.doi.org/10.1145/3356422.3356444
 https://www.doi.org/10.1109/TVCG.2014.2346452
 https://www.doi.org/10.1007/978-3-540-73105-4_125
 https://www.doi.org/10.1145/2480362.2480454
 https://www.doi.org/10.1145/2480362.2480454
https://epub.jku.at/obvulihs/content/titleinfo/5473677
http://dl.acm.org/citation.cfm?id=564092.564094

[190] D. Marinov and R. O’Callahan. Object Equality Profiling. In Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA), pages 313–325, 2003. DOI: https://www.doi.
org/10.1145/949305.949333.

[191] M. Marron, C. Sánchez, Z. Su, and M. Fähndrich. Abstracting Runtime Heaps for Program Understanding. IEEE Trans.
Software Eng., 39(6):774–786, 2013. DOI: https://www.doi.org/10.1109/TSE.2012.69.

[192] E. K. Maxwell, G. Back, and N. Ramakrishnan. Diagnosing Memory Leaks using Graph Mining on Heap Dumps. In
B. Rao, B. Krishnapuram, A. Tomkins, and Q. Yang, editors, Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 115–124. ACM, 2010. DOI: https://www.doi.org/10.
1145/1835804.1835822.

[193] M. T. Maybury. Intelligent User Interfaces: An Introduction. In Proceedings of the 4th International Conference on
Intelligent User Interfaces (IUI), pages 3–4, 1999. DOI: https://www.doi.org/10.1145/291080.291081.

[194] K. L. McGraw and B. A. McGraw. Wizards, Coaches, Advisors, and More: A Performance Support Primer. In Extended
Abstracts on Human Factors in Computing Systems (CHI) , pages 152–153, 1997. DOI: https://www.doi.org/10.1145/
1120212.1120318.

[195] G. Meixner, M. Seissler, and K. Breiner. Model-Driven Useware Engineering. In Model-Driven Development of Advanced
User Interfaces, pages 1–26. 2011. DOI: https://www.doi.org/10.1007/978-3-642-14562-9_1.

[196] L. Merino, M. Hess, A. Bergel, O. Nierstrasz, and D. Weiskopf. PerfVis: Pervasive Visualization in Immersive Aug-
mented Reality for Performance Awareness. In Companion Proceedings of the ACM/SPEC International Conference on
Performance Engineering (ICPE), pages 13–16, 2019. DOI: https://www.doi.org/10.1145/3302541.3313104.

[197] N. Mitchell. The Runtime Structure of Object Ownership. In Proceedings of the 20th European Conference on Object-
oriented Programming (ECOOP), pages 74–98, 2006. DOI: https://www.doi.org/10.1007/11785477_5.

[198] N. Mitchell, E. Schonberg, and G. Sevitsky. Making Sense of Large Heaps. In Proceedings of the 23rd European
Conference on Object-Oriented Programming (ECOOP), pages 77–97, 2009. DOI: https://www.doi.org/10.1007/

978-3-642-03013-0_5.

[199] N. Mitchell, E. Schonberg, and G. Sevitsky. Four Trends Leading to Java Runtime Bloat. IEEE Software, 27(1):56–63,
2010. DOI: https://www.doi.org/10.1109/MS.2010.7.

[200] N. Mitchell and G. Sevitsky. LeakBot: An Automated and Lightweight Tool for Diagnosing Memory Leaks in Large
Java Applications. In L. Cardelli, editor, Proceedings of the 17th European Conference on Object-Oriented Programming
(ECOOP), volume 2743, pages 351–377, 2003. DOI: https://www.doi.org/10.1007/978-3-540-45070-2_16.

[201] N. Mitchell and G. Sevitsky. The Causes of Bloat, the Limits of Health. In Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages 245–260, 2007.
DOI: https://www.doi.org/10.1145/1297027.1297046.

[202] N. Mitchell, G. Sevitsky, P. Kumanan, and E. Schonberg. Data Structure Health. In Fifth International Workshop on
Dynamic Analysis (WODA@ICSE), page 2, 2007. DOI: https://www.doi.org/10.1109/WODA.2007.1.

[203] H. Mössenböck, M. Löberbauer, and A. Wöß. The Compiler Generator Coco/R, 2018. URL: http://www.ssw.uni-linz.
ac.at/Coco/. last visited on 2021-04-08.

[204] S. Murray. Interactive Data Visualization for the Web. O’Reilly Media, 2013.

[205] MyBatis. JPetStore, 2016. URL: http://mybatis.org/jpetstore-6/. last visited on 2021-04-08.

[206] R. H. Myers and R. H. Myers. Classical and Modern Regression with Applications, volume 2. Duxbury Press Belmont,
1990.

[207] N. Nethercote and J. Seward. Valgrind: A Program Supervision Framework. Electr. Notes Theor. Comput. Sci., 89(2):44–
66, 2003. DOI: https://www.doi.org/10.1016/S1571-0661(04)81042-9.

[208] J. Nielsen. Usability Engineering. Academic Press, 1993.

[209] M. Nørgaard and K. Hornbæk. What Do Usability Evaluators Do in Practice? An Explorative Study of Think-Aloud
Testing. In Proceedings of the Conference on Designing Interactive Systems, pages 209–218, 2006. DOI: https://www.
doi.org/10.1145/1142405.1142439.

[210] K. Ogami, R. G. Kula, H. Hata, T. Ishio, and K. Matsumoto. Using High-Rising Cities to Visualize Performance in
Real-Time. In Proceedings of the IEEE Working Conference on Software Visualization (VISSOFT), pages 33–42, 2017.
DOI: https://www.doi.org/10.1109/VISSOFT.2017.25.

253

 https://www.doi.org/10.1145/949305.949333
 https://www.doi.org/10.1145/949305.949333
 https://www.doi.org/10.1109/TSE.2012.69
 https://www.doi.org/10.1145/1835804.1835822
 https://www.doi.org/10.1145/1835804.1835822
 https://www.doi.org/10.1145/291080.291081
 https://www.doi.org/10.1145/1120212.1120318
 https://www.doi.org/10.1145/1120212.1120318
 https://www.doi.org/10.1007/978-3-642-14562-9_1
 https://www.doi.org/10.1145/3302541.3313104
 https://www.doi.org/10.1007/11785477_5
 https://www.doi.org/10.1007/978-3-642-03013-0_5
 https://www.doi.org/10.1007/978-3-642-03013-0_5
 https://www.doi.org/10.1109/MS.2010.7
 https://www.doi.org/10.1007/978-3-540-45070-2_16
 https://www.doi.org/10.1145/1297027.1297046
 https://www.doi.org/10.1109/WODA.2007.1
http://www.ssw.uni-linz.ac.at/Coco/
http://www.ssw.uni-linz.ac.at/Coco/
http://mybatis.org/jpetstore-6/
 https://www.doi.org/10.1016/S1571-0661(04)81042-9
 https://www.doi.org/10.1145/1142405.1142439
 https://www.doi.org/10.1145/1142405.1142439
 https://www.doi.org/10.1109/VISSOFT.2017.25

[211] Oracle. JVM Tool Interface Version 1.2.3, 2013. URL: https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.
html. last visited on 2021-04-08.

[212] Oracle. Java Flight Recorder, 2014. URL: https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/
about.htm#JFRUH170. last visited on 2021-04-08.

[213] Oracle. jmap, 2018. URL: https://docs.oracle.com/javase/7/docs/technotes/tools/share/jmap.html. last visited on
2021-04-08.

[214] Oracle. ZGC - The Z Garbage Collector, 2019. URL: http://openjdk.java.net/projects/zgc/. last visited on 2021-04-
08.

[215] Oracle. HPROF: A Heap/CPU Profiling Tool, 2020. URL: https://docs.oracle.com/javase/8/docs/technotes/

samples/hprof.html. last visited on 2021-04-08.

[216] Oracle. Java Mission Control, 2020. URL: https://openjdk.java.net/projects/jmc/. last visited on 2021-04-08.

[217] Oracle. JConsole, 2020. URL: https://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html.
last visited on 2021-04-08.

[218] Oracle. jhat, 2021. URL: https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jhat.html. last visited on
2021-04-08.

[219] Oracle. The HotSpot Group, 2021. URL: http://openjdk.java.net/groups/hotspot/. last visited on 2021-04-08.

[220] Oracle. VisualVM, 2021. URL: https://unity.com. last visited on 2021-04-08.

[221] Oracle. VisualVM: All-in-One Java Troubleshooting Tool, 2021. URL: https://visualvm.github.io/. last visited on
2021-04-08.

[222] J. D. Ornelas, J. C. Silva, and J. L. Silva. USS: User Support System. In Proceedings of the 11th Iberian Conference
on Information Systems and Technologies (CISTI), pages 1–6, 2016. DOI: https://www.doi.org/10.1109/CISTI.2016.
7521412.

