JOHANNES KEPLER
UNIVERSITAT LINZ

Eingereicht von

Christian Aistleitner

Angefertigt am

Institut fur Systemsoftware

Betreuer

Dipl. Ing.
Sebastian Kloibhofer

RECORD & TUPLE
ECMASCRIPT PROPOSAL o st
IN GRAAL.JS

Bachelor Thesis with Oracle Labs

August 2021

Bachelorarbeit

zur Erlangung des akademischen Grades
Bachelor of Science (BSc)

im Bachelorstudium

Informatik

JOHANNES KEPLER
UNIVERSITAT LINZ
Altenberger StralRe 69
4040 Linz, Osterreich
www.jku.at

DVR 0093696

Abstract

Graal.js |1] is an ECMAScript 2021 compliant JavaScript implementation by Oracle built
on GraalVM [2]. It is based on the Truffle framework [3] and makes use of specialization
to optimize its execution, e.g. specialization on the actually used data types or other types

of runtime feedback.

The ECMAScript specification [4] is amended by so-called proposals. This Bachelor thesis
focuses on the Record & Tuple proposal [5] authored by Robin Ricard (Bloomberg),
Rick Button (Bloomberg), and Nicolo Ribaudo (Babel). Records and tuples are deeply
immutable data structures. Data stored in those data types cannot be changed once

created.

Part of this Bachelor thesis is an implementation of this proposal as part of the core
Graal.js interpreter. The task comprises the full functionality of the current state of
the proposal. In addition to the full functionality, the implementation is required to
show a good performance. For this reason, optimizing techniques provided by the Truffle

framework are used to meet this requirement.

This thesis presents the implementation of the proposal and describes the approach for
verifying the correctness of the implementation. Furthermore, this thesis presents a
performance evaluation of the added data types in comparison with similar cases in

traditional JavaScript using custom benchmarks.

Kurzfassung

Graal.js [1] ist eine ECMAScript 2021 konforme JavaScript Implementierung von Oracle
und basiert auf GraalVM [2| sowie dem Truffle-Framework [3]. Um die Ausfithrung zu
optimieren, wird u.a. auf Spezialisierung gesetzt, z.B. Spezialisierung auf die tatsachlich

verwendeten Datentypen oder mit Hilfe von sonstigem Laufzeit-Feedback.

Die ECMAScript-Spezifikation [4] wird durch sogenannte Proposals erginzt. Diese Bach-
elorarbeit beschéftigt sich mit dem Record & Tuple Proposal [5| von Robin Ricard
(Bloomberg), Rick Button (Bloomberg) und Nicold Ribaudo (Babel). Die vom Proposal
vorgeschlagenen neuen Datentypen sind spezielle Datenstrukturen, deren Inhalt nach ihrer

Erstellung nicht mehr geédndert werden kénnen.

Teil dieser Bachelorarbeit ist eine Umsetzung dieses Proposals als Teil des Graal.js Inter-
preters. Die Aufgabe umfasst die volle Funktionalitit zum aktuellen Stand des Propos-
als. Neben der vollen Funktionalitdt muss die Implementierung eine gute Performance
aufweisen. Um diese Anforderung zu erfiillen, werden Optimierungstechniken des Truffle-

Frameworks verwendet.

Diese Arbeit préasentiert die Umsetzung des Proposals und beschreibt den Ansatz zur
Uberpriifung auf Korrektheit. Dariiber hinaus priisentiert diese Arbeit eine Performance-
Auswertung der hinzugefiigten Datentypen im Vergleich zu dhnlichen Szenarien in tradi-

tionellem JavaScript mit Hilfe von eigenen Benchmarks.

Contents

1 Introductionl

13 Record & Tuple Proposall
3.1 Data Types| e

NEAX] . . . e e e e e e e e e e e e e e e e

4.2 Compiler Frontend| o o
4.3 Bulding the AST|. o

p.1 Existing Test Suites|

11
11
11
12
13
14

16
16
17
20

23
23
23

25
25
25
26

27

28

1 Introduction

This chapter outlines the problem to solve and existing related work. Section [I.1]describes
the problem and the need for a better solution. Section presents an existing approach
for solving this issue, while Section clarifies the actual contributions of this thesis.
Finally, Section gives an overview of the upcoming chapters.

1.1 Problem & Motivation

JavaScript [6] (in short: JS) is a high-level and lightweight programming language. It’s
one of the core technologies of modern-day websites besides HTML and CSS. During

execution, JS code is usually interpreted or just-in-time compiled.

Although JS has had many years to evolve after its first appearance in 1995, it doesn’t
yet feature immutable data structures. Other popular programming languages do support

them, e.g. Python features an immutable data structure called Tuple.

Data stored in immutable data types cannot be changed (mutated) once created. This
concept is very useful as it results in much simpler application development especially as
projects grow larger. Defensive Copying, the copying of data in order to prevent changes,
gets obsolete. Furthermore, the use of immutable data structures increases predictability

and thus results in a more stable software product.

For this reason, userland libraries like Immutable.js 7] and Immer [8] were created to solve
this issue. Although those libraries are doing a great job, a native solution would result
in a much better programming and debugging experience. In addition, it is expected that

a native implementation would improve execution performance.

