
Flowchart
Visualization
in JavaWiz

Author
Andreas
Schlömicher

Submission
Institut für
Systemsoftware

Thesis Supervisor
a.Univ.-Prof. Dipl.-
Ing. Dr. Herbert
Prähofer

Assistant Thesis
Supervisor
Dipl.-Ing. Dr.
Markus Weninger,
BSc.

April 2024

Bachelor’s Thesis
to confer the academic degree of

Bachelor of Science
in the Bachelors’s Program

Informatik

Abstract
A flowchart is a graphical representation of a program which shows the operations and the
control flow in a two-dimensional figure. They are used for developing software and other
processes that work with a sequence of operations.

JavaWiz is a tool for helping programming beginners understanding the behaviour of Java
programs and its data structures. It works like a debugger for Java applications and is
available as a Visual Studio Code plugin.

In this work, flowcharts have been developed as a further visualization component of
JavaWiz. Interactive flowcharts allow students to follow the step-by-step execution of a
program. Flowcharts in JavaWiz support rendering a method as a flowchart, interactively
stepping through the operations of the flowchart, collapsing and expanding nodes and
inlining called methods at the call statement.

(ii)

Kurzfassung
Ein Ablaufdiagramm ist eine grafische Darstellung eines Programms, die die Operationen
und den Kontrollfluss in einer zweidimensionalen Figur zeigt. Sie werden für die
Entwicklung von Software und anderen Prozessen verwendet, die mit einer Abfolge von
Operationen arbeiten.

JavaWiz ist ein Werkzeug, das Programmieranfängern hilft, das Verhalten von Java-
Programmen und deren Datenstrukturen zu verstehen. Es funktioniert wie ein Debugger für
Java-Anwendungen und ist als Plugin für Visual Studio Code verfügbar.

In dieser Arbeit wurden Ablaufdiagramme als eine weitere Visualisierungskomponente von
JavaWiz entwickelt. Interaktive Ablaufdiagramme ermöglichen es Schülern, die schrittweise
Ausführung eines Programms zu verfolgen. Ablaufdiagramme in JavaWiz unterstützen die
Darstellung einer Methode als Ablaufdiagramm, das interaktive Durchlaufen der
Operationen des Ablaufdiagramms, das Kollabieren und Expandieren von Knoten und
Inlining von aufgerufenen Methoden an der Aufrufstelle.

(iii)

Contents
1 Introduction ... 1

1.1 JavaWiz .. 1
1.2 Motivation ... 2
1.3 Structure of the thesis ... 2

2 Related Work ... 3
2.1 History of flowcharts .. 3
2.2 Variants .. 3
2.3 Tools ... 4

3 JavaWiz Flowcharts ... 5
3.1 Method ... 5
3.2 Conditionals and loops ... 6

3.2.1 If-statement ... 6
3.2.2 While-loop ... 8
3.2.3 For-loop .. 10

3.3 Switch-statement ... 11
3.4 Try-catch-finally-statement .. 13
3.5 Statements ... 14
3.6 Settings and options .. 15

3.6.1 Settings ... 16
3.6.2 Width limit of statements and conditions .. 16
3.6.3 Collapsable elements ... 17
3.6.4 Inlining methods .. 18

3.7 Navigation ... 19
4 Implementation .. 19

4.1 Architecture .. 19
4.2 Technologies ... 20

4.2.1 D3.js ... 20
4.2.2 JavaParser .. 22

4.3 Backend .. 22
4.3.1 AstParser .. 23
4.3.2 Stepping .. 27

4.4 Layouting .. 28
4.4.1 Layout structure ... 28
4.4.2 Layouting Algorithm ... 29
4.4.3 redraw ... 31
4.4.4 Collapse .. 31
4.4.5 Inline methods .. 32

4.5 Visualization with D3.js ... 33
4.6 Flowchart settings ... 36

5 Summary and Conclusion .. 37
Bibliography ... 38

(iv)

1 Introduction
According to [1] a flowchart is a graphical representation of the definition, analysis, or method
of solution of a problem in which symbols are used to represent operations, data, flow, equip-
ment, etc. They are used for developing software and other processes that work with a se-
quence of operations.

The purpose of a flowchart is to have a clear and structured view of how a program or process
works. It helps to visualize the sequence of steps, decision points and possible outcomes within
the process.

Flowcharts are built from different elements:
• start and endpoints: flowcharts begin with a start point and end with an endpoint. These

represent the beginning and end of the process or system being represented. The start point
can be shown in different ways, either as a rounded rectangle or a triangle.

• decisions: decisions in a flowchart are represented by diamond-shaped symbols. They in-
dicate points in the process where a decision must be made based on certain conditions or
criteria. Depending on the outcome of the decision, the flow of the diagram follows different
paths. Typically, the decision symbol will have outgoing arrows. Each arrow is labelled with
a condition or criteria that determine the path to be followed.

• tasks: tasks, also known as processes or actions, represent the specific actions or steps per-
formed in the process. These can include calculations, data processing, input and output,
or any other action required to complete the process. Tasks are presented with a textual
description, possibly within a box.

The symbols described above are most commonly used in business process flowcharts, as
flowcharts used to represent software may require more differentiation in the visualization of
certain elements [2].

Flowcharts are valuable tools for documenting, analysing and improving processes. They are
useful for the identification of bottlenecks, inefficiencies or areas for optimisation. They also
aid communication, training, and troubleshooting by clearly and intuitively representing a
process.

In the specific context of imperative programming, flowcharts are used to show statement
sequences, branches and loops [3]. In particular, it shows the control flow of procedures. This
thesis focuses exclusively on flowcharts for visualizing procedures (Java methods).

1.1 JavaWiz
JavaWiz is a tool for visualizing fundamental aspects of programming and is designed to help
beginners understand the behaviour of Java programs and data structures. It can be used as a
debugger for Java applications and is available as a Visual Studio Code plugin or in a web page.

JavaWiz is already able to create the following visualizations:
• Desk test: a tabular view showing executed statements and variable values. For each step,

a row is created which makes it easy to see the changes of variables and conditions.

1

• Stack and heap visualization: It is a representation of the current memory with the data
in the stack and the heap.

• Array visualization: The purpose of this visualization is to show the manipulation of ar-
rays.

• List visualization: Special visualization of linked lists.
• Tree visualization: This visualization is used for visualizing binary trees.

1.2 Motivation
Computer programming education faces the problem of introducing students to complex pro-
gramming concepts, as it can be overwhelming for beginners to understand these concepts,
syntax and logic. By integrating flowcharts into JavaWiz, learners can benefit from a more
engaging learning experience and are provided with a valuable visual aid that helps them to
trace program flow and identify logical errors more effectively. Interactive flowcharts allow
students to follow the step-by-step execution of a program.

Flowcharts should allow:
• Render a flowchart of a method: The flowchart should show the method signature, the

sequence of statements, branches and loops, as well as exception handling.
• Step through the flowchart: This includes the ability to execute the method step by step,

following the path of the flowchart. The next statement to be executed should be highlighted.
The visualization should always include the method currently being executed.

