
Author / Eingereicht von
Jonathan Kudlich,
Keanu Pöschko
k11818866,
k11824891

Submission / Angefertigt
am
Institute for System
Software

Thesis Supervisor / First
Supervisor / BeurteilerIn /
ErstbeurteilerIn /
ErstbetreuerIn
a.Univ.-Prof. Dipl.-Ing.
Dr. Herbert Prähofer

April 28, 2023

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Austria
www.jku.at
DVR 0093696

A Framework for
Static Analysis of IEC
61131-3 Languages

Bachelor Thesis
to obtain the academic degree of

Bachelor of Science
in the Bachelor’s Program

Informatik

Statutory Declaration

I hereby declare that the thesis submitted is my own unaided work, that I have
not used other than the sources indicated, and that all direct and indirect sources
are acknowledged as references.

This printed thesis is identical with the electronic version submitted.

Linz, April 28, 2023 Jonathan Kudlich,
Keanu Pöschko

Abstract

Programmable Logic Controllers (PLCs) are essential for industrial automation
systems that automate complex processes. However, the availability of tools for
supporting static analysis of PLC programming languages is significantly limited.
To address this issue, this thesis presents a language-independent framework fo-
cused on IEC-61131-3. It implements and describes data structures and algorithms
that form a basis for analysing IEC-61131-3 based languages. It also implements a
concrete application of these data structures in the form of constant folding. The
developed tool chain is a significant step in bridging the gap in available tools for
the static analysis of PLC programs.

Kurzfassung

Softwareprogrammierbare Steuerungen (SPS) sind essentiell for industrielle Au-
tomatisierungssysteme die komplexe Prozesse automatisieren. Die Anzahl von
Werkzeugen, die die statische Analyse von SPS Programmiersprachen ermögli-
chen, ist jedoch stark limitiert. Um diesem Problem entgegenzuwirken, präsentiert
diese Arbeit ein sprachunabhängiges Framework das sich auf IEC-61131-3 kon-
zentriert. Sie implementiert und beschreibt Datenstrukturen und Algorithmen,
die eine Basis für die Analyse von IEC-61131-3 basierten Sprachen bieten. Sie
zeigt außerdem eine konkrete Anwendung dieser Datenstrukturen in der Form
von Constant Folding. Die entstandene Toolchain ist ein signifikanter Schritt
um die Lücke in Werkzeugen für die statische Analyse von SPS Programmen zu
schließen.

April 28, 2023 Jonathan Kudlich,
Keanu Pöschko

Contents

1 Introduction and Motivation 1
1.1 Context: PLC, IEC 61131 . 2
1.2 Approach . 2
1.3 Structure of the Theses . 4
1.4 Joint work of Bachelor applicants . 5

2 IEC 61131–3 Programs 6
2.1 Structured Text (ST) . 7
2.2 Running Example . 9

3 ASTM Abstract Syntax Tree Representation 13
3.1 GASTMSwitch . 17

Part 1
4 Control Flow Graph (CFG) 19

4.1 Basic Principle of CFG . 19
4.2 Class System for CFG . 22
4.3 Builder for CFG . 27

4.3.1 Principal approach . 27
4.3.2 CFSubGraphBuilder . 28
4.3.3 flattenSubGraph() . 33

5 Call Graph 39
5.1 Introduction to Call Graphs . 39
5.2 Class System for Call Graph . 42
5.3 Builder for Call Graph . 44

5.3.1 Main Principle . 44
5.3.2 Finding the Procedure Calls 44

April 28, 2023 Jonathan Kudlich,
Keanu Pöschko

5.3.3 Resolving of Procedure Names 44

Part 2
6 Memory Model 47

6.1 Instance Tree (IT) . 47
6.2 Instance Tree Builder . 50

6.2.1 Instance Tree Builder Algorithm 51
6.3 Class System for IT . 52

7 Data-Flow Analysis 54
7.1 Reaching Definitions . 55
7.2 The Basics of Reaching Definitions 56
7.3 Formalizing Reaching Definitions . 58
7.4 Interprocedural Reaching Definitions 61
7.5 Algorithm for Constructing Reaching Definitions 62

8 Constant Folding 65
8.1 Basic Principle of Constant Folding 65
8.2 Constant Expression Evaluation . 68

8.2.1 Identifiers . 70
8.2.2 QualifiedIdentifierReferences 70
8.2.3 Putting it all together . 72
8.2.4 Dealing with references . 74

9 Conclusion and Outlook 75
9.1 Summary . 75
9.2 Open Issues . 76

April 28, 2023 Jonathan Kudlich,
Keanu Pöschko

List of Figures

1.1 Analysis process . 3

3.1 GASTMObject . 14
3.2 GASTMSemanticObject . 15
3.3 GASTMSourceObject . 16
3.4 GASTMSyntaxObject . 17

4.1 CFG for a if-then-else construct . 20
4.2 CFG for a while-loop1 . 20
4.3 CFG for the running example . 21
4.4 Class system for the CFG . 22
4.5 CFG for the running example . 24
4.6 CFG for the example program using a loop from Listing 4.1 26
4.7 Subgraph abstraction for the example from Listing 4.2. 28
4.8 Principle for the iteration of the CFSubGraphBuilder 29
4.9 CFSubGraphs . 31
4.10 CFSubGraphs . 32
4.11 CFSubGraphs . 33
4.12 CFSubGraphs . 35
4.13 CFSubGraphs . 36
4.14 CFG generated by LevelControl. 37
4.15 CFG generated by Pump. 38
4.16 CFG generated by Sensor. 38

5.1 CFSubGraphs . 40
5.2 CFSubGraphs . 41
5.3 Class system for the CFG and CG. 43
5.4 CFSubGraphs . 46

6.1 An example of an instance tree. 49
6.2 Four part instance tree construction 50
6.3 Class System for IT . 52

April 28, 2023 Jonathan Kudlich,
Keanu Pöschko

7.1 An example of reaching definitions 57
7.2 Simple cfg with labeled nodes . 59
7.3 Interprocedural reaching definitions example 61

8.1 Simple constant propagation example 67
8.2 Operator Types . 68
8.3 Eval AST . 69
8.4 An illustration of an AST and its IT 71
8.5 A example showing references in the IT 74

April 28, 2023 Jonathan Kudlich,
Keanu Pöschko

List of Tables

2.1 Control flow structures of structured text. 8

7.1 The computed Reaching Definitions for figure 7.2 60

April 28, 2023 Jonathan Kudlich,
Keanu Pöschko

Listings

2.1 If-then-else statement. 8
2.2 While loop. 8
2.3 For loop. 8
2.4 Repeat-until loop. 8
2.5 Switch-case statement. 8
2.6 Example for a custom datatype. 9
2.7 Content of LevelControl.st . 10
2.8 Content of Pump.st . 10
2.9 Content of Sensor.st . 11

4.1 Example procedure for summing up the numbers from 1 to n. . . . 25
4.2 Example procedure for showing the principle of subgraphs. 27

7.1 A simple code example . 56
7.2 A simple code example with Reaching Definition annotation 56

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

1 Introduction and Motivation

IEC 61631–3 [6] is a standard for languages for Programmable Logic Controller

(PLC) Programs. One language within this standard is Structure Text, which is a

language similar to Pascal.

Static code analysis is a software engineering technique which allows acquiring

information about the structure but also possibly about runtime properties of a

program without executing it. In [11, Prähofer et al. 2015] a tool has been presented

which supports advanced analysis techniques for PLC programs based on the IEC

61131–3 standard. However, as it relies on a specific dialect of the IEC 61131–3

standard, the tool is not generally available.

Therefore, in this work a new tool environment has been implemented. In contrast

to the former, this tool chain supports the language elements of the Structured

Text defined in the standard.

These theses have been produced in collaboration with the Software Competence

Center Hagenberg, who have developed a framework that is capable of compiling

source code into an ASTM-structure. This framework is used in our toolchain to

perform the first step of the working process where the analysed code is parsed

into ASTM format.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

1/78

1.1 Context: PLC, IEC 61131

Programmable Logic Controllers (PLCs) are a widely spread tool for industrial

automation systems. Many of the PLCs in use today conform by the IEC 61131

standard. Specifically, they also conform to the languages described in the third

section of the standard. However, despite the software systems used in indus-

trial programming becoming increasingly large and complex [15], the number of

supporting tools for those languages is still severely lacking.

1.2 Approach

The goal of these theses is to present a tool chain for the static analysis of structure

and data flow in programs. The presented tool chain starts by translating the

programs into an intermediate representation, an Abstract Syntax Tree (AST) based

on the AST Metamodel (ASTM) specified by the OMG. The ASTM is a model for

representing code from different programming languages in a comprehensive,

standardized way. After translating the program code into the ASTM the toolchain

extracts useful meta-information from the ASTM and prepares the information for

further analysis. The meta-information extracted from the ASTM consists of the

Interprocedural Control Flow and Call Graphs, the Memory Model of the project as

well as the Data Flow of the program, represented by its Single Static Assignment

form and the computation of constant folding in the code. The complete process is

detailed in Figure 1.1.

The main focus of these theses lies on the family of languages that are based on

the IEC-61131–3 standard, however, one of our requirements is that the analysis

should be independent of the used language. While this is not entirely possible, the

requirement has been fulfilled to the greatest feasible extent. This means that the

presented toolchain is able to perform basic analysis on most supported languages,

while detailed analysis is available only for IEC-61131–3 based languages.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

2/78

. . .

IEC 61131–3

ASTM

Control Flow Graph

Reaching Definitions

Call Graph

. . .

Constant Folding

. . .

Parsers Representation Analysis

Figure 1.1: Analysis process

Due to this focus on IEC-61131–3 languages combined with limited time and

manpower not all features of the supported languages were required to be sup-

ported.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

3/78

1.3 Structure of the Theses

In the following we will outline the structure of the theses.

To start, Chapter 2 gives a short overview on the IEC 61131–3 standard. It then

focuses in on the ST language defined in the standard, giving a short overview of

the most important syntax elements. Finally, it introduces a short ST program that

will be used to illustrate several concepts throughout this paper.

In Chapter 3 the abstract syntax tree metamodel is introduced as an abstract

representation for programs of any language. The chapter then outlines the

concepts of the metamodel which have the most significant impact on our work.

It finishes by introducing the GASTMSwitch, a class that has been extensively used

in our implementation.

Chapter 4 presents the control flow graph as an analysis tool for programs. It then

shows our implementation of a control flow graph and how it is built from the

ASTM representation that we use as our basis.