1.2 Solution: Records and Tuple proposal

JavaScript is an implementation of the ECMAScript specification [4]. The ECMAScript
specification is amended by so-called proposals. This Bachelor thesis focuses on the
Record & Tuple proposal [5] (in short: RTP) authored by Robin Ricard (Bloomberg),
Rick Button (Bloomberg), and Nicolo Ribaudo (Babel).

The proposal provides a possible solution for adding deeply immutable data structures to

the ECMAScript language. Technical details are presented later on in Chapter

1.3 Contributions

Graal.js is an ECMAScript 2021 compliant JavaScript implementation by Oracle built on
GraalVM [2]. It is based on the Truffle framework [3] and makes use of specialization to
optimize its execution, e.g. specialization on the actually used data types or other types

of runtime feedback.

A goal of this Bachelor thesis is an open-source contribution to the Graal.js repository [1]
under the Universal Permissive Licenseﬂ (in short: UPL). The contribution comprises an
implementation of the RTP as part of the core Graal.js interpreter. The implementation
covers the full functionality of the proposal at the time of starting this Bachelor thesis in
February 2021.

1.4 Structure of this Thesis

After the introduction, Chapter 2]describes the fundamental technologies this work is based
on. A technical description of the task is presented in Chapter [3] followed by the concrete
implementation in Chapter [} In Chapter [5} the approach for verifying the correctness
of the implementation is described. Chapter [6] features a performance evaluation. Lastly,

this thesis finishes with a conclusion in Chapter

"https://opensource.org/licenses/UPL

2 Fundamentals

This chapter presents some fundamental concepts relevant to this thesis. In Section [2.1
ECMAScript as language and ecosystem is introduced. Section describes GraalVM
and its platform for executing guest languages. Finally in Section [2.3] and Section [2.4]

basic theoretical concepts of records and tuples are outlined.

2.1 ECMAScript

ECMAScript [4] is a general-purpose, cross-platform, and vendor-neutral programming
language. The development of the ECMAScript Language Specification [9] started in
November 1996 and since the publication of its first edition in 1997, received many
updates. At the time of writing, the latest version is the 12th edition also known as
ECMAScript 2021, ES2021 or ES12.

ECMAScript is based on several originating technologies, the most well-known being
JavaScript (Netscape) and JScript (Microsoft). It was introduced as a Web scripting
standard meant to ensure the interoperability of web pages across different web browsers
[10]. For this reason, it is commonly used for client-side scripting and thus is best known
as the language embedded in web browsers. However, it has also been widely adopted for

server and embedded applications using for example Node.js |11] as JavaScript runtime.

The ECMAScript Language Specification [9] is also known as ECMA-262 and is maintained
by Ecma International [12], an industry association dedicated to the standardization of
information and communication systems. Technical work is carried out by Technical
Committees (TCs) and Task Groups (TGs) [13]. A Technical Committee or a Task Group

addresses a single area or topic.

The ECMA Technical Committee 39 [14] (in short: TC39) focuses on the the ECMAScript

language which includes
e maintaining and updating the ECMAScript standards [9][15],
e developing standards for complementary technologies and libraries,
e developing test suites |16] which are used to verify implementations,

e and evaluating proposals [17].

2.1.1 TC39 Process

The TC39 Process [18] defines how changes in the specification are made. Proposals

following this process are tracked in a public Git repository [17] hosted on GitHub.

There are 5 stages and the TC39 committee must approve before a proposal can move to

the next stage.

Stage 0: Strawperson

The purpose of this stage is to allow input into the specification.

Stage 1: Proposal
In this stage, the initial idea is being taken to a formal proposal that describes not
only the problem or need for the addition but also suggests potential solutions and

challenges. A working demo or polyfill implementation is expected.

Stage 2: Draft
A draft requires an initial specification text containing all major syntax and semantic

changes. Further incremental changes are to be expected in this stage.

Stage 3: Candidate
Proposals in this stage are almost final. Designated reviewers and all ECMAScript
editors have signed off on the specification text and changes may only occur if

something critical is being found while working on implementations.

Stage 4: Finished
The last stage indicates that the addition is ready for inclusion in the ECMAScript
standard and will be included in the next upcoming edition. Acceptance tests have

been written for mainline usage scenarios.

2.2 GraalVM

GraalVM is a high-performance JDK distribution based on the Java HotSpot VM from
Oracle [19]. It uses the GraalVM Compiler as its dynamic just-in-time compiler, which

transforms Java bytecode into the target architecture’s machine code.

Figure[l|shows the connection between the Java HotSpot VM and the GraalVM Compiler.
Additionally, it assigns some of their core components. As depicted, the compiler interacts
with the JVM using the low-level JVM Compiler Interface (in short: JVMCI).

GraalVM Compiler

Optimization Phases Code Generator

Bytecode Parser

Java

! C++

Interpreter Garbage Collector

Class Loading

HotSpot VM

Figure 1: GraalVM interface architecture

By using multiple optimization algorithms [20] (also called ”Phases”), like aggressive in-
lining or polymorphic inlining, the GraalVM Compiler produces highly optimized machine
code. It is designed to accelerate the execution of applications written in Java and other

JVM languages like Scala, Kotlin, or Groovy.

2.2.1 Truffle

Truffle [3] is an open-source language implementation framework. It provides building tools
for guest language implementations and is built on top of the GraalVM as illustrated in
Figure [2 below.