• Collapse and expand nodes: Flowcharts can become complex, especially for larger meth-
ods. The ability to collapse nodes would be helpful to simplify the view and focus on specific
sections. Collapsing a node would hide the details within it, making the flowchart more
concise. Conversely, expanding nodes would reveal the hidden details, providing a more
detailed view of the method’s logic.

• Inline methods in the flowchart: To inline methods is to include the flowchart of called
methods directly in the diagram. Instead of displaying method calls as a separate view, the
flowchart of the called method is expanded inline within the calling method’s flowchart.
This helps to visualize the complete execution flow in a single diagram, without navigating
to different parts of the flowchart for each method call.

1.3 Structure of the thesis
This thesis is structured in the following way:

• Section 2 discusses work related to this thesis.
• Section 3 is a user guide for JavaWiz flowcharts. It shows various features by examples.
• Section 4 gives an overview of the implementation and guides the developer in implement-

ing new features and maintaining the code base for the flowcharts.
• This thesis is finally summarised in Section 5.

2

2 Related Work
Flowcharts have been around for a long time. Creating flowcharts from source code is not a
new idea either. This chapter takes a look at the rich history of flowcharts, explores the vari-
ous variants and notations that exist, and highlights the range of tools available for creating
flowcharts by hand or from source code.

2.1 History of flowcharts
People like graphical visualizations and they help to share and discuss complex technical struc-
tures and processes. They can also be used to document a process. According to Stritzinger [4],
flowcharts always were a popular way for algorithm design. However without any existing
standard many different variants exist, the only commonality being the use of arrows to show
the flow.

An alternative to flowcharts were to use the Nassi-Shneiderman diagrams. They were easy
to layout and, at the time, easy to print on a matrix printer [2]. Moreover, they do not allow
GOTOs and thus promote a structured programming approach.

A short-lived standard was DIN 66001. This standard was designed for general data flows and
was not specific to programming.

2.2 Variants
As already mentioned in the previous section, there are several variants of flowcharts. Some
of them are:
• Activity diagram in UML: Flowcharts are not part of the Unified Modelling Language

(UML)[5]. The primary focus of UML is on the modelling of software systems using a set of
standardised diagrams. However, if you want to represent flow-like behaviour in UML, you
can use activity diagrams. Activity diagrams in UML are used to show the flow of activities,
actions and decisions within a system. Although they are not exactly the same as traditional
flowcharts, they do provide a visual representation that is similar. While activity diagrams
can represent flow-like behaviour, they also provide additional features such as parallelism,
making them more expressive than traditional flowcharts.

• Structogram: The structogram, also known as the Nassi-Shneiderman diagram, is a graph-
ical representation used in software engineering to show the flow of control in a program.
They provide a structured way of representing algorithms and program logic[2].

• DIN 66001: As already mentioned, the German standard DIN 66001 is obsolete because it
does not support the new structured programming paradigm of the 1980s. This paradigm
banned the use of GOTO statements.

• ISO 5807: This standard defines symbols and provides application guidance. It is no longer
in use, but has had a major influence on other standards.

• Visualization by Stritzinger and Blaschek: According to Strizinger and Blaschek, the
existing technology for rendering algorithms was not sufficient, so they developed their
own visualization [3], [4]. This visualization has been largely adopted in this thesis. They
adopted a flowchart visualization from Rechenberg[6].

3

2.3 Tools
There are several tools available for creating flowcharts. Most require manual drawing of
nodes and arrows, but some are able to create flowcharts from source code.

Some tools are:
• diagrams.net: Also known as draw.io is a web app for creating diagrams [7]. It is a diagram

editor that requires content to be added manually and has very good integration with var-
ious cloud services and export and import options.

• Lucidchart: A tool similar to diagrams.net
• Microsoft Visio: A tool from Microsoft for the creation of different types of diagrams, in-

cluding flowcharts. It is part of Microsoft Office.
• Code Iris: A plugin for the IntelliJ IDEA IDE that supports Groovy and Java visualization

of modules, packages and classes.
• Code2Flow: A tool that creates flowcharts from pseudocode. It does not support Java.
• Dia: A popular flowchart editor. Last released in 2014, it is similar to Microsoft Visio. It is

open source and currently under active maintenance.
• LJV: An extension for Jswat created by John Hammer [8]. Jswat is a graphical Java debug-

ging front-end. It is possible to include it as a dependency in a Java project [9]. It has been
discontinued as of 2013 [10].

• Aaron: Aaron is a structure-oriented editor for Modula-2 that uses a flowchart editor in-
stead of source code. Aaron is able to generate Modula-2 source code from the generated
flowchart [3]. This IDE was developed by Günther Blaschek with the help of Alois Stritzinger
and Johannes Sametinger around 1984-1987.

Project Aaron was divided into several parts. One part was a truncated syntax tree, which
has a similar purpose to the backend used in this thesis. Another part is the flowchart visu-
alization made by Stritzinger [4], which is similar to the frontend part of this thesis.

They use very similar algorithms to place elements on the diagram, as they also use the
centre, height and width of the element to position it. They also perform multiple recalcu-
lations of the placements to fit the available space.

Many of these tools have been around for a long time and may no longer be actively main-
tained.

4

3 JavaWiz Flowcharts
The JavaWiz Flowcharts component is able to create flowcharts of code using the basic Java
language features. When the debugger is started, the flowchart of the main method is created
and extended as the user continues to execute the program as seen in Figure 1.

Figure 1: JavaWiz flowchart showing the main method

In this chapter, the visualisation of the different language elements of Java and the supported
features are presented.

3.1 Method
The JavaWiz flowcharts focus on rendering methods and their content.

The first example Listing 1 is the well-known “Hello World” in Java.
public static void main(String[] args) {
 System.out.println("Hello world!");
}

Listing 1: Hello world program

In Figure 2, one can see the flowchart for this method. At the top, the signature of the entry
method main is displayed. Below the signature is the entry point symbolized as a triangle with
an arrow below that points to the first statement. At the end of the chart, the exit point is
symbolized by a triangle pointing down with an arrow on top.

A light blue background highlights the next executed statement.

When the program jumps to another method, the flowchart is removed and the new method
is rendered.

Figure 2: Hello world program

5

3.2 Conditionals and loops
The rendering of if-statements and all loops is implemented. The internal handling between
if-statements and loops is very similar and is therefore combined in this section.

3.2.1 If-statement
In this section, if-statements are shown with all their variants and options.

As an example of the simple if-statement, the Listing 2 has a condition, a then-branch that
sets x as the maximum and an else-branch that sets y as the maximum. Both branches print
the maximum to the output.

if(x > y) {
 Out.print("x ist max");
 max = x;
} else {
 Out.print("y ist max");
 max = y;
}
Listing 2: Finding the maximum between x and y

The Figure 3 shows the flowchart of the if from Listing 2. The condition indicated by the
question mark is the starting point. On the left side marked by the false keyword is the else-
branch and on the other side is the then-branch marked by the true keyword. Arrows enter
and leave the block of statements in each branch.