[223] K. O’Hair. HPROF: a Heap/CPU profiling tool in J2SE 5.0. Sun Developer Network, Developer Technical Articles &
Tips, 28, 2004.

[224] T. Panas, R. Berrigan, and J. C. Grundy. A 3D Metaphor for Software Production Visualization. In Proceedings of the
Seventh International Conference on Information Visualization (IV), pages 314–319, 2003. DOI: https://www.doi.org/
10.1109/IV.2003.1217996.

[225] F. Paternò, C. Mancini, and S. Meniconi. ConcurTaskTrees: A Diagrammatic Notation for Specifying Task Models. In
Proceedings of the IFIP TC13 International Conference on Human-Computer Interaction (INTERACT), pages 362–369,
1997.

[226] W. D. Pauw and G. Sevitsky. Visualizing Reference Patterns for Solving Memory Leaks in Java. In Proceedings of the
13th European Conference on Object-Oriented Programming (ECOOP), pages 116–134, 1999. DOI: https://www.doi.
org/10.1007/3-540-48743-3_6.

[227] M. Peiris and J. H. Hill. Automatically Detecting ”Excessive Dynamic Memory Allocations” Software Performance Anti-
Pattern. In Proceedings of the 7th ACM/SPEC International Conference on Performance Engineering (ICPE), pages
237–248, 2016. DOI: https://www.doi.org/10.1145/2851553.2851563.

[228] J. Potter, J. Noble, and D. G. Clarke. The Ins and Outs of Objects. In Proceedings of the Australian Software Engineering
Conference (ASWEC), pages 80–89, 1998. DOI: https://www.doi.org/10.1109/ASWEC.1998.730915.

[229] T. Printezis and R. Jones. GCspy: An Adaptable Heap Visualisation Framework. In Proceedings of the 17th ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA), pages 343–
358, 2002. DOI: https://www.doi.org/10.1145/582419.582451.

[230] A. Prokopec, A. Rosà, D. Leopoldseder, G. Duboscq, P. Tuma, M. Studener, L. Bulej, Y. Zheng, A. Villazón, D. Simon,
T. Würthinger, and W. Binder. Renaissance: benchmarking suite for parallel applications on the JVM. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI) , pages 31–47,
2019. DOI: https://www.doi.org/10.1145/3314221.3314637.

[231] J. Qian and X. Zhou. Inferring Weak References for Fixing Java Memory Leaks. In Proceedings of the 28th IEEE
International Conference on Software Maintenance (ICSM), pages 571–574, 2012. DOI: https://www.doi.org/10.1109/
ICSM.2012.6405323.

254

https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/about.htm#JFRUH170
https://docs.oracle.com/javacomponents/jmc-5-4/jfr-runtime-guide/about.htm#JFRUH170
https://docs.oracle.com/javase/7/docs/technotes/tools/share/jmap.html
http://openjdk.java.net/projects/zgc/
https://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html
https://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html
https://openjdk.java.net/projects/jmc/
https://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jhat.html
http://openjdk.java.net/groups/hotspot/
https://unity.com
https://visualvm.github.io/
 https://www.doi.org/10.1109/CISTI.2016.7521412
 https://www.doi.org/10.1109/CISTI.2016.7521412
 https://www.doi.org/10.1109/IV.2003.1217996
 https://www.doi.org/10.1109/IV.2003.1217996
 https://www.doi.org/10.1007/3-540-48743-3_6
 https://www.doi.org/10.1007/3-540-48743-3_6
 https://www.doi.org/10.1145/2851553.2851563
 https://www.doi.org/10.1109/ASWEC.1998.730915
 https://www.doi.org/10.1145/582419.582451
 https://www.doi.org/10.1145/3314221.3314637
 https://www.doi.org/10.1109/ICSM.2012.6405323
 https://www.doi.org/10.1109/ICSM.2012.6405323

[232] R. Rabiser, P. Grünbacher, and M. Lehofer. A Qualitative Study on User Guidance Capabilities in Product Configuration
Tools. In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
110–119, 2012. DOI: https://www.doi.org/10.1145/2351676.2351693.

[233] R. Rabiser, S. Guinea, M. Vierhauser, L. Baresi, and P. Grünbacher. A Comparison Framework for Runtime Monitoring
Approaches. Journal of Systems and Software, 125:309–321, 2017. DOI: https://www.doi.org/10.1016/j.jss.2016.12.
034.

[234] R. Rabiser, K. Schmid, H. Eichelberger, M. Vierhauser, S. Guinea, and P. Grünbacher. A Domain Analysis of Resource
and Requirements Monitoring: Towards a Comprehensive Model of the Software Monitoring Domain. Information &
Software Technology, 111:86–109, 2019. DOI: https://www.doi.org/10.1016/j.infsof.2019.03.013.

[235] R. Rabiser, M. Vierhauser, and P. Grünbacher. Assessing the Usefulness of a Requirements Monitoring Tool: A Study
Involving Industrial Software Engineers. In Proceedings of the 38th International Conference on Software Engineering
(ICSE), pages 122–131, 2016. DOI: https://www.doi.org/10.1145/2889160.2889234.

[236] M. Raghothaman, S. Kulkarni, K. Heo, and M. Naik. User-Guided Program Reasoning Using Bayesian Inference. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI),
page 722–735, New York, NY, USA, 2018. DOI: https://www.doi.org/10.1145/3192366.3192417.

[237] G. Ramalingam and T. Reps. An Incremental Algorithm for Maintaining the Dominator Tree of a Reducible Flowgraph.
In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pages 287–296, 1994. DOI: https://www.doi.org/10.1145/174675.177905.

[238] D. Rayside and L. Mendel. Object Ownership Profiling: A Technique for Finding and Fixing Memory Leaks. In Proceedings
of the Twenty-second IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 194–203,
2007. DOI: https://www.doi.org/10.1145/1321631.1321661.

[239] D. Rayside, L. Mendel, and D. Jackson. A Dynamic Analysis for Revealing Object Ownership and Sharing. In Proceedings
of the 2006 International Workshop on Dynamic Systems Analysis (WODA), pages 57–64, 2006. DOI: https://www.
doi.org/10.1145/1138912.1138924.

[240] S. Raza and C. Ding. Progress in Context-aware Recommender Systems - An Overview. Comput. Sci. Rev., 31:84–97,
2019. DOI: https://www.doi.org/10.1016/j.cosrev.2019.01.001.

[241] S. P. Reiss. Visualizing the Java Heap. In Proceedings of the 25th IEEE International Conference on Software Maintenance
(ICSM), pages 389–390, 2009. DOI: https://www.doi.org/10.1109/ICSM.2009.5306287.

[242] S. P. Reiss. Visualizing the Java Heap to Detect Memory Problems. In Proceedings of the 5th IEEE International
Workshop on Visualizing Software for Understanding and Analysis (VISSOFT), pages 73–80, 2009. DOI: https://www.
doi.org/10.1109/VISSOF.2009.5336418.

[243] S. P. Reiss. Visualizing the Java Heap. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering (ICSE), pages 251–254, 2010. DOI: https://www.doi.org/10.1145/1810295.1810344.

[244] B. Reitinger, D. Kranzlmüller, and A. Ferko. Program Visualization Through Visual Metaphors. In Proceedings of the
International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, 2003. URL:
http://wscg.zcu.cz/wscg2003/Papers_2003/J79.pdf.

[245] B. Reitinger, D. Kranzlmüller, and J. Volkert. The MOST Immersive Approach for Parallel and Distributed Program
Analysis. In Proceedings of the International Conference on Information Visualisation (IV), pages 517–522, 2001. DOI:
https://www.doi.org/10.1109/IV.2001.942105.

[246] J. Renz, T. Staubitz, J. Pollak, and C. Meinel. Improving the Onboarding User Experience in MOOCs. In Proceedings
of the 6th International Conference on Education and New Learning Technologies (EDULEARN), pages 3931–3941, 7-
9 July, 2014 2014. URL: https://hpi.de/fileadmin/user_upload/fachgebiete/meinel/papers/Web-University/2014_
Renz_EDULEARN.pdf.

[247] N. P. Ricci, S. Z. Guyer, and J. E. B. Moss. Elephant Tracks: Generating Program Traces with Object Death Records.
In Proceedings of the 9th International Conference on Principles and Practice of Programming in Java (PPPJ), pages
139–142, 2011. DOI: https://www.doi.org/10.1145/2093157.2093178.

[248] N. P. Ricci, S. Z. Guyer, and J. E. B. Moss. Elephant Tracks: Portable Production of Complete and Precise GG
Traces. In Proceedings of the International Symposium on Memory Management (ISMM), pages 109–118, 2013. DOI:
https://www.doi.org/10.1145/2464157.2466484.