Chapter 5 then introduces the concept of a call graph and shows how our control

flow graph is extended with a call graph.

In Chapter 6 a memory model, which represents all instances of a program, is

introduced. For this purpose we introduce a tree like data structure called the

instance tree.

Chapter 7 introduces an algorithm for analyzing the data-flow of a CFG . Specifi-

cally, it introduces the algorithm to compute the reaching definitions of a given

program.

Chapter 8 presents the concepts of constant folding and constant propagation. The

chapter concludes by showing how constant folding and constant propagation

were implemented as part of our data-flow analysis.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

4/78

Finally, Chapter 9 recapitulates what we have accomplished in these theses and

gives a short outlook on potential future work.

1.4 Joint work of Bachelor applicants

This is a joint work by Jonathan Kudlich and Keanu Pöschko. Thus, the present

report represents the Bachelor theses of the two Bachelor applicants where

• Chapters 4 and 5 represents the sole work of Jonathan Kudlich and

• Chapters 6, 7, 8 represents the sole work of Keanu Pöschko.

The introductory Chapters 1, 2, and 3 and the conclusion in Chapter 9, however,

have been written in cooperation.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

5/78

2 IEC 61131–3 Programs

The IEC 61131 standard [6] was released by the IEC in 1993 [7]. It is a widely

accepted standard in the industry. in its third section, the standard defines five

languages in which PLCs can be programmed. Of these, two are textual languages,

and three visual languages:

• Instruction List (IL)

Instruction List programs consist of assembly-style instructions that define

the PLCs behavior.

• Structured Text (ST)

Structured Text programs look similar to languages like Pascal and C and

provide the ability to write code on a somewhat higher level than IL . The

syntax is outlined in more detail in Section 2.1.

• Function Block Diagram (FBD)

Function Block Diagrams are programs that focus of the flow and interactions

of data within a program unit.

• Ladder Diagram (LD)

Ladder diagrams are visual programs that model the behavior of the PLC as

an electrical circuit.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

6/78

• Sequential Function Chart (SFC)

Sequential Function Charts are visual programs that focus on the order of

the steps that a PLC goes through as it is executing its task.

2.1 Structured Text (ST)

Structured Text is the high level textual programming language defined in the

IEC 61131–3 standard. Its syntax shows strong similarities to that of Pascal. These

similarities as well as key differences between the languages explored in [13].

Like most high level programming languages, ST provides the usual control

structures of IF and ELSIF, WHILE, and FOR for conditions and loops. Additionally,

it provides a REPEAT ... UNTIL construct which is similar to Cs do ... while

loops. The control structures and their respective meanings are listed in table 2.1.

The main structural unit in a PLC program are called program organisation units

(POUs). These exist in several variations:

• Function Blocks (FBs) are structures that have internal fields and can be

instantiated, similar to a class in Java. Unlike classes however, they do not

define methods that can be called arbitrarily called. Instead, they define a

single procedure body that is executed when the FB is called.

• Functions are procedures similar to those found in other high level program-

ming languages. They can have both input, output, and inout parameters,

as well as local variables.

• Programs behave like normal procedures but act as the main entry point

into an ST program.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

7/78

Listing 2.1: If-then-else statement.

1 IF <condi t ion 1> THEN
2 <statements 1>
3 ELSIF <condi t ion 2> THEN
4 <statements 2>
5 ELSE
6 <statements 3>
7 END_IF ;

<statements1> is executed if
<condition1> is true, <statements2> is
executed if the first condition is false and
<condition2> is true. If neither condition
is true, <statements3> is executed.

Listing 2.2: While loop.

1 WHILE <condit ion > DO
2 <statements >
3 END_WHILE ;

If <condition> is true, <statements> is
executed until <condition> is false.

Listing 2.3: For loop.

1 FOR <var iab le > := < s t a r t > TO <
stop > BY <change> DO

2 <statements >
3 END_FOR ;

<variable> starts counting at <start>
and changes by <change> after each ex-
ecution of <statements> until its value
changes beyond <stop>

Listing 2.4: Repeat-until loop.

1 REPEAT
2 <statements >
3 UNTIL <condit ion >;

<statements> is executed and repeated
as long as <condition> remains true.

Listing 2.5: Switch-case statement.

1 CASE <var iab le > OF
2 <v1 > , <v2 >: <statements 1>
3 <v3> : <statements 2>
4 ELSE
5 <statements 3>
6 END_CASE ;

If <variable> equals either of <v1>
or <v2>, <statements1> is executed.
Otherwise, if <variable> equals <v3>,
<statements2> is executed. If none of
those options is taken, <statements3> is
executed.

Table 2.1: Control flow structures of structured text.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

8/78

Listing 2.7 in the next section gives an example for how an FB would be defined in

ST . As can be seen there, variables in a POU are defined using the VAR, VAR_INPUT,

VAR_OUTPUT, and VAR_INOUT keywords before the start of the procedure body.

ST also allows the definition of custom data structures using the STRUCT and TYPE

keywords:

Listing 2.6: Example for a custom datatype.

1 TYPE <name> :

2 STRUCT

3 <name> : <type >;

4 <name> : <type >;

5 <name> : <type >;

6 END_STRUCT ;

7 END_TYPE

2.2 Running Example

In this chapter we will present an example program, that will be used throughout

the following chapters. Our running example consists of three files: LevelControl.

st, Pump.st and Sensor.st. Together they model a control system for a storage

tank or similar appliance. The code for the three files is shown in Listings 2.7

through 2.9.

Listing 2.7 shows the code of the LevelControl POU. This class is the top unit and

models the control logic of the system. It defines two sensors that are responsible

for detecting a high and low level in the tank, as well as a pump that can be used

to actively refill the tank. Finally, it also defines a boolean variable that models

whether the tank is currently being filled or emptied. During execution, it waits

for the tank to be emptied and activates the pump once the low sensor triggers its

signal. It then waits for the tank to be refilled by the pump, which is signalled by

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

9/78

the high sensor. Once the tank is refilled, the pump is deactivated and the cycle

starts anew.

Listing 2.7: Content of LevelControl.st

1 FUNCTION_BLOCK LevelControl

2 VAR

3 pump : Pump;

4 highSensor : Sensor ;

5 lowSensor : Sensor ;

6 f i l l : BOOL := FALSE ;

7 END_VAR

8 IF f i l l THEN

9 pump(TRUE) ;

10 highSensor (TRUE , 100 , 0) ;

11 lowSensor (FALSE , 10 , 0) ;

12 IF highSensor . s t a t e THEN

13 f i l l := FALSE ;

14 END_IF ;

15 ELSE

16 pump(FALSE) ;

17 highSensor (FALSE , 100 , 0) ;

18 lowSensor (TRUE , 10 , 0) ;

19 IF NOT lowSensor . s t a t e THEN

20 f i l l := TRUE ;

21 END_IF ;

22 END_IF ;

23 END_FUNCTION_BLOCK

Listing 2.8 shows the source code of the Pump POU. This POU is kept very simple,

turning a single output on and off, depending on its input signal. The input signal

is a simple boolean which indicates whether the pump should be turned on, while

the output is a floating point number which is set to one if the input is true and

zero otherwise.

Listing 2.8: Content of Pump.st

1 FUNCTION_BLOCK Pump

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

10/78

2 VAR_INPUT

3 on : BOOL;

4 END_VAR

5

6 VAR_OUTPUT

7 out : REAL ;

8 END_VAR

9

10 IF on = TRUE THEN

11 out := 1 . 0 ;

12 ELSE

13 out := 0 . 0 ;

14 END_IF ;

15 END_FUNCTION_BLOCK

Listing 2.9 shows the source code of the Sensor POU. The sensors can be config-

ured with a threshold and a level or disabled by setting their respective active

state to false. Each sensor outputs its state when queried, which is a boolean value

that indicates if the level is greater than the threshold. If the sensor is disabled, it

will simply output false.

Listing 2.9: Content of Sensor.st

1 FUNCTION_BLOCK Sensor

2 VAR_INPUT

3 a c t i v e : BOOL;

4 threshold : REAL ;

5 l e v e l : REAL ;

6 END_VAR

7

8 VAR_OUTPUT

9 s t a t e : BOOL;

10 END_VAR

11

12 IF a c t i v e THEN

13 IF l e v e l > threshold THEN

14 s t a t e := TRUE ;

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

11/78

15 ELSE

16 s t a t e := FALSE ;

17 END_IF ;

18 ELSE

19 s t a t e := FALSE ;

20 END_IF ;

21 END_FUNCTION_BLOCK

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

12/78

3 ASTM Abstract Syntax Tree
Representation

An abstract syntax tree (AST) is a common model for representing and manipu-

lating code in memory [9]. Our project uses the Abstract Syntax Tree Metamodel

(ASTM) defined by the OMG [4]. This defines the ASTM as consisting of two

parts:

• The Generic Abstract Syntax Tree Metamodel (GASTM) that defines concepts

common to all programming languages described by the ASTM.

• Several Language Specific Abstract Syntax Tree Metamodels (SASTMs)

which define language specific extensions to the GASTM.

Our project uses a framework called eKNOWS, which is written and maintained by

the SCCH1. It is based on Eclipse MoDisco, a framework by the Eclipse Foundation

that includes a GASTM implementation [8]. The eKNOWS framework extends

this GASTM with a SASTM for structured text.It also provides several frontends

that can parse source files of supported languages and convert them into their

ASTM representation.

Figures 3.1, 3.2, 3.3 and 3.4 show some relevant ASTM classes and their relations

to each other. Figure 3.1 shows the top level structure of the ASTM. GASTMObject

is the ancestor class of all other classes within the ASTM and fulfills a similar

1https://www.scch.at/software-science/projekte/detail/eKNOWS

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

13/78

https://www.scch.at/software-science/projekte/detail/eKNOWS

role to the one Object has in Java. GASTMSemanticObject and GASTMSourceObject

contain classes that model meta information and are expanded in figures 3.2

and 3.3, respectively. GASTMSynatxObject contains the classes that model the

program structure described by the code. This class is the most relevant to our

project and is expanded in figure 3.4.

