
Author
Melissa Sen
k12102743

Submission
Institute for System
Software

Thesis Supervisor
a.Univ.-Prof. Dipl.-Ing. Dr.
Herbert Prähofer

June 2024

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Austria
www.jku.at
DVR 0093696

A Component for
Visualizing Sequence
Diagrams in the
Visual Debugger Tool
JavaWiz

Bachelor Thesis
to obtain the academic degree of

Bachelor of Science
in the Bachelor’s Program

Informatik

Abstract

Programming beginners often face difficulties when trying to understand how programs
behave. As soon as code gets too complicated, novice programmers struggle with figuring
out the purpose and flow of actions. This is when JavaWiz comes into play. JavaWiz is a
tool that provides dynamic visualizations of a Java program’s behavior. So far, there are
visualizations available for a desk test, the stack and heap, flowcharts, linked lists, binary
trees, arrays, input buffers and the console.

As object orientation is a relevant programming concept, this thesis presents a sequence
diagram component for JavaWiz. Sequence diagrams show the chronological order of
object interactions and help users to understand method invocations. Each step in the
program results in the dynamic adaptation of the sequence diagram to reflect the current
state. Moreover, users have the opportunity to collapse and thus hide the contents of
method executions they are not interested in.

i

Kurzfassung

Programmieranfänger haben oft Schwierigkeiten zu verstehen, wie sich Programme ver-
halten. Sobald Code zu kompliziert wird, kämpfen unerfahrene Programmierer damit,
den Zweck und den Ablauf von Aktionen nachzuvollziehen. Hier kommt JavaWiz ins
Spiel. JavaWiz ist ein Werkzeug, das dynamische Visualisierungen des Verhaltens eines
Java-Programms bereitstellt. Bisher stehen Visualisierungen für einen Schreibtischtest, den
Stack und den Heap, Flussdiagramme, verkettete Listen, Binärbäume, Arrays, Eingabe-
puffer und die Konsole zur Verfügung.

Da Objektorientierung ein relevantes Programmierkonzept ist, stellt diese Arbeit eine
Sequenzdiagrammkomponente für JavaWiz vor. Sequenzdiagramme zeigen die chrono-
logische Reihenfolge der Objektinteraktionen und helfen dem Anwender, den Ausfüh-
rungsablauf zu verstehen. Jeder Programmschritt führt zur dynamischen Anpassung des
Sequenzdiagramms an den aktuellen Zustand. Außerdem haben die Nutzer die Möglich-
keit, Methodenaufrufe zu kollabieren und somit die Inhalte, an denen sie nicht interessiert
sind, zu verbergen.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 JavaWiz . 1
1.3 Thesis structure . 2

2 Sequence Diagrams 3
2.1 The UML standard . 3
2.2 Existing visualization tools . 5

2.2.1 SCENE . 5
2.2.2 JAVAVIS . 6

3 JavaWiz Visual Debugger Tool 8
3.1 Overview . 8
3.2 Architecture . 11
3.3 Trace . 12

4 Sequence Diagrams in JavaWiz 14
4.1 Simple method call . 14
4.2 Self calls . 17
4.3 Collapsing, hiding and expanding activations 18
4.4 Example program . 24

5 Implementation 29
5.1 Component structure . 29
5.2 Layouting . 32

5.2.1 Hidden intervals and active event indices 34
5.3 Data sampling in SequenceDiagramHistory.ts 35

5.3.1 Creation of lifelines . 35
5.3.2 Creation of arrows and boxes . 37

5.4 The redraw method . 39

6 Conclusion 41
6.1 Personal thoughts . 41

iii

List of Figures

2.1 UML Sequence diagrams (taken from [10]) . 4
2.2 Sequence diagram use case example (taken from [11]) 5
2.3 Scenario diagrams in SCENE (taken from [12]) 6
2.4 Sequence diagrams in JAVAVIS (taken from [14]) 7

3.1 JavaWiz Screenshot . 9
3.2 JavaWiz Architecture . 11
3.3 TraceState Interface . 13

4.1 Main starting point . 15
4.2 Method is called . 16
4.3 Method returns . 16
4.4 Basic dynamic visualization changes . 16
4.5 Program ended . 16
4.6 Multiple self calls . 17
4.7 Stepping into first a.foo() . 19
4.8 a.foo() returns . 19
4.9 Visualization of both a.foo() calls . 20
4.10 Collapsing first b.bar() . 21
4.11 Collapsing first a.foo() . 22
4.12 Step over collapse . 23
4.13 Visualization after snowman.getLeft() . 27
4.14 Visualization after collapsing the main method 27
4.15 Visualization after program ended . 28

5.1 SequenceDiagramHistory as part of the architecture 30
5.2 Class diagram . 30
5.3 The Sequence Diagram Component . 32
5.4 SVG structure based on two axes . 33
5.5 Active event indices after collapsing . 34
5.6 Structure of one stack frame . 35
5.7 Lifeline data type . 36
5.8 Arrow data type . 38
5.9 Box data type . 39
5.10 Sequence diagram example . 40
5.11 Mapping . 40
5.12 Step over a.foo() . 40
5.13 New mapping . 40

iv

1 Introduction

1.1 Motivation

Programming beginners are often more familiar with procedural techniques as it describes
a straight-forward, top-down approach of writing code. This is helpful to understand
imperative programs, however, it may be difficult to understand object-oriented programs.
While procedural approaches focus on splitting a program into multiple functions, object
orientation defines objects that interact with each other. Each object represents an instance
of a class that contains closely related data and methods. Programs using the concept
of objects allow modeling real-world entities as they incorporate ways of data hiding,
abstraction and code reusability [1].

Sequence diagrams can support in understanding how objects interact with each other.
They are defined in the Unified Modeling Language (UML) standard [2] for visualizing a
system’s behavior based on the chronological order of object interactions.