Figure 3: Finding the maximum between x and y

The rendering position of the branches can be swapped in the settings.

The default rendering is the true branch on the right, as shown in Figure 3. After changing the
position of the branches in the settings, as seen in Section 3.6.1, the rendering of if-statements
changes immediately, which is shown in Figure 4.

Figure 4: Then-branch on left side

A form of if-statements is the if-statement without else-branch.

In Listing 3 the program checks if the divisor n is not zero in order to avoid a division by zero
exception. If it is not zero, q is set to x / n.

6

if(n != 0)
 q = x / n;
Listing 3: If-statement as a divide by zero guard

In Figure 5 is shown that if-statements without an else-branch have a continuous line to the
end of the if-statement instead of the block. The line has a right-turned U-shape. The size of
the U is set to fit the false keyword at the top of the line.

Figure 5: If-statement as a divide by zero guard

When working with nested if-statements the visualization of if-statements is essential for
keeping it clear and easy to read.

The Listing 4 uses nested if-statements for the comparison of three numbers.
if(a > b) {
 if(a > c) {
 max = a;
 } else {
 max = c;
 }
} else {
 if(b > c) {
 max = b;
 } else {
 max = c;
 }
}
Listing 4: Nested if-statements finding the maximum in three numbers

The two-level nesting is clearly visible in Figure 6. Depending on the first comparison the
nested if-statement is executed.

Figure 6: Nested if-statements finding the maximum in three numbers

The importance of the visualization of if-statements is also highlighted in a if-statement
cascade.

In Listing 5 is the value check of x shown, which is implemented with cascading if-statements.

7

if(x > 1000) {
 Out.println("x is very big");
} else {
 if(x > 100) {
 Out.println("x is big");
 } else {
 if(x > 0) {
 Out.println("x is positive");
 } else {
 if(x < 0) {
 Out.println("x is negative");
 } else {
 Out.println("x is zero");
 }
 }
 }
}
Listing 5: Cascading if-statements of checking the value of x

As shown in Figure 7 this results in a deeply nested flowchart that is leaning heavily on one
side.

Figure 7: Cascading if-statements of checking the value of x

If-statements with returns are shown differently. First a text followed by a triangle repre-
senting the return statement. Then a dotted line indicates that the if does not continue. If both
sides do not continue, the arrowhead is omitted and a dotted line connects both branches.

Figure 8: Return-statement on one side

Figure 9: Return-statement on both sides

3.2.2 While-loop
JavaWiz supports all the basic loops used in Java and one of them is the while-loop.

In the example as shown in Listing 6, the user can enter numbers until he finishes by entering
a non-number. Each number is added up to a total.

8

int x = In.readInt();
int sum = 0;
int n = 0;
while (In.done()) {
 sum = sum + x;
 n++;
 x = In.readInt();
}
Listing 6: Sum of several integers entered by the user

Figure 10 represents the flowchart for Listing 6. The while-loop has a diamond at the begin-
ning that contains the condition of the loop inside. An arrow points from the diamond to the
first statement. The loop body statements are in the center of the loop and at the bottom is an
arrow pointing to the statement after the while-loop. In this arrow, a circle marks the start of
another arrow that returns to the condition. The width of the diamond adapts to the length of
the condition.

Figure 10: Sum of several integers entered by the user

A very similar loop is the do-while-loop. Listing 7 contains the code for asking the user for
a number input that is greater than zero. The do-while-loop is used to enforce a retry until a
valid input is entered.

int number;
do {
 Out.print("Please enter a number greater than 0: ");
 number = In.readInt();
} while (number <= 0);

Listing 7: User input of a number greater than 0

The flowchart in Figure 11 shows that the diamond is at the bottom of the loop and the arrows
with the circle are at the beginning of the loop.

9

Figure 11: User input of a number greater than 0

3.2.3 For-loop
The visualization of for-loops is the same as while-loops, except that the header diamond con-
tains the initialisation, comparison and update-statements, separated by semicolons.

The code in Listing 8 shows how to sum up all numbers from 1 to n and the resulting flowchart
is shown in Figure 12.

int n = 10;
int sum = 0;
for (int i = 1; i <= n; i++) {
 sum = sum + i;
}
Listing 8: Sum up all numbers from one to ten with a for-loop

Figure 12: Sum up all numbers from one to ten with a for-loop

An interesting example is Listing 9, where a 𝑛 × 𝑛 multiplication table with 𝑛 = 4 is printed.
Here two nested for-loops are used. The inner loop prints the columns and the outer loop is
responsible for the rows.

int n = 4;
for (int i = 1; i <= n; i++) {
 for (int j = 1; j <= n; j++) {
 Out.print(String.format(" %3d", i * j));
 }
 Out.println();
}

Listing 9: Multiplication table of 4

10

Figure 13: Multiplication table of 4

3.3 Switch-statement
JavaWiz flowcharts also supports the visualization of switch-statements. However, switch-
expressions are shown as source code only.

A basic example of a switch-statement is shown in Listing 10, where the user input is used to
print the day of the week. If the input is not between one and seven, the default case prints
an error message.

int day = In.readInt();
switch (day) {
 case 1:
 Out.print("It's Monday");
 break;
 case 2:
 Out.print("It's Tuesday");
 break;
 case 3:
 Out.print("It's Wednesday");
 break;
 case 4:
 Out.print("It's Thursday");
 break;
 case 5:
 Out.print("It's Friday");
 break;
 case 6:
 Out.print("It's Saturday");
 break;
 case 7:
 Out.print("It's Sunday");
 break;
 default:
 Out.print("Wrong Input: " + day);
}
Listing 10: Print the name of a day with a day index as input

In Figure 14 the flowchart of the switch-statement of Listing 10 is shown. On top is an arrow-
like rectangle showing the selector of the switch-statement. Then, the cases are chained from
top to bottom. On the right side of a case the statements are positioned. At the bottom, a

11

smaller arrow-like rectangle and an arrow form the end of the switch-statement. The selector
rectangle size is adapted to the length of the switch-selectors name. The centers of the blocks
inside each case may vary as they are relative to the case’s conditions.

Figure 14: Print the name of a day with a day index as input

12

There are a few more things to consider for switch-statements. Figure 15 shows that when
multiple cases are combined the case conditions are joined by a comma. It also shows that if
the break or return-statement is omitted, an arrow goes back into the cases conditions chain.

Figure 15: Handle multiple options with a switch-statement

3.4 Try-catch-finally-statement
Exceptions are very disruptive to the flow of programs. The design goal of catch blocks was
to minimize the required space until an exception is thrown. The try-block and finally-block
have minimal changes compared to an ordinary block to keep the user’s focus on the normal
control flow.