Guest Language Application

Guest Language Implementation

Truffle Framework

GraalVM

OS (Linux, Windows, etc)

Figure 2: Truffle system architecture

Several guest-language implementations are provided already, for instance for JavaScript,
Ruby, and Python. Additionally, Truffle provides polyglot capabilities using the GraalVM
Polyglot API. This allows developers to embed source code written in any supported guest

language into their JVM-based host applications.

Guest languages are implemented as Abstract Syntax Trees (in short: AST) interpreters
[21]. A given program written in a guest language gets translated into an AST consisting
of instances of Truffle nodes. A Truffle node is a subclass of Node and requires a special

execute method which is being called when traversing the tree during the execution.

Truffle uses two optimization techniques for boosting the execution performance:

e Specialization
Using type feedback and other profiling information, AST nodes specialize in order

to fit best their given situation.

e Partial Evaluation (in short: PFE)
PE is the process of transforming a Truffle AST to highly optimized machine code,
by inlining all nodes of one compilation unit (function) and using profiling feedback

to optimize the result.

2.2.2 Graal.js

Graal.js |1], also known as Graal VM JavaScript Implementation |22], provides an ECMAScript-

compliant runtime for executing JS and Node.js applications. It is built upon the Truffle
framework and thus provides all benefits the GraalVM stack offers, including language

interoperability and common tooling.

V]

2.3 Records

A Record is a data structure that holds a collection of fields. Those fields are fixed in
number and may have different data types. Listing [I] shows a typical example in Kotlin.

data class Person(
val firstname: String,

val lastname: String,

fun main() {
var p = Person("John", "Doe'")

println("Hello " + p.firstname) // Output: Hello John

Listing 1: Record example in Kotlin

2.4 Tuples

A Tuple is a data structure that holds an ordered sequence of elements. Like most terms
used in computer science, the term ”tuple” originates from mathematics. There, tuples

serve a variety of purposes, but it is most commonly used to express sequences.

In computer science, a tuple is usually an immutable array-like data type. As already
mentioned in Section this immutable data structure is implemented in the Python
programming language [23]. Listing [2| shows a code snippet showcasing Python’s Tuple.

cities = ("Linz", "Graz", "Vienna")

print ("Welcome to " + cities[0]) # Output: Welcome to Linz

Listing 2: Tuple example in Python

10

3 Record & Tuple Proposal

This chapter describes a possible solution based on the RTP for adding two immutable data
structures to the ECMAScript specification. In Section the newly added data types
are introduced. Section [3.2] outlines the syntax, while Section [3.3] describes the semantics
of the proposed solution. Section [3.4] illustrates how ECMAScript’s equality algorithms
should handle records and tuples. In Section [3.5] a complete list of the proposed built-in

methods is shown.

3.1 Data Types
The RTP adds two new deeply immutable data structures to the set of built-in types:

e Record
A deeply immutable primitive type that contains mappings from Strings to primitive

values. Note that in JS, all primitive values are immutable.

e Tuple

A deeply immutable primitive type containing an ordered sequence of primitives.

3.2 Syntax

The RTP proposes a syntax similar to the existing solution for defining objects or arrays.
By using the # modifier in front of the opening bracket, an otherwise normal object or
array expression gets converted into a record or tuple expression. A syntax example can
be seen in Listing

{ id: 1, data: "Hello World!"};
#{ id: 1, data: "Hello World!"};

const object

const record

[1, 2, 31;
#[1, 2, 31;

const array

const tuple

Listing 3: Syntax example

With the exception of arrays containing holes, any array expression can be converted to a
tuple expression by adding the # modifier. Holes in a tuple expression, similar as shown

in Listing [4] will raise a syntax error.

const x = #[,]; // SyntaxError: Unexpected token: |,

Listing 4: Holes are disallowed by syntax

11

10

11

'

~

There are also a few limitations when converting object expressions to record expressions
from a syntax perspective. Records cannot contain methods nor getter or setter functions
as shown in Listing [5| In addition, properties named __proto__ are not allowed as record

values do not participate in prototype chains.

const x = #{
method () { }
}; // SyntaxError: Expected : but found (

const y = #{
get id() { return 42; }
}; // SyntaxError: Expected : but found id

const z = #{
__proto__: 42
}; // SyntaxError: ’__proto__’ is not allowed in Record expressions

Listing 5: Record syntax errors

Comparing this syntax with existing implementations in other languages, Python is using
a similar approach. The biggest difference is in the different syntax, where tuples in
Python do not start with a # modifier prefix as they are using a different type of brackets

for distinguishing them from arrays. An example can be seen in Listing [6]

python

[1, 2, 3]
tuple_value = (1, 2, 3)

array_value

Listing 6: Python tuple

3.3 Semantics

The RTP specifies that record and tuple values are deeply immutable. Therefore, defining

records or tuples using mutable values will raise a TypeError as can be seen in Listing [7]

const obj = { id: 1 };

const x = #{ data: obj 1};

// TypeError: Records cannot contain non-primitive values

const y = #[1, 2, 3, objl;

// TypeError: Tuples cannot contain non-primitive values

Listing 7: TypeError due to non-primitive values

12

V]

Although usually any value of type String or Symbol can be used as property key in
ECMAScript, records will raise a TypeError if Symbols are being used.