GASTMObject

GASTMSemanticObject GASTMSourceObjectGASTMSynatxObject

Figure 3.1: GASTMObject adopted from [4, p. 59]

Figure 3.2 shows the child classes of GASTMSemanticObject. These consist of the

Project class and several variants of scopes. A Project is the largest organisa-

tional unit and what our framework expects as input. Scope and its subclasses

can be used to find definitions of classes and variables by name. However, this

functionality was not fully supported by the framework at the time of our project,

so we were unable to rely on it.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

14/78

GASTMSemanticObject

ScopeProject

GlobalScope

CompilationUnit

FunctionScope AggregateScope

DefinitionObject

ProgramScope BlockScope

1

1

childScope

0..*

0..*

declOrDefn

1

files

1..*

1
outerscope

0..1

Figure 3.2: GASTMSemanticObject adopted from [4, p. 60]

Figure 3.3 shows the subclasses of GASTMSourceObject. These classes model the

meta information of the source files. This information consists of source file names

and languages, but also positional data such as code lines and positions. In ST,

each file of a project is compiled into an individual CompilationUnit. These are

then stored in the Project object that is finally passed to our framework.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

15/78

GASTMSourceObject

SourceFile SourceLocation

SourceFileReferenceCompilationUnit
1

1 ofSourceFile

1

locationInfo

1

1

inSourceFile

1

Figure 3.3: GASTMSourceObject adopted from [4, p. 61]

Figure 3.4 shows the children of GASTMSyntaxObject. All imperative statements

in ST are expressed by subclasses of the Statement class. These subclasses include

e.g. IfStatements, WhileStatements and BlockStatements. Within statements,

Expressions are used to represent the exact syntax. The classes for type definitions,

variable definitions and function definitions are implemented as subclasses of

DefinitionObject.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

16/78

GASTMSyntaxObject

SourceLocation MinorSyntaxObject Statement Expression

PreprocessorElement Type DefinitionObject

AnnotationExpression

CompilationUnitProgramScope

1

1locationInfo

1

opensScope

0..1

1

fragments

0..*

1

fragments

1

Figure 3.4: GASTMSyntaxObject adopted from [4, p. 62]

3.1 GASTMSwitch

One class that is extensively used in our code is the GASTMSwitch. The idea behind

the GASTMSwitch is to be able to react to the exact class of a given GASTMObject

without needing an excessive amount of type checks. This is implemented via a

structure that is similar to a visitor pattern, but considers the inheritance structure

of the GASTM: The visit method for each GASTM class has a default imple-

mentation that redirects to the visit method of its superclass if the class-specific

method is not implemented or returns null.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

17/78

In our framework, GASTMSwitches are used in combination with a GASTMTraverser

or a custom traversal algorithm in order to find specific arrangements of GAST

nodes. An example for this is the CFGraphBuilder class. This class implements a

GASTMSwitch that looks for any object within the GAST that can initialize a func-

tion. Specifically, it looks for FunctionDefinitions, which are used to describe

functions and DefinitionObjects, which are used to describe Function Blocks.

This is necessary since Function Blocks do not have a FunctionDefinition for

their code, but rather include their code directly. The CFGraphBuilder is then ap-

plied to a Project object via a GASTMTraverser. The traverser then looks through

the entire structure of the GAST and calls the builder on any relevant node.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

18/78

4 Control Flow Graph (CFG)

4.1 Basic Principle of CFG

A Control Flow Graph (CFG) is a directed graph that represents the control flow

of a program [2]. Representing the control flow information in a graph makes it

easier to automatically analyze the execution paths a program may take, i.e., it

allows algorithms developed for graph analysis to be applied to code. CFGs are

therefore important prerequisites for further analysis steps, such as calculating the

SSA-form of a program (see Section 7) or performing symbolic execution [14].

The nodes within a CFG represent so-called basic blocks, that is, sections of code

that will always be executed sequentially without the possibility of branching. The

edges between the simple blocks represent the conditional paths that the code may

follow. That means, the targets of the outgoing edges from a basic block are all

blocks of code that can be executed after the end of the current block. For showing

when which path is taken, edges can be annotated with the conditions that have

to hold for the code to follow the edge. Most CFGs also include two special nodes

that represent the start and end of the program, called the start and return node

respectively. Graphically, basic blocks are usually depicted as rectangles, while

the start and return node are depicted as triangles.

The following figures show some examples of how basic code structures are repre-

sented in CFGs. Figure 4.1 shows the representation of an if-then-else construct.

The code that includes the conditional expression is in the top block. The two

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

19/78

optional branches are connected with edges labeled “true” for the then-block and

“false” for the else-block. Figure 4.2 shows a while loop. The block representing

the loop body is connected to the condition with a “true” edge and loops back to

the condition block upon execution. The “false” branch of the condition leads on

to the next code after the loop, showing how the loop is exited.

Figure 4.1: CFG for a if-then-else construct
Figure 4.2: CFG for a while-loop1

Figure 4.3 shows the expected CFG for our running example from Section 2.2.

1Note that the while-statement stands in a separate basic block. This happens because only the
condition is reevaluated when repeating a loop.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

20/78

Figure 4.3: CFG for the running example

It can be seen that the if-statement that starts the procedure generates a first basic

block and then splits the flow into two branches. Each of those branches then

contains a list of statements that are executed followed by another if-statement.

These nested if-statements split the program again, this time producing one

branch with a single statement, and an empty else-branch as there is no else-

statement.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

21/78

CFNodeCFEdge

CFBranch

CFJoin

CFStatement CFGraph

CFStart CFReturn

CFSubGraph

CFEntry CFExit

connects

0..* 2

1

start

1

1

return

1

1

entry

1

1

exits

1..*

branch

1

join

1

Figure 4.4: Class system for the CFG

4.2 Class System for CFG

A set of classes have been implemented to represent CFGs. These classes are

located in the package at.jku.ssw.analysis.cfg and are described in this sec-

tion.

The general class structure can be seen in Figure 4.4. The base class for all CFG

nodes is the CFNode class. It provides features for modeling the graph structure,

namely methods for storing and querying preceding and following nodes as well

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

22/78

as fields for data generated by the SSA and constant folding (see Section 7 and

Section 8).

Our CFG inserts for each connection between nodes a CFEdge object. This stores

whether the edge is a “negated” edge. This is later used to distinguish the branches

of an if-then-else construct, i.e., the then-branch has its negated flag set to false,

while the else-branch has it set to true.

Basic statements (that do not alter the flow of the program) are stored in the

graph as CFStatement nodes. Unlike other CFG implementations, like e.g. the

representation shown in the previous section, which collect sequential statements

into block nodes, our implementation stores each statement in a separate node.

This is necessary for integrating the call graph into the CFG later (see Section 5).

Statements that represent branching points in the graph (i.e. conditionals and

loops) are represented by CFBranch nodes. Each CFBranch has an associated

CFJoin that represents the point where the different branches join again.

The full CFG of a procedure is represented by a CFGraph object that stores the entry

and exit point for the routine it represents. Each CFGraph has only one such entry

point (represented by a CFStart node) and only one exit point (represented by a

CFReturn).

The package also includes the classes CFSubGraph, CFEntry and CFExit which are

only used while building the CFG and do not occur in the final graph. CFSubGraph

is used to represent nested CFGraphs and CFEntry and CFExit are used to repre-

sent the entries and possible exits of these nested graphs, respectively (for more

information on how these classes are used, see Section 4.3).

Figure 4.5 shows the CFG for our running example from Section 2.2. It shows the

created objects and their most important relationships, as well as the information

they contain, i.e., the CFBranches show the condition that they depend on, the

CFStatements show the statements they represent and the CFEdges show whether

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

23/78

they are negated or not. Note that these fields are not represented as strings in the

program, but are instead references to the relevant GASTMObjects of the GASTM.

Figure 4.5: CFG for the running example

Figure 4.6 shows the CFG for the simple program shown in Listing 4.1 that com-

putes the sum of the natural numbers up to a given n using a while loop. The loop

condition is encapsulated in a CFBranch, which has outgoing edges to the loop

body as well as the end of the loop. The body of the loop is split in two blocks as

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

24/78

it contains two separate statements. Note that the CFBranch of the loop still has an

associated CFJoin-node.

Listing 4.1: Example procedure for summing up the numbers from 1 to n.

1 FUNCTION_BLOCK Sum

2 VAR_INPUT

3 n : INT ;

4 END_VAR

5

6 VAR

7 i : INT ;

8 END_VAR

9

10 VAR_OUTPUT

11 sum : INT ;

12 END_VAR

13

14 i := 1 ;

15 sum := 0 ;

16 WHILE i <= n

17 sum = sum + i ;

18 i := i + 1 ;

19 END_WHILE

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

25/78

Figure 4.6: CFG for the example program using a loop from Listing 4.1

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

26/78

4.3 Builder for CFG

4.3.1 Principal approach

The process of building the CFG is split into two steps. In the first step, nested

subgraphs are built from the ASTM. The second step connects these subgraphs to

create a final control flow graph.

The subgraphs created by the first step are analogous to the recursive calls a parser

would make when parsing the original code [3]: A new subgraph is created at any

place where an arbitrary block of statements could be placed. More specifically,

the bodies of loops and if-then-else statements are represented by subgraphs.

Figure 4.7 shows how the subgraph abstraction works for the example from

Listing 4.2. The part of the code that is hidden in a subgraph is marked in red. The

advantage of this approach is that the algorithm for the first step needs not bother

with the complexity of nested statements. In this example, even if foo() would

be replaced by arbitrarily complex logic, we would not have to consider it, as all

complexity would be hidden behind the subgraph abstraction.

Listing 4.2: Example procedure for showing the principle of subgraphs.

1 FUNCTION_BLOCK Subgraphs

2 VAR_INPUT

3 bar : INT ;

4 END_VAR

5

6 IF bar <= 5

7 foo () ;

8 END_WHILE

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

27/78

Figure 4.7: Subgraph abstraction for the example from Listing 4.2.

4.3.2 CFSubGraphBuilder

The first stage is the subgraph stage (performed in CFSubGraphBuilder). In this

stage, the algorithm considers only one level of nesting at a time. Within this level

the subgraph builder creates nodes for the control flow in this level, substituting

lower levels with CFSubGraph nodes which are built recursively. This is done to

handle break, return and continue statements properly, as each of those can be

challenging in a single-stage algorithm.

The builder is implemented as a GastmSwitch with cases for the various GASTM-

Objects it should handle and the procedure buildSubGraph to start the building

process. The buildSubGraph method uses a custom traversal method to iterate

through the nodes of the AST. The principal logic behind this iteration is shown in

Figure 4.8. As can be seen, the algorithm generates nested CFSubGraphs depending

on the kind of GASTMObjects it handles during iteration:

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

28/78

Figure 4.8: Principle for the iteration of the CFSubGraphBuilder

The following paragraphs explain how each type of object is handled:

• IFStatements, WhileStatements, and ForStatements are modeled as CF-

Branch nodes. The respective code-blocks (for for and while this means

the loop body, for if this means the then- and else-bodies) are generated

as new CFSubGraphs which are built via a call to a new CFSubGraphBuilder.

