

JAVA SECURITY

PR SW2 S18

Dr. Prähofer

DI Leopoldseder

AGENDA

1. Introduction

2. Class Loading

3. Security Manager and Permissions

4. Summary

3

AGENDA

1. Introduction

2. Class Loading

3. Security Manager and Permissions

4. Summary

4

DIFFERENT LEVELS OF SECURITY
 Language Level

 Strong data typing

 Automatic memory management

 Defined Overflow Semantics

 Bytecode Level

 Signed Code

 Virtual Machine Level

 Checked Array Accesses

 Secure Class Loading
 Byte-Code Verification

 Security Manager
 Control Access & Execution Permissions

5

SECURITY MECHANISM

 Virtual Machine

 Array access checks

 Forbidden casts

 …

 Class loader

 Loading of code

 Bytecode verification

 Security Manager

 Allowed and forbidden operations

 Encryption technologies

 Code signing

 authentication

6

AGENDA

1. Introduction

2. Class Loading

3. Security Manager and Permissions

4. Summary

7

CLASS LOADING

 Java source code is compiled by javac to bytecode

 Bytecode is a platform independent stack machine based

assembly like code format

 The JVM loads bytecode on demand

 What does that mean
1. Class containing main method is loaded

2. Super classes and classes (transitive) of fields are loaded

3. Static initializer is executed

4. Main function is executed

5. New types encountered during execution are loaded

8

BYTECODE VERIFICATION

 2 Level verification

 Javac will not compile corrupt source code

 VM will not load corrupt class files (except if specified with –noverify)

 Problem: Not all bytecode generated by javac

 What does the VM’s verifier check?

 Variables are initialized before they are used

 Method calls match types of object references

 Access rules (protection) is not violated

 Local variable access fall into runtime stack (stack is not

corrupt)

 Runtime stack does not overflow

9

CLASS LOADERS

 Classes are loaded by ClassLoader objects

 Accessing class loader objects

 Class loader Support
 Explicit loading

 Defining new classes

 Class loaders can be specified

Class clazz = Class.forName(“MyProgram“);
ClassLoader loader = clazz.getClassLoader();

ClassLoader loader = ClassLoader.getSystemClassLoader();

Default Class Loader

Class myClass = loader.loadClass("mypack.MyClass");

byte[] classCode = ...;
loader.defineClass(“MyDefinedClass“, classCode, 0, classCode.length);

Thread thread = Thread.currentThread();
thread.setContextClassLoader(loader);

Set class loader for

thread

10

KINDS OF CLASS LOADERS JDK8

 Class loaders are organized in a class hierarchy (tree)

 Root class loader is called Bootstrap class loader
 The bootstrap loader loads all classes from rt.jar (stands for

runtime.jar, contains all classes of the JDK)

 Extension class loader
 Loads all extensions from jre/lib/ext

 System class loader
 Loads CLASSPATH

 Special class loaders
 Application specific class loader as extensions for System class

loader

Gone in Java 9: Now

called platform class

loader

11

CLASS LOADERS AND TYPE
IDENTITY

 Every class in the VM (after loading) is associated with a class

loader

 Can use user defined class loader to load own classes (or define

them)

 Equality of classes is not only given by their name but also by the

class loader that loaded the class so e.g. Foo.class can be loaded

n times with n different class loaders

 Example: Applets loaded from different servers loaded by different

class loaders

MyAppletClass MyAppletClass

cl1:ClassLoader cl2:ClassLoader

12

CLASS LOADER HIERARCHY

 Hierarchy with parent and child relation

 Determine priority of class loading

1. Bootstrap class loader

2. Extension class loader

3. System class loader

4. Specializations

 Class loaders typically first delegate

loading of a class to its parent class

loader

 Only if the parent fails then child tries

Bootstrap

class loader

Extension

class loader

System

class loader

rt.jar

jre/lib/ext

CLASSPATH

Special

class loader
?

13

CLASS LOADERS JAVA 8 VS JAVA 9
Bootstrap

class loader

Platform class

loader

System

class loader

Java.base, ..

Named

modules

Classpath,

module path

Special

class loader
?

Bootstrap

class loader

Extension

class loader

System

class loader

rt.jar

jre/lib/ext

CLASSPATH

Special

class loader
?