255

 https://www.doi.org/10.1145/2351676.2351693
 https://www.doi.org/10.1016/j.jss.2016.12.034
 https://www.doi.org/10.1016/j.jss.2016.12.034
 https://www.doi.org/10.1016/j.infsof.2019.03.013
 https://www.doi.org/10.1145/2889160.2889234
 https://www.doi.org/10.1145/3192366.3192417
 https://www.doi.org/10.1145/174675.177905
 https://www.doi.org/10.1145/1321631.1321661
 https://www.doi.org/10.1145/1138912.1138924
 https://www.doi.org/10.1145/1138912.1138924
 https://www.doi.org/10.1016/j.cosrev.2019.01.001
 https://www.doi.org/10.1109/ICSM.2009.5306287
 https://www.doi.org/10.1109/VISSOF.2009.5336418
 https://www.doi.org/10.1109/VISSOF.2009.5336418
 https://www.doi.org/10.1145/1810295.1810344
http://wscg.zcu.cz/wscg2003/Papers_2003/J79.pdf
 https://www.doi.org/10.1109/IV.2001.942105
https://hpi.de/fileadmin/user_upload/fachgebiete/meinel/papers/Web-University/2014_Renz_EDULEARN.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/meinel/papers/Web-University/2014_Renz_EDULEARN.pdf
 https://www.doi.org/10.1145/2093157.2093178
 https://www.doi.org/10.1145/2464157.2466484

[249] C. K. Riemenschneider and B. C. Hardgrave. Explaining Software Development Tool Use with the Technology Acceptance
Model. Journal of Computer Information Systems (JCIS), 41(4):1–8, 2001. URL: https://www.tandfonline.com/doi/
abs/10.1080/08874417.2001.11647015.

[250] S. Romano, N. Capece, U. Erra, G. Scanniello, and M. Lanza. On The Use of Virtual Reality in Software Visualization:
The Case of the City Metaphor . Inf. Softw. Technol., 114:92–106, 2019. DOI: https://www.doi.org/10.1016/j.infsof.
2019.06.007.

[251] S. Romano, N. Capece, U. Erra, G. Scanniello, and M. Lanza. The City Metaphor in Software Visualization: Feel-
ings, Emotions, and Thinking. Multim. Tools Appl., 78(23):33113–33149, 2019. DOI: https://www.doi.org/10.1007/
s11042-019-07748-1.

[252] C. Ruggieri and T. P. Murtagh. Lifetime Analysis of Dynamically Allocated Objects. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages 285–293, 1988. DOI: https:
//www.doi.org/10.1145/73560.73585.

[253] P. Runeson and M. Höst. Guidelines for Conducting and Reporting Case Study Research in Software Engineering.
Empirical Software Engineering, 14(2):131–164, 2009. DOI: https://www.doi.org/10.1007/s10664-008-9102-8.

[254] S. Saito. ProcessCity - Visualizing Business Processes as City Metaphor . In Proceedings of the CAiSE Forum on
Information Systems Engineering in Responsible Information Systems , pages 207–214, 2019. DOI: https://www.doi.
org/10.1007/978-3-030-21297-1_18.

[255] A. Savidis and N. Koutsopoulos. Interactive Object Graphs for Debuggers with Improved Visualization, Inspection and
Configuration Features. In Proceedings of the 7th International Symposium on Advances in Visual Computing (ISVC),
pages 259–268, 2011. DOI: https://www.doi.org/10.1007/978-3-642-24028-7_24.

[256] R. C. Schank, T. R. Berman, and K. A. Macpherson. Learning by Doing. Instructional-design Theories and Models: A
New Paradigm of Instructional Theory, 2(2):161–181, 1999.

[257] W. Scheibel, M. Trapp, D. Limberger, and J. Döllner. A Taxonomy of Treemap Visualization Techniques. In Proceedings of
the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
(VISIGRAPP), pages 273–280, 2020. DOI: https://www.doi.org/10.5220/0009153902730280.

[258] W. Scheibel, C. Weyand, and J. Döllner. EvoCells - A Treemap Layout Algorithm for Evolving Tree Data . In Pro-
ceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications (VISIGRAPP) , pages 273–280, 2018. DOI: https://www.doi.org/10.5220/0006617102730280.

[259] A. Schörgenhumer, P. Hofer, D. Gnedt, and H. Mössenböck. Efficient Sampling-based Lock Contention Profiling for Java.
In Proceedings of the 8th ACM/SPEC International Conference on Performance Engineering (ICPE), pages 331–334,
2017. DOI: https://www.doi.org/10.1145/3030207.3030234.

[260] A. Schörgenhumer, M. Kahlhofer, P. Grünbacher, and H. Mössenböck. Can we Predict Performance Events with Time
Series Data from Monitoring Multiple Systems? In Companion of the ACM/SPEC International Conference on Perfor-
mance Engineering ICPE, pages 9–12, 2019. DOI: https://www.doi.org/10.1145/3302541.3313101.

[261] H. Schulz. Treevis.net: A Tree Visualization Reference. IEEE Computer Graphics and Applications, 31(6):11–15, 2011.
DOI: https://www.doi.org/10.1109/MCG.2011.103.

[262] H. Schulz and H. Schumann. Visualizing Graphs - A Generalized View. In Proceedings of the 10th International Conference
on Information Visualisation (IV), pages 166–173, 2006. DOI: https://www.doi.org/10.1109/IV.2006.130.

[263] A. Schörgenhumer. Efficient Sampling-based Lock Contention Profiling in Java. Master’s thesis, Johannes Kepler Uni-
versity, Institute for System Software, 2017. URL: https://epub.jku.at/obvulihs/content/titleinfo/1825350.

[264] C. B. Seaman. Qualitative Methods in Empirical Studies of Software Engineering. IEEE Trans. Software Eng., 25(4):557–
572, 1999. DOI: https://www.doi.org/10.1109/32.799955.

[265] A. Sewe, M. Mezini, A. Sarimbekov, and W. Binder. Da Capo Con Scala: Design and Analysis of a Scala Benchmark Suite
for the Java Virtual Machine. In Proceedings of the 2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA), pages 657–676, 2011. DOI: https://www.doi.org/10.1145/2048066.
2048118.

[266] R. Shaham, E. K. Kolodner, and M. Sagiv. Heap Profiling for Space-efficient Java. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages 104–113, 2001. DOI: https://www.
doi.org/10.1145/378795.378820.

256

https://www.tandfonline.com/doi/abs/10.1080/08874417.2001.11647015
https://www.tandfonline.com/doi/abs/10.1080/08874417.2001.11647015
 https://www.doi.org/10.1016/j.infsof.2019.06.007
 https://www.doi.org/10.1016/j.infsof.2019.06.007
 https://www.doi.org/10.1007/s11042-019-07748-1
 https://www.doi.org/10.1007/s11042-019-07748-1
 https://www.doi.org/10.1145/73560.73585
 https://www.doi.org/10.1145/73560.73585
 https://www.doi.org/10.1007/s10664-008-9102-8
 https://www.doi.org/10.1007/978-3-030-21297-1_18
 https://www.doi.org/10.1007/978-3-030-21297-1_18
 https://www.doi.org/10.1007/978-3-642-24028-7_24
 https://www.doi.org/10.5220/0009153902730280
 https://www.doi.org/10.5220/0006617102730280
 https://www.doi.org/10.1145/3030207.3030234
 https://www.doi.org/10.1145/3302541.3313101
 https://www.doi.org/10.1109/MCG.2011.103
 https://www.doi.org/10.1109/IV.2006.130
https://epub.jku.at/obvulihs/content/titleinfo/1825350
 https://www.doi.org/10.1109/32.799955
 https://www.doi.org/10.1145/2048066.2048118
 https://www.doi.org/10.1145/2048066.2048118
 https://www.doi.org/10.1145/378795.378820
 https://www.doi.org/10.1145/378795.378820

[267] R. Shaham, E. K. Kolodner, and S. Sagiv. Automatic Removal of Array Memory Leaks in Java. In Proceedings of the
9th International Conference on Compiler Construction, volume 1781, pages 50–66, 2000. DOI: https://www.doi.org/
10.1007/3-540-46423-9_4.

[268] B. Shneiderman. Tree Visualization with Tree-Maps: 2-D Space-Filling Approach. ACM Trans. Graph., 11(1):92–99,
1992. DOI: https://www.doi.org/10.1145/102377.115768.

[269] B. Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In Proceedings of the
IEEE Symposium on Visual Languages (VL), pages 336–343, 1996. DOI: https://www.doi.org/10.1109/VL.1996.545307.