Listing 11 shows how to handle the exception of a division by 0 by a try-catch-statement. The
division is surrounded by a try-block followed by a catch-block for the ArithmeticException
and then the general catch-block for all exceptions, both printing an error message.

try {
 int result = divide(10, 0);
 Out.println("Result: " + result);
} catch (ArithmeticException ex) {
 Out.println("ArithmeticException occurred: " + ex.getMessage());
} catch (Exception ex) {
 Out.println("Exception occurred: " + ex.getMessage());
}

Listing 11: The division of 100 enclosed by an try-catch-statement

The chart in Figure 16 shows the try-block on the left side and the catch clauses on the right
side and a thick black line in between. There are thin grey lines at the top and bottom to show
that the program is able to run on both sides of the chart.

The try-block is displayed as the blue try keyword on the left and arrows pointing to the first
statement and at the try-block.

13

The chain of catch-clauses starts with the blue catch keyword and an arrow pointing right to
the first catch-clause and continues to the right. Catch-clauses are collapsed by default, but
are automatically expanded when the relevant exception is caught, or by double-clicking on
{…}. Figure 17 shows the expanded state, consisting of the name and type of the exception,
the statements in the catch clause, and the arrows at the beginning and end.

Figure 16: The division of 100 enclosed by an try-catch-statement

When a finally-block like in Listing 12 is added, an area is added to the bottom that spans the
entire try-catch-finally-statement, which can be seen in Figure 17. It also has a thin grey line
at the bottom and is tagged by the finally keyword.

finally {
 Out.println("Finally block executed.");
}
Listing 12: The division of 100 enclosed by an try-catch-finally-statement

Figure 17: The division of 100 enclosed by an try-catch-finally-statement

3.5 Statements
Statements that have no explicit JavaWiz implementation for flowcharts are represented as
Statement. The default representation is a single-line text of the source code but some special
cases exist. Depending on the statement, it is possible to render inlined methods and symbols
that show the continuation of the flow.

• default rendering:

Figure 18: Default rendering of a Statement

in the default rending the source code is rendered in a single line. The center of the statements
is at 20px to the left. Method call names of inlinable methods have a light grey background.

14

• break: has an empty circle below the statement. This represents the circle in loops where
the loop is exited.

Figure 19: Return of value in e.g. a method

• yield: uses the same symbol as break-statements

• throw: has a thick black lightning bolt below the statement

Figure 20: Throw-statement if a method is not implemented

• return: a triangle below the statements source code symbolizes the method exit. It looks
the same as the exit of a method.

Figure 21: Return of value in e.g. a method

• continue: the diamond below the continue text symbolises the loop condition header.

Figure 22: Contine-statement with diamond symbol

• before a conditional or loop: between a Statement and a conditional or loop condition
an arrow appears.

Figure 23: Arrow of statement pointing into while-loop condition

Figure 24: Arrow of statement pointing into if-statement condition

3.6 Settings and options
The flowchart visualization supports various settings and visualization options. These will be
presented in this subsection.

15

3.6.1 Settings
The user can customise some rendering behaviours in the settings menu, as shown in Fig-
ure 25. It can be opened by clicking on Settings.

Figure 25: Settings dialog

The available settings are:
• auto inline methods, see Section 3.6.4
• width limit in statement and conditions, see Section 3.6.2
• placement of branches of if-statements, see below

It is possible to switch the placement of then and else-branches of if-statements. In the set-
tings menu one can select one of those options. The dashed line around the placeholder shows
whether the then or else-branch is rendered on the left or right.

3.6.2 Width limit of statements and conditions
In the settings, the user is able to set a width limit in pixels for statements and conditions. The
default settings is no width limit and, if the limit is activated, the limit is preset to 150px.

Figure 26: Statement rendered with a width limit at 150px of System.println.out("Hello
world!")

Figure 27: Expanded state of statement with width limit

In Figure 26 the statement is longer than 150px and cut off with an ellipsis. The user is able
to expand a single statement by double-clicking the ellipsis. Expanded statements as seen in

16

Figure 27 end with a tick-box with a minus inside. By clicking the box the user can undo the
expansion of the statement.

Figure 28: Loop with width limit

Figure 29: If-statement with width limit

Statements with a width limit show the full statement on mouse hover as a tooltip.

3.6.3 Collapsable elements
It is possible to collapse code blocks and exceptions in the chart to save space and make it
easier to read.

The user can double-click on some parts of the chart to collapse or expand a code block or
exception. Generally, it will toggle the collapse state on the first block of code or exception
containing the element.

However, in loops and if-statements it is also possible to toggle the state by double-clicking
on the condition, or in switch statements on the selector. If it is a condition or a switch selec-
tor, the code blocks within these elements are either collapsed or expanded depending on the
current expansion state of the majority of these blocks.

Collapsed exceptions are shown as {…} and an arrow.

Figure 30: Collapsed block in an if-statement

In Figure 30 you see that collapsed blocks are shown as {…}. If the user clicks on the condition
x > 1? the false-branch would also be collapsed.

When the program is executed, JavaWiz flowcharts opens all collapsed elements that should
be visible in the flowchart. Visible elements are those in the AST directly between the root
and the currently executed line. Their children can still be collapsed.

17

Only catch-clauses are collapsed at the start, and the others are only collapsed or expanded
by user action.

3.6.4 Inlining methods
In order to open or close inlined methods the user can double-click on the method names
with grey background in statements or conditions.

In Figure 31 the method faculty is rendered inline. Inlined methods have a rectangle with a
shadow that surrounds the method. By double-clicking on faculty in int a = faculty(5)
the inlined method can be closed.

Figure 31: Method faculty rendered inline

By double-clicking on faculty in return faculty(x - 1) shown in Figure 31 it is possible
to render an inlined method in an inlined method, as shown in Figure 32.

Figure 32: Recursive method faculty opened two levels deep

18

In the settings, the user can enable Auto inline methods. In this mode, JavaWiz analyzes the
next executed statement in combination with the current stackframe and opens the next called
method as an inlined method if this is possible. If an inlined method is exited, it is closed
automatically.

3.7 Navigation
The JavaWiz Flowcharts component allows you to easily view parts of the flowchart.

It is possible to drag the chart with the mouse and scale it by scrolling. Double-clicking on an
empty space restores the scale and position of the chart.

4 Implementation
This chapter focuses on the implementation and the used technologies.

First, the architecture of the system is explained, then an overview of the used technologies
is given, and finally, the implementation of the backend and the layout of the flowcharts are
presented.

4.1 Architecture
JavaWiz consists of a backend server and a frontend web application that can be embedded
as a plugin in Visual Studio Code.

Figure 33: Architecture of JavaWiz with flowcharts

The backend is responsible for transforming the Java source code into data that can be used
for rendering the flowchart. This is explained in more detail in Section 4.3.

The backend server and the frontend communicate via a websocket. The frontend sends com-
mands to the backend. The most important for the flowcharts are the COMPILE and STEP_*
commands. On compilation, the backend returns the ASTs and also the first trace state (class
TraceState), which contains the current stackframes and the line number of the next state-
ment to be executed. Each step command updates the trace state.

19

The frontend’s job is to render the backend’s data as a flowchart, as it has to transform the
backend data several times to create a renderable layout. This is described in more detail in
Section 4.4.

