
SYSTEM SOFTWARE NIO - 15

NIO

Path and Files

File Walk and WatchService

Channels and Buffers

Non-Blocking Channel Operations

Asynchronous Channels

Miscellaneous

SYSTEM SOFTWARE NIO - 16

MOTIVATION

NIO und NIO.2 introduced Channels as alternative to Input/OutputStreams

Channels
 provide elementary API (low-level API)

 support efficient reading from and writing to files and sockets

 support asynchronous operations

Package java.nio.channels

Note: Input/OutputStreams are now implemented using channels

SYSTEM SOFTWARE NIO - 17

CONCEPTS

Channels:
 Channels are created for data sources and sinks, i.e. files, sockets

 then support bi-directional reading and writing

Buffer: Channels work with buffers; the following buffers are supported:
 ByteBuffer
 CharBuffer
 ShortBuffer
 IntBuffer
 LongBuffer
 FloatBuffer
 DoubleBuffer

Selectors: Selectors allow listening to multiple channels and thus allow a thread to
handle multiple channels simultaneously

Asynchronous Channels for asynchronous operations

Locking of files using channels

SYSTEM SOFTWARE NIO - 18

CHANNELS

Channels are created for files or sockets, e.g., for files
Files.newByteChannel(Path path)

try (
ByteChannel srcChnl = Files.newByteChannel(srcPath, StandardOpenOption.READ);
ByteChannel destChnl = Files.newByteChannel(destPath, StandardOpenOption.WRITE);

) {

Further, there are a set of methods which create channels with different properties

Channel Zoo:

Interfaces:

ByteChannel, ReadableByteChannel, WritableByteChannel, SeekableByteChannel,
AsynchronousByteChannel, AsynchronousChannel, ...

Classes implementing various interfaces:

FileChannel, SocketChannel, ServerSocketChannel, AsynchronousFileChannel,
AsynchronousSocketChannel, AsynchronousServerSocketChannel,
DatagramChannel, ...

SYSTEM SOFTWARE NIO - 19

READING AND WRITING WITH CHANNELS

Reading and writing using buffers,
i.e., channels read data into buffers and write data from buffers

Buffers are similar to arrays but with special API

Factory methods for creating buffers

int bytesRead = channel.read(buffer);

channel.write(buffer);

ByteBuffer buffer = ByteBuffer.allocate(1024);

-1 for end of stream

Data
source/sink

Channel

Buffer
write

read

read data put into buffer

written data taken from buffer

SYSTEM SOFTWARE NIO - 20

BUFFER API

Essential method for buffers:

 put: filling a buffer with data

get: getting data from buffer

 clear: deleting the content

 flip and rewind: resetting read and write cursors

public ByteBuffer put(byte[] src)
public ByteBuffer put(byte[] src, int offset, int length)
public ByteBuffer put(ByteBuffer src)

public byte get()
public ByteBuffer get(byte[] dst)
public ByteBuffer get(byte[] dst, int offset, int length)
public byte get(int index)
public char getChar()
public double getDouble()
...

public final Buffer clear()

public Buffer flip()
public Buffer rewind()

Data
source/sink

Channel

Bufferput write

readget

SYSTEM SOFTWARE NIO - 21

BUFFER API

Properties:

 capacity: capacity of buffer

 position: current reading or writing position

 limit: position how far a buffer can be read or written

public int capacity()

public int position()
public Buffer position(int newPosition)

public int limit()
public Buffer limit(int newLimit)

SYSTEM SOFTWARE NIO - 22

BUFFER BEHAVIOR

 flip, clear, rewind set position und limit

 flip: sets limit to current position and position to 0

 clear: sets limit to capacity and position to 0

 rewind: sets position to 0

Interpretation of position and limit dependent on read/write mode of buffer

 Write Mode = putting data into buffer

 position: next position for new element

 limit: equal to capacity

 Read Mode = getting data from buffer

 position: next position for accessing element

 limit: to which position one can get data (exclusive)

flip

SYSTEM SOFTWARE NIO - 23

BUFFER BEHAVIOR

Example: Putting data into buffer and then reading buffer

 Putting data into buffer

 Getting data from buffer

ByteBuffer buffer = ByteBuffer.allocate(8);

buffer.clear();
buffer.put((byte)1);
buffer.put(bytes);
buffer.put((byte)4);

position limit capacity
0 8 8
1 8
3 8
4 8

buffer.flip();
byte b = buffer.get();
buffer.get(bytes);
b = buffer.get();

position limit capacity
0 4 8
1 4
3 4
4 4

byte[] bytes = new byte[2] { (byte) 2, (byte)3 };

sets buffer to read mode

sets buffer to write mode

SYSTEM SOFTWARE NIO - 24

EXAMPLE: COPYING FILE

try (
ByteChannel srcChnl = Files.newByteChannel(srcPath, StandardOpenOption.READ);
ByteChannel destChnl = Files.newByteChannel(destPath, StandardOpenOption.WRITE,