In UML, an actor initiates the execution of a program. The system is then visualized as
a set of lifelines that interact with each other through messages. A lifeline represents an
object or a class and method invocations result in arrows added to the diagram that go
from one lifeline to another.

1.2 JavaWiz

JavaWiz is a tool that supports programming beginners by providing a visual debug-
ger. That way, users can step through a program and observe dynamic changes at each
execution step.

1

1 Introduction

There is a web version [3] and a Visual Studio Code plugin [4] available. Both can be used
by students, teachers and programming beginners in general for both educational and
development purposes.

Depending on the user’s needs, different dynamic visualizations are provided:

• A desk test

• A stack and heap visualization

• A console and input buffer visualization

• An array visualization

• A flowchart visualization (for more details see [5])

• A linked list and binary tree visualization (for more details see [6])

In this thesis, JavaWiz is extended by a sequence diagram visualization. The sequence
diagrams are based on the UML standard [2]. The thesis focuses on the features of the
additional component and how it was implemented.

1.3 Thesis structure

The structure of this thesis is as follows:

• Chapter 2 describes sequence diagrams as part of the UML standard and refers to
dynamic visualization tools other than JavaWiz.

• Chapter 3 is dedicated to the tool JavaWiz and its architecture.

• Chapter 4 introduces the sequence diagram component that extends JavaWiz.

• Chapter 5 gives an overview of the actual implementation details.

• Chapter 6 summarizes the contribution of this thesis and gives my personal thoughts
on the project.

2

2 Sequence Diagrams

Object orientation allows to define classes with fields and methods that are logically related.
That way, programs are structured into basic components that are easier to comprehend
[1]. Sequence diagrams are one way to show how object-oriented programs behave. They
visualize the step-by-step object and class interactions that happen during the course of a
program execution.

In this chapter, first sequence diagrams [2] as defined by the UML standard are presented.
Then, existing tools other than JavaWiz that dynamically visualize sequence diagrams are
reviewed.

2.1 The UML standard

The Unified Modeling Language (UML) [2] defines ways of visualizing the structure and
functionality of programs. The software complexity is narrowed down by focusing on the
basic elements and their interactions that can easily be understood [7]. Therefore, UML is
not a programming but a modeling language. It serves as a means that is dedicated to
humans instead of computers [8].

There are many different diagram types specified in the UML standard. One of them are
sequence diagrams. They have the purpose of illustrating the interaction of objects and
classes through method invocations. Instead of showing implementation details, sequence
diagrams focus on simplifying the communication flow [9].

UML defines rules and guidelines on how sequence diagrams must be created. This
standardized notation serves as the basis for the sequence diagram component in JavaWiz
that is presented in Chapter 4.

3

2 Sequence Diagrams

Figure 2.1 shows parts of a sequence diagram as defined in the UML standard. An actor
manually initiates the execution of a program. During this program, objects can be created
which are represented as vertical lines with a label on top. Objects that do not exist
anymore have a cross at the end of the line. Messages stand for method calls which are
arrows that go from one object to another. However, messages do not have to connect two
distinct objects, instead, method calls of the same object are possible too. When method
calls return, return arrows are drawn. If needed, conditions can be added to the message
labels within square brackets. A star (*) before square brackets indicates the start of an
iteration.

Figure 2.1: UML Sequence diagrams (taken from [10])

Figure 2.2 shows a sequence diagram that is defined based on a use case for drones taken
from [11]. The use case describes the scenario of victim confirmation by a human operator.
For this, the drone (UAV) raises an alert which is sent to the drone commander (Flight
Management Service). The human must then inspect the video stream provided by the
UAV Video Feed and confirm the victim. The sequence diagram shows the interaction
between the contributing units. Method calls are drawn as solid lines while return arrows
are drawn as dashed lines.

4

2 Sequence Diagrams

Compared to Figure 2.1, there are boxes for each call arrow that indicate the start and end
of a method call. In UML, these boxes are called activations.

Figure 2.2: Sequence diagram use case example (taken from [11])

2.2 Existing visualization tools

JavaWiz is only one tool that provides visualizations for better code understanding.
Various other approaches exist that contain functionalities similar to JavaWiz. Tools for
dynamic visualizations with sequence diagrams are presented in the following.

2.2.1 SCENE

SCENE stands for SCENario Environment and describes a tool that visualizes the behavior
of a system based on the use of scenario diagrams [12]. This visualization is based on the
predecessor of the UML standard called Object Modeling Technique (OMT) [13].

Scenario diagrams in OMT reflect the idea of sequence diagrams in UML. Both notations
define objects as lifelines that are represented with vertical lines. Further, messages are
represented through arrows that go from one object to another. The tool shows dynamic
interaction diagrams by browsing through the source code of a program [12]. That way, it
is possible to observe the interaction between objects in the program.

5

2 Sequence Diagrams

Figure 2.3 shows how a scenario diagram looks in SCENE. On the left side, the user that
invokes the main method is shown first. The other objects are listed horizontally. Method
calls are drawn as single-lined arrows. Return statements are shown as dashed arrows.
The double-lined arrows define collapsed method calls that can be expanded to reveal
further content.

Figure 2.3: Scenario diagrams in SCENE (taken from [12])

2.2.2 JAVAVIS

JAVAVIS [14] is another tool that provides automatic program visualizations. Compared
to SCENE, it is based on the UML standard. The dynamic changes in code behavior are
shown in multiple object diagrams and one sequence diagram [14].

Figure 2.4 shows how a sequence diagram looks in JAVAVIS. The visualization reflects
the state of the main method after executing two iterations of a for-loop. The application
continuously extends a list as in each iteration a List object is created and appended. The
blue boxes represent method executions. For each method call, there is an arrow and a
box. Eventually, a return arrow is created when the method ends.