const sym = Symbol(’test’);

const x = #{[sym]: 42};
// TypeError: Record may only have string as keys

Listing 8: TypeError due to symbol property key

3.4 Equality

Record and tuple values are considered equal if their structure and contents are deeply
identical. Note that strict equality (using ===), loose equality (using ==) and the internal
SameValueZero algorithm treat +0 and -0 within record or tuples as equal. However, the
Object.is built-in method uses the internal SameValue algorithm that treats +0 and -0

as unequal and thus returns a different result.

console.log(
#{ a: 0 } === #{ a: -0 } && #[0] === #[-0] // strict equality
); // Output: true

console.log(

#{ a: 0 } == #{ a: -0 } && #[0] == #[-0] // loose equality

71); // Output: true

console.log(
Object.is(#{ a: 0 }, #{ a: -0 }) && Object.is(#[0], #[-0])
); // Output: false

Listing 9: Equality of records and tuples

13

3.5

Built-in Methods

Besides the two data types, the RTP adds built-in methods for running operations on

them. This includes the following 7 constructor built-in methods:

Record(arg)
Record.fromEntries(iterable)

Returns a new record value based on the given argument.

Record.isRecord(arg)

Returns true if arg is a record value or record object.

Tuple(...items))
Tuple.of(...items)
Tuple.from(items [, mapFn [, thisArgl])

Returns a new tuple value based on the given arguments.

Tuple.isTuple(arg)

Returns true if arg is a tuple value or tuple object.

In addition, the proposal also includes 32 prototype built-ins for tuples and currently

none for records. Note that only the first few of those are explained as most of them are

self-explanatory.

get Tuple.prototype.length
A getter function returning the length of the tuple.

Tuple.prototype.valueOf ()

Returns this as tuple value.

Tuple.prototype.popped()

Returns a tuple containing the elements of the tuple, except for the last value.

Tuple.prototype.pushed(. . .args)

Returns a Tuple containing the elements of the tuple, followed by the arguments.

Tuple.prototype.reversed()

Returns a tuple containing the elements of the tuple, in reverse order.

Tuple.prototype.shifted()

Returns a tuple containing the elements of the tuple, except for the first value.

Tuple.prototype.slice(start, end)

Returns a tuple containing the elements of the tuple from index start to end-1.

Tuple.prototype.sorted(comparefn)

Returns a tuple containing a sorted sequence of the elements of the tuple.

14

Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.
Tuple.

Tuple.

prototype.
prototype.
prototype.
prototype.
prototype.
prototype.
prototype.
prototype.
prototype.
prototype.

prototype.

prototype

prototype.
prototype.

prototype.

prototype

prototype.
prototype.

prototype.

prototype

prototype.
prototype.

prototype.

prototype

spliced(start, deleteCount, ...items)
concat(...args)

includes(searchElement [, fromIndex])
index0f (searchElement [, fromIndex])
join(separator)

lastIndex0f (searchElement [, fromIndex])
entries()

every(callbackfn [, thisArg])
filter(callbackfn [, thisArg])

find(predicate [, thisArg]l)

findIndex(predicate [, thisArg])

.flat ([depth])

flatMap (mapperFunction [, thisArg])
forEach(callbackfn [, thisArg]l)

keys ()

.map(callbackfn [, thisArg])

reduce(callbackfn [, thisArg])
reduceRight (callbackfn [, thisArg])

some (callbackfn [, thisArg])

.unshifted(...args)

toLocaleString([reservedl [, reserved2]])
toString()

values()

.with(index, value)

15

4 Implementation

This chapter describes the actual implementation of the RTP in Graal.js. In Section 4.1
an overview of the relevant phases is introduced. In Section the compiler frontend,
including the necessary parser changes, is presented. Section 6.3. describes the relevant

AST nodes, while Section 6.4. is presenting the Truffle nodes in detail.

4.1 Overview

The process of executing JS code using Graal.js can be split into three phases as can be

seen in Figure

e Compiler Frontend

Reads the JS code and produces the intermediate representation (in short: IR).

e Translator

Translates the IR produced by the compiler frontend into AST nodes.

e AST

The final result which gets executed.

JS Source

Compiler Frontend Translator AST

Parser.java RecordLiteralNode.java

TokenType.java) TupleLiteralNode.java

RecordPropertyNode.java GraalJSTranslator.java JSIsTupleNode.java

RecordNode.java JSTupleToStringNode.java

LiteralNode.java JSRecordToStringNode.java
Execution

Result

Figure 3: Implementation architecture

The following sections in this chapter are about the necessary changes for supporting

records and tuples as described in Chapter 5.

16

N

4.2 Compiler Frontend

The compiler frontend consists of two main parts:
e Lexer: Responsible for converting source content into a stream of tokens.
e Parser: A recursive descent parser which builds the IR.

In order to implement the proposed JS grammar changes as described in Chapter 5, the

existing code needs to be extended.

<<Enum>>
TokenType (edited) TokenLookup Lexer
RECORD kind: LITERAL)
TUPLE kind: LITERAL)

SPREAD_RECORD
SPREAD_TUPLE
HASH_BRACKET
HASH_BRACE

kind: IR)
kind: IR)

kind: BRACKET)
kind: BRACKET)

A~~~

AbstractParser

[

Parser (edited)

- recordLiteral(boolean yield, boolean await): RecordNode

- recordPropertyDefinition(boolean yield, boolean await): RecordPropertyNode

- tupleLiteral(boolean yield, boolean await): LiteralNode

Figure 4: Compiler Frontend UML

By adding HASH_BRACKET and HASH_BRACE to the TokenType enum, as can be seen in
Listing [I0] below, the Lexer gets aware of those new keywords. There weren’t any changes

necessary in the Lexer class itself.

public enum TokenType {

HASH_BRACKET (BRACKET, "#[", 0, true, 13),
HASH_BRACE (BRACKET, "#{", 0, true, 13);

Listing 10: TokenType.java

17

V]

New methods for the nonterminal symbols (in short: NT'S) RecordLiteral,

RecordPropertyDefinition and TupleLiteral have been added to the recursive descent

parser.