Java 8 Java 9

14

SPECIAL CLASS LOADERS: EXAMPLE

 URLClassLoader

 Loads classes from URLs

URL pluginUrl = new URL("file:c:/plugins.jar");
URLClassLoader pluginLoader = new URLClassLoader(

new URL[] { pluginUrl },
ClassLoader.getSystemClassLoader()

);

Class<?> cl = pluginLoader.loadClass("plugin1.PluginClass");
cl.getMethod("test").invoke(null);

Plugin-JAR not in

CLASSPATH

Superior Class Loader

15

SAMPLE IMPLEMENTATION OF
SPECIAL CLASS LOADER

 Extend ClassLoader to define new semantics e.g.

 Decryption of encrypted bytecode files

 Overriding the findClass method

public class CryptoClassLoader extends ClassLoader {
private final String path;
private final int key;

public CryptoClassLoader(String path, int key) {...}

@Override
protected Class<?> findClass(String name) throws ClassNotFoundException {

byte[] classBytes = null;
try {

classBytes = loadAndDecryptClassBytes(name);
} catch (IOException e) { throw new ClassNotFoundException(name); }
Class<?> clazz = defineClass(name, classBytes, 0, classBytes.length);
if (clazz == null) throw new ClassNotFoundException(name);
return clazz;

}

private byte[] loadAndDecryptClassBytes(String name) throws IOException {
...

}

findClass called by

loadClass

16

AGENDA

1. Introduction

2. Class Loading

3. Security Manager and Permissions

4. Summary

17

SECURITY MANAGER

 Although Java is considered to be a “safe” language based on

executing bytecode in a “sandbox” hiding system and

implementation details there are operations breaking that

paradigm as they are inherently unsafe

 java.lang.SecurityManager allows the programmer to

programmatically allow and permit (potentially untrusted) code to

access certain resources and perform (potentially dangerous)

operations

 Which operations can you think of?

18

SECURITY MANAGER OPERATIONS
AND PERMISSIONS

 What can be regulated by the SecurityManager

 File Access

 Opening Sockets

 Accessing System Properties

 Application Termination

 Class loader creation and setting

 AWT event queue access

 Top-Level Window Opening(Frame)

 Installing other security managers

 ….

19

SECURITY CHECK CONCEPT

 Class library implements security checks in potentially dangerous

program paths

 E.g. Security Check in System.exit

public void exit(int status) {
SecurityManager security = System.getSecurityManager();
if (security != null) {

checkExit(status);
}
Shutdown.exit(status);

}

Can throw

SecurityException

20

INSTALLATION OF A SECURITY
MANAGER

 Per default no security manager is installed

 Therefore no checks are performed

 Application must define and install a security manager itself: 2

ways to do so

 Programmatically

 On the command line at program start

System.setSecurityManager(SecurityManager sm)

java -Djava.security.manager ...

21

JAVA SECURITY MODEL

 Security policies which define

mapping, i.e., code from specific

source is given certain permissions

 Mapping from code source to

permissions

 Code sources and permissions

represented by classes and objects

 Class CodeSource with

CodeBase and Cerificate

 Class system of Permissions

 PermissionCollection are

collections of permissions

 Security policies are defined in

policy files

Security Policy

CodeSource

CodeBase

Certificate

CodeSource

CodeBase

Certificate

PermissionCollection

Permission

Permission

Permission

PermissionCollection

Permission

Permission

22

PROCESS OF CREATION OF A
PROJECTION DOMAIN

Protection domain groups code

source and permissions

1. Load class by

SecureClassLoader

2. Get permissions from policy

based on the CodeBase

3. Definition of class

4. Creation of protection domain

for class with code source and

permission collections

SecureClassLoader Policy

Class ProtectionDomain

 CodeSource

URL

Certificate

PermissionCollection

2:getPermissions(codebase)

3: defineClass

4: create

*

Permission

*

1: loadClass(className)

23

OPERATIONS WITH SECURITY
CHECKS

 Process of a security check

 System.getSecuirtyManager is used

 If installed (!=null) calling checkPermission on

SecurityManager

 If check is passed execution continues

 If check fails SecurityException is thrown

public void <checkedOperation>(...) {
SecurityManager security = System.getSecurityManager();
if (security != null) {

security.checkPermission(new …Permission(…));
}
<uncheckedOperation>(...);