Finally, the CFJoin block is set as the current block. (This means that future

statements are appended to this node instead of the others. From outside, it

looks like branching statements are treated as a singular, linear node.)

The difference between IfStatements and WhileStatements/ForStatements

is the way the CFSubGraphs are attached to the CFBranch and CFJoin. IF-

Statements have both of their branches leading to the CFJoin node, while

for the subgraphs of the various loops lead back to the CFBranch node, with

the negated branch connected to the CFJoin.

• BreakStatements, ContinueStatements and ReturnStatements represent the

end of the current SubGraph. For each such statement the algorithm gener-

ates a CFExit node with the appropriate ExitType which is then added to

its CFSubGraph. There are a total of four exit types (RETURN, BREAK, CONTINUE

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

29/78

and SEQ (sequential)) that are used by the second step of the algorithm to

find the appropriate connection points for the exits.

Unlike other node types, the children of exits are not traversed by the algo-

rithm. This has the side effect that dead code is not added to the CFG, which

makes it easier to detect and report dead code occurrences.

• For all other Statements (except for statements that do not contain instruc-

tions, mainly BlockStatements) CFStatements are created and appended to

the current subgraph.

As an example, we will now show how the CFSubGraphBuilder builds the first

step of the CFG for our running example. For this, we will assume that the

method buildSubGraph is called with the root GASTMObject of the LevelControl

function block as parameter. This is a POU object produced by parsing the file

where LevelControl is described.

The algorithm starts by creating a new CFSubGraph. After that, it starts going

through the contents of the POU object it received as parameter. Since the variable

declarations at the beginning of the class are not considered by the builder, the

first IfStatement in the block is the first item that the builder handles, i.e., the

caseIfStatement() method is called for this item. This method first generates a

CFBranch node for the statement, which automatically extracts the condition of the

statement and generates a linked CFJoin node. It then creates a CFSubGraph for the

then-branch by calling a new GFSubGraphBuilder on the respective Statement.

The first three statements of the then-block are all procedure calls, which are

encoded as three CFStatements in the CFG, the state of the graph at this point

is shown in Figure 4.9. Then, another IfStatement follows which is built and

appended to the last CFStatement. Building the inner if-statement works in the

same way as for the outer if-statement, with the only difference that, since there is

no else branch, a negated CFEdge is created directly between the CFBranch and its

CFJoin. Since no other statement follows that inner if, a CFExit with the SEQ-type

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

30/78

is appended to the last node and the second builder terminates. The result of the

algorithm at this point is shown in Figure 4.10

Figure 4.9: Process of building the CFSubGraphs

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

31/78

Figure 4.10: Process of building the CFSubGraphs

With this the CFSubGraph that represents the then-branch of the outer if-statement

is complete. The else-branch is then built in the same way. Both the then-branch

and the else-branch are finally connected to the CFJoin of the outer if. After having

completed both branches of the outer if, the CFSubGraphBuilder has finished

processing the IfStatement and continues to look for the next statement on its

path. As it finds none, it appends a CFExit with the SEQ type and returns the

finished CFSubGraph, the finalized graph can be seen in Figure 4.11.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

32/78

Figure 4.11: Process of building the CFSubGraphs

The full code of the CFSubGraphBuilder can be found in CFSubGraphBuilder.java.

4.3.3 flattenSubGraph()

The second stage of the algorithm is concerned with “unwrapping” the nested

CFSubGraphs into a single CFGraph. This is accomplished by the method flatten-

SubGraph() in the CFGraphBuilder class. This method is called with a subgraph

which it then eliminates from the CFG. It does this by replacing it with its “inner”

graph and returning any CFExits that remain unprocessed to the caller. Similar

to the building of the subgraphs, flattenSubGraph calls itself recursively to pro-

cess nested structures before processing the current level. It iterates through the

CFNodes in the graph, collecting the CFExits from all subgraphs it comes across as

well as any CFExits it finds.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

33/78

It then tries to resolve as many of the collected exits as possible by connecting the

parents of the exits to their intended targets. What the proper target for each exit

is, depends on the ExitType of the exit:

• Sequential exits connect to whatever the next node of the subgraph is. Due to

way the CFSubGraphBuilder connects the subgraphs it creates, this automat-

ically connects loops to their branches and ifs to their joins.

• Return exits are not connected to anything. They are collected from all sub-

graphs and connected to the CFGs CFReturn node after the first flattenSub-

Graph call returns.

• For Break and Continue exits, it is important whether the CFBranch that

created the subgraph belongs to an IfStatement or a loop statement. If

it belongs to an IfStatement, neither break exits nor continue exits are

resolved, as neither break nor continue interact with if or else. Otherwise,

continue exits are connected to the responsible CFBranch and break exits to

its associated CFJoin.

Once all exits are processed, the subgraph is “inlined”, that is, its CFEntry is

replaced by the predecessor of the subgraph and the CFSubGraph node itself is

deleted.

Again, we will go through our running example to illustrate how this process

works. Figure 4.12 depicts the state of the CFG at the beginning of the procedure,

figure 4.13 shows the flattening process.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

34/78

Figure 4.12: State before the flattening.

The procedure first enters the subgraph in the left branch of the outermost if-

statement by recursively calling flattenSubGraph() on it, iterating through its

statements until it finds the left branch of the inner if-statement. It then does

another recursive call on the CFSubGraph in the then-branch. This subgraph only

contains a single statement, which is ignored, followed by a sequential CFExit.

This sequential Exit is removed, and the Node before it is connected to the node

that follows the containing CFSubGraph. Since there are no further nodes in this

subgraph, its start is removed and its predecessor connected to its first statement.

Next, the second call of flattenSubGraph() finds the sequential exit of its sub-

graph, removes it and connects the CFJoin of the inner if-statement to the CFJoin

of the outer if-statement. Since there are no more nodes to traverse at this point,

it connects the node before its subgraph (the CFBranch of the outer if) to the

node after its subgraphs CFEntry and then deletes the subgraph by removing all

connected edges. The procedure is illustrated in Figure 4.13.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

35/78

Figure 4.13: Process of flattening the CFSubGraphs

The same happens to the subgraph in the else-branch of the outer if. Once both

branches of the outermost if-statement are inlined, the subgraph containing the if-

statement itself is inlined by replacing its CFExit with the CFReturn of the CFGraph

and its CFEntry by the CFStart of the graph. The following figures show the

final CFG generated by this procedure (Figure 4.14), as well as the CFGs of the

procedures called by our example (Figures 4.15 and 4.16).

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

36/78

(fill) !(fill)

(highSensor.state)

!(highSensor.state) !(!lowSensor.state)

(!lowSensor.state)

CFStart

CFBranch

pump(TRUE); pump(FALSE);

highSensor(TRUE, 100, 0);

lowSensor(FALSE, 10, 0);

CFBranch

fill = FALSE;

CFJoin

Empty;

CFJoin

Empty;

Empty;

CFJoin

fill = TRUE;

CFBranch

lowSensor(TRUE, 10, 0);

highSensor(FALSE, 100, 0);

CFReturn

Figure 4.14: CFG generated by LevelControl.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

37/78

(on == TRUE)!(on == TRUE)

CFStart

CFBranch

out = 1.0; out = 0.0;

CFJoin

Empty;

CFReturn

Figure 4.15: CFG generated by Pump.

!(active) (active)

!(level > threshold)(level > threshold)

CFStart

CFBranch

state = FALSE;

CFBranch

CFJoin

Empty;

Empty;

CFJoin

state = FALSE; state = TRUE;

CFReturn

Figure 4.16: CFG generated by Sensor.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

38/78

5 Call Graph

5.1 Introduction to Call Graphs

A Call Graph (CG) is a graph representing caller-callee relationships between

procedures. It is a variant of the previously presented Control Flow Graph [9]. In

it, each procedure is depicted by one or several nodes that depict the procedure or

the procedure with its current context, respectively. The relationships are depicted

as edges. Usually all calls from one procedure node to another are collapsed into a

single edge from the caller to the callee. Depending on the purpose and specific

implementation, the amount of context information stored in a CG varies. This

ranges from completely context-aware CGs that store the context of every call

to every procedure separately to context-insensitive graphs that store no context

information at all.

Our implementation does not fully adhere to this definition of CGs, however. In-

stead, it increases the complexity of the model to reduce the complexity in time and

memory needed to traverse and store the graph. The most significant difference is

that the relationship edges our implementation creates do not originate from the

caller themselves, but rather from within the CFG of the calling procedure. This

avoids the need for storing context information in the procedures, which in turn

avoids the need for making multiple copies of each procedure. Context informa-

tion is added later through the SSA algorithm, which annotates each procedure

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

39/78

call with the variable values at that code position (See Section 7). This gives us a

small memory footprint, while not loosing any information.

This is possible because the IEC-61131–3 languages do not allow dynamic allo-

cation of memory, implicitly ruling out all recursive calls, as well as most of the

dynamically bound procedures that are present in many other languages.

To make the structure of the call graph more understandable, we will now go

through our running example again, showing first what a classic call graph repre-

sentation would look like (Figure 5.1), and then how our implementation realizes

the structure (Figure 5.2).

Figure 5.1: Call graph of LevelControl using a conventional, context-free call graph
implementation

Figure 5.1 shows how a context-free call graph represents the two calls from

lines 9 and 16 of LevelControl as a single edge between LevelControl and Pump.

Similarly, it also represents the calls to highSensor (lines 10 and 17) and lowSensor

(lines 11 and 18) as a single edge from LevelControl to Sensor. This not only looses

the parameters of the individual calls, but also the number of calls happening and

which instances of the function blocks are called.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

40/78

Figure 5.2: Call graph of LevelControl in our implementation. The objects added to
realize the graph are marked in green.

Figure 5.2 shows how the call graph is embedded into the CFG in our implemen-

tation. For each call a new CFCall node that points to the CFG of the callee is

inserted into the graph of the caller. In combination with SSA, which calculates

values for all variables at each point in time, we can then determine the full context

of each procedure call (see Section 7).

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

41/78

The above figures illustrate the advantages and disadvantages of our system. On

one hand, our system gains additional accuracy, as we know where exactly each

procedure is called, and how many calls to each procedure happen. We can also

add context information without the need for additional nodes by annotating our

CFCalls with the necessary information. For an implementation of this, refer to

Section 7. On the other hand, our implementation is more complex to compute

and query than a direct implementation of a CG would be. For example, finding

all procedures called by LevelControl would be a very easy operation in a simple

CG, whilst it would require a full traversal of the CFG in our implementation.