6

2 Sequence Diagrams

Figure 2.4: Sequence diagrams in JAVAVIS (taken from [14])

Overall, the JAVAVIS sequence diagram visualization together with the collapsing feature
of SCENE is close to what the sequence diagram component in JavaWiz provides. The
way JavaWiz combines different functionalities is presented in Chapter 4.

7

3 JavaWiz Visual Debugger Tool

JavaWiz is a tool developed by the Institute of System Software at the Johannes Kepler Uni-
versity in Linz. JavaWiz allows visualizing Java programs which is essentially dedicated
to programming beginners. For a detailed description to the JavaWiz tool see [4].

This chapter gives a short introduction to JavaWiz. First, an overview is given. Subse-
quently, the execution flow of different commands is described based on the architecture
of the tool. The centre of this architecture is the trace. Its structure is shown in Section
3.3.

3.1 Overview

JavaWiz provides visualizations while executing a Java program. Users can either down-
load the VS Code Extension or simply use the Web version which runs in a browser and
requires the backend to be started manually [4]. For the visualizations provided in this
thesis, the Web version was used.

Figure 3.1 shows the initial view of JavaWiz after compilation. The toolbar at the top
contains the control buttons. The left side contains buttons to step into, over and back
in the execution. The icons in the right corner can be used to show or hide visualization
components.

Below the toolbar, the code editor can be seen on the left side and the visualizations on the
right side. When stepping, the current line in the code is highlighted in the code editor
and the visualizations dynamically show the current program state.

8

3 JavaWiz Visual Debugger Tool

Figure 3.1: JavaWiz Screenshot

The following visualizations are available currently:

• Desk Test: This component serves as a support for checking the correctness of a
program. This is done by providing a table that contains all lines of code together
with the associated current values of variables [4]. Users can benefit from this tool as
it helps to understand the basics of programming.

• Console: Statements or runtime exceptions are printed to the console. It contains a
dedicated area for outputs and a text input field.

• Input buffer visualization: This visualization is closely linked to the console. When-
ever a user has to provide some kind of input to the console, the input is shown
in the input stream visualization. This allows to understand which elements are
currently in the buffer and which element will be processed with the next input
request.

9

3 JavaWiz Visual Debugger Tool

• Stack and heap: This component shows the contents of both stack and heap as well
as static variables that exist during the entire lifetime of the program. Local variables
are stored on the stack, while objects that are created during program execution
are located on the heap. This difference can easily be figured out by looking at the
visualization.

• Flowchart visualization: Flowcharts are used to provide a 2-dimensional diagram
of a program. The execution steps are made visible which offers clarity for decisions
and the order of method calls in a program. In general, flowcharts consist of start
and end points as well as decisions that determine the execution flow. Additionally,
tasks represent actions and steps in a process [5].

• List visualization: This visualization shows the structure of linked lists. Normally,
one must only save the first element of a list as all other successors are accessible
through references in each node. However, the list visualization in JavaWiz aims to
give an idea of the order of nodes for programming beginners [6].

• Binary tree visualization: Binary trees are similar to lists, however, multiple succes-
sor references inside a single node can exist. The hierarchies that this data structure
internally creates are visualized in the binary tree visualization [6].

• Array visualization: The array visualization can be used to show the processing of
arrays.

The sequence diagram component represents a new addition to the already existing
visualization components. Sequence diagrams help to understand which objects are
involved in a program execution and how they interact by method calls.

10

3 JavaWiz Visual Debugger Tool

3.2 Architecture

The JavaWiz architecture consists of a backend and a frontend. The backend component
runs the Java program and provides state information in each execution step which is
used by the frontend component for the visualizations. Figure 3.2 shows the cooperation
of the two architecture components in JavaWiz which will be explained in this upcoming
section.

In the web version, the backend must be started manually. When the backend is running,
the green start button on the left side of the toolbar starts the compilation. For this, the
program is sent to the backend in a compile command. The backend compiles the code
and starts a debugger after successful compilation. In JavaWiz, a Java Virtual Machine
(JVM) contains the program code. The Java Debug Interface (JDI) serves as the debugger
interface [6].

When the debugger is running, step requests can be accepted. A step sends a step com-
mand to the backend. The debugger then distinguishes between step into, step over
and step back. This is only possible as the backend always sends the current state of the
program back to the frontend. The so-called trace that can be seen as part of the frontend in
Figure 3.2 then contains all previous states up until the most current one in chronological
order.

Figure 3.2: JavaWiz Architecture

11

3 JavaWiz Visual Debugger Tool

3.3 Trace

So far, it has been mentioned that the trace describes a collection of states that can be
associated to different step commands. The backend sends a list of trace states back.

Figure 3.3 shows how a trace state is structured. The different parts are as follows:

• sourceFileUri: This string contains the name of the source file that is currently being
processed.

• line: This field stores the current line number in the source file.

• stack: The stack array collects all method calls that are currently active. Each
array element is defined as a StackFrame, which contains information such as the
associated class, the local variables and the method signature.

• heap: The heap array collects the active objects that are created during program
execution. Each array element is defined as a HeapItem, which stores the id, kind

and type. Based on kind, additional information is provided. For instance, a
HeapArray kind stores its elements, a HeapObject kind contains its fields and a
HeapString kind stores its associated string.

• loadedClasses: This array contains all classes that have been loaded. For each
LoadedClass, the class name and the static fields are stored.

• output, error and input: If an output or error message was printed as well as if
an input was entered to the console, the associated trace state must contain this
information. Otherwise, empty strings are stored.

• inputBufferInfo: This field is only necessary for the input buffer visualization.
It contains information about the current position in the input buffer and which
elements are yet to be processed.