[270] C. U. Smith and L. G. Williams. Software Performance Antipatterns. In Proceedings of the International Workshop on
Software and Performance (WOSP), pages 127–136, 2000. DOI: https://www.doi.org/10.1145/350391.350420.

[271] C. U. Smith and L. G. Williams. New Software Performance AntiPatterns: More Ways to Shoot Yourself in the Foot. In
Proceedings of the 28th International Computer Measurement Group Conference, pages 667–674, 2002.

[272] C. U. Smith and L. G. Williams. More New Software Antipatterns: Even More Ways to Shoot Yourself in the Foot. In
Proceedings of the 29th International Computer Measurement Group Conference, pages 717–725, 2003.

[273] M. Sondag, B. Speckmann, and K. Verbeek. Stable Treemaps via Local Moves. IEEE Trans. Vis. Comput. Graph.,
24(1):729–738, 2018. DOI: https://www.doi.org/10.1109/TVCG.2017.2745140.

[274] K. Soong, X. Fu, and Y. Zhou. Optimizing New User Experience in Online Services. In Proceedings of the 5th IEEE
International Conference on Data Science and Advanced Analytics (DSAA), pages 442–449, 2018. DOI: https://www.
doi.org/10.1109/DSAA.2018.00057.

[275] V. Sor, P. Ou, T. Treier, and S. N. Srirama. Improving Statistical Approach for Memory Leak Detection Using Machine
Learning. In Proceedings of the IEEE International Conference on Software Maintenance (ICSM), pages 544–547, 2013.
DOI: https://www.doi.org/10.1109/ICSM.2013.92.

[276] V. Sor, N. Salnikov-Tarnovski, and S. N. Srirama. Automated Statistical Approach for Memory Leak Detection: Case
Studies. In Proceedings of the International Conferences On the Move to Meaningful Internet Systems (OTM), volume
7045, pages 635–642, 2011. DOI: https://www.doi.org/10.1007/978-3-642-25106-1_16.

[277] V. Sor and S. N. Srirama. A Statistical Approach for Identifying Memory Leaks in Cloud Applications. In Proceedings of
the 1st International Conference on Cloud Computing and Services Science (CLOSER), pages 623–628, 2011.

[278] V. Sor and S. N. Srirama. Memory Leak Detection in Java: Taxonomy and Classification of Approaches. J. Syst. Softw.,
96:139–151, 2014. DOI: https://www.doi.org/10.1016/j.jss.2014.06.005.

[279] A. Sosnówka. Test City Metaphor as Support for Visual Testcase Analysis Within Integration Test Domain. In Proceedings
of the Federated Conference on Computer Science and Information Systems, pages 1353–1358, 2013. URL: http://
ieeexplore.ieee.org/document/6644194/.

[280] A. Sosnówka. Test City Metaphor for Low Level Tests Restructuration in Test Database. In Proceedings of the 8th
International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE), pages 141–150, 2013.
DOI: https://www.doi.org/10.1007/978-3-642-54092-9_10.

[281] A. Sosnówka. Testware Visualized - Visual Support for Testware Reorganization. In Proceedings of the 8th International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE), pages 109–114, 2013. DOI: https:
//www.doi.org/10.5220/0004451001090114.

[282] M. Staron, W. Meding, J. Hansson, C. Höglund, K. Niesel, and V. Bergmann. Dashboards for Continuous Monitoring of
Quality for Software Product under Development. In Relating System Quality and Software Architecture, pages 209–229.
2014. DOI: https://www.doi.org/10.1016/b978-0-12-417009-4.00008-9.

[283] J. T. Stasko and E. Zhang. Focus+Context Display and Navigation Techniques for Enhancing Radial, Space-Filling
Hierarchy Visualizations. In Proceedings of the IEEE Symposium on Information Visualization (INFOVIS), pages 57–65,
2000. DOI: https://www.doi.org/10.1109/INFVIS.2000.885091.

[284] F. Steinbrückner. Coherent Software Cities. In Proceedings of the 26th IEEE International Conference on Software
Maintenance (ICSM), pages 1–2, 2010. DOI: https://www.doi.org/10.1109/ICSM.2010.5610421.

[285] F. Steinbrückner and C. Lewerentz. Representing Development History in Software Cities. In Proceedings of the ACM
Symposium on Software Visualization (SOFTVIS), pages 193–202, 2010. DOI: https://www.doi.org/10.1145/1879211.
1879239.

[286] F. Steinbrückner and C. Lewerentz. Understanding Software Evolution with Software Cities. Information Visualization,
12(2):200–216, 2013. DOI: https://www.doi.org/10.1177/1473871612438785.

257

 https://www.doi.org/10.1007/3-540-46423-9_4
 https://www.doi.org/10.1007/3-540-46423-9_4
 https://www.doi.org/10.1145/102377.115768
 https://www.doi.org/10.1109/VL.1996.545307
 https://www.doi.org/10.1145/350391.350420
 https://www.doi.org/10.1109/TVCG.2017.2745140
 https://www.doi.org/10.1109/DSAA.2018.00057
 https://www.doi.org/10.1109/DSAA.2018.00057
 https://www.doi.org/10.1109/ICSM.2013.92
 https://www.doi.org/10.1007/978-3-642-25106-1_16
 https://www.doi.org/10.1016/j.jss.2014.06.005
http://ieeexplore.ieee.org/document/6644194/
http://ieeexplore.ieee.org/document/6644194/
 https://www.doi.org/10.1007/978-3-642-54092-9_10
 https://www.doi.org/10.5220/0004451001090114
 https://www.doi.org/10.5220/0004451001090114
 https://www.doi.org/10.1016/b978-0-12-417009-4.00008-9
 https://www.doi.org/10.1109/INFVIS.2000.885091
 https://www.doi.org/10.1109/ICSM.2010.5610421
 https://www.doi.org/10.1145/1879211.1879239
 https://www.doi.org/10.1145/1879211.1879239
 https://www.doi.org/10.1177/1473871612438785

[287] P. N. Sukaviriya and J. D. Foley. Coupling a UI Framework with Automatic Generation of Context-Sensitive Animated
Help. In Proceedings of the 3rd Annual ACM Symposium on User Interface Software and Technology (UIST), pages
152–166, 1990. DOI: https://www.doi.org/10.1145/97924.97942.

[288] C. Szabo. Novice Code Understanding Strategies during a Software Maintenance Assignment. In Proceedings of the 37th
IEEE/ACM International Conference on Software Engineering (ICSE), pages 276–284, 2015. DOI: https://www.doi.
org/10.1109/ICSE.2015.341.

[289] Y. Tang, Q. Gao, and F. Qin. LeakSurvivor: Towards Safely Tolerating Memory Leaks for Garbage-Collected Languages.
In Proceedings of the USENIX Annual Technical Conference, pages 307–320, 2008. URL: http://www.usenix.org/events/
usenix08/tech/full_papers/tang/tang.pdf.

[290] K. Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto, and K. Inoue. Extracting Sequence Diagram from Execution Trace of
Java Program. In Proceedings of the 8th International Workshop on Principles of Software Evolution (IWPSE), pages
148–154, 2005. DOI: https://www.doi.org/10.1109/IWPSE.2005.19.

[291] R. E. Tarjan. Depth-First Search and Linear Graph Algorithms (Working Paper). In Proc. of the 12th Annual Symposium
on Switching and Automata Theory (SWAT), pages 114–121, 1971. DOI: https://www.doi.org/10.1109/SWAT.1971.10.

[292] R. E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput., 1(2):146–160, 1972. DOI: https:
//www.doi.org/10.1137/0201010.

[293] Technische Universität Darmstadt. Scala Benchmark Suite, 2012. URL: http://www.benchmarks.scalabench.org/

modules/scala-benchmark-suite/. last visited on 2021-04-08.

[294] S. T. Teoh. A Study on Multiple Views for Tree Visualization. In Proceedings of SPIE - Visualization and Data Analysis,
volume 6495, 2007. DOI: https://www.doi.org/10.1117/12.703076.

[295] The Standard Performance Evaluation Corporation (SPEC). SPECjvm2008, 2021. URL: https://www.spec.org/

jvm2008/. last visited on 2021-04-08.

[296] The Valgrind Developers. Valgrind, 2021. URL: http://valgrind.org/. last visited on 2021-04-08.

[297] D. Tidwell and J. Fuccella. TaskGuides: Instant Wizards on the Web. In Proceedings of the 15th Annual International
Conference on Computer D ocumentation SIGDOC, pages 263–272, 1997. DOI: https://www.doi.org/10.1145/263367.
263401.

[298] M. Tory and T. Möller. Human Factors in Visualization Research. IEEE Trans. Vis. Comput. Graph., 10(1):72–84, 2004.
DOI: https://www.doi.org/10.1109/TVCG.2004.1260759.