5.2 Class System for Call Graph

The implementation of the CG reuses and extends the classes from chapter 4.2. The

class CFCall is a subclass of CFNode that allows us to embed the CG within the ex-

isting CFG structure. Each CFCall represents a call to a procedure, with the called

procedure being stored in the CFCall node as a pointer to the callee’s CFGraph.

The CFCall node also stores context information that is specific to each individual

call, like parameter values or assumptions about the state of the program at this

point. The extended class diagram is shown in Figure 5.3.

Figure 5.2 shows the object structure of our running example once the CG is

integrated into the CFG structure. As the right branch of the outermost if contains

the same calls as the left one, it has been omitted to keep the figure small.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

42/78

CFNodeCFEdge

CFBranch

CFJoin

CFStatement CFGraph

CFStart CFReturn

CFSubGraph

CFEntry CFExit CFCall

connects

0..* 2

1

start

1

1

return

1

1

entry

1

1

exits

1..*

branch

1

join

1

Figure 5.3: Class system for the CFG and CG.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

43/78

5.3 Builder for Call Graph

5.3.1 Main Principle

Our call graph building algorithm works on top of an already existing set of CFGs.

It works by iterating through all nodes of each CFG, stopping at CFStatements and

examining their contents. If it finds a procedure call within a statement, it resolves

the procedure name to its CFGraph and then inserts a corresponding CFCall into

the callers structure.

5.3.2 Finding the Procedure Calls

When started on a CFGraph object, the CallGraphBuilder traverses all nodes in

that graph. For each node it first checks whether that node is a CFStatement or not.

If it is, the statement contained in the node is examined and searched for instances

of FunctionCallExpressions. These expressions are then collected into a list and

the names of the procedure calls are extracted from them.

5.3.3 Resolving of Procedure Names

The algorithm for building the CG needs to be able to match the name of a

procedure to that procedures CFGraph object. This process is called “resolving”

and should be handled by the framework that builds the GASTM. Since the ASTM

framework we used did not provide a method for procedure name resolving, we

had to implement a simple name resolving method on our own.

To resolve procedure names, the CallGraphBuilder is passed the list of CFGs for

all procedures in the project during its creation. Since all CFGraphs store their own

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

44/78

name, finding a procedure then becomes matter of looking up a procedures name

in the list of CFGs.

In the running example from Section 2.2, we first build the CFG for each of the

three function blocks. From this we obtain a list of CFGs, each of which stores the

name of the function block it represents (see Figure 5.4). This list is then passed to

the call graph builder.

Figure 5.4 outlines how the CallGraphBuilder uses this list to resolve procedure

calls. First, the CallGraphBuilder finds an expression that requires it to create

a CFCall. In our case, this is the call to the function block Pump in line 9 of

LevelControl. It then instantiates the call object and extracts the name of the called

procedure from the expression and looks for an appearance of that name in the list

of CFGs. Here, this is simply the name “pump” which it quickly locates in the list

of CFGs. Once it finds the name, it links the CFCall to the CFGraph and continues

iterating through the CFG to find the next procedure call.

The builder first iterates through all CFGs in the list and creates a map from

procedure names to their CFGs, called the function map. It then iterates through

each CFG and inserts call nodes whenever a procedure is called (see Figure 5.2).

Each time a CFCall is created, the builder extracts the name of the called procedure

from the ASTM procedure call. It then looks up the name of the procedure in

the function map. If it finds a match, it sets that CFG as the target of the current

procedure call. If the name is not in the map, the target is set to null, meaning

that the procedure could not be resolved.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

45/78

Figure 5.4: Operation principle of procedure name resolving.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

46/78

6 Memory Model

6.1 Instance Tree (IT)

A representation of the program’s data structures, the instance tree is a model

which gives a view of all static memory allocations. Its primary task is to pro-

vide information about all objects, their compositions, and their dependencies.

Each instance is assigned a node in the tree and the fields in a structure dictate

the neighbour nodes of the instance. By assigning instances to nodes the in-

stance tree makes it possible to quickly resolve complicated expressions such as

QualifiedIdentifierReferences (e.g. “a.b.c”). This makes it possible to track

which instance of a variable is modified, by simply following the path inside of

the instance tree.

For our model we chose to represent three types of nodes:

1. atomic nodes hold atomic forms of data, which may not be broken down

further, typically primitives. These nodes are represented as leaf nodes in

the instance tree. They may also have a specific value associated with them.

2. ref nodes are nodes which hold references to other data in memory. There-

fore, this node has a single edge to some other node in the tree. Only simple

references are modeled by this node complex pointer arithmetic is not sup-

ported.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

47/78

3. structured nodes represent composite data types e.g. classes. This type of

node is composed of other nodes such as atomic, ref, or structured.

The memory model was used for program analysis and could also be applied

to various optimization tasks. We used the instance tree for the following two

applications: constant folding and reaching definitions.

Concretely, during constant folding values are assigned to atomic and ref nodes

in the tree. By tracking assignments to these nodes and propagating the results

of all operations, one can figure out which nodes always receive a constant value.

Obviously if an instance remains constant, it can later safely be replaced by a

constant value. This can be helpful during static analysis since it might indicate

a code smell. Correspondingly, it was also used in the computation of reaching

definitions in order to track variables associated with an assignment. The instance

tree helps make this process a lot easier as resolving which variable is exactly

assigned becomes a lot easier.

There are also some limitations that result from performing a static analysis since

this type of instance tree tracks only static memory allocations (meaning that the

memory requirements can be fully determined at compile time). Unlike static

memory allocations, dynamic memory allocations could not be tracked in the

same manner since they would actively grow and shrink this tree. Two types of

problems result from restricting the evaluation to static analysis:

The instance tree is not generally applicable to all languages and is restricted to

languages such as ST and other languages in which all allocations are entirely

static. However, at least a subset of most languages can be supported as most

languages allow for some allocations to be static.

Pointer arithmetic or complicated pointer assignments could also not be supported

since they would have introduced additional problems which could likely not

be solved statically. One must only imagine a pointer to an element contained

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

48/78

within an array to see how this analysis would indeed become very difficult, if not

undecidable.

LevelControl

pump highSensor lowSensor fill

on out active threshold level state active threshold level state

Figure 6.1: An example of an instance tree.

Figure 6.1 depicts a visual representation of an instance tree generated from the

introductory ST example in section 2.2. In this representation all structured

nodes are marked in red, while all atomic nodes are marked in black. The instance

tree was generated by choosing the LevelControl function block as the starting

point for the algorithm. This function block contains four member fields, namely

pump, highSensor, lowSensor and fill. The atomic node fill is the only atomic

member in the LevelControl function block and is therefore a leaf node. The other

vertices below LevelControl are one of two structures, namely Pump or Sensor.

Each of which form their own subtrees below the LevelControl vertex. Pump

is made up of the boolean on and floating point number out. While Sensor is

composed of the two booleans active and state along with the floating point

numbers threshold and level.

Looking at a specific example of an expression containing a QualifiedIdentifier-

Reference such as highSensor.state, one could now simply match it to the state

node in the memory model. This allows an algorithm such as constant folding

to associate a value with this node. Furthermore, if a specific assignment such as

highSensor.state = TRUE is given, the value TRUE could be associated with the

corresponding state node in the tree.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

49/78

6.2 Instance Tree Builder

The task of the instance tree builder is to construct the instance tree. In the

following section the construction of the instance tree is demonstrated based on

the example of the previous section 6.1.

LevelControl

pump highSensor lowSensor fill

LevelControl

pump highSensor lowSensor fill

on out

LevelControl

pump highSensor lowSensor fill

on out active threshold level state

LevelControl

pump highSensor lowSensor fill

on out active threshold level state active threshold level state

1 2

3 4

Figure 6.2: Four part instance tree construction

The above Figure 6.2 shows the recursive construction of the instance tree starting

at an instance of the LevelControl Function Block. In step one all member fields

of the LevelControl function block are obtained from the GASTM representa-

tion. Here fill an atomic boolean is added to the root of the tree. Then pump,

highSensor, and lowSensor are recursively extended in step 2, 3, and 4 respec-

tively. Once pump is reached, only atomic values may be added to the subtree

and so the algorithm must backtrack and processes the next structure. The next

structure would then be highSensor for which the atomics active, threshold,

level, and state are added. In the last step the algorithm backtracks again and it

extends the lowSensor node.

The idea for the builder is essentially similar to DFS (Depth First Search) algorithm,

where nodes in the graph are exhaustively extended until an end is reached.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

50/78

6.2.1 Instance Tree Builder Algorithm

In the following section the algorithm for constructing the instance tree will be

described in more detail:

Algorithm 1 Instance Tree Builder
1: function build(G, S)
2: V ← {S}
3: E← {}
4: for all m ∈ S do
5: V ← V ∪ {m}
6: if m is GLOBAL then
7: E← E ∪ {(G, m)}
8: else if m is REF then
9: E← E ∪ {(S, m), (m, getTarget(m))}

10: else if m is POU then
11: (V1, E1)← build(G, m)
12: V ← V ∪V1
13: E← E ∪ E1
14: else
15: E← E ∪ {(S, m)}
16: return (V, E)

The build function takes two parameters: The root of the instance tree G where all

global variables are declared and the current structure which is being expanded

S. Initially S will be equal to G since the algorithm is executed on the “root node

of the tree” (build(G, G)). The algorithm returns a tuple of vertices and edges.

Where the vertices of every subtree are either member fields of the root of that

subtree or members of one of the children of the root.

The rough idea behind this algorithm is that each structure is recursively extended

(similar to DFS). At each expansion step all atomic and ref nodes are resolved to

their appropriate location and added to the current structure.

In detail this means: The first step of the algorithm creates a set of vertices and a

set of edges, which will later be returned. The current structure is then added to

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

51/78

the set of vertices. Then each member field of the structure (and its corresponding

instance) are visited. In any case the field is added to the set of vertices.

After adding the member to the set of vertices, one of four cases will be executed:

1. If the vertex is a global variable, an edge is added from the global node G to

this instance.

2. If the vertex is a reference, an edge is added from the structure to the member

and from the member to the references target.

3. If the vertex is a structure / POU, then similarly a vertex is added from the

current structure and the vertex is recursively extended.

4. If the vertex is an atomic value, an edge is added from the parent structure

to this atomic value.

At each stage the algorithm will return a subtree containing all instances and child

instances of the given structure. Finally, the value returned can be assumed to

contain all reachable instances and therefore forms an instance tree.