4.2 Technologies
The frontend uses modern web technologies such as Vue.js, a Javascript framework and D3.js,
a visualization library. It is based on components, each containing Javascript, CSS and HTML.
Typescript is used instead of Javascript because Typescript provides static type checking by
the compiler. The result is better tooling and code quality.

4.2.1 D3.js
For the visualization of the flowchart, D3.js is used. It is used to create the Scalable Vector
Graphic (SVG) of the flowchart. This is because D3.js manipulates the Document Object Model
(DOM) [11]. Vue.js and other libraries also do this, but D3.js takes a more data-driven ap-
proach, hence the name Data-Driven Documents (D3).

In the following, an example will be shown to illustrate the basics.

Figure 34: Example of 5 circles rendered

Five circles with defined radius and colour will be created and arranged in a row to demon-
strate how D3.js operates. Next, the circles’ radius should change randomly, and with added
animations, it will appear as if the circles are being shuffled.

Listing 13 creates five circles with a radius and colour set.

const data = [
 { id: 1, r: 3, color: "orange" },
 { id: 2, r: 4, color: "red" },
 { id: 3, r: 5, color: "green" },
 { id: 4, r: 6, color: "blue" },
 { id: 5, r: 7, color: "purple" }
];

Listing 13: Five circles with a radius and a colour

An SVG element as shown in Listing 14 is now added to the HTML document. In this element,
the circles will be rendered. The viewport defines the SVG’s visible space and is in this example
120px wide and 100px high.

<svg id="container" viewbox="0 0 120 100"></svg>
Listing 14: A SVG element used as a container

20

const container = d3.select("svg#container");
Listing 15: Select the container created in Listing 14

To initiate the rendering process of the circles, D3.js must obtain the SVG element from the
Document Object Model (DOM). This is done via the select function as seen in Listing 15.

function render() {
 container
 .selectAll("circle")
 .data(data, (d) => d.id)
 .join((e) =>
 e
 .append("circle")
 .attr("cy", 50)
 .attr("fill", (d) => d.color)
)
 .transition()
 .attr("cx", (d) => (data.indexOf(d) + 1) * 20)
 .attr("r", (d) => d.r);
}

render()
Listing 16: Rendering five circles

Now a function render, which handles the rendering process, is created as shown in Listing 16.
The principle of D3.js is to select DOM elements and bind the data to these DOM elements.
After this binding, D3.js allows to define which changes to the DOM are needed if a data item
has been added, updated or deleted since the last render.

So the first thing to do is to select all circles in the container with the selectAll function.

Next is the data function, which binds the data to the previously created selection. The second
argument is used by D3.js for the change detection and is a function returning the circle’s ID
in this case.

After this data binding is done, the join function is used to define the changes required for
the create, update and delete events. The first parameter is for the create event, the second for
the update event and the last one for the delete event. All parameters are optional, as they
already have a predefined implementation in D3.js and all functions after the join function
will always be executed.

In this example the create event is defined to create a circle SVG element and the static y-
position and color are set and the other events do the D3.js default behaviour.

The x-position and the radius are updated every time so these attributes are set after the join
function. Animations can be enabled by putting the transition function before changing
these attributes. It is possible to modify the animation ease function, delay and more.

21

Now the render function is complete and is called at the last line in Listing 16.

Figure 35: Example of the 5 circles shuffled and then rendered

To render the circles as shown in Figure 35 after rendering them as shown in Figure 34, we
implement the following shuffle algorithm:

setInterval(() => {
 const a = Math.floor(Math.random() * data.length);
 const b = Math.floor(Math.random() * data.length);
 const tmp = data[a].r;
 data[a].r = data[b].r;
 data[b].r = tmp;
 data.sort((a, b) => a.r - b.r);

 render();
}, 250);

Listing 17: Shuffle two circles in a 250ms interval

The code shown in Listing 17 is an anonymous function called in a 250ms interval that, at
first, selects two random indices a and b and then switches the radius between them. Next,
the array is sorted by radius. To see how the data has changed, the render function is called
again which could result in a view similar to Figure 35.

4.2.2 JavaParser
For analyzing the source code in the backend and retrieving the program structure for the
flowchart representation, the JavaParser library is used [12]. The JavaParser creates an Ab-
stract Syntax Tree (AST).

For flowchart visualization, this AST is traversed, the required information is retrieved and a
specific AST structure is then sent to the frontend. For details see the next section.

4.3 Backend
The backend is a Kotlin implementation of a server that is used to analyse the provided source
code and also runs a debugger program. The frontend needs specific information from the
source code that will be rendered.

In Figure 33 the backend architecture component shows that the main work for the flowchart
is done in component AstParser. The AstParser is used in SourceCode, which handles the
compilation of the source code.

22

From the existing debugger running on the backend, the following data is used:
• currentFileUri: the URI of the current file is used to select the correct AST.
• stackframes: the stackframes are used for auto-inlining methods or highlighting the next

executed statement in combination with multiple inlined methods that could be opened re-
cursively.

• next executed statement line, also known as highlightLine: this number is used to high-
light the next executed statement in the flowchart and to open inlined methods or expand
collapsed elements.

This data is sent to the frontend via websocket at each step of the debugger.

At the start of the debugging session with JavaWiz, the source code is compiled and an AST
is created by the JavaParser and also sent via the websocket.

4.3.1 AstParser
The JavaParser library creates a highly detailed AST from the source code. The AstParser is
used to generate an AST specific to the flowchart visualization from the AST generated by the
JavaParser. The result is a reduction in the size and complexity of the AST.

Figure 36: Transformation of the JavaParser AST into a compact AST in the AstParser class

The AST parser traverses the JavaParser AST. Each node is transformed into a new node with
only the necessary information. For example, expression nodes are already contained in the
statement node. This drastically reduces the size of the tree, as shown in Figure 36.

This process is started in SourceCode, which also provides the JavaParser AST via the already
existing CompilationUnit.

23

Figure 37: Class diagram of AstItem

The base class AstItem contains the beginning and ending line number, a UUID to identify a
node, and a kind containing the class name of a node. As shown in Figure 37 the class imple-
ments the WithKind and Unique interfaces.

Figure 38: Class diagram of Statement, MethodCallExpr, Block, Method and Class

Figure 38 to Figure 41 depict the classes for AstItem. StatementType is an enum of special-
isations of Statement and the default is "OTHER". It is also shown that the MethodCallExpr
has a deltaBegin which represents the character index in the line of source code where the
expression begins, which is required to show the grey background for these method call ex-
pressions.

24

In Statement the endOfStatementList is calculated via the helper method checkLastInLine
which checks if a Statement is the last one in the block of code or before an if-statement
or loop.

Figure 39: Class diagram of Conditional and IfStatement

In Figure 39 it is shown that IfStatement inherits from Conditional. This is important when
working with the kind field as it does not reflect any inheritance and for if-statements, it is
IfStatement and for any loop, it is Conditional. In short, the inheritance information is lost
and must be known by the developer. The ConditionType can help in this case, as it represents
a more specific type of Conditional.