[299] O. Tripp, S. Guarnieri, M. Pistoia, and A. Aravkin. ALETHEIA: Improving the Usability of Static Security Analysis. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (CCS), page 762–774,
2014. DOI: https://www.doi.org/10.1145/2660267.2660339.

[300] E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press, 1992.

[301] D. Ungar. Generation Scavenging: A Non-disruptive High Performance Storage Reclamation Algorithm. In Proceedings
of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development Environments
(SDE), pages 157–167, 1984. DOI: https://www.doi.org/10.1145/800020.808261.

[302] S. van den Elzen and J. J. van Wijk. Small Multiples, Large Singles: A New Approach for Visual Data Exploration.
Comput. Graph. Forum, 32(3):191–200, 2013. DOI: https://www.doi.org/10.1111/cgf.12106.

[303] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers, S. Frey, and D. Kieselhorst. Continuous Monitoring of
Software Services: Design and Application of the Kieker Framework. Technical Report TR-0921, Department of Computer
Science, Kiel University, Germany, Nov. 2009.

[304] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A Framework for Application Performance Monitoring and
Dynamic Software Analysis. In Proceedings of the Third Joint WOSP/SIPEW International Conference on Performance
Engineering (ICPE), pages 247–248, 2012. DOI: https://www.doi.org/10.1145/2188286.2188326.

[305] R. L. Veroy and S. Z. Guyer. Garbology: A Study of How Java Objects Die. In Proceedings of the ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software (Onward!),
pages 168–179, 2017. DOI: https://www.doi.org/10.1145/3133850.3133854.

[306] J. Waller, C. Wulf, F. Fittkau, P. Dohring, and W. Hasselbring. Synchrovis: 3D Visualization of Monitoring Traces in the
City Metaphor for Analyzing Concurrency. In Proceedings of the 1st IEEE Working Conference on Software Visualization
(VISSOFT), pages 1–4, 2013. DOI: https://www.doi.org/10.1109/VISSOFT.2013.6650520.

258

 https://www.doi.org/10.1145/97924.97942
 https://www.doi.org/10.1109/ICSE.2015.341
 https://www.doi.org/10.1109/ICSE.2015.341
http://www.usenix.org/events/usenix08/tech/full_papers/tang/tang.pdf
http://www.usenix.org/events/usenix08/tech/full_papers/tang/tang.pdf
 https://www.doi.org/10.1109/IWPSE.2005.19
 https://www.doi.org/10.1109/SWAT.1971.10
 https://www.doi.org/10.1137/0201010
 https://www.doi.org/10.1137/0201010
http://www.benchmarks.scalabench.org/modules/scala-benchmark-suite/
http://www.benchmarks.scalabench.org/modules/scala-benchmark-suite/
 https://www.doi.org/10.1117/12.703076
https://www.spec.org/jvm2008/
https://www.spec.org/jvm2008/
http://valgrind.org/
 https://www.doi.org/10.1145/263367.263401
 https://www.doi.org/10.1145/263367.263401
 https://www.doi.org/10.1109/TVCG.2004.1260759
 https://www.doi.org/10.1145/2660267.2660339
 https://www.doi.org/10.1145/800020.808261
 https://www.doi.org/10.1111/cgf.12106
 https://www.doi.org/10.1145/2188286.2188326
 https://www.doi.org/10.1145/3133850.3133854
 https://www.doi.org/10.1109/VISSOFT.2013.6650520

[307] J. Wang, X. Peng, Z. Xing, and W. Zhao. An Exploratory Study of Feature Location Process: Distinct Phases, Recurring
Patterns, and Elementary Actions. In Proceedings of the 27th IEEE International Conference on Software Maintenance
(ICSM), pages 213–222, 2011. DOI: https://www.doi.org/10.1109/ICSM.2011.6080788.

[308] Y. Wang, S. T. Teoh, and K. Ma. Evaluating the Effectiveness of Tree Visualization Systems for Knowledge Discovery. In
Proceedings of the Joint Eurographics - IEEE VGTC Symposium on Visualization (EuroVis), pages 67–74, 2006. DOI:
https://www.doi.org/10.2312/VisSym/EuroVis06/067-074.

[309] M. O. Ward, G. G. Grinstein, and D. A. Keim. Interactive Data Visualization - Foundations, Techniques, and Applica-
tions. A K Peters, 2010. URL: http://www.akpeters.com/product.asp?ProdCode=4735.

[310] C. Ware. Chapter One - Foundations for an Applied Science of Data Visualization. In Information Visualization
(Third Edition), Interactive Technologies, pages 1 – 30. 2013. DOI: https://www.doi.org/https://doi.org/10.1016/
B978-0-12-381464-7.00001-6.

[311] M. Weber, M. Alexa, and W. Müller. Visualizing Time-Series on Spirals. In K. Andrews, S. F. Roth, and P. C.
Wong, editors, Proceedings of the IEEE Symposium on Information Visualization (INFOVIS), pages 7–14, 2001. DOI:
https://www.doi.org/10.1109/INFVIS.2001.963273.

[312] P. Wegner and E. D. Reilly. Data Structures. In Encyclopedia of Computer Science, pages 507–512. URL: http:

//dl.acm.org/citation.cfm?id=1074100.1074312.

[313] Q. Wen, J. Gao, X. Song, L. Sun, H. Xu, and S. Zhu. RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm
for Long Time Series. In Proceedings of the Thirty-Third Conference on Artificial Intelligence (AAAI), pages 5409–5416,
2019. DOI: https://www.doi.org/10.1609/aaai.v33i01.33015409.

[314] M. Weninger et al. AntTracks - Memory Monitoring using Accurate and Efficient Object Tracing for Java Applications,
2021. URL: http://mevss.jku.at/AntTracks. last visited on 2021-04-08.

[315] M. Weninger, E. Gander, and H. Mössemböck. Guided Exploration: A Method for Guiding Novice Users in Interactive
Memory Monitoring Tools. Proc. ACM Hum.-Comput. Interact., 5(EICS), June 2021. DOI: https://www.doi.org/10.
1145/3461731.

[316] M. Weninger, E. Gander, and H. Mössenböck. Analyzing the Evolution of Data Structures Over Time
in Trace-Based Offline Memory Monitoring. In Proceedings of the 9th Symposium on Software Performance
(SSP), pages 64–66, 2018. URL: http://pi.informatik.uni-siegen.de/stt/39_3/01_Fachgruppenberichte/SSP18/

WeningerGanderMoessenboeck18.pdf.

[317] M. Weninger, E. Gander, and H. Mössenböck. Utilizing Object Reference Graphs and Garbage Collection Roots to Detect
Memory Leaks in Offline Memory Monitoring. In Proceedings of the 15th International Conference on Managed Languages
& Runtimes (ManLang), pages 14:1–14:13, 2018. DOI: https://www.doi.org/10.1145/3237009.3237023.

[318] M. Weninger, E. Gander, and H. Mössenböck. Analyzing Data Structure Growth Over Time to Facilitate Memory Leak
Detection. In Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering (ICPE) ,
pages 273–284, 2019. DOI: https://www.doi.org/10.1145/3297663.3310297.

[319] M. Weninger, E. Gander, and H. Mössenböck. Detection of Suspicious Time Windows In Memory Monitoring. In
Proceedings of the 16th ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes
(MPLR), pages 95–104, 2019. DOI: https://www.doi.org/10.1145/3357390.3361025.

[320] M. Weninger, E. Ganer, and H. Mössenböck. Investigating High Memory Churn via Object Lifetime Analysis to Improve
Software Performance. In Proceedings of the 11th Symposium on Software Performance (SSP), 2020. URL: https://
www.performance-symposium.org/fileadmin/user_upload/palladio-conference/2020/Papers/SSP2020_paper_7.pdf.

[321] M. Weninger, P. Grünbacher, E. Gander, and A. Schörgenhumer. Evaluating an Interactive Memory Analysis Tool:
Findings from a Cognitive Walkthrough and a User Study. Proceedings ACM Hum.-Comput. Interact., 4(EICS), June
2020. DOI: https://www.doi.org/10.1145/3394977.

[322] M. Weninger, P. Grünbacher, H. Zhang, T. Yue, and S. Ali. Tool Support for Restricted Use Case Specification: Findings
from a Controlled Experiment. In Proceedings of the 25th Asia-Pacific Software Engineering Conference (APSEC), pages
21–30, 2018. DOI: https://www.doi.org/10.1109/APSEC.2018.00016.

[323] M. Weninger, P. Lengauer, and H. Mössenböck. User-centered Offline Analysis of Memory Monitoring Data. In Proceedings
of the 8th ACM/SPEC on International Conference on Performance Engineering (ICPE), pages 357–360, 2017. DOI:
https://www.doi.org/10.1145/3030207.3030236.