6.3 Class System for IT

INode

SINode AINode

POUINode StructINode RefINode

1

0..*

1

1

Figure 6.3: Class System for IT

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

52/78

Figure 6.3 presents a visual representation of the class system for the instance tree.

The class system is comprised of the classes outlined below:

• The INode is the base class of each node of the instance tree. It stores GAST-

MObject which is associated with it, the name of the declaration, and its data

type. The INode also maintains a reference to its parent structured node.

• SINodes (short for Structured Instance Node) represent the base class for

both POUINodes and StructINodes and are hence responsible for dealing

with instances of composite types. These structured nodes need to store

both the specific declaration of an instance of a variable and the name of its

field.

• POUNodes can be thought of as objects which have some kind of instance, code

which may act upon this instance, and variables which may be modified

by the object. Unlike regular objects POUs typically only have one function

which acts upon its data. The data of a POU may also be modified from the

outside e.g. by another Function or POU.

• StructINodes and POUNodes are very similar and the difference is merely a

technical one since POUs may be any of the following: Program, Function-

Block, Function. While StructINodes may only contain DataDefinitions (e.g.

struct). These occur in the GASTM when languages other than ST are parsed.

• AINode AINodes (short for Atomic Instance Node) can only store atomic

values like: Integer, Boolean, and Real. Atomic Nodes may also store slightly

more complicated aggregate types like arrays composed of primitives. These

nodes are used quite heavily during constant folding.

• RefINode are nodes which reference other nodes similar to pointers.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

53/78

7 Data-Flow Analysis

In [9] data-flow analysis is defined as: “The purpose of data-flow analysis is

to provide global information about how a procedure (or a larger segment of

a program) manipulates its data.” In other words, data-flow analysis seeks to

determine how data flows between different parts of a program and how this

influences other elements of the program. This is typically achieved by analyzing

the CFG of the program and identifying data dependencies within it.

There are many kinds of data-flow analysis techniques. These techniques apply to

a wide range of problems. Depending on the problem, a decision is made as to

which algorithm is used. Examples of data-flow analysis techniques include:

• Constant propagation of constants through the statements of the program.

• Reaching definitions determining the set of assignments valid for each state-

ment.

• Live variable analysis seeks to determine which values will be needed in the

future through computation of so called "live sets".

Many other data-flow analysis techniques exist [9]. However, in the following

sections we will focus on reaching definitions and constant folding.

Data-flow analysis has become an integral part of compilers and other software

analysis tools and is used for a host of optimizations. There is an extremely wide

range of use cases for data-flow analysis techniques, some of which have been

mentioned here:

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

54/78

• Dead code elimination attempting to find unused code so-called "dead code"

which may then potentially be removed inorder to simplify the program.

• Register allocation describes the process of mapping register to each variable

can use live sets and graph coloring algorithms

• Optimization various other optimization techniques also benefit greatly from

data-flow analysis e.g. CSE.

7.1 Reaching Definitions

One way to perform data-flow analysis is by performing a reaching definitions

analysis. Definitions are statements in which some variable is assigned some value.

The “reaching” part of reaching definitions refers to estimating the range of the

validity of a definition. Combined, the reaching definitions algorithm seeks to

determine the set of assignments valid in each basic block of a given CFG. These

definitions can then be used to ascertain exactly which assignments are relevant to

any part of the CFG.

Figuring out the exact smallest set of definitions that affect a given statement

is a challenging task. This is because the problem of finding the minimal set of

assignments is often too difficult to solve exactly. Instead, we compute an over-

approximation to estimate the set of definitions that may affect a statement. This

technique provides a conservative estimate of the set of assignments that hold for

a given statement, allowing us to reason about the behavior of the program with a

degree of confidence.

It is important to ensure that the set of assignments produced by reaching defini-

tions is not entirely misrepresentative of the function, even though the precise set

of assignments cannot be accurately determined. Reaching definitions analysis

aims to produce a conservative estimate of which assignments hold for a given

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

55/78

statement. The resulting set of definitions is therefore a superset of the minimal set

of definitions that affect a statement. This conservative estimate of all valid assign-

ments can later be narrowed down further by excluding dead code or applying

other data-flow analysis techniques, such as constant folding.

7.2 The Basics of Reaching Definitions

This section will introduce the basics of reaching definitions through the following

examples.

Listing 7.1: A simple code example

1 i := 0

2 i := 1

3 j := i + 1

Listing 7.1 contains a simple code example composed of a few variable assign-

ments. The example simply assigns two variables and i and j. It can easily be

seen that the first assignment i := 0 is not required. Computing the reaching

definitions form for this example helps visualize this.

Listing 7.2: A simple code example with Reaching Definition annotation

1 { } i := 0

2 { i := 0 } i := 1

3 { i := 1 } j := i + 1

The above listing 7.2 shows on the left the reaching definitions annotation and on

the right the code shown in the previous listing. Using this reaching definition

representation one can now easily infer that i := 0 is no longer valid once the

third statement is reached because the second statement “kills” the assignment

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

56/78

of the first statement. Hence, applying reaching definition analysis to this simple

code example reveals exactly which assignments affect what statement.

Applying reaching definitions analysis to the pump function block shown in

section 2.1 produces the Figure 7.1 below:

!(on == TRUE) (on == TRUE)

out = 0.0; out: out = 0.0

CFJoin out: out = 0.0, out = 1.0

out = 1.0; out: out = 1.0;

CFReturn out: out = 0.0, out = 1.0

CFStart

CFBranch

Figure 7.1: An example of reaching definitions

The figure shows a branch with a condition. On the left, out is assigned the value

0.0 and on the right out is assigned 1.0 respectively. Once the CFJoin node is

reached both assignments out = 0.0 and out = 1.0 are valid because at this point

either assignment could have been executed.

Therefore, the goal of reaching definitions is to compute which assignments hold

in what node.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

57/78

7.3 Formalizing Reaching Definitions

This section will introduce reaching definitions in formal manner. The problem

of computing the reaching definitions can be formulated as solving as iteratively

solving a set of data-flow equations until a fixpoint is reached. These data-flow

equations define which assignments are valid for any given node in the CFG. We

will start by introducing the individual data-flow equations and then combine

them to show how the reaching definitions could be computed using them.

Our goal will be to compute two functions for every node in the CFG: reachin(i)

and reachout(i). Where reachin denotes the set of assignments that reach the given

node and reachout defines the set of assignments that remain valid for subsequent

nodes. It is then obvious that reachin(CFStart) = ∅, because no variables are

assigned before the starting node. So, then it may be useful to define reachin as:

reachin(i) =
⋃︂

j∈pred(i)

reachout(j)

The definitions which reach this node as the definitions which other blocks pro-

duce. Adding to that reachout can be defined as:

reachout(i) = (reachin(i) ∩ prsv(i)) ∪ gen(i)

The set of definitions that reach the block without the set of definitions which the

block invalidates plus the set of definitions which the block itself contains. Let

gen(i) denote the set of all assignments in the block i. Furthermore, let prsv(i)

denote the definitions which remain valid in block i.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

58/78

!(i < 0) (i < 0)

i = 16; B1

j = 8; B2

CFBranch C3

i = 5; B4

CFJoin J6

CFReturn R7

CFStart

i = 10;

S0

B5

Figure 7.2: A simple cfg with labeled nodes

Figure 7.2 shows an example of a CFG with labels assigned to each node. This

example will be used in the following section to demonstrate the computation of

reaching definitions.

Table 7.1 holds the solutions to each of the data-flow equations for the CFG given

in figure 7.2. Empty entries indicate that the set would be empty.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

59/78

i gen(i) prsv(i) reachin(i) reachout(i)
S0 i={5,10,16}j={8}
B1 i={16} i={16}, j={8} i={16}
B2 j={8} i={5,10,16}, j={8} i={16} i={16}j={8}
C3 i={5,10,16}, j={8} i={16}j={8} i={16}j={8}
B4 i={10} i={10}, j={8} i={16}j={8} i={10}j={8}
B5 i={5} i={5}, j={8} i={10}j={8} i={5}j={8}
J6 i={5,10,16}, j={8} i={5}j={8} i={5,10}j={8}
R7 i={5,10,16}, j={8} i={5,10}j={8} i={5,10}j={8}

Table 7.1: The computed Reaching Definitions for figure 7.2

The first of the data-flow equations gen(i) can easily be explained using this

example. The first non-empty entry gen(B1) corresponds with the assignment

i = 16 for example and so do all others respectively.

The second of the data-flow equation prsv(i) denotes the set of assignments

which are preserved in this node. Alternatively, one could think prsv(i) as the

inverse of the set kill(i) which would denote the set of assignments which have

been overridden. In the basic block B5 the assignment i = 5 is made. Hence,

prsv(i) = {i = 5, j = 8} which tells us that in B5 only those two assignments will

remain. Put differently: The assignments i = 10 and i = 16 are “killed” in this

block.

Lastly, reachin(i) and reachout(i) are computed. reachin(i) is simply the union of

the parent reachout assignments for all cases. While reachout(i) is simply computed

using the data-flow equation which was previously given.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

60/78

7.4 Interprocedural Reaching Definitions

Up until this point only individual procedures have been discussed, now interpro-

cedural reaching definitions will be introduced. Performing an interprocedural

reaching definitions analysis allows for more information to be discovered about

the assignments in a given program.

...

CFCall

pump(FALSE);

...

!(on == TRUE) (on == TRUE)

CFStart

CFBranch

out = 0.0; out = 1.0;

CFJoin

CFReturn

Figure 7.3: Interprocedural reaching definitions example

Figure 7.3 shows the path which would be taken by the algorithm inorder to

evaluate these procedures.

The foundation of interprocedural analysis is the call graph which was introduced

in chapter 5. The CFCall nodes generated are then used to find out where a call

resolves to.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

61/78

Before the reaching definitions form can be computed for the given procedure

the following must happen: Firstly, the parameters for the function call must be

extracted i.e. the exact assignments that relate to all parameters of the function

must be collected. Secondly, a check should be performed to see if the function

was already evaluated using these assignments. If the function was previously

called with those exact assignments then the prior result should be returned.

Next, reachin(CFStart) is initialized using the relevant set of assignments. This

takes the form of mapping nodes in the instance tree, namely the function call

parameters, to a set of assignments relevant to them. The correct value for

reachout(CFStart) can be assumed because kill(CFStart) = ∅ and gen(CFStart) =

∅. Finally, the Reaching Definitions form can be computed as usual by solving the

data-flow equations recursively.

We acknowledge that the there are some major downside of this approach. Namely,

the exponential runtime with respect to call stack depth might present a problem.