12

3 JavaWiz Visual Debugger Tool

Figure 3.3: TraceState Interface

As explained in Section 3.2, each step or input request results in a new trace state that is
provided by the backend to the frontend. The entirety of trace states form the trace that is
used by the JavaWiz components to retrieve data for the visualization.

The data sampling process for the sequence diagram component based on the analysis of
the trace is explained in Section 5.3.

13

4 Sequence Diagrams in JavaWiz

This chapter shows how the Sequence Diagram Component in JavaWiz visualizes method
call behavior of Java programs. Further, the different features provided for the user, like
collapsing and expanding, will be shown.

4.1 Simple method call

The basic functionality is explained by introducing a Java program that describes a simple
method call between two classes.

Listing 4.1 shows two classes, one of which represents the main application that creates a
new object instance of class A and calls the method foo.

1 public class Main {
2 public static void main(String [] args) {
3 A a = new A();
4 int z = a.foo();
5 }
6 }
7

8 class A {
9 int foo() {

10 return 2;
11 }
12 }

Listing 4.1: Simple code example

14

4 Sequence Diagrams in JavaWiz

Every program starts at the beginning of the main method. The initial state of each
sequence diagram looks like in Figure 4.1. The visualization reflects the uniform way
of drawing sequence diagrams which consist of lifelines, activations and method calls.
Lifelines are created for each new class or object that is present in an associated method
invocation. As shown in Figure 4.1, the horizontal line provides space for the label and
is always positioned at the top of the vertical line, which indicates the lifetime of the
corresponding class.

Figure 4.1: Main starting point

While lifelines identify classes or objects, activations show the execution of methods. The
box characterizes the method that is active until it returns or the program ends. When
executing the code in JavaWiz, one can decide to step into the method a.foo and see the
dynamic changes in the visualization.

The steps of calling method foo and its return are shown in Figures 4.2 and 4.3. A second
lifeline with the label a:A is introduced. The first letter of Main is written in uppercase,
while a:A refers to the variable itself and adds the name of the corresponding class after
the colon. The syntax of the labels is chosen in this way to show the difference between
classes with static methods and objects with object methods.

The method call is represented as a solid arrow that goes from one activation to the start
of another. When the method ends, one returns back to the previous activation which is
indicated by a dashed arrow.

As more elements are added to the sequence diagram, the visualization dynamically
adapts already existing components. This can be seen as the heights of the lifelines and
activations are extended depending on the latest introduced units.

15

4 Sequence Diagrams in JavaWiz

Figure 4.2: Method is called Figure 4.3: Method returns

Figure 4.4: Basic dynamic visualization changes

When the scope of an object ends, the lifelines must include an indication for no longer
being active. This is illustrated by a cross that is placed at the bottom of the vertical line.

Figure 4.5: Program ended

16

4 Sequence Diagrams in JavaWiz

4.2 Self calls

In the previous example, only straight arrows between different lifelines exist. A method
call of the same object or a static method of the same class is represented by a so-called
self call. To show this, Listing 4.2 introduces a new code example.

1 public class Main {
2 public static void main(String [] args) {
3 foo();
4 }
5 static void foo() {
6 int z = bar();
7 }
8 static int bar() {
9 return 1;

10 }
11 }

Listing 4.2: Self call code example

So far, method calls are drawn as straight arrows, however, having only one lifeline
makes this impossible. Figure 4.6 shows how this issue is resolved in the visualization. In
addition to the regular call and return arrows, a new arrow kind with a different shape is
introduced. Self call arrows build a circle starting from the current activation and return
to the same lifeline with a new activation. These activations must be stacked in a way to
represent the method executions in the correct order.

Figure 4.6: Multiple self calls

17

4 Sequence Diagrams in JavaWiz

4.3 Collapsing, hiding and expanding activations

All prior figures show expanded activations that are colored in light blue. Collapsing an
activation is done by double-clicking on the corresponding box.

Listing 4.3 is an example program with a main method and two objects of classes A and B. It
will be used to demonstrate stepwise execution and the corresponding visualization states.

1 public class Main {
2 public static void main(String [] args) {
3 A a = new A();
4 a.foo();
5 a.foo();
6 }
7 }
8

9 class A {
10 B b = new B();
11 void foo() {
12 b.bar();
13 }
14 }
15

16 class B {
17 void bar() {
18 test();
19 }
20 int test() {
21 return 2;
22 }
23 }

Listing 4.3: Code example for collapsing activations

18

4 Sequence Diagrams in JavaWiz

Figure 4.7 shows the visualization when stepping into the first two method calls. Lifelines
are created for the used objects and activations represent the start of method execution.

Figure 4.7: Stepping into first a.foo()

The method returns are shown by dashed arrows to indicate the end of execution. This
can be seen in Figure 4.8.

Figure 4.8: a.foo() returns

19

4 Sequence Diagrams in JavaWiz

The entire sequence diagram that is created for the program is illustrated in Figure 4.9.
As explained in Section 4.2, self calls are drawn inside method bar to visualize a method
invocation of the same object.

Figure 4.9: Visualization of both a.foo() calls

20

4 Sequence Diagrams in JavaWiz

In Figure 4.10 the first activation for object b has been double-clicked and therefore col-
lapsed. Collapsed activations are specified with a shade of blue that is slightly darker than
what is used for expanded ones. Furthermore, there are three dots that indicate that the
method contents are hidden.

Figure 4.10: Collapsing first b.bar()

21

4 Sequence Diagrams in JavaWiz

Figure 4.11 shows the visualization after the first activation of object a has been collapsed.
Hidden activations are not displayed which is noticeable as the activation for the first
bar() call is not shown in the figure. The same applies for method call arrows that link to
hidden activations.