StandardOpenOption.CREATE);
) {

ByteBuffer buffer = ByteBuffer.allocate(16);

int nRead = srcChnl.read(buffer);
while (nRead >= 0) {
buffer.flip();
destChnl.write(buffer);
buffer.clear();
nRead = srcChnl.read(buffer);

}
} catch (IOException e) {
e.printStackTrace();

}

Read data and fill buffer

Read new data and fill buffer

Flip for getting read data

New buffer

Writing data from buffer

Clearing buffer for new data

SYSTEM SOFTWARE NIO - 25

CHARACTER ENCODING

Class Charset for character encoding
 Package java.nio.charset

Conversion between ByteBuffer and CharBuffer
 Creating a Charset object by static method forName with name of encoding

 Encoding

 Decoding

Charset cset = Charset.forName("UTF-8");

String strg = "...";
ByteBuffer bbuf = cset.encode(strg);

CharBuffer cbuf = cset.decode(bbuf);
String strg = cbuf.toString();

String strg = "...";
CharBuffer cbuf = CharBuffer.allocate(32);
cbuf.append(strg);

cbuf.flip();
ByteBuffer bbuf = cset.encode(cbuf);

Switch mode !

SYSTEM SOFTWARE NIO - 26

READER AND WRITER

Using CharBuffers and Charset with Reader and Writer
 Creating Reader and Writer with character encoding

 Reading into and writing from CharBuffers

Example: File copy

Charset cset = Charset.forName("UTF-8");
Writer out = new OutputStreamWriter(new FileOutputStream("srcfile.txt"), cset);

Reader in = new InputStreamReader(new FileInputStream("destfile"), cset);

CharBuffer cbuf = CharBuffer.allocate(64);
int nRead = reader.read(cbuf);

cbuf.flip();
writer.append(cbuf);

Charset cset = Charset.forName("UTF-8");
try (Reader reader = new InputStreamReader(new FileInputStream("srcfile.txt"), cset);

Writer writer = new OutputStreamWriter(new FileOutputStream("destfile.txt"), cset);) {
CharBuffer cbuf = CharBuffer.allocate(64);
int nRead = reader.read(cbuf);
while (nRead >= 0) {

cbuf.flip();
writer.append(cbuf);
cbuf.clear();
nRead = reader.read(cbuf);

}
} catch (IOException e) { … }

SYSTEM SOFTWARE NIO - 27

SOCKETS AND CHANNELS

Special classes and methods for working with channels and sockets

ServerSocketChannel
 for creating connection at server

SocketChannel
 for client/server communication

 bidirectional communication

 closing channel required

ServerSocketChannel server = ServerSocketChannel.open();
server.bind(new InetSocketAddress(port));
SocketChannel channel = server.accept();

Open server channel
bind it to address
try to connect to clients

SocketChannel channel = SocketChannel.open();
channel.connect(new InetSocketAddress(SERVER_IP, PORT));

Open channel
bind it to address and
connect

channel.write(buffer);
channel.read(buffer);

Writing to channel from buffer
Reading from channel into buffer

channel.close();

SYSTEM SOFTWARE NIO - 28

NIO

Path and Files

File Walk and WatchService

Channels and Buffers

Non-Blocking Channel Operations

Asynchronous Channels

Miscellaneous

SYSTEM SOFTWARE NIO - 29

NON-BLOCKING CHANNEL OPERATIONS (1/2)

Channels support non-blocking operations
 Operations executed asynchronously

 Channels have to be configured to be non-blocking

 then read, write, accept do not block
 but trigger events

Selector for working with events
 Creating and opening Selector

 Registering channel operations at Selector
 SelectionKey serves as access to registration

channel.configureBlocking(false);

Selector selector = Selector.open();

SelectionKey key = channel.register(selector, SelectionKey.OP_READ);

SelectionKey.OP_READ
SelectionKey.OP_WRITE
SelectionKey.OP_OPEN
SelectionKey.OP_ACCEPT

Multiple channels can be registered with same Selector
 then the Selector can handle multiple (many) channels

SYSTEM SOFTWARE NIO - 30

NON-BLOCKING CHANNEL OPERATIONS (2/2)

Handling events
 Getting events from Selector

 Accessing set of events

 Iteration and handling events

Iterator<SelectionKey> keyIterator = keys.iterator();
while (keyIterator.hasNext()) {
SelectionKey key = keyIterator.next();
if (key.isAcceptable()) {
...

} else if (key.isReadable()) {
...

} else if (key.isWritable()) {
...

} ...
keyIterator.remove();

}
removal of keys required!!