Figure 40: Class diagram of Switch and SwitchEntry

As shown in Figure 40, the Switch class has a separate field for the default entry, as it is not
in the entries field. This is because the default entry is rendered below the line of labels and
the other entries are rendered to the right.

25

Figure 41: Class diagram of TryCatchFinally and CatchClause

In Figure 41 is shown that TryCatchFinally has an optional try-block and list of catch clauses.
A CatchClause has the exception that is caught in the parameter as a string and the handler
in the body.

There is also the overloaded findMethodCalls method, which finds inlinable methods for ei-
ther an expression or a statement and is used to set the methodCallExpressions field, as
shown in Figure 38 and Figure 39.

Listing 18 shows the source code for a main function to find the maximum of x and y and
assigns the result to z. In this example, z will be 5 as y is the maximum.

public class FindMax {
 public static void main(){
 int z = 0;
 int x = 3;
 int y = 5;
 if(x < y){
 z = y;
 } else {
 z = x;
 }
 }
}

Listing 18: Program to assign the maximum of x and y to z

26

In Figure 42, the example AST of Listing 18 is shown. Important are the Block nodes contain-
ing the sub-nodes.

Figure 42: Object diagram of Listing 18

4.3.2 Stepping
After each step taken by the debugger, the visualization is updated. The next diagram gives
an overview of the communication between the frontend and the backend.

Figure 43: Communication between Frontend and Backend

As seen in Figure 43, sending the source code to the backend is the first step. This is done
in the COMPILE task sent via websocket. The source code is compiled and then a debugging
process is started. The parsed AST is sent back to the frontend as JSON data. This JSON data
is parsed and transformed into a tree that can be rendered with D3.js.

27

The frontend sends STEP or INPUT commands to the backend to tell the debugger to continue.
However, no further updates to the AST on the backend side are required.

4.4 Layouting
if(x > y) {
 Out.print("x ist max");
 max = x;
} else {
 Out.print("y ist max");
 max = y;
}

Listing 19: Source code to AST to Layout

This section describes the process of creating the flowchart layout required by D3.js. The result
of this process is shown for an if-statement on the right side of Listing 19.

The source code is already transformed into the AST at the start of the process. For rendering
it properly, this AST has to be extended by a few things.

4.4.1 Layout structure
Creating the additional information for the AST is done via a recursive algorithm.

Figure 44: Source code to layout and metadata calculation process

28

Figure 45: Source code to layout and metadata calculation process

Figure 44 shows that there are three different structures calculated for the layout and will be
added to the AST:
• BoundingBox: A bounding box has a height, a width and a centre value. The centre of the

horizontal axis is important for aligning the AstElement with other AstElements. Figure 45
shows how the BoundingBox is used to align the AST elements.

• Position: The layout stores the absolute x and y coordinates, starting from the top left. This
is necessary for the global positioning of the AST elements, as shown in Figure 45.

• Meta: This consists of the boolean fields active and collapsed. active indicates that the
debugger is currently stopped at this node. This is displayed with a light grey background.
The collapsed flag is active when a node is collapsed, ignoring child nodes.

4.4.2 Layouting Algorithm
The algorithm extends the AST by bounding boxes, positions and metadata. This algorithm
has to satisfy various conditions such as inline methods, collapsed nodes, the highlighted line
and the screen position of the chart. To achieve this, the algorithm may calculate certain parts
of the AST multiple times.

29

rootNode = getRootNode()
ast = createAstByMethod(rootNode)
collapsed = openCollapsedUntilHighlight(ast)
// recreate ast
ast = createAstByMethod(ast,collapsed)

layoutAst = createLayout(ast, { posX: 0 })
deltaCenterX = prevCenterX - layoutAst.box.centerX
// rerender layout AST
layoutAst = createLayout(ast, { posX: prevPosX + deltaCenterX })

prevCenterX = layoutAst.box.centerX
prevPosX = layoutAst.pos.x

Listing 20: Pseudocode of createLayoutAstByMethod

In Listing 20 the layout for the AST is created. First, the AST is selected from the ASTs sent.
This rootNode is then transformed into a D3.js hierarchy. This hierarchy starts with the method
node that matches the requested method name and node uuid. The next step is to open all
collapsed nodes until the current highlighted line of code is found. Now the AST is recreated
with collapsed nodes in consideration.

Now the layout is created as described later on in Listing 21. To avoid layout shifts caused by
changes from for example collapsed nodes or inlined methods, a delta between the previous
rendered layout and the new layout is calculated. Then the layout is recreated with the added
delta width. The new x-position is saved for later renderings.

createLayout(astNodes, { posX }){
 astNodes.each(node => {
 node.box = getBoundingBox(node.data)
 node.pos = calculatePosition(node, { posX })
 node.meta = {
 collapsed: collapsed.has(node.data.uuid),
 active: hasActiveLine(activeLine, node, stackFrameMethods)
 }
 })
}

Listing 21: Pseudocode of createLayout

Listing 21 shows the process of adding bounding boxes, position, and metadata. The function
createLayout traverses the AST from top to bottom. getBoundingBox is shown in detail in
Listing 22. After calculating the bounding box, the position is computed.

The position of the nodes is absolute. The calculation starts with the parent node’s top-left
position as an anchor. This also has to be customized for all types of AstElement.

30

calculateBoundingBox (el: AstElement): BoundingBox {
 switch (el.kind) {
 // ...
 case 'Block': {
 childBoundingBoxes = el.statements.reduce((total, child)=>{
 return total + calculateBoundingBox(child)
 })
 return {
 width: childBoundingBoxes.width + PADDING,
 height: childBoundingBoxes.height + PADDING,
 centerX: childBoundingBoxes.centerX,
 }
 }
 // ...
 }
}

Listing 22: Pseudocode of calculateBoundingBox

The method getBoundingBox used in Listing 21 returns the cached result of
calculateBoundingBox. Listing 22 shows how the recursive algorithm works by showing the
calculation of the BoundingBox of a block. The aim is to combine the bounding boxes of the
children and apply styling, such as padding, to the resulting bounding box. This calculation
needs to be customized for all types of AstElement.

4.4.3 redraw
The redraw method is responsible for selecting the SVG in the DOM and then calling the
renderChart function with all the necessary parameters. This contains the finished AST for
the flowchart, toggle callbacks for collapsing and inlining methods and a FullWidthManager.

4.4.4 Collapse
The flowchart component stores the UUIDs of collapsed nodes as a set of strings. Changes to
this set trigger the rerendering of the flowchart.

Some components have a double-click handler, which for one thing stops click propagation
and prevents the default event handler, but it also calls the collapse function with the current
UUID. The collapse function is in the Vue component and is passed through until it is needed.

Collapsed elements are automatically opened if they are in a direct line in the AST between
the root and the highlighted statement. In this case, they cannot be closed.

Normally all elements are expanded except for catch-clauses. The set of collapsed elements
has no history, so it forgets that the collapse state of a catch-clause has changed at any time.
The set historicalCollapsedUuids contains all UUIDs of elements that have been collapsed
at least once, and this tells JavaWiz which catch-clause should not be treated as a first-time
collapse anymore.