[324] M. Weninger and L. Makor. HttpClient Leak Driver, 2020. URL: https://github.com/NeonMika/

httpclient-leak-driver/. last visited on 2021-04-08.

259

 https://www.doi.org/10.1109/ICSM.2011.6080788
 https://www.doi.org/10.2312/VisSym/EuroVis06/067-074
http://www.akpeters.com/product.asp?ProdCode=4735
 https://www.doi.org/https://doi.org/10.1016/B978-0-12-381464-7.00001-6
 https://www.doi.org/https://doi.org/10.1016/B978-0-12-381464-7.00001-6
 https://www.doi.org/10.1109/INFVIS.2001.963273
http://dl.acm.org/citation.cfm?id=1074100.1074312
http://dl.acm.org/citation.cfm?id=1074100.1074312
 https://www.doi.org/10.1609/aaai.v33i01.33015409
http://mevss.jku.at/AntTracks
 https://www.doi.org/10.1145/3461731
 https://www.doi.org/10.1145/3461731
http://pi.informatik.uni-siegen.de/stt/39_3/01_Fachgruppenberichte/SSP18/WeningerGanderMoessenboeck18.pdf
http://pi.informatik.uni-siegen.de/stt/39_3/01_Fachgruppenberichte/SSP18/WeningerGanderMoessenboeck18.pdf
 https://www.doi.org/10.1145/3237009.3237023
 https://www.doi.org/10.1145/3297663.3310297
 https://www.doi.org/10.1145/3357390.3361025
https://www.performance-symposium.org/fileadmin/user_upload/palladio-conference/2020/Papers/SSP2020_paper_7.pdf
https://www.performance-symposium.org/fileadmin/user_upload/palladio-conference/2020/Papers/SSP2020_paper_7.pdf
 https://www.doi.org/10.1145/3394977
 https://www.doi.org/10.1109/APSEC.2018.00016
 https://www.doi.org/10.1145/3030207.3030236
https://github.com/NeonMika/httpclient-leak-driver/
https://github.com/NeonMika/httpclient-leak-driver/

[325] M. Weninger, L. Makor, E. Gander, and H. Mössenböck. AntTracks TrendViz: Configurable Heap Memory Visualization
Over Time. In Companion Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering
(ICPE), pages 29–32, 2019. DOI: https://www.doi.org/10.1145/3302541.3313100.

[326] M. Weninger, L. Makor, and H. Mössenböck. Memory Cities: Visualizing Heap Memory Evolution Using the Software
City Metaphor. In Proceedings of the Working Conference on Software Visualization (VISSOFT) 2020, pages 110–121,
2020. DOI: https://www.doi.org/10.1109/VISSOFT51673.2020.00017.

[327] M. Weninger, L. Makor, and H. Mössenböck. Memory Leak Visualization using Evolving Software Cities. In Proceedings
of the 10th Symposium on Software Performance (SSP), pages 44–46, 2019. URL: http://pi.informatik.uni-siegen.
de/stt/39_4/01_Fachgruppenberichte/SSP2019/SSP2019_Weninger.pdf.

[328] M. Weninger, L. Makor, and H. Mössenböck. Heap Evolution Analysis Using Tree Visualizations. In Proceedings of the
11th Symposium on Software Performance (SSP), 2020. URL: https://www.performance-symposium.org/fileadmin/
user_upload/palladio-conference/2020/Papers/SSP2020_paper_6.pdf.

[329] M. Weninger, L. Makor, and H. Mössenböck. Memory Cities: Visualizing Heap Memory Evolution Using the Software
City Metaphor - Artifact (Binaries, Data Sets, Video, Instructions), 2020. DOI: https://www.doi.org/10.5281/zenodo.
3991785.

[330] M. Weninger, L. Makor, and H. Mössenböck. Memory Leak Analysis using Time-Travel-based and Timeline-based Tree
Evolution Visualizations. In Proceedings of the Conference on Smart Tools and Applications in Graphics (STAG) -
Eurographics Italian Chapter Conference, 2020. DOI: https://www.doi.org/10.2312/stag.20201241.

[331] M. Weninger and H. Mössenböck. User-defined Classification and Multi-level Grouping of Objects in Memory Monitoring.
In Proceedings of the 2018 ACM/SPEC International Conference on Performance Engineering (ICPE), pages 115–126,
2018. DOI: https://www.doi.org/10.1145/3184407.3184412.

[332] A. Wessels, M. Purvis, J. Jackson, and S. S. Rahman. Remote Data Visualization through WebSockets. In Proceedings of
the 8th International Conference on Information Technology: New Generations (ITNG), pages 1050–1051, 2011. DOI:
https://www.doi.org/10.1109/ITNG.2011.182.

[333] R. Wettel. Visual Exploration of Large-Scale Evolving Software. In Companion Proceedings of the 31st International Con-
ference on Software Engineering (ICSE), pages 391–394, 2009. DOI: https://www.doi.org/10.1109/ICSE-COMPANION.
2009.5071029.

[334] R. Wettel. CodeCity, 2020. URL: https://wettel.github.io/codecity.html. last visited on 2021-04-08.

[335] R. Wettel and M. Lanza. Program Comprehension Through Software Habitability. In Proceedings of the 15th International
Conference on Program Comprehension (ICPC), pages 231–240, 2007. DOI: https://www.doi.org/10.1109/ICPC.2007.
30.

[336] R. Wettel and M. Lanza. Visualizing Software Systems as Cities. In Proceedings of the 4th IEEE International Workshop
on Visualizing Software for Understanding and Analysis (VISSOFT), pages 92–99, 2007. DOI: https://www.doi.org/
10.1109/VISSOF.2007.4290706.

[337] R. Wettel and M. Lanza. CodeCity: 3D Visualization of Large-Scale Software. In Companion Proceedings of the 30th
International Conference on Software Engineering (ICSE), pages 921–922, 2008. DOI: https://www.doi.org/10.1145/
1370175.1370188.

[338] R. Wettel and M. Lanza. Visual Exploration of Large-Scale System Evolution. In Proceedings of the 15th Working
Conference on Reverse Engineering (WCRE), pages 219–228, 2008. DOI: https://www.doi.org/10.1109/WCRE.2008.55.

[339] R. Wettel, M. Lanza, and R. Robbes. Software Systems as Cities: A Controlled Experiment. In Proceedings of the 33rd
International Conference on Software Engineering (ICSE), pages 551–560, 2011. DOI: https://www.doi.org/10.1145/
1985793.1985868.

[340] N. P. Wilde. Using Cognitive Dimensions in the Classroom as a Discussion Tool for Visual Language Design. In Conference
on Human Factors in Computing Systems: Common Ground (CHI), pages 187–188, 1996. DOI: https://www.doi.org/
10.1145/257089.257252.

[341] R. Williams. The Animator’s Survival Kit–Revised Edition: A Manual of Methods, Principles and Formulas for Classical,
Computer, Games, Stop Motion and Internet Animators. Faber & Faber Inc., 2009.

[342] C. Wimmer, M. Haupt, M. L. Van De Vanter, M. Jordan, L. Daynès, and D. Simon. Maxine: An Approachable Virtual
Machine for, and in, Java. ACM Trans. Archit. Code Optim., 9(4), Jan. 2013. DOI: https://www.doi.org/10.1145/
2400682.2400689.

260

 https://www.doi.org/10.1145/3302541.3313100
 https://www.doi.org/10.1109/VISSOFT51673.2020.00017
http://pi.informatik.uni-siegen.de/stt/39_4/01_Fachgruppenberichte/SSP2019/SSP2019_Weninger.pdf
http://pi.informatik.uni-siegen.de/stt/39_4/01_Fachgruppenberichte/SSP2019/SSP2019_Weninger.pdf
https://www.performance-symposium.org/fileadmin/user_upload/palladio-conference/2020/Papers/SSP2020_paper_6.pdf
https://www.performance-symposium.org/fileadmin/user_upload/palladio-conference/2020/Papers/SSP2020_paper_6.pdf
 https://www.doi.org/10.5281/zenodo.3991785
 https://www.doi.org/10.5281/zenodo.3991785
 https://www.doi.org/10.2312/stag.20201241
 https://www.doi.org/10.1145/3184407.3184412
 https://www.doi.org/10.1109/ITNG.2011.182
 https://www.doi.org/10.1109/ICSE-COMPANION.2009.5071029
 https://www.doi.org/10.1109/ICSE-COMPANION.2009.5071029
https://wettel.github.io/codecity.html
 https://www.doi.org/10.1109/ICPC.2007.30
 https://www.doi.org/10.1109/ICPC.2007.30
 https://www.doi.org/10.1109/VISSOF.2007.4290706
 https://www.doi.org/10.1109/VISSOF.2007.4290706
 https://www.doi.org/10.1145/1370175.1370188
 https://www.doi.org/10.1145/1370175.1370188
 https://www.doi.org/10.1109/WCRE.2008.55
 https://www.doi.org/10.1145/1985793.1985868
 https://www.doi.org/10.1145/1985793.1985868
 https://www.doi.org/10.1145/257089.257252
 https://www.doi.org/10.1145/257089.257252
 https://www.doi.org/10.1145/2400682.2400689
 https://www.doi.org/10.1145/2400682.2400689

[343] U. Wolz, G. Carmichael, and C. Dunne. Learning to Code in the Unity 3D Development Platform. In Proceedings
of the 51st ACM Technical Symposium on Computer Science Education (SIGCSE), page 1387, 2020. DOI: https:

//www.doi.org/10.1145/3328778.3367010.