While some algorithms do exist [12] to resolve this, they were simply out of the

scope of this project.

7.5 Algorithm for Constructing Reaching Definitions

Prior to understanding the implementation of our reaching definitions algorithm,

we must briefly familiarize ourselves with how the GASTM represents defini-

tions. In the GASTM definitions are represented as BinaryExpressions with

their operator set to Assign. These BinaryExpressions have a left and a right

operand. We can extract these definitions from a statement using a GASTMSwitch

and GASTTraverser which was discussed at length in section 3.1. This is necessary

since certain programming languages like Java allow multiple assignments within

one statement. The GASTTraverser will iterate over the tree and the GASTMSwitch

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

62/78

will be applied to every node within the tree. If a BinaryExpression containing

an assignment is found, we can add it to the list of definitions.

Algorithm 2 Reaching Definitions Fixpoint Algorithm
1: function reachingFixpoint(cfg)
2: work← {c f g.getStart()}
3: while work ̸= ∅ do
4: node ∈ work
5: work← work \ {node}
6: old← node.assigns
7: node.assigns← {}
8: for all (pred, node) ∈ c f g do
9: node.assigns← join(node.assigns, pred.assigns)

10: switch node.getType() do
11: case CFStatement
12: for all expr ∈ node.getStatement() do
13: if expr is Assignment then
14: node.assigns← node.assigns \ {(expr.getAssigned(), x)|

(expr.getAssigned(), x) ∈ node.assigns}
15: node.assigns← node.assigns ∪ {(expr.getAssigned(), expr)}
16: case CFCall
17: otherCFG ← node.getCFG()
18: otherCFG.getStart().assigns← node.assigns
19: reachingFixpoint(otherCFG)
20: node.assigns← otherCFG.getEnd().assigns
21: if old = ∅ ∨ old ̸= node.assigns then
22: for all (node, succ) ∈ c f g do
23: work← work ∪ {succ}

The above algorithm 2 is a sketch of our Reaching Definitions implementation. It

is a fixpoint algorithm which eventually converges to the set of assignments for

every node.

The idea behind our implementation is essentially a graph traversal algorithm

similar to DFS or BFS. To start, the work set is initialized with the starting node of

the graph. The current node is processed and then inspected for the next nodes

which should be expanded. These nodes are then added to the workset. Unlike

DFS / BFS our algorithm does not terminate if all nodes in the graph have been

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

63/78

visited. The algorithm terminates once a fixpoint in the assignments has been

reached, so the algorithm continues to run until the set of assignments becomes

“stable”.

Whenever a new node is visited, the assignments of all parent nodes are joined

into one set. As described previously in the computation of reachin in section 7.3.

Then a decision is made as to what node we are dealing with i.e. CFStatement or

CFCall.

If a CFStatement is encountered, then it is searched for assignments as described

earlier. Every assignment in the statement is handled as follows: First, all other

assignments that are overwritten by this assignment are located, essentially the

computation of the kill(i) set follows. Then the set of assignments that are no

longer valid kill(i) is subtracted from the total set of assignments. Second, the set

of assignments generated in this node gen(i) is computed and added to the set of

assignments.

If a CFCall is encountered, then the target CFGraph of this function call is located.

To begin, reachin(CFStart) for the target CFGraph is set to the set of assignments

which hold in the current node. Next, the algorithm is applied recursively to the

target CFGraph. Finally, the results of the recursive application are propagated.

Another noteworthy implementation detail about the sets of assignments is the

use of the functional collection library Vavr [1]. This library makes it possible to

create quick immutable copies of the sets of assignments. Being able to create these

immutable copies is incredibly helpful because modified copies of these sets are

attached to every node. So, one would typically either be stuck using bit sets or

have to resort to copying around large amounts of data. What Vavr allowed us to

do was to pick a middle path between using bit sets and having the convenience

associated with regular sets.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

64/78

8 Constant Folding

8.1 Basic Principle of Constant Folding

In [9] constant-folding is defined as: “Constant-expression evaluation, or constant

folding, refers to the evaluation at compile time of expressions whose operands

are known to be constant.”

Put differently, constant folding allows us to take simple expressions such as

(3 + 5) ∗ 7 and evaluate them to their respective constants (56 for this example). If

hypothetically the goal was to optimize a piece of code, then one could replace

this constant expression by its constant value.

Constant folding also creates some challenging problems when language indepen-

dence is a requirement. For example: Primitives such as booleans should work

exactly the same across multiple languages, however, other data-types such as

floating point numbers may present interesting edge cases. Therefore, it becomes

obvious that some assumptions have to be made about the underlying data-type,

which is encountered. For the purposes of our work, we assumed that floating

point numbers conform to the IEEE 754 [5] standard.

In part because of how easy constant folding is to implement, it has found a wide

range of uses cases and applications including - but not limited to - compiler

optimizations, detection of code smells, and dead code elimination.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

65/78

Constant propagation takes the value of the computed constant expressions and

propagates them to subsequent statements. The idea here is that both steps become

interleaved: A CF step is followed by a CP step until a fixpoint is reached. This

technique allows for far more constant expressions to be evaluated, which results

in a significantly more optimized result.

Constant propagation and reaching definitions go hand in hand, by virtue of

trying to achieve similar goals: The reaching definitions algorithm propagates sets

of assignments. The constant propagation algorithm on the other hand propagates

sets of constant values. This similarity can be exploited inorder to execute both

algorithms at once. Taking advantage of this can be quite beneficial as it helps to

avoid duplicate code and reduces the runtime ever so slightly. In addition, adding

support for interprocedural constant propagation was aided by our implemen-

tation of interprocedural reaching definitions, as described in section 7.4. Thus,

our implementation of reaching definitions invokes constant folding whenever a

statement, function call, or branch is encountered.

However, rather than simply propagating all constants, we opted to compute

all possible “outcomes” of constant propagation and collect the results into a set.

Essentially, if a constant assignment is encountered, the set of possible values

is updated to reflect the new value of the variable. Whenever a CFJoin node is

reached, the sets are merged into one set containing all possible values. Arithmetic

operations are applied to the set e.g. x ∗ 2 with x ∈ {1, 2} results in the set {2, 4}.

Finally, if a loop is encountered, the set of all values is simply invalidated. Meaning

that all values of all variables used or affected by the loop become unknown.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

66/78

!(on == TRUE) (on == TRUE)

out = 0.0; out=(1.0)

on=(true)

CFJoin out=(1.0)

on=(true)

out = 1.0;

CFReturn
out=(1.0)

on=(true)

CFStart

CFBranch

Figure 8.1: A simple example of constant propagation

The above Figure 8.1 illustrates constant propagation on the pump function block

section 2.2 with on set to TRUE. Starting at the CFStart node on is simply propa-

gated. On the right side of the CFG we can observe that the variable out is set to

1.0. The left side is never executed, since the condition in the CFBranch evaluates

to FALSE. Once the CFJoin is reached, both sets from each branch are merged. The

constant value 1.0 is then returned in the CFReturn node. Applying constant

propagation to this Function Block therefore revealed that this call to the Function

Block can be replaced by the constant expression 1.0.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

67/78

8.2 Constant Expression Evaluation

Expressions are combined of literals, operations, identifier, and function calls. If

for a given expression a definite value can be computed, than this expression is

known as a constant expression. Evaluating constant expressions is referred to as

constant folding.

Literals have a clearly defined value associated with them, which the evaluation

function will attempt to propagate. Examples of literals include: IntegerLiteral,

RealLiteral, and BooleanLiteral.

UnaryOperator

Not

BitNot

UnaryMinus

. . .

BinaryOperator

And

BitAnd

Add

. . .

Figure 8.2: Example unary and binary operator types

Figure 8.2 depicts some different kinds of unary and binary operators which

an expression in the GASTM may be comprised of. Unary operators as their

name suggests have only one parameter while binary operators manipulate two

values.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

68/78

Operations are assigned rules of precedence which dictate how expressions such

as 5 + 2 ∗ 3 are evaluated i.e. (5 + 2) ∗ 3 vs. 5 + (2 ∗ 3). The constant folding

algorithm operates on a subset of the AST which contains expressions and the

components which they are made of. These expressions are represented in the

GASTM as nodes in a tree like structure. From this representation the rules of

precedence become clear.

=

x +

+

∗

2 y

1

+

∗

2 z

1

Figure 8.3: Example of an AST which eval would process

The above Figure 8.2 shows a simplified example of an expression in the GASTM

representing x = (2 ∗ y + 1) + (2 ∗ z + 1). This AST would then be evaluated

bottom up recursively until only atomic values remain. If a variable whose value

is undefined is encountered then the result of the evaluations is typically unde-

fined.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

69/78

8.2.1 Identifiers

Identifiers are the last missing piece of the puzzle. These come in two forms:

IdentifierReferences and QualifiedIdentifierReferences.

IdentifierReferences are identifiers (essentially some string), which refers to a

DefinitionObject. DefinitionObjects, according to the OMG-ASTM specifica-

tion [4] are defined as “Constructs that define entities”. To paraphrase they are

defined as any of the following: variable definitions, type definitions, function

definitions, etc. Figuring out which DefinitionObject is referenced by an iden-

tifier, is the job of the resolver. Our resolver implementation attempts to match

some portion of the IT defined in 6.1 with the given identifier. We can therefore,

associate a value with an identifier.

8.2.2 QualifiedIdentifierReferences

QualifiedIdentifierReferences (QIRs) are typically used to reference some kind

of data or field inside an aggregate type (e.g. person.name). QIRs act upon an

expression on the left and access some member on right. Inorder to match the QIR

to some portion of the IT, two parts need to be resolved: The expression and the

member which acts upon the expression. In the case of the expression only the

expression type needs to be determined. The member is an IdentifierReference

which using the expression type can be matched to a specific part of the instance

tree.

These QIRs may become quite complex and for some languages even indetermi-

nate. An example of more complicated QIR is: ("a"+"b").toString(). Where

("a"+"b") is the expression being acted upon and toString is the member being

referenced.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

70/78

The Figure below 8.4 depicts the AST which would be generated for the expression

a.b.c.d, along with the relevant part of the Instance Tree of the program associated

with this expression.

QIR

QIR

QIR

a b

c

d

...

a ...

b ...

c ...

d ...

Figure 8.4: An illustration of an AST and its IT

The expression is evaluated bottom up, starting at a.b. First the qualifier and then

the member must be resolved. For this the IT is used, by simply following the path

shown in the IT one can obtain both the value and type information for such an

expressions. Once the correct node has been located it can be assigned a value.