Figure 4.11: Collapsing first a.foo()

Collapsed activations shrink in size which has the same effect on the height of all lifelines.
Additionally, the activations that contain the collapsed method execution adjust their
height accordingly. All other method calls that occur after the collapsed one are shifted
upwards in order to fill the space of any hidden elements. This dynamic change shows
that the y-coordinates of arrows and activations can change depending on the height of
any surrounding activations.

Another important feature is that when expanding a.foo again, the previously collapsed
b.bar in Figure 4.10 must still be collapsed. This indicates that expanding always results
in the state before collapsing.

22

4 Sequence Diagrams in JavaWiz

So far, the visualization examples resulted from stepping into each method call. However,
the Sequence Diagram Component allows to step over methods which results in collapsing
the activation and hiding the contents inside the scope.

Figure 4.12 shows the sequence diagram after stepping over both a.foo calls. Although
three lifelines are created throughout the program, stepping over the method calls leads to
only two of them being visible. As b:B is only created within the execution of a.foo, the
third lifeline is hidden together with any activations and arrows connecting to it. A hidden
lifeline located between two visible ones would lead to more changes. The remaining
lifelines created after the hidden one would be shifted upwards and to the left to fill the
empty space.

Figure 4.12: Step over collapse

23

4 Sequence Diagrams in JavaWiz

4.4 Example program

Listing 4.4 shows a more complex example to point out the use of previously explained
features. The program consists of a class system for shapes. The base class Shape declares
the abstract methods getLeft, getTop, getWidth, getHeight and draw. The subclasses
Rect, Circle and Group implement those methods. The class Primitive is a common
super class for Rect and Circle. In the main class Shapes a shape of a snowman is created
and the methods getLeft, getWidth and draw are called.

The method draw in class Group initiates the drawing process for each sub-element of
the snowman. However, instead of actually drawing the snowman, strings containing
information about the shape of an element are printed.

1 public class Shapes {
2 private static final int DIST = 10;
3

4 public static void main(String [] args) {
5 Rect armL = new Rect(60, 210, 40, 30);
6 Rect armR = new Rect (200, 210, 40, 30);
7 Circle body = new Circle (150, 250, 60);
8 Circle head = new Circle (150, 160, 30);
9 Group snowMan = new Group(armL , armR , head , body);

10

11 Out.println(snowMan.getLeft () + snowMan.getWidth ());
12 snowMan.draw();
13 }
14 }
15

16 class Shape {
17 public int getLeft () {return 0;}
18 public int getTop () {return 0;}
19 public int getWidth () {return 0;}
20 public int getHeight () {return 0;}
21 public void draw(){}
22 }
23

24 class Primitive {

24

4 Sequence Diagrams in JavaWiz

25 private final int x;
26 private final int y;
27

28 public Primitive(int x, int y) {
29 this.x = x;
30 this.y = y;
31 }
32 public int getX() {return x;}
33 public int getY() {return y;}
34 }
35

36 class Rect extends Primitive {
37 private final int width;
38 private final int height;
39

40 public Rect(int x, int y, int width , int height) {
41 super(x, y);
42 this.width = width;
43 this.height = height;
44 }
45

46 @Override
47 public int getLeft () {return getX();}
48 @Override
49 public int getTop () {return getY();}
50 ...
51 }
52

53 class Circle extends Primitive {
54 private final int radius;
55

56 public Circle(int x, int y, int radius) {
57 super(x, y);
58 this.radius = radius;
59 }
60

61 public int getRadius () {return radius ;}
62 @Override
63 public int getLeft () {return getX() - radius ;}

25

4 Sequence Diagrams in JavaWiz

64 @Override
65 public int getTop () {return getY() - radius ;}
66 @Override
67 public int getWidth () {return radius * 2;}
68 @Override
69 public int getHeight () {return radius * 2;}
70 ...
71 }
72

73 class Group extends Shape {
74 private final Shape[] subShapes;
75

76 public Group(Shape ... subShapes) {
77 this.subShapes = subShapes;
78 }
79

80 public Shape[] getSubshapes () {return subShapes.clone();}
81 @Override
82 public int getLeft () {
83 int min = Integer.MAX_VALUE;
84 for (Shape s : subShapes) {
85 if (s.getLeft () < min) {
86 min = s.getLeft ();
87 }
88 }
89 return min;
90 }
91 ...
92 @Override
93 public void draw() {
94 for (Shape s : subShapes) {
95 s.draw();
96 }
97 }
98 }

Listing 4.4: Shape classes

26

4 Sequence Diagrams in JavaWiz

Line 11 in Listing 4.4 contains two separate method calls. The method invocation that
occurs first is snowman.getLeft. Figure 4.13 shows that during execution method getLeft

is called for each existing object. The calls of getLeft of the last three objects in the figure
are collapsed to save space.

Figure 4.13: Visualization after snowman.getLeft()

In Figure 4.14 the main method has been collapsed by double-clicking on the correspond-
ing box. After expanding the visualization would go back to its state in Figure 4.13.

Figure 4.14: Visualization after collapsing the main method

27

4 Sequence Diagrams in JavaWiz

The visualization in Figure 4.15 shows that the contents of snowman.getLeft have been col-
lapsed to reduce the size of the sequence diagram. The next method call is snowman.getWidth.
During execution the methods getLeft and getWidth alternate for each existing object.
A self call is invoked before the method returns. The method draw is stepped over as we
know that each object only prints a string.

Figure 4.15: Visualization after program ended

28

5 Implementation

In this chapter, an introduction to the implementation of the sequence diagram component
is given. Besides standard HTML, CSS and JavaScript, the sequence diagram component
uses the Vue.js framework following the same template as all other JavaWiz components.
Vue.js works component-based and relies on reusable instances for developing new user
interfaces [15].