The implementation of the TupleLiteral NTS-method one can be seen in Listing

below. It is based on the existing code for parsing Arrays.

private LiteralNode tupleLiteral(boolean yield, boolean await) {
final long tupleToken = token; // Capture HASH_BRACKET token.
next (); // HASH_BRACKET tested in caller.

// Prepare to accumulate elements.
final Arraylist<Expression> elements = new ArrayList<>();
// Track elisions.
boolean elision = true;
loop: while (true) {

long spreadToken = 0;

switch (type) {

case RBRACKET:
next () ;

break loop;

case COMMARIGHT:
if (elision) { // If no prior expression
throw error (AbstractParser.message("unexpected.token",
type.getNameOrType ()));
}
next () ;
elision = true;

break;

case ELLIPSIS:
spreadToken = token;
next () ;
// fall through

default:
if (telision) {
throw error (AbstractParser.message("expected.comma',

type.getNameOrType ()));
}

// Add expression element.
Expression expression = assignmentExpression(true, yield,
await, false);
if (expression != null) {
if (spreadToken != 0) {

18

expression = new UnaryNode (Token.recast (spreadToken

, SPREAD_TUPLE), expression);

}
elements.add (expression);
} else {
expect (RBRACKET) ;
}
elision = false;
break;

return LiteralNode.newTupleInstance (tupleToken, finish, optimizelList(

elements)) ;

Listing 11: tupleLiteral(...) in Parser.java

The added NTS-methods for parsing Records and Tuples are being called in the N'TS-
method for PrimaryExpression as can be seen in Listing If the current token type
equals the start of a record literal (#{), the parser will execute recordLiteral(...). In

case it equals the start of a tuple literal (#[), it will call tupleLiteral(...).

private Expression primaryExpression(boolean yield, boolean await) {
// Capture first token.
final int primaryLine = line;

final long primaryToken = token;

switch (type) {

case LBRACKET:

return arraylLiteral(yield, await);
case LBRACE:

return objectLiteral(yield, await);
case HASH_BRACE:

return recordLiteral(yield, await);
case HASH_BRACKET:

return tupleliteral(yield, await);

Listing 12: primaryExpression(...) in Parser.java

19

V]

4.3 Building the AST

After parsing the JS file, the literal nodes created by the parser need to be translated
into executable AST nodes. An overview of the affected Node classes and how they are
accessed from GraalJSTranslator can be seen in Figure|pl The GraalJSTranslator uses
the visitor design pattern to do this translation. This section focuses on the translation

of tuples. The process is very similar for record literals.

| TranslatorNodeVisitor
LiteralNode \

| GraaIJSTransIator M TupleLiteralNode

TupleLiteralNode
DefaultTupleLiteralNode

RecordNode RecordPropertyNode |

| RecordLiteralNode

| DefaultTupleLiteralWithSpreadNode

Figure 5: Translator UML

Listing [13| shows the GraalJSTranslator method which gets called when a LiteralNode
containing a tuple is visited. It checks if the tuple contains a spread operator (. ..foo) as

in this case, a special subclass of TupleLiteralNode gets created.

private JavaScriptNode enterLiteralTupleNode(LiteralNode.TupleLiteralNode
tupleLiteralNode) {
List<Expression> elementExpressions = tuplelLiterallNode.

getElementExpressions () ;

JavaScriptNode [] elements = javaScriptNodeArray(elementExpressions.size
O
boolean hasSpread = false;
for (int i = 0; i < elementExpressions.size(); i++) {

Expression elementExpression = elementExpressions.get(i);

hasSpread = hasSpread || elementExpression.isTokenType(TokenType.
SPREAD_TUPLE) ;

elements[i] = transform(elementExpression);
}

return hasSpread ? factory.createTuplelLiteralWithSpread(context,

elements) : factory.createTupleLiteral(context, elements);

Listing 13: enterLiteralTupleNode(...) in GraalJSTranslator.java

20

factory in the listing above is an instance of NodeFactory which follows the proxy pattern

and forwards the call to the corresponding AST node as can be seen in Listing

public JavaScriptNode createTuplelLiteral (JSContext context, JavaScriptNode
[1] elements) {

return TupleliteralNode.create(context, elements);

public JavaScriptNode createTupleliteralWithSpread(JSContext context,
JavaScriptNode [] elements) {
return TupleliteralNode.createWithSpread(context, elements);

}

Listing 14: createTupleLiteral(...), createTupleLiteral WithSpread(...) in NodeFactory.java

Finally, the AST node gets created. If possible, the actual tuple value gets initialized
during the building of the AST as shown in Listing The create-method returns a
predefined empty tuple in case the elements array is empty or an AST node containing

the final tuple value in case all contained elements are constants.