31

4.4.5 Inline methods
Inlined methods are methods from the AST that are copied to other locations in the AST. In
the Vue component, inlined methods are stored in inlinedMethods. This is a map that uses the
method name as key and stores an object with the name methodAst, containing the AST ele-
ment of type Method and uuids, a set of strings containing all method calls with that method
as an open inlined method.

function openInlineInHightlightedLine(
 highlightedLine: number,
 ast: HierarchyNode<AstElement>,
 inlined: InlinedFnMap,
 stackFrameMethods: string[]
) {
 // find correct active statement (respect recursive method calls)
 let idx = 0
 const node = ast.find(node => {
 if (node.data.kind === 'Method' &&
 node.data.name === stackFrameMethods[idx]) {
 idx++
 }
 return node.data.begin === highlightedLine &&
 idx === stackFrameMethods.length &&
 node is (Conditional, Statement or IfStatement)
 })

 if (node) {
 // ...
 const meth = inlined.get(node.data.methodCallExpressions[...].name)
 // remove last inlined fn
 meth.uuids.delete(node.data.methodCallExpressions[...].uuid)
 // ...
 // open next method inlined
 meth.uuids.add(mc.uuid)
 }
}

Listing 23: Pseudocode of openInlineInHightlightedLine

The purpose of the openInlineInHightlightedLine method is to inline a method in the cur-
rent highlighted statement when auto-inline is activated.

The pseudocode in Listing 23 shows the recursive lookup of the highlighted node in the first
part of the function. To find the correct node, it is necessary to track the method order in the
call stack, the highlighted line number, and the node type. The type is checked because only
loops, if-statements, and statements contain inlinable method expressions.

If a node is found, the open inlined method is closed by removing its UUID from the open
methods, and the node’s UUID is added.

32

4.5 Visualization with D3.js
This chapter is about rendering with the D3.js library. It provides an overview for developers
who maintain it or add new features.

In the next figure, the approach is illustrated by an example of an if-statement rendered with
D3.js.

Figure 46: Render the data with D3.js as a SVG

The whole rendering process with D3.js starts in the renderChart method. As seen in List-
ing 24, each AstElement has its own join function, which is responsible for entering, updating
and removing operations, including transitions.

renderChart (data: MetaHierarchyNode<AstElement>[]) {
 const methods = joinMethods(selection.selectAll('g.method'))
 const ifStatements = joinIfStatements(...)
 // ...

 d3.selectAll([methods, ifStatements, ...])
 .attr('id', (d: any) => uuidToDomId(d.data.uuid))
 .attr('translate', d => translate(d))
}

Listing 24: Pseudocode of renderChart

33

function joinIfStatements (selection, ...) {
 const g = selection.join(
 e => {
 const ifs = e.append('g').classed('if-statement', true)
 enterAnimation(ifs)
 return ifs
 }, u => u, e => exitAnimation(e))

 const conditions = g.selectAll('g.condition')
 .data(d => [d])
 .join(e => e.append('g').classed('condition', true)
 .on('dblclick', (ev: MouseEvent, d) => {
 collapse(d.data.uuid)
 }))
 .attr('transform', d => `translate(${d.box.centerX},0)`)

 renderRichText<IfStatement>(conditions, ...)

 // true-case lines
 // header to true case arrow
 addArrow(g, d => { ... }, 'true-top')

 // ... other arrows

 _addDebugInformation(g)
 return g
}

Listing 25: Pseudocode of joinIfStatements

The joinIfStatements function, shown as pseudocode in Listing 25, renders an if-statement
similar to the one in Figure 46. The AstItem and layout metadata are provided to D3.js via
MetaHierarchyNode<IfStatement>. The visualization is then created using D3.js via the se-
lect-data-join pattern. The visualization of child AstItems is not done in the parent visualiza-
tion. For the if-statement in Figure 46, this means that the joinIfStatements function renders
the entry and exit arrows of the blocks, the condition and the branch labels.

Spacing, proportions and other miscellaneous settings are stored in the ELEMENT object and
used during rendering.

The Animation is done via the D3.js transitions. These transitions interpolate the selected
attributes of a selection and can be adjusted in duration, delay and the easing function. The
default animation duration for the JavaWiz flowchart is 1400ms, but some animations have a
different duration, such as the exit of some selections at 1400ms5 = 280ms.

Arrows indicate the direction of flow in JavaWiz flowcharts. These arrows have a chevron for
the arrowhead and a solid line for the arrow tail, and, because the head and tail are connected,
the arrow is a single SVG path.

34

An arrow can be generated with the arrow function. This function only returns a D3.js line
if less than 2 points are provided. The last two points are used to calculate the points needed
for the arrowhead. The head is the vector of these points rotated by 30 degrees and is 6 pixels
long on each side.

In order to safely integrate the arrow function into the other flowchart renderings, the
addArrow function is required. This function creates a path in the given selection and also
provides a transition. This transition parses the current points of the path, if any, and inter-
polates them with the new points. It is important to note that the start and end points are not
interpolated and are always the new points for a better-looking transition.

function zoomReset () {
 const svg = d3.select<SVGSVGElement, unknown>('#flowchart')
 const realWidth = svg.node()?.getBoundingClientRect().width || 0
 const x = -CENTER + realWidth / 2
 zoomBehavior.transform(svg, d3.zoomIdentity.translate(x, 0))
}

const zoomBehavior = d3.zoom<SVGSVGElement, unknown>()
 .scaleExtent([0.3, 3])
 .on('zoom', (e) => {
 d3.select('#flowchart g.chart')
 .attr('transform', e.transform)
 })

onMounted(() => {
 init()
 const chartRoot = d3.select<SVGSVGElement, unknown>('#flowchart')
 chartRoot.call(zoomBehavior)
 .on('dblclick.zoom', () => zoomReset())
})

Listing 26: Adding zoom to a D3.js SVG element

Zooming and panning is enabled by the D3.js zoom module as seen in Listing 26. It requires
all the SVG content to be grouped together because the CSS style transform is applied to this
group by this D3.js module.

By default, the D3.js zoom module zooms in on a double click, but this has been changed for
the flowcharts to reset the zoom when the component is mounted. The zoomReset method
must calculate the appropriate translation and scale, as the default zoom would position the
content so that it is invisible most of the time.

For visual debugging the method _addDebugInformation is provided to find bugs in the
rendered SVG. This method renders the BoundingBox of an AstElement in randomly chosen
colours.

For elements such as if-statements and loops that need to check if the block continues to
render the lines as seen in Section 3.2.1, the blockContinues function checks this recursively.

35

The function renderRichText is responsible for creating text that has clickable rectangles for
opening inline methods and it also provides the width limit feature for the text.

4.6 Flowchart settings
The settings are stored in autoInline and ELEMENT and the component emits update after the
settings have been changed. The TheFlowChart component redraws the flowchart whenever
the settings are updated.

The settings are volatile and get lost after closing JavaWiz. It is possible to save the settings in
a future version.