The code is written in TypeScript integrating the D3.js library to support visualizations
with smooth animations. D3 stands for data-driven documents as the document object
model (DOM) is modified [16]. This chapter shows how the data is sampled and linked to
the component to trigger rendering.

5.1 Component structure

Figure 5.1 shows the interaction between the involved components. The backend compiles
the code and runs the debugger that provides trace states for each step request. The trace
contains all trace states up until the most current one. Whenever new trace states occur, the
trace as well as the SequenceDiagramHistory are updated. The SequenceDiagramHistory

keeps track of three different collections for lifelines, arrows and so-called boxes which
represent activations. These collections are updated or extended by analyzing the stack
and heap of each new trace state to filter out indications for the creation or modification of
data.

The sampled data is then linked to the sequence diagram component. When stepping
through a program, new trace states are continuously added to the trace which means that
the SequenceDiagramHistory is updated regularly. As the collections for lifelines, arrows
and boxes are adapted and extended, the visualization is re-rendered.

29

5 Implementation

Figure 5.1: SequenceDiagramHistory as part of the architecture

Figure 5.2 shows a class diagram that explains the relationship between the trace and the
components relevant for the sequence diagram visualization. As explained in Section
3.3, the trace consists of multiple trace states. There exists one SequenceDiagramHistory

inside the trace. Internally, there are three separate collections containing multiple lifelines,
arrows and boxes. The structures of the collection data types LifeLine, Arrow and Box

are shown in Section 5.3.

Figure 5.2: Class diagram

30

5 Implementation

For the visualization, the HTML-based template syntax provided by Vue.js is used to
create an initial Scalable Vector Graphic (SVG) that contains three separate groups for
lifelines, arrows and activations.

Listing 5.1 shows what is specified in the template and compiled to JavaScript code. Vue.js
can easily figure out the smallest number of required changes in the DOM as reactivity
makes the interconnection between data and user interface possible [17].

1 <svg id="sequence-diagram-svg"
2 width="120%"
3 height="120%"
4 viewBox="0 0 600 10000"
5 preserveAspectRatio="xMidYMin slice">
6 <g id="sequence-diagram">
7 <g id="life-lines" />
8 <g id="boxes" />
9 <g id="arrows" />

10 </g>
11 </svg>

Listing 5.1: Main SVG

Figure 5.3 shows the main Vue.js component for the sequence diagrams. The props contain
the data provided by the SequenceDiagramHistory. The sequence diagram component
links the gathered information about lifelines, arrows and activations to the corresponding
groups in the SVG. Event indices indicate the order of events in the data sampling process
with eventIdx in the props being the most current one. The stateIdx represents the
current state in the program execution.

The data function provides the initial state of the Vue.js component including properties
that are referenced and modified within the template. These properties include the SVG
and data collections for hiddenIntervals and activeEventIndices which are progres-
sively updated. The purpose and underlying algorithm are elaborated in Sections 5.2.1
and 5.4.

The redraw method is invoked whenever data changes and the DOM requires to be
re-rendered. D3.js is incorporated to ease the visualization process.

31

5 Implementation

Figure 5.3: The Sequence Diagram Component

5.2 Layouting

Figure 5.4 shows how the SVG is structured for the visualization. The structure is based
on two axes. While lifelines are added along the horizontal line, method calls happen at
different event indices that cause the visualization to grow downwards. Both lifeline and
event indices are maintained through distinct counters that are incremented with new
events.

The sequence diagram that is shown in Figure 5.4 is taken as an example to further explain
the meaning of the indices. Each lifeline has a unique lifeline index that determines the
horizontal position. The distance between two lifelines in the visualization is constant and
therefore always the same. Longer labels that overlap with other elements are abbreviated
with three dots.

32

5 Implementation

Event indices represent the order of events with events being

• the creation of lifelines for objects or classes

• the end of lifelines

• method calls represented by solid arrows

• the return of method calls represented by dashed arrows

• the creation of activations

• the end of activations

In comparison to the lifeline indices, the distances between two event indices differ in
the visualization. This is the case as the height and distances between elements in the
visualization are calculated dynamically. Based on the event index that belongs to a certain
position, the y-coordinates for lifelines, arrows and boxes are determined with different
equations that add or multiply constants to the event index. This approach allows to
define distances without having to stick to constant arrangements. For example in Figure
5.4, the distance between the start of a lifeline and the start of the first activation is smaller
than other distances in the visualization. This creates a more compact solution that uses
space more effectively.

Figure 5.4: SVG structure based on two axes

33

5 Implementation

5.2.1 Hidden intervals and active event indices

Collapsed activations are managed in order to adapt the positions and heights of any
visible elements. The global data called hiddenIntervals contains all collapsed method
calls and is updated whenever a box is double-clicked. The indices activeEventIndices
represent all event indices that are visible. Whenever the hiddenIntervals change, the
activeEventIndices must be updated to reflect the current state.

Taking the previous sequence diagram in Figure 5.4 as an example, it has already been
explained that each activation has a start and end associated, each arrow is created at a
certain event and each lifeline has a starting event index. The activation for a.foo starts
at event index 4 and ends at event index 7. No box is collapsed, therefore, there are no
hiddenIntervals. The activeEventIndices go continuously from 1 to 10.

In Figure 5.5 the activation for a.foo is collapsed. The activation is pushed to the
hiddenIntervals as the contents are no longer visible. This indicates that the event
indices 5 and 6 are not active anymore. They are deleted from the activeEventIndices.
The event indices 1-4 and 7-9 are the ones that are still active.

Figure 5.5: Active event indices after collapsing

34

5 Implementation

Based on the position of an event index in the collection of active indices, the dynamic
adjustment of the sequence diagram is made possible. By using transition animations
provided by D3.js, the visualization changes smoothly.