V]

public abstract class TupleLiteralNode extends JavaScriptNode {

public static JavaScriptNode create(JSContext context, JavaScriptNode []
elements) {
if (elements == null || elements.length == 0) {
return createEmptyTuple ();

Object [] constantValues = resolveConstants(elements);
if (constantValues != null) {

return createConstantTuple (constantValues) ;

return new DefaultTupleLiteralNode (context, elements);

public static TupleliteralNode createWithSpread(JSContext context,
JavaScriptNode [] elements) {

return new DefaultTupleliteralWithSpreadNode (context, elements);

Listing 15: create(...), createWithSpread(...) in TupleLiteralNode.java

21

In case the elements have to be resolved during execution, a DefaultTupleLiteralNode
or DefaultTupleLiteralWithSpreadNode gets created. A reason for this can be the usage

of the spread operator (...data) or computed values.

Listing shows how we resolve computed values. Note that the requireNonObject-
method checks the type of the computed value and throws a TypeError if the value is of
type object as described in Section

public abstract class TupleliteralNode extends JavaScriptNode {

private static class DefaultTuplelLiteralNode extends TupleLiteralNode {

@Children protected final JavaScriptNode[] elements;

private DefaultTuplelLiteralNode (JSContext context, JavaScriptNode[]
elements) {
super (context) ;

this.elements = elements;

@0verride
public Tuple execute(VirtualFrame frame) {

Object [] values = new Object[elements.lengthl];

for (int i = 0; i < elements.length; i++) {
Object value = elements[i].execute(frame);
values[i] = requireNonObject (value);

}

return createTuple(values);

Listing 16: DefaultTupleLiteralNode in TupleLiteralNode.java

22

N

5 Testing

This chapter is about verifying the correctness of the RTP implementation. In Section [5.1
we take a look at existing test suites, while Section [5.2] presents the implementation of

custom unit tests.

5.1 Existing Test Suites

Test262 [16] is a test suite provided by TC39 to verify ES implementations. As the RTP is
still in stage 2 and acceptance tests aren’t required before stage 4, the repository doesn’t
contain tests testing the functionality of records and tuples. However, the implementation

was tested against the existing Test262 tests in order to ensure that no regressions occurred.

Also TestV8, Google’s test suite used for verifying the correctness of their V8 JS engine,
doesn’t contain test cases testing the functionality introduced by the RTP. For this reason,

it was necessary to write custom tests as described in the next section.

5.2 Unit Tests

As Test262 and TestV8 don’t contain the necessary tests for verifying the correctness of

the RTP implementation, custom tests in the shape of unit tests were added.

Tests were introduced for every built-in method or property and for common operations
such as equality checks or type conversions. Listing [L7] shows one such unit test in which

testLength() verifies that the built-in property length is set to the length of the tuple.

public class TuplePrototypeBuiltinsTest extends JSSimpleTest {

public TuplePrototypeBuiltinsTest() { ... }

QTest

public void testLength() {
assertEquals (0, execute("#[].length").asInt());
assertEquals (3, execute("#[1, 2, 3].length").asInt());
assertEquals (3, execute("Object (#[1, 2, 3]).length").asInt());

Listing 17: testLength() in TuplePrototypeBuiltinsTest.java

23

V]

Unit test classes inherit the base class JSSimpleTest shown in Listing It provides

methods for executing JS snippets using the Polyglot API introduced in Section [2.2.1

public abstract class JSSimpleTest {
protected final String testName;
private final Map<String, String> options = new HashMap<>();
protected JSSimpleTest (String testName) {

this.testName = testName;

protected void addOption(String key, String value) {
options.put (key, value);

protected Value execute(String sourceText) {
try (Context context = newContext()) {
return context.eval(Source.newBuilder (JavaScriptLanguage.ID,

sourceText , testName).buildLiteral());

}
}
protected Value execute(String... sourceText) {
return execute(String.join("\n", sourceText));
}

protected void expectError (String sourceText, String expectedMessage) {

try (Context context = newContext()) {
context.eval(Source.newBuilder (JavaScriptLanguage.ID,
sourceText , testName).buildLiteral());
Assert.fail ("should have thrown");
} catch (Exception ex) {

Assert.assertTrue (ex.getMessage () .contains (expectedMessage));

private Context newContext () {
return Context.newBuilder (JavaScriptLanguage.ID)
.allowExperimentalOptions (true)
.options (options)

.build Q) ;

Listing 18: JSSimpleTest.java

24

6 Performance Evaluation

This chapter provides a performance evaluation of the added deeply immutable data types
in comparison to similar existing data types. Benchmark and methodology details are
described in section The setup used for benchmarking is described in section In

section the obtained results are presented.

6.1 Benchmark

Benchmark.js [24] was used as benchmark harness to avoid common pitfalls. The created

custom benchmark suit tests two basic test scenarios:

e Create
Creating a value of the given data type,
e.g. return #{ id: 1, data: "Hello World!" };

o Get
Accessing an element of a previously defined value of the given data type,

e.g. return tuple[1]; // somewhere outside: var tuple = #[1,2,3];

Besides benchmarking the added Record and Tuple data types, existing similar imple-
mentations are also being tested for comparisons. This includes the JS-native Object and

Array as well as Map and List provided by the Immutable.js |7] library.

After running 10M warmup iterations, the benchmarking library calculates the number of
iterations required to reduce the margin of error (in short: MOFE) to about 1% and starts

executing the benchmark.