36

5 Summary and Conclusion
This thesis described the flowchart visualization component for JavaWiz. JavaWiz, a visual
debugger designed to help students learn programming, can now display Java source code
flowcharts. The flowchart component allows rendering a method as a flowchart, interactively
stepping through the operations of the flowchart, collapsing and expanding nodes and inlin-
ing called methods at the call statement.

The thesis describes how to use JavaWiz with flowcharts, its architecture and gives an
overview of its implementation. The flowchart program consists of several components: In the
backend of JavaWiz, which is a Java system implemented in Kotlin, an AST is created; The
frontend consists of a visualization system written in TypeScript and using the UI framework
vue.js and the visualization library D3.js.

It can be said that the objective of incorporating flowcharts as an interactive aid for students
has been achieved. The current version of JavaWiz, which is published as a Visual Studio Code
plugin, already includes the flowcharts.

The flowcharts in JavaWiz have been used in the classroom since October 2023 to demonstrate
the behaviour of, for example, recursive algorithms. Interacting with the flowchart seems fun
for the user and makes the algorithm easier to understand. Students are supported in learning
programming.

Currently, most Java control structures are supported by the JavaWiz flowchart, only some
special elements of Java are not supported, e.g., switch and lambda expressions. In the future,
more information may be added to the flowchart. This could be variable changes, stackframe
information or previous inputs and outputs.

37

Bibliography

[1] [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso:5807:ed-1:v1:en

[2] I. Nassi and B. Shneiderman, “Flowchart techniques for structured programming,” ACM
SIGPLAN Notices, vol. 8, no. 8, pp. 12–26, Aug. 1973, doi: 10.1145/953349.953350.

[3] G. Blaschek, “Computerunterstützter Programmentwurf mit Ablaufdiagrammen.” Dis-
sertation, Johannes Kepler Universität Linz, 1987.

[4] A. Stritzinger, “Zeichnen von Ablaufdiagrammen für Modula-2-Programme.” Diplomar-
beit, Johannes Kepler Universität Linz, 1985.

[5] O. M. G. (OMG), “Unified Modeling Language (UML) Specification,” Dec. 2017. [Online].
Available: https://www.omg.org/spec/UML/2.5.1/About-UML

[6] G. Blaschek, H. Mössenböck, and G. Pomberger, “Peter Rechenberg – Forscher, Lehrer,
Mensch.” [Online]. Available: https://ssw.jku.at/Research/Papers/Moe03a/BlaMoePom
03.pdf

[7] [Online]. Available: https://app.diagrams.net/

[8] J. Hamer, “A Lightweight Visualizer for Java,” 2004.

[9] [Online]. Available: https://github.com/atp-mipt/ljv

[10] [Online]. Available: https://github.com/nlfiedler/jswat

[11] M. Bostock, “D3.js - Data-Driven Documents.” Accessed: May 26, 2023. [Online]. Avail-
able: https://d3js.org/

[12] [Online]. Available: https://javaparser.org/

38

https://www.iso.org/obp/ui/#iso:std:iso:5807:ed-1:v1:en
https://doi.org/10.1145/953349.953350
https://www.omg.org/spec/UML/2.5.1/About-UML
https://ssw.jku.at/Research/Papers/Moe03a/BlaMoePom03.pdf
https://ssw.jku.at/Research/Papers/Moe03a/BlaMoePom03.pdf
https://app.diagrams.net/
https://github.com/atp-mipt/ljv
https://github.com/nlfiedler/jswat
https://d3js.org/
https://javaparser.org/

List of Figures
Figure 1: JavaWiz flowchart showing the main method .. 5
Figure 2: Hello world program .. 5
Figure 3: Finding the maximum between x and y .. 6
Figure 4: Then-branch on left side ... 6
Figure 5: If-statement as a divide by zero guard .. 7
Figure 6: Nested if-statements finding the maximum in three numbers 7
Figure 7: Cascading if-statements of checking the value of x .. 8
Figure 8: Return-statement on one side ... 8
Figure 9: Return-statement on both sides .. 8
Figure 10: Sum of several integers entered by the user ... 9
Figure 11: User input of a number greater than 0 ... 10
Figure 12: Sum up all numbers from one to ten with a for-loop ... 10
Figure 13: Multiplication table of 4 ... 11
Figure 14: Print the name of a day with a day index as input .. 12
Figure 15: Handle multiple options with a switch-statement ... 13
Figure 16: The division of 100 enclosed by an try-catch-statement .. 14
Figure 17: The division of 100 enclosed by an try-catch-finally-statement 14
Figure 18: Default rendering of a Statement ... 14
Figure 19: Return of value in e.g. a method ... 15
Figure 20: Throw-statement if a method is not implemented .. 15
Figure 21: Return of value in e.g. a method ... 15
Figure 22: Contine-statement with diamond symbol ... 15
Figure 23: Arrow of statement pointing into while-loop condition .. 15
Figure 24: Arrow of statement pointing into if-statement condition ... 15
Figure 25: Settings dialog .. 16
Figure 26: Statement rendered with a width limit at 150px of System.println.out("Hello
world!") ... 16
Figure 27: Expanded state of statement with width limit ... 16
Figure 28: Loop with width limit ... 17
Figure 29: If-statement with width limit .. 17
Figure 30: Collapsed block in an if-statement .. 17
Figure 31: Method faculty rendered inline ... 18
Figure 32: Recursive method faculty opened two levels deep ... 18
Figure 33: Architecture of JavaWiz with flowcharts ... 19
Figure 34: Example of 5 circles rendered ... 20
Figure 35: Example of the 5 circles shuffled and then rendered .. 22
Figure 36: Transformation of the JavaParser AST into a compact AST in the AstParser class .
23
Figure 37: Class diagram of AstItem .. 24
Figure 38: Class diagram of Statement, MethodCallExpr, Block, Method and Class 24
Figure 39: Class diagram of Conditional and IfStatement .. 25
Figure 40: Class diagram of Switch and SwitchEntry ... 25

39

Figure 41: Class diagram of TryCatchFinally and CatchClause ... 26
Figure 42: Object diagram of Listing 18 ... 27
Figure 43: Communication between Frontend and Backend .. 27
Figure 44: Source code to layout and metadata calculation process ... 28
Figure 45: Source code to layout and metadata calculation process ... 29
Figure 46: Render the data with D3.js as a SVG ... 33

40

	Introduction
	JavaWiz
	Motivation
	Structure of the thesis

	Related Work
	History of flowcharts
	Variants
	Tools

	JavaWiz Flowcharts
	Method
	Conditionals and loops
	If-statement
	While-loop
	For-loop

	Switch-statement
	Try-catch-finally-statement
	Statements
	Settings and options
	Settings
	Width limit of statements and conditions
	Collapsable elements
	Inlining methods

	Navigation

	Implementation
	Architecture
	Technologies
	D3.js
	JavaParser

	Backend
	AstParser
	Stepping

	Layouting
	Layout structure
	Layouting Algorithm
	redraw
	Collapse
	Inline methods

	Visualization with D3.js
	Flowchart settings

	Summary and Conclusion
	Bibliography