[344] A. Wöß, M. Löberbauer, and H. Mössenböck. LL(1) Conflict Resolution in a Recursive Descent Compiler Generator. In
Proceedings of the Joint Modular Languages Conference on Modular Programming Languages (JMLC) , volume 2789,
pages 192–201, 2003. DOI: https://www.doi.org/10.1007/978-3-540-45213-3_25.

[345] J. Wu and Y. Yuan. Improving Searching and Reading Performance: The Effect of Highlighting and Text Color Coding.
Inf. Manag., 40(7):617–637, 2003. DOI: https://www.doi.org/10.1016/S0378-7206(02)00091-5.

[346] G. H. Xu. Resurrector: A Tunable Object Lifetime Profiling Technique for Optimizing Real-world Programs. In A. L.
Hosking, P. T. Eugster, and C. V. Lopes, editors, Proceedings of the ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications (OOPSLA) , pages 111–130, 2013. DOI: https://www.doi.
org/10.1145/2509136.2509512.

[347] G. H. Xu, M. D. Bond, F. Qin, and A. Rountev. LeakChaser: Helping Programmers Narrow Down Causes of Memory
Leaks. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 270–282, 2011. DOI: https://www.doi.org/10.1145/1993498.1993530.

[348] G. H. Xu, N. Mitchell, M. Arnold, A. Rountev, E. Schonberg, and G. Sevitsky. Scalable Runtime Bloat Detection Using
Abstract Dynamic Slicing. ACM Trans. Softw. Eng. Methodol., 23(3):23:1–23:50, 2014. DOI: https://www.doi.org/10.
1145/2560047.

[349] G. H. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky. Software Bloat Analysis: Finding, Removing, and
Preventing Performance Problems in Modern Large-scale Object-oriented Applications. In Proceedings of the Workshop on
Future of Software Engineering Research (FoSER), pages 421–426, 2010. DOI: https://www.doi.org/10.1145/1882362.
1882448.

[350] G. H. Xu and A. Rountev. Precise Memory Leak Detection for Java Software using Container Profiling. In W. Schäfer,
M. B. Dwyer, and V. Gruhn, editors, Proceedings of the 30th International Conference on Software Engineering (ICSE),
pages 151–160, 2008. DOI: https://www.doi.org/10.1145/1368088.1368110.

[351] G. H. Xu and A. Rountev. Detecting Inefficiently-used Containers to Avoid Bloat. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages 160–173, 2010. DOI: https://www.
doi.org/10.1145/1806596.1806616.

[352] G. H. Xu and A. Rountev. Precise Memory Leak Detection for Java Software Using Container Profiling. ACM Trans.
Softw. Eng. Methodol., 22(3):17:1–17:28, 2013. DOI: https://www.doi.org/10.1145/2491509.2491511.

[353] D. Yan, G. H. Xu, S. Yang, and A. Rountev. LeakChecker: Practical Static Memory Leak Detection for Managed Lan-
guages. In Proceedings of the 12th Annual IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), page 87. ACM, 2014. URL: https://dl.acm.org/citation.cfm?id=2544151.

[354] YourKit. YourKit Java Profiler, 2021. URL: https://www.yourkit.com. last visited on 2021-06-15.

[355] H. Yu, X. Shi, and W. Feng. LeakTracer: Tracing Leaks Along The Way. In M. W. Godfrey, D. Lo, and F. Khomh,
editors, Proceedings of the 15th IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 181–190, 2015. DOI: https://www.doi.org/10.1109/SCAM.2015.7335414.

[356] Q. Yu, S. Jiang, and Y. Liu. A Detection and Measurement Approach for Memory Leaked Objects in Java Programs.
IEICE Trans. Inf. Syst., 98-D(5):1053–1061, 2015. DOI: https://www.doi.org/10.1587/transinf.2014EDP7320.

[357] S. Zaman, B. Adams, and A. E. Hassan. A Large Scale Empirical Study on User-Centric Performance Analysis. In
Proceedings of the Fifth IEEE International Conference on Software Testing, Verification and Validation (ICST), pages
410–419, 2012. DOI: https://www.doi.org/10.1109/ICST.2012.121.

[358] N. Zhang, N. Jiang, Y. Zhang, and G. Huang. Towards Automated Generation of User-Specific Eclipse Wizard. In Pro-
ceedings of the International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC),
pages 490–497, 2010. DOI: https://www.doi.org/10.1109/CyberC.2010.95.

[359] H. Zhao and L. Lu. Variational Circular Treemaps for Interactive Visualization of Hierarchical Data. In Proceedings
of the IEEE Pacific Visualization Symposium (PacificVis), pages 81–85, 2015. DOI: https://www.doi.org/10.1109/
PACIFICVIS.2015.7156360.

[360] T. Zimmermann and A. Zeller. Visualizing Memory Graphs. In Software Visualization, pages 191–204, 2001. DOI:
https://www.doi.org/10.1007/3-540-45875-1_15.

261

 https://www.doi.org/10.1145/3328778.3367010
 https://www.doi.org/10.1145/3328778.3367010
 https://www.doi.org/10.1007/978-3-540-45213-3_25
 https://www.doi.org/10.1016/S0378-7206(02)00091-5
 https://www.doi.org/10.1145/2509136.2509512
 https://www.doi.org/10.1145/2509136.2509512
 https://www.doi.org/10.1145/1993498.1993530
 https://www.doi.org/10.1145/2560047
 https://www.doi.org/10.1145/2560047
 https://www.doi.org/10.1145/1882362.1882448
 https://www.doi.org/10.1145/1882362.1882448
 https://www.doi.org/10.1145/1368088.1368110
 https://www.doi.org/10.1145/1806596.1806616
 https://www.doi.org/10.1145/1806596.1806616
 https://www.doi.org/10.1145/2491509.2491511
https://dl.acm.org/citation.cfm?id=2544151
https://www.yourkit.com
 https://www.doi.org/10.1109/SCAM.2015.7335414
 https://www.doi.org/10.1587/transinf.2014EDP7320
 https://www.doi.org/10.1109/ICST.2012.121
 https://www.doi.org/10.1109/CyberC.2010.95
 https://www.doi.org/10.1109/PACIFICVIS.2015.7156360
 https://www.doi.org/10.1109/PACIFICVIS.2015.7156360
 https://www.doi.org/10.1007/3-540-45875-1_15

262

1 / 4

 Curriculum Vitae

Dipl.-Ing. Markus Weninger
4113 St. Martin im Mühlkreis, Schulstraße 24 markus.weninger@jku.at +43660/3115418

Birth Date: 04.04.1992, Vöcklabruck, Austria

Education: Since 2017: Doctorate degree – Computer Science | Johannes Kepler University Linz
 Thesis: Detection and Analysis of Memory Anomalies in Managed Languages Using
 Trace-Based Memory Monitoring

2015 - 2017: Master - Computer Science / Software Engineering
 (with distinction) | Johannes Kepler University Linz
 Thesis: User-defined Classification and Multi-grouping of Data in a Memory
 Monitoring Tool

2012 - 2015: Bachelor - Informatik (with distinction) | Johannes Kepler University Linz
 Thesis: An Experiment to Measure the Performance Trade-off between Traditional
 IO and Memory-mapped Files

2006 - 2011: Higher education (with distinction) | HTL Leonding, EDV und Organisation
 (Upper Secondary Technical and Vocational College – Department for Informatics)
 Thesis: Digital Teaching System – Digitales Lehrsystem an der HTL Leonding

Teaching

Experience:

Grundlagen der Programmierung | Basics of Software Development
 2017 WS - German

Softwareentwicklung 1 | Software Development 1
 2020 WS – German

Softwareentwicklung 2 | Software Development 2
 2018 SS, 2019 SS, 2020 SS, 2021 SS – German

Übersetzerbau | Compiler Construction
 2018 WS, 2019 WS, 2020 WS – German / English