Set<SelectionKey> keys = selector.selectedKeys();

int n = selector.select();
int n = selector.select(1000); with timeout in ms

blocking wait until events are available!!

SYSTEM SOFTWARE NIO - 31

EXAMPLE: LISTENING TO MULTIPLE SOCKETS

Handling inputs from multiple socket connections
 Server allows multiple client connections

 Channel is set into non-blocking Mode

 and registered at Selector for read operations

ServerSocketChannel server = null;
try {
server = ServerSocketChannel.open();
server.socket().bind(new InetSocketAddress(port));
server.configureBlocking(true);
while (!stopServer) {
SocketChannel channel = server.accept();

channel.configureBlocking(false);
SelectionKey key = channel.register(selector, SelectionKey.OP_READ);

} catch (ClosedByInterruptException ie) {
...

} catch (IOException e1) {
...

} finally {
try {
server.close();

} catch (IOException e) { }
}

SYSTEM SOFTWARE NIO - 32

EXAMPLE: LISTENING TO MULTIPLE SOCKETS

 Inputs of all channels can be handled in one loop (and with a single thread)

while (! stopServer) {
try {
int n = selector.select(1000);
Set<SelectionKey> keys = selector.selectedKeys();
Iterator<SelectionKey> keyIt = keys.iterator();
while (keyIt.hasNext()) {
SelectionKey key = keyIt.next();
if (key.isReadable()) {
SocketChannel chnl = (SocketChannel)key.channel();
buffer.clear();
chnl.read(buffer);
buffer.flip();
byte[] data = new byte[buffer.limit()];
buffer.get(data);
System.out.println(Arrays.toString(data));

}
keyIt.remove();

}
} catch (IOException e) {
}

}

Reaction to input

Read from channel

Output on console

Access of triggering channel

Blocks until event (with timeout)

SYSTEM SOFTWARE NIO - 33

ATTACHMENTS TO SELECTIONKEYS

SelectionKeys allow attachments
 can be used for forwarding important information in events

 Adding attachment at registration

 Accessing attachment when getting event

Note: Get channel where event occurred with key.channel()

Object attachment = ... ;
SelectionKey key = channel.register(selector, SelectionKey.OP_READ);
key.attach(attachment);

int n = selector.select(500);
Set<SelectionKey> keys = selector.selectedKeys();
Iterator<SelectionKey> keyIt = keys.iterator();
while (keyIt.hasNext()) {
SelectionKey key = keyIt.next();

Object attachment = key.attachment();

SocketChannel chnl = (SocketChannel)key.channel();

Note: Very useful when handling
multiple client channels
Note: Very useful when handling
multiple client channels

SYSTEM SOFTWARE NIO - 34

NIO

Path and Files

File Walk and WatchService

Channels and Buffers

Non-Blocking Channel Operations

Asynchronous Channels

Miscellaneous

SYSTEM SOFTWARE NIO - 35

ASYNCHRONOUS CHANNELS

Asynchronous channels support asynchronous event processing
 either with Futures

 or with CompletionHandler

Approach:
 Open an AynchronousChannels, e.g., an AsynchronousFileChannel

 Asynchronous read with Future

 and getting event and data from Future

AsynchronousFileChannel fileChannel =
AsynchronousFileChannel.open(path, StandardOpenOption.READ);

Future<Integer> future = fileChannel.read(buffer, 0);

int nRead = future.get();
// processing data
buffer.flip();
byte[] data = new byte[buffer.limit()];
buffer.get(data);
…

analogous analogous
AsynchronousSocketChannel,
AsynchronousServerSocketChannel

blocks !

SYSTEM SOFTWARE NIO - 36

COMPLETIONHANDLER

Use CompletionHandler to implement callback
 Provide CompletionHandler with operations

 After termination of operation method completed or failed is called

 Further, using attachment allows forwarding object from call to handler

Note: CompletionHandler is generic in result and attachment object

fileChannel.read(buffer, position, attachment,
new CompletionHandler<Integer, Object>() {

@Override
public void completed(Integer result, Object attachment) {

buffer.flip();
byte[] data = new byte[buffer.limit()];
buffer.get(data);
…

}
@Override
public void failed(Throwable exc, Object attachment) {

// handle failed read operation
}

});

Attachment-ObjektAttachment object

SYSTEM SOFTWARE NIO - 37

NIO

Path and Files

File Walk and WatchService

Channels and Buffers

Non-Blocking Channel Operations

Asynchronous Channels

Miscellaneous

SYSTEM SOFTWARE NIO - 38

LOCKS

Locking of files using channels

Lock for releasing file lock

FileLock lock = fileChannel.lock();

lock.release();

FileLock lock = fileChannel.tryLock(); returns null if lock not available

waits for file lock