Algorithm 3 Simplified Resolving Algorithm
1: function resolve(qir)
2: if qir.quali f ier is QIR then
3: n← resolve(qir.quali f ier)
4: else
5: n← it.getMember(qir.quali f ier.name)
6: return n.getMember(qir.member.name)

Algorithm 3 shows exactly how the above figure 8.4 and other problems like it can

be resolved.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

71/78

8.2.3 Putting it all together

Algorithm 4 Constant Folding Algorithm
1: function eval(expr)
2: r ← {}
3: if expr is Literal then
4: r ← {expr.value}
5: else if expr is BinaryExpression then
6: switch expr.op do
7: case Assign
8: le f t← resolve(expr.le f t)
9: le f t.value← eval(expr.right)

10: r ← le f t.value
11: case Add
12: r ← execute(expr,+)

13: case Sub
14: r ← execute(expr,−)
15: case Times
16: r ← execute(expr, ∗)
17: . . .
18: else if expr is UnaryExpression then
19: switch expr.op do
20: case Not
21: r ← execute(expr, !)
22: case UnaryMinus
23: r ← execute(expr,−)
24: . . .
25: else if (expr is IR) ∨ (expr is QIR) then
26: r ← {resolve(expr).value}
27: return r

The above algorithm 4 combines the steps discussed in the previous sections. First

a decision is made if the given expression is any of the following: literal, binary

expression, unary expression, or identifier. If the given expression is a literal then

we can simply return the value associated with the literal.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

72/78

If the expression is a binary expression, then we must distinguish between two

cases. The first case is an assignment: Here we have to resolve the assignee and

evaluate the assigned.

Algorithm 5 Execute Binary Expression
function execute(binexpr, op)

r ← {}
le f t← eval(binexpr.le f t)
right← eval(binexpr.right)
if le f t = right then

for all value ∈ pou do
r ← r ∪ {value op value}

else if le f t ̸= {} ∧ right ̸= {} then
for all value1 ∈ le f t do

for all value2 ∈ right do
r ← r ∪ {value1 op value2}

return r

If a binary expression is encountered algorithm 5 is invoked with the appropriate

operator. This algorithm evaluates both the left operand and right operand and

then applies to the cartesian product of the two sets.

Algorithm 6 Execute Unary Expression
function execute(unaryexpr, op)

r ← {}
for all value ∈ eval(unaryexpr.operand) do

r ← r ∪ {op value}
return r

Both IRs and QIRs are resolved using the algorithm 3, which was presented

earlier. Finally, algorithm 4 returns the empty set if the overall result is undefined,

otherwise the set of values represents the possible values that the given expression

might hold. If the size of the result is one, then the expression may be optimized

to simply yield the value in the set.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

73/78

8.2.4 Dealing with references

Up until now we left references entirely. However, now that the basics have laid

out, references will be relatively easy. The instance tree already tracks all allocated

instances ergo, if a reference is assigned some value, we can simply update the IT

model to reflect this change.

struct { struct S {

int value;

struct S *ptr;

} a, b; } s;

void a() {

s.a.ptr = &s.a;

s.a.ptr = &s.b;

}

s

a b

value ptr value ptr

a b

s

value ptr value ptr

Figure 8.5: A example showing references in the IT

Figure 8.5 depicts how the example code would be reflected inside the IT. At first

s.a.ptr points to s.a then the pointer is adjusted to point to s.b;

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

74/78

9 Conclusion and Outlook

9.1 Summary

In these theses we presented a framework for static code analysis of languages

based on the IEC 61131–3 standard. Based on a GASTM representation of the

source code, intermediate representations are generated, which can then be

checked to generate knowledge about information in the code. We then presented

the intermediate representations that were used.

First we introduced the CFG which is used to analyse the flow of each function by

transforming the AST into a directed graph. The graph then represents all possible

execution paths that can be taken on the graph. We showed how this graph can be

constructed using a recursive algorithm to deal with complex code structures. We

then introduced the CG as an extension of the CFG which adds the potential for

contextual awareness to each function. Next, we showed how the data structure

of a project is represented in an Instance Tree (IT). The IT shows the POUs and

variables allocated by a program. We then gave a summary of the concept of

reaching definitions before showing a practical application for the intermediate

representations by applying a constant folding algorithm to our data structures.

The algorithms and classes presented in this paper were implemented as a Java

framework and tested on several example programs in various languages. The

implementation was then used in [10], where a tool for symbolic code execution

based on our intermediate representation is presented.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

75/78

9.2 Open Issues

Although the implementation covers a wide range of analysis methods, some

open issues remain:

• Nested Function Calls: One issue that our implementation has is an inability

to deal with nested function calls, as well as multiple calls within a single

statement.

The current implementation of the Call Graph builder is unable to accurately

determine the order of multiple and potentially nested function calls within

a single statement. Due to limitations of our code, the CFCalls for multiple

calls are inserted as well as possible, but not necessarily correctly. These

issues also extend to the constant folding algorithm, which has no concept

of intermediate values, such as return values of functions passed on to other

functions. Because of this, only code with one function call per statement

can be guaranteed to be analysed correctly.

• Further Analysis Methods: With the constant folding algorithm, our toolchain

provides a tool for code analysis which is based on our intermediate rep-

resentations. However, there are plenty further options for refining and

expanding our toolchain. For example, it could be possible to implement a

framework for rules, similar to the one presented in [11]. Another option

would be to use the intermediate representation to then perform symbolic

execution on it, expanding on the work done in [10].

• Language Constructs: Due to time limitations not all language constructs

defined by IEC 61131–3 were implemented in our algorithm. One notable

example for this is the switch statement, which is currently not supported in

the CFG .

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

76/78

Bibliography

[1] URL: https://www.vavr.io/.

[2] Frances E. Allen. “Control Flow Analysis”. In: SIGPLAN Not. 5.7 (July 1970),

pp. 1–19. ISSN: 0362-1340. DOI: 10.1145/390013.808479. URL: https://doi.

org/10.1145/390013.808479.

[3] JT Davie and Ronald Morrison. Recursive descent compiling. John Wiley &

Sons, Inc., 1982.

[4] Object Management Group. “Abstract Syntax Tree Metamodel”. In: (2011).

URL: https://www.omg.org/spec/ASTM/1.0/PDF.

[5] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2019 (Re-

vision of IEEE 754-2008) (2019), pp. 1–84. DOI: 10.1109/IEEESTD.2019.

8766229.

[6] International Electrotechnical Commission. IEC 61131-3 Ed. 3.0 en:2013: Pro-

grammable controllers — Part 3: Programming languages. 2013. URL: https:

//webstore.iec.ch/publication/4552.

[7] International Electrotechnical Commission. IEC 61131-3:1993: Programmable

controllers — Part 3: Programming languages. 1993. URL: https://webstore.

iec.ch/publication/19080.

[8] MoDisco User Guide — help.eclipse.org. https://help.eclipse.org/latest/

nav/58_0. [Accessed 03-Dec-2022].

[9] Steven S Muchnick. Advanced Compiler Design and Implementation. Oxford,

England: Morgan Kaufmann, Sept. 1997.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

77/78

https://www.vavr.io/
https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/390013.808479
https://www.omg.org/spec/ASTM/1.0/PDF
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://webstore.iec.ch/publication/4552
https://webstore.iec.ch/publication/4552
https://webstore.iec.ch/publication/19080
https://webstore.iec.ch/publication/19080
https://help.eclipse.org/latest/nav/58_0
https://help.eclipse.org/latest/nav/58_0

[10] Peter Pfeiffer. “A Tool for verifying PLC Safety Components using Symbolic

Execution”. In: (2022).

[11] Herbert Prähofer et al. “Static code analysis of IEC 61131-3 programs: Com-

prehensive tool support and experiences from large-scale industrial appli-

cation”. In: IEEE Transactions on Industrial Informatics 13.1 (2016), pp. 37–

47.

[12] Thomas Reps, Susan Horwitz, and Mooly Sagiv. “Precise Interprocedural

Dataflow Analysis via Graph Reachability”. In: Proceedings of the 22nd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL

’95. San Francisco, California, USA: Association for Computing Machinery,

1995, pp. 49–61. ISBN: 0897916921. DOI: 10 . 1145 / 199448 . 199462. URL:

https://doi.org/10.1145/199448.199462.

[13] Nieke Roos. “Programming plcs using structured text”. In: International

Multiconference on Computer Science and Information Technology. Citeseer. 2008,

pp. 20–22.

[14] Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. “Global value

numbers and redundant computations”. In: Proceedings of the 15th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages. 1988,

pp. 12–27.

[15] Valeriy Vyatkin. “Guest editorial: Special section on software engineering

in industrial automation”. In: IEEE Transactions on Industrial Informatics 9.4

(2013), pp. 2337–2339.

April 28, 2023
Jonathan Kudlich,
Keanu Pöschko

78/78

https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462

	1 Introduction and Motivation
	1.1 Context: PLC, IEC 61131
	1.2 Approach
	1.3 Structure of the Theses
	1.4 Joint work of Bachelor applicants

	2 IEC 61131–3 Programs
	2.1 Structured Text (ST)
	2.2 Running Example

	3 ASTM Abstract Syntax Tree Representation
	3.1 GASTMSwitch

	4 Control Flow Graph (CFG)
	4.1 Basic Principle of CFG
	4.2 Class System for CFG
	4.3 Builder for CFG
	4.3.1 Principal approach
	4.3.2 CFSubGraphBuilder
	4.3.3 flattenSubGraph()

	5 Call Graph
	5.1 Introduction to Call Graphs
	5.2 Class System for Call Graph
	5.3 Builder for Call Graph
	5.3.1 Main Principle
	5.3.2 Finding the Procedure Calls
	5.3.3 Resolving of Procedure Names

	6 Memory Model
	6.1 Instance Tree (IT)
	6.2 Instance Tree Builder
	6.2.1 Instance Tree Builder Algorithm

	6.3 Class System for IT

	7 Data-Flow Analysis
	7.1 Reaching Definitions
	7.2 The Basics of Reaching Definitions
	7.3 Formalizing Reaching Definitions
	7.4 Interprocedural Reaching Definitions
	7.5 Algorithm for Constructing Reaching Definitions

	8 Constant Folding
	8.1 Basic Principle of Constant Folding
	8.2 Constant Expression Evaluation
	8.2.1 Identifiers
	8.2.2 QualifiedIdentifierReferences
	8.2.3 Putting it all together
	8.2.4 Dealing with references

	9 Conclusion and Outlook
	9.1 Summary
	9.2 Open Issues