Thesis supervision:
 10 bachelor theses supervised, 6 master theses co-supervised, 5 master software projects (7.5
ECTS) supervised

WS = Winter Semester, SS = Summer Semester | all at Johannes Kepler University Linz

Professional

Experience:

Since 09/2017: Institute Assistant / Researcher
 Johannes Kepler University, Institute for System Software – Linz

09/2017 – 01/2020: Researcher
 Johannes Kepler University, Christian Doppler Laboratory MEVSS - Linz

03/2017 – 07/2017: Tutor "Software Processes and Tools"
 Johannes Kepler University, Institute for Software Systems Engineering – Linz

10/2016 – 02/2017: Tutor "Requirements Engineering"
 Johannes Kepler University, Institute for Software Systems Engineering – Linz

10/2015 – 08/2017: Student Researcher
 Johannes Kepler University, Christian Doppler Laboratory MEVSS – Linz

05/2013 – 09/2015: Software Engineer C#/.Net
 bet-at-home.com Entertainment GmbH – Linz

07/2010 – 08/2010: Intern - Software Engineer
 MIC Customs Solutions / MIC Datenverarbeitung GmbH – Linz

07/2008- 08/2008: Intern – IT
 AIM Technical Solutions GmbH – Timelkam

2 / 4

Languages: German (native)
English (fluent)

Workshops: Events:
 CoderDojo
 Frauen in die Technik
 JKU Science Holidays
 JKU Workshops Sekundarstufe II
 KinderUni
 Tomorrow‘s Experts in Computing
 Traumberuf Technik
 Young Computer Scientists
 … and others …

Topics:
 JavaFX Game Programming
 3D Game Programming
 Kreatives Programmieren mit micro:bit | Creative Programming with micro:bit
 Spieleentwicklung mit Scratch | Game Programming with Scratch
 Spielerisches Kennenlernen von Sortieralgorithmen | Sorting is Fun
 ... and others ...

Volunteer Work: Students Union "Informatik & AI"
 Johannes Kepler University Linz

Students Union "PhD Studies - Engineering & Natural Sciences"
 Johannes Kepler University Linz

Rotaract
 Social service and community service, Linz

Awards: Best Paper
 "Memory Leak Analysis using Time-Travel-based and Timeline-based Tree Evolution
Visualizations", Conference on Smart Tools and Applications in Graphics (STAG), 2020

Best Paper
 "Memory Cities: Visualizing Heap Memory Evolution Using The Software City
Metaphor", IEEE Working Conference on Software Visualization (VISSOFT), 2020

Best Presentation of Best Paper Candidates
 "User-defined Classification and Multi-level Grouping of Objects in Memory
 Monitoring", International Conference on Performance Engineering (ICPE), 2018

Best Paper Candidate
 "User-defined Classification and Multi-level Grouping of Objects in Memory
 Monitoring", International Conference on Performance Engineering (ICPE), 2018

2nd place of the Adolf-Adam Price (price for the best informatics master thesis)
 Johannes Kepler University, 2017

Winner of the Coding 4 a Cause (C4C:EU) Contest
 Association for the Advancement of Assistive Technology in Europe (AAATE)
 conference, 2015.

Multiple "Top 10%" results at Catalysts Coding Contests / Cloudflight Coding Contests
 Linz / Vienna / Online, 2013 – 2020

3 / 4

 Publications

Dipl.-Ing. Markus Weninger
4113 St. Martin im Mühlkreis, Schulstraße 24 markus.weninger@jku.at +43660/3115418

Publications: [18] Weninger, M.; Gander, E.; Mössenböck, H.,
"Guided Exploration: A Method for Guiding Novice Users in Interactive Memory
Monitoring Tools", ACM HCI (EICS) 2021

[17] Weninger, M.; Makor, L.; Mössenböck, H.,
"Memory Leak Analysis using Time-Travel-based and Timeline-based Tree Evolution
Visualizations", STAG 2020 (Best Paper)

[16] Weninger, M.; Makor, L.; Mössenböck, H.,
"Heap Evolution Analysis Using Tree Visualizations", SSP 2020

[15] Weninger, M.; Gander, E.; Mössenböck, H.,
"Investigating High Memory Churn via Object Lifetime Analysis to Improve Software
Performance", SSP 2020

[14] Weninger, M.; Makor, L.; Mössenböck, H.,
"Memory Cities: Visualizing Heap Memory Evolution Using the Software City Metaphor",
VISSOFT 2020 (Best Paper)

[13] Weninger, M.; Grünbacher, P.; Gander, E.; Schörgenhumer, A.,
"Evaluating an Interactive Memory Analysis Tool: Findings from a Cognitive Walkthrough
and a User Study", ACM HCI (EICS) 2020

[12] Weninger, M.; Makor, L.; Mössenböck, H.,
"Memory Leak Visualization using Evolving Software Cities", SSP 2019

[11] Weninger, M.; Gander, E.; Mössenböck, H.,
"Detection of Suspicious Time Windows in Memory Monitoring", MPLR 2019

[10] Weninger, M.; Makor, L.; Mössenböck, H.,
"AntTracks TrendViz: Configurable Heap Memory Visualization Over Time", ICPE 2019

[9] Weninger, M.; Gander, E.; Mössenböck, H.,
"Analyzing Data Structure Growth Over Time to Facilitate Memory Leak Detection",
ICPE 2019

[8] Weninger, M.; Grünbacher, P.; Zhang, H.; Yue, T.; Ali, S.,
"Tool Support for Restricted Use Case Specification: Findings from a Controlled
Experiment", APSEC 2018

[7] Weninger, M.; Gander, E.; Mössenböck, H.,
"Analyzing the Evolution of Data Structures in Trace-Based Memory Monitoring", SSP 2018

[6] Weninger, M.; Gander, E.; Mössenböck, H.,
"Utilizing Object Reference Graphs and Garbage Collection Roots to Detect Memory Leaks
in Offline Memory Monitoring", ManLang 2018

[5] Weninger, M.; Mössenböck, H.,
"User-defined Classification and Multi-level Grouping of Objects in Memory Monitoring",
ICPE 2018 (Best Paper Candidate)

4 / 4

[4] Weninger, M.; Lengauer, P.; Mössenböck, H.,
"User-centered Offline Analysis of Memory Monitoring Data", ICPE 2017

[3] Lengauer, P.; Bitto, V.; Mössenböck, H.; Weninger, M.,
"A Comprehensive Java Benchmark Study on Memory and Garbage Collection Behavior of
DaCapo, DaCapo Scala, and SPECjvm2008", ICPE 2017

[2] Lengauer, P.; Bitto, V.; Fitzek, S.; Weninger, M.; Mössenböck, H.,
"Efficient Memory Traces with Full Pointer Information", PPPJ 2016

[1] Weninger, M.; Ortner, G.; Hahn, T.; Drümmer, O.; Miesenberger, K.,
„ASVG - Accessible Scalable Vector Graphics: intention trees to make charts more
accessible and usable“, Journal of Assistive Technologies, Vol. 9 Issue 4, 2015

	Sworn Declaration
	Abstract
	Kurzfassung
	Acknowledgements
	I Introduction and Overview
	Introduction
	Outline
	Motivation: Memory Anomalies in Managed Languages
	Background and Related Work
	Data Collection
	Memory Leak Analysis
	Memory Churn Analysis
	Memory Bloat Analysis

	Remaining Challenges
	Contributions
	Scientific Contributions
	Technical Contributions
	Publications

	Overview
	Memory Traces and Their Processing
	Heap Object Classification and Multi-Level Grouping
	GC Roots and Closures

	Data Structure Analysis
	Visualization
	Drill-down Trend Visualization
	Memory Cities
	Tree Visualizations

	User Guidance and User Behavior
	Automatic Detection of Suspicious Time Windows
	Cognitive Walkthrough and User Study
	Guided Exploration

	Memory Churn

	II Publications
	Memory Traces and Their Processing
	Heap Object Classification and Multi-Level Grouping
	GC Roots and Closures

	Data Structure Analysis
	Visualization
	Drill-down Trend Visualization
	Memory Cities
	Tree Visualizations

	User Guidance and User Behavior
	Automatic Detection of Suspicious Time Windows
	Cognitive Walkthrough and User Study
	Guided Exploration

	Memory Churn

	III Future Work and Conclusions
	Limitations and Future Work
	Memory Anomaly Evaluation Suite
	Automatic Data Structure Detection
	Lifetime Analysis
	Metric-based Analysis
	Visualization Extensions
	Using Visualizations in SE Education
	Static and Dynamic Analysis Synergies
	IDE Integration

	Conclusions
	Appendices
	Memory Cities Artifact
	Bibliography
	Curriculum Vitae