6.2 Setup

The tests were conducted on a desktop workstation running a clean install of Ubuntu Server

21.04 installed on a secondary internal SSD. The hardware specifications are:
e CPU: i7-10700 8C16T @2.90GHz
e RAM: 32GiB (2x16) DDR4 @2667MHz
e SSD: 1TB SATA

By running Ubuntu Server, external influences such as background system updates (e.g.
Windows updates) are being reduced. The only additional packages installed are those

required for building and running Graal.js.

25

6.3 Results

ops/sec Create

1400000 000
1260,40 Mops/sec

1200 000 000 1129,94 Mops/sec
1000 000 000 923,82 Mops/sec
800 000 000
600 000 000
400 000 000
200 000 000
2,53 Mops/sec 12,30 Mops/sec 2,81 Mops/sec
0
Array Tuple List Object Record Map
(Native) (RTP) (immutable-js) (Native) (RTP) (immutable-js)

Figure 6: Benchmark 1, Create

Figure [0] illustrates the results of the first test scenario. Interestingly, the Tuple imple-
mentation outperforms the existing Array implementation by 11.5%. A potential reason
for this are type checks. Graal.js’s Array implementation performs a lot of type checks
and stores the elements in a typed Java array if possible. Elements stored in Tuples on
the other hand are being stored in untyped Java object arrays and thus type checks aren’t
necessary. The low score of List and Map compared to Array and Object shows the

performance improvement potential the RTP can offer.

ops/sec Get
1200 000 000
1016,42 Mops/sec 1016,96 Mops/sec
1000 000 000
800 000 000
600 000 000

400 000 000

200 000 000
63,44 Mops/sec

37,54 Mops/sec 39,67 Mops/sec 10,00 Mo,
X ps/sec
0 | — —
Array Tuple List Object Record Map
(Native) (RTP) (immutable-js) (Native) (RTP) (immutable-js)

Figure 7: Benchmark 2, Get

Figure [7]shows our second test scenario. As values are being defined once and then usually
accessed multiple times, having a high score in this test scenario is important. Although
the added types outperform those provided by Benchmark.js by 69% and 297%, further

improvements should be possible to archive results similar to Array or Object.

26

7 Conclusion

The main goal of this Bachelor thesis was an open-source contribution to the Graal.js
repository [1]. The contribution comprised the full functionality of the RTP as of February
2021 as part of the core Graal.js interpreter.

The Graal.js pull request [25], which adds the RTP implementation, consists of a total of
76 changed or added files in 33 commits. It lists 7244 added lines and 15 removed ones.

The second goal of showing a good execution performance was also met. In one scenario,
the Tuple implementation even outperformed the existing Array by 11.5%. Compared to
the transitional way of using an userland library like Immutable.js [7], the RTP implemen-
tation showed an distinct performance improvement. However, further improvements are

necessary to archive results similar to existing Array or Object implementations.

Additionally, there is future work to be done on the RTP implementation as the proposal

is still expected to be changed and improved before it moves to stage 4 eventually.

27

8 References

List of Figures

[GraalVM interface architecturel o 0o L. 8
2 Truffle system architecture|. L 9
13 Implementation architecturef. oL 16
|4 Compiler Frontend UML|.o, 17
B Translator UMT] o 20
|6 Benchmark 1, Create| 26
{7 Benchmark 2, Get| 26

List of Listings

1 Record example in Kotlin| 000000 10
[2 Tuple example in Python| 10
13 Syntax example] L L 11
|4 Holes are disallowed by syntax| 11
5 Record syntax errors| oL Lo 12
[6 Python tuple] 12
{7 TypeError due to non-primitive values| 12
18 TypeError due to symbol property key| 13
[9 Equality of records and tuples|. L. 13
10 TokenType.javal 17
(L1 tupleLiteral(...) in Parser.javal 18
(12 primaryExpression(...) in Parser.javal 19
[I3 enterLiteralTupleNode(...) in GraalJSTranslator.javal 20
(14 createTupleLiteral(...), createTupleLiteral WithSpread(...) in NodeFactory.javal 21
[L5 create(...), createWithSpread(...) in TupleLiteralNode.javal. 21
116 DetaultTupleLiteralNode in TupleLiteralNode.java] 22
[L7 testLength() in TuplePrototypeBuiltinsTest.javal 23
[18 JSSimpleTest.javal 24

28

References

1]

Graal.js repository. URL: https://github.com/oracle/graaljs (visited on 2021-
07-05).

GraalVM. URL: https://www.graalvm.org/ (visited on 2021-07-23).

Truffle Language Implementation Framework. URL: https://www.graalvm. org/
graalvm-as-a-platform/language - implementation- framework/ (visited on
2021-07-05).

ECMA-262. URL: https://www.ecma-international . org/publications-and-
standards/standards/ecma-262/ (visited on 2021-07-23).

Record & Tuple Proposal Repository. URL: https://github.com/tc39/proposal-
record-tuple (visited on 2021-07-07).

JavaScript — MDN. URL: https://developer.mozilla.org/en-US/docs/Web/
JavaScript| (visited on 2021-07-03).

Immutable.js. URL: https://github.com/immutable-js/immutable-js/ (visited
on 2021-07-06).

Immer. URL: https://github.com/immerjs/immer (visited on 2021-07-06).