5.3 Data sampling in SequenceDiagramHistory.ts

The SequenceDiagramHistory that is created by the trace receives information about new
trace states as the method this.sequenceDiagramHistory.addTraceStates is invoked.
SequenceDiagramHistory.ts internally keeps track of collections containing lifelines,
arrows and boxes. In the following, the data sampling process based on the analysis of the
trace at each step event is explained in detail.

5.3.1 Creation of lifelines

The stack must be examined to create lifelines for classes or objects. As mentioned in
Section 3.3, the stack of a trace state consists of multiple stack frames.

Figure 5.6 shows the structure of one stack frame. For each new trace state, one must
check the this of the first stack frame. Then, the name and heapId of an object is searched
in the localVariables as well as the heap of each stack element. this being null defines
a class, otherwise, the new lifeline must define an object.

Figure 5.6: Structure of one stack frame

35

5 Implementation

Figure 5.7 shows the information that must be gathered to create a new lifeline. The
properties of a lifeline are explained in the following:

• index: Each new lifeline receives a unique identification.

• start: This field refers to the starting event at which the lifeline is created.

• end: A new lifeline is always active at creation. The ending event is set when the
object does not exist any longer.

• label and className: The class name found in the stack is stored. Object classes
require both the field name and the class name as part of the label. Static classes
simply store the class name twice.

• heapId: Only objects have an associated heap id that must be maintained.

• programEnd: When the program ends, lifelines that are still active must terminate.
There exists a dedicated field which indicates that all lifelines must end and the
crosses have to be drawn.

• isHidden and wasHidden: When lifelines are created at a time that is inside the
scope of a collapsed box or no methods of the lifeline are invoked, then isHidden

becomes true. wasHidden stores the previous state of the lifeline.

Figure 5.7: Lifeline data type

36

5 Implementation

5.3.2 Creation of arrows and boxes

After creating and possibly terminating lifelines, the next step requires the introduction
of arrows and boxes for new method calls. Arrows are created by comparing the stack
of each trace state to the previous one. A new StackFrame indicates a method call and
thus an arrow has to be drawn. If the stack does not contain this StackFrame anymore
and the corresponding method call is not a constructor call, then a return arrow has to be
drawn.

Figure 5.8 shows the data type that is used for arrows:

• from and to: An arrow goes from one box to another. The lifelines associated to
them must be stored.

• fromBoxIndex and toBoxIndex: The unique identifications of the two affected boxes
are saved.

• kind and direction: There are three arrow categories that are treated differently
during data sampling. Call arrows are created in combination with boxes. Return
arrows are assigned to already existing boxes. Running the main method creates a
CallMain arrow that is never visibly drawn and leads to a main method execution
that is active until the program ends. Basic arrows can point to the left or right,
however, self call arrows have no particular direction.

• label: Call arrows are labeled with the method signature. For return arrows the label
is simply return.

• time: This field defines the event index at which the arrow is created.

• methodCallId: Each method call receives a unique id that at some point has one call
and one return arrow as well as one box associated.

• fromDepth and toDepth: As boxes can be stacked on top of each other, the depth
must be considered for correct visualizations.

• isHidden and wasHidden: Arrows are hidden when they are created inside the
scope of collapsed boxes. wasHidden stores the previous state of the arrow.

37

5 Implementation

• changed: This flag is only used for zooming purposes in order to keep track of
already processed arrows.

Figure 5.8: Arrow data type

As explained, call arrows are created for each new method call together with an associated
box that marks the start of a new method execution. Boxes represent activations and are
structured as shown in Figure 5.9. The information that must be gathered is as follows:

• index: Each box has a unique index for identification.

• lifeLineIndex: The unique id of the associated lifeline is maintained.

• start: The starting event at which the box is created is stored.

• end: When a method returns, the ending event has to be set accordingly.

• callArrow, returnArrow and methodCallId: The method call id, call and return
arrow must be stored to associate arrows and boxes to one another.

• depth: As activations can be stacked, the depth must be preserved.

• currState and prevState: Boxes can be expanded, collapsed or hidden. When boxes
change their current state, prevState defines the state before modification.

• isDrawn and wasDrawn: As collapsed boxes can either be visible or not, flags must
be kept to have access to this information during visualization.

38

5 Implementation

• stepOver: This field is only needed to determine whether a box must be stepped
over or not.

Figure 5.9: Box data type

5.4 The redraw method

The sequence diagram is rendered by invoking the redraw method. This is done automati-
cally whenever the associated props change.

This is straight-forward, however, methods stepped over need special treatment. Figure
5.10 shows a sequence diagram where none of the methods are stepped over and thus no
activations are collapsed. As shown in the figure, method foo is started with event index
4 and ends with event index 7. In-between event indices 5 and 6 are the start and end of
method call bar. An internal map is used that assigns event indices to their associated
state indices. This is shown in Figure 5.11.

Now, we assume that method a.foo has been stepped over. Figure 5.12 shows that the
method is collapsed now. For recognizing that a method invocation has been stepped over
and the activation has to be collapsed, the mapping from event indices to state indices
is used. As can be seen in Figure 5.13, now there is a gap in the state indices. This is
the indication that the method foo has been stepped over and the collapsed activation
contains method calls not shown.

39

5 Implementation

Figure 5.10: Sequence diagram example Figure 5.11: Mapping

Figure 5.12: Step over a.foo() Figure 5.13: New mapping

40

6 Conclusion

This thesis has presented the development of a visualization component for sequence
diagrams within the JavaWiz debugging tool. First, it introduced sequence diagrams as
part of the UML standard and presented tools other than JavaWiz that follow similar
visualization approaches for sequence diagrams. An introduction to JavaWiz was given
by explaining the architecture and other fundamental features. JavaWiz is extended by
the sequence diagram component that allows users to follow the chronological sequence
of interactions between objects. The most important implementation details are described
in Chapter 5.