ECMAScript@®) Language Specification. URL: https://tc39.es/ecma262/| (visited
on 2021-07-03).

A. Wirfs-Brock and B. Eich. JavaScript: The First 20 Years. Proc. ACM Program.
Lang., 4(HOPL), 2020-06. DoI: 10 . 1145/3386327. URL: https://doi . org/10.
1145/3386327.

Node.js. URL: https://nodejs.org/en/ (visited on 2021-07-03).

Home - Ecma International. URL: https://www.ecma-international.org/| (visited
on 2021-07-02).

Technical Committees and Task Groups - Ecma International. URL: https://www.

ecma-international.org/technical-committees/| (visited on 2021-07-02).

TC39 - Ecma International. URL: https : //www . ecma - international . org/

technical-committees/tc39/ (visited on 2021-07-02).

ECMAScript@®) Internationalization API Specification. URL: https://tc39.es/
ecmad02/ (visited on 2021-07-25).

Test262 Repository. URL: https://github.com/tc39/test262 (visited on 2021-07-
21).

tc39/proposals: Tracking ECMAScript Proposals. URL: https://github.com/tc39/
proposals (visited on 2021-07-04).

29

https://github.com/oracle/graaljs
https://www.graalvm.org/
https://www.graalvm.org/graalvm-as-a-platform/language-implementation-framework/
https://www.graalvm.org/graalvm-as-a-platform/language-implementation-framework/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://github.com/tc39/proposal-record-tuple
https://github.com/tc39/proposal-record-tuple
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://github.com/immutable-js/immutable-js/
https://github.com/immerjs/immer
https://tc39.es/ecma262/
https://doi.org/10.1145/3386327
https://doi.org/10.1145/3386327
https://doi.org/10.1145/3386327
https://nodejs.org/en/
https://www.ecma-international.org/
https://www.ecma-international.org/technical-committees/
https://www.ecma-international.org/technical-committees/
https://www.ecma-international.org/technical-committees/tc39/
https://www.ecma-international.org/technical-committees/tc39/
https://tc39.es/ecma402/
https://tc39.es/ecma402/
https://github.com/tc39/test262
https://github.com/tc39/proposals
https://github.com/tc39/proposals

[20]

[21]

The TC39 Process. URL: https://tc39.es/process-document/| (visited on 2021-
07-04).

T. Wiirthinger, C. Wimmer, A. W68, L. Stadler, G. Duboscq, C. Humer, G. Richards,
D. Simon, and M. Wolczko. One VM to Rule Them All. In Proceedings of the 2013
ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! 2013, pages 187—-204, Indianapolis, Indiana, USA.
Association for Computing Machinery, 2013. 1SBN: 9781450324724. Do1: [10.1145/
2509578 .2509581. URL: https://doi-1lorg-1007dacxb0519.han.ubl. jku.at/
10.1145/2509578.2509581.

GraalVM Compiler. URL: https://www.graalvm.org/reference-manual/compiler/
(visited on 2021-07-05).

C. Wimmer and T. Wiirthinger. Truffle: A Self-Optimizing Runtime System. In
Proceedings of the 3rd Annual Conference on Systems, Programming, and Applica-
tions: Software for Humanity, SPLASH 12, pages 13-14, Tucson, Arizona, USA.
Association for Computing Machinery, 2012. 1SBN: 9781450315630. DOI: [10.1145/
2384716 .2384723. URL: https://doi-1lorg-1007dacxb057a.han.ubl. jku.at/
10.1145/2384716.2384723.

GraalVM JavaScript Implementation. URL: https://www.graalvm.org/reference
manual/js/| (visited on 2021-07-05).

The Python Language Reference. URL: https://docs.python.org/3/reference/
(visited on 2021-07-26).

Benchmark.js. URL: https://benchmarkjs.com/ (visited on 2021-07-19).

Pull Request: Records & Tuples Proposal Implementation. URL: https://github.
com/oracle/graaljs/pull/433| (visited on 2021-07-26).

30

https://tc39.es/process-document/
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581
https://doi-1org-1007dacxb0519.han.ubl.jku.at/10.1145/2509578.2509581
https://doi-1org-1007dacxb0519.han.ubl.jku.at/10.1145/2509578.2509581
https://www.graalvm.org/reference-manual/compiler/
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2384716.2384723
https://doi-1org-1007dacxb057a.han.ubl.jku.at/10.1145/2384716.2384723
https://doi-1org-1007dacxb057a.han.ubl.jku.at/10.1145/2384716.2384723
https://www.graalvm.org/reference-manual/js/
https://www.graalvm.org/reference-manual/js/
https://docs.python.org/3/reference/
https://benchmarkjs.com/
https://github.com/oracle/graaljs/pull/433
https://github.com/oracle/graaljs/pull/433

	Introduction
	Problem & Motivation
	Solution: Records and Tuple proposal
	Contributions
	Structure of this Thesis

	Fundamentals
	ECMAScript
	TC39 Process

	GraalVM
	Truffle
	Graal.js

	Records
	Tuples

	Record & Tuple Proposal
	Data Types
	Syntax
	Semantics
	Equality
	Built-in Methods

	Implementation
	Overview
	Compiler Frontend
	Building the AST

	Testing
	Existing Test Suites
	Unit Tests

	Performance Evaluation
	Benchmark
	Setup
	Results

	Conclusion
	References