The visualization component receives trace information from the JavaWiz backend. It
extracts relevant information from the trace, which is then used for visualization. The
component is implemented as a Vue.js component using the D3.js visualization framework.
As programming language, TypeScript has been used.

A highlight of the implementation include the collapsing of method calls. The possibility
to collapse method calls allows to break down a program into its pieces and focus on those
parts that are currently of interest.

6.1 Personal thoughts

To get used to both TypeScript and D3.js, I first started off by implementing the input
buffer visualization. That way, I was able to quickly understand the concept behind
the trace and how I could filter information for my own purposes. This smaller project
introduced me to most of the needed skills for the sequence diagram component and,
therefore, facilitated an easier start.

41

6 Conclusion

Overall, I can definitely say that this project challenged me in various ways as I had to
work with new technologies and expand my programming knowledge. Using D3.js to
visualize the sequence diagram was an entertaining and creative task as it required trying
out different design ideas. As a student researcher at the Institute for System Software,
I had the opportunity to ask colleagues to explain specific concepts regarding certain
technologies. This allowed me to quickly proceed with the project.

42

Bibliography

[1] Java OOP (Object-Oriented Programming). URL: https://www.w3schools.com/java/
java_oop.asp. (accessed: 25.04.2024).

[2] Unified Modeling Language 2.5.1. URL: https://www.uml.org. (accessed: 30.04.2024).

[3] Schenk F. Realization of a JavaWiz backend system running on a JavaScript runtime.
Master Thesis, Johannes Kepler University Linz, Austria, 2024.

[4] Kern K. JavaWiz - A Visualization Tool for Software Development Education. Master
Thesis, Johannes Kepler University Linz, Austria, 2023.

[5] Schloemicher A. Flowchart Visualization in JavaWiz. Bachelor Thesis, Johannes Kepler
University Linz, Austria, 2023.

[6] Schenk F. Eine Komponente zur Visualisierung von Java-Methoden für lineare Listen und
binäre Bäume. Bachelor Thesis, Johannes Kepler University Linz, Austria, 2022.

[7] Eriksson H. and Penker M. UML Toolkit. New York: John Wiley Inc., 1998.

[8] Unified Modeling Language Class and Sequence Diagrams. URL: https : / / open .

oregonstate.education/setextbook/chapter/uml-class/. (accessed: 25.04.2024).

[9] Martin Hitz and Gerti Kappel. UML@ Work: von der Analyse zur Realisierung. dpunkt-
Verlag, 1999.

[10] Egyed A. and Grünbacher P. Design Modeling. Lecture Notes Software Engineering,
Johannes Kepler University Linz, Austria, 2023.

[11] Ratiu C. Marchezan L. and Rynkiewicz M. E3: Define Architecture and Design. Exercise
Notes Software Engineering, Johannes Kepler University Linz, Austria, 2023.

[12] Kai Koskimies and Hanspeter Mössenböck. “Viewing Object-Oriented Programs
Through Scenario Diagrams”. In: Proceedings of the symposium on software engineering,
Visegrad, Hungary. 1995.

43

https://www.w3schools.com/java/java_oop.asp
https://www.w3schools.com/java/java_oop.asp
https://www.uml.org
https://open.oregonstate.education/setextbook/chapter/uml-class/
https://open.oregonstate.education/setextbook/chapter/uml-class/

Bibliography

[13] Mary ES Loomis, Ashwin V Shah, and James E Rumbaugh. “An object modeling
technique for conceptual design”. In: European conference on object-oriented program-
ming. Springer. 1987, pp. 192–202.

[14] Rainer Oechsle and Thomas Schmitt. “Javavis: Automatic program visualization
with object and sequence diagrams using the java debug interface (jdi)”. In: Software
Visualization: International Seminar Dagstuhl Castle, Germany, May 20–25, 2001 Revised
Papers. Springer. 2002, pp. 176–190.

[15] Vue.js Guide. URL: https://vuejs.org/guide/introduction.html. (accessed:
02.04.2024).

[16] What is D3? URL: https://d3js.org/what-is-d3. (accessed: 02.04.2024).

[17] Reactivity in Depth. URL: https://vuejs.org/guide/extras/reactivity- in-
depth.html. (accessed: 02.04.2024).

44

https://vuejs.org/guide/introduction.html
https://d3js.org/what-is-d3
https://vuejs.org/guide/extras/reactivity-in-depth.html
https://vuejs.org/guide/extras/reactivity-in-depth.html

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Bachelorarbeit selbstständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht
benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich
gemacht habe. Die vorliegende Bachelorarbeit ist mit dem elektronisch übermittelten
Textdokument identisch.

Linz, 11.06.2024

Ort, Datum Unterschrift

45

Mobile User

	1 Introduction
	1.1 Motivation
	1.2 JavaWiz
	1.3 Thesis structure

	2 Sequence Diagrams
	2.1 The UML standard
	2.2 Existing visualization tools
	2.2.1 SCENE
	2.2.2 JAVAVIS

	3 JavaWiz Visual Debugger Tool
	3.1 Overview
	3.2 Architecture
	3.3 Trace

	4 Sequence Diagrams in JavaWiz
	4.1 Simple method call
	4.2 Self calls
	4.3 Collapsing, hiding and expanding activations
	4.4 Example program

	5 Implementation
	5.1 Component structure
	5.2 Layouting
	5.2.1 Hidden intervals and active event indices

	5.3 Data sampling in SequenceDiagramHistory.ts
	5.3.1 Creation of lifelines
	5.3.2 Creation of arrows and boxes

	5.4 The redraw method

	6 Conclusion
	6.1 Personal thoughts