}

public void connect(SocketAddress endpoint, int timeout) throws IOException {
…
SecurityManager security = System.getSecurityManager();
if (security != null) {

security.checkPermission(new SocketPermission(host+":"+port,
SecurityConstants.SOCKET_CONNECT_ACTION));

…
}

Can throw

SecurityException

Simplified
24

CHECK PERMISSIONS

 Permissions are checked with checkPermission of the

SecurityManager

 Algorithm (simplified) to check for Permission p

checkPermission(Permission p) throws SecurityException {

for all classes clazz of methods on call stack {

permColl = clazz.getProtectionDomain().getPermissions();

if (! exists q in permColl with q.implies(p))

throw SecurityException(...);

}

permission p granted

}

public void checkPermission(Permission p)

25

EXAMPLE: SOCKET

Stacktrace

public class DemoCallStack {
public static String readData() throws IOException {

String fileName = "data.txt";
try (BufferedReader r = new BufferedReader(new FileReader(fileName))) {

String line = r.readLine();
while (line != null) {

…
line = r.readLine();

}
}

}
public static void main(String[] args) throws IOException {

readData();
}

Needs permission

All classes must have

permission to read from

socket

26

PERMISSION IMPLICIATIONS

 Permissions implements a method implies which checks if the

given permission implies another permission

boolean implies(Permission permission)

RuntimePermission("*")

implies

RuntimePermission("ExitVM")

FilePermission(“C:\temp*“, “read“)

implies

FilePermission(“C:\temp\MyFile“, “read“)

SocketPermission(“*:1024-65535", “connect”)

implies

SocketPermission “yourserver.com:1099", “connect“)

Examples

27

PERMISSION CLASS HIERARCHY

Permission

AllPermission BasicPermission FilePermission SocketPermission

AudioPermission NetPermission ReflectedPermission SecurityPermission

AWTPermission PropertyPermission RuntimePermission SeriazablePermission

Can be parameterized
28

PERMISSION SPECIFICATION IN
POLICY FILES
 Permissions are usually defined in

policy files which contain a

sequence of grant entries

 Mapping from Code Source to

Permissions

 Code source consists of
 URL for the code base

 Name of trusted certifiers

 Permissions in the form of
 permission keyword

 Class name of permission class

 A permission-specific target for

the permission (e.g. directory)

 An optional list of permission-

specific actions

grant Codesource {
Permission_1;
Permission_2;

};

grant
codebase codebase-URL
signedby certificate-name ... {

grant
codebase codebase-URL
signedby certificate-name ...

{
permission permission-className

target
action1, ...;

...
};

29

EXAMPLE POLICY FILE

grant {
permission java.lang.RuntimePermission "stopThread";
permission java.net.SocketPermission "localhost:1024-", "listen";
permission java.util.PropertyPermission "java.version", "read";
permission java.util.PropertyPermission "java.vendor", "read";

...
};

grant codeBase "file:${java.home}/lib/ext/*" {
permission java.security.AllPermission;

};

grant codeBase “www.ssw.uni-linz.ac.at/classes/" {
permission java.net.SocketPermission “*:1024-65535", “connect";
permission java.io.FilePermission “${user.home}${/}-“,

“read “, “ write “, “execute“;
...

};

...

All Code Sources can access properties

and open sockets for reading

SSW code base can

only use certain files

and sockets

JDK Extensions get all

permissions

30

PERMISSIONS (EXCERPT)

...

getPolicy, setPolicy

...

java.security.SecurityPermission

showWindowWithoutWarningBanner

accessClipboard

acccessEventQueue

listenToAllAWTEvents

readDisplayPixels

java.awt.AWTPermission

setDefaultAuthenticator

specifyStreamHandler

requestPassword-Authentication

java.net.NetPermission

createClassLoader

createSecurityManager

exitVM

stopThread

queuePrintJob

...

java.lang.RuntimePermission

read, write Property ljava.util.PropertyPermission

accept,connect, listen,

resolve

Socket (host, port)iava.net.SocketPermission

read, write, execute,

delete

File java.io.FilePermission

ActionTargetPermission

31

SECURITY MANAGER EXAMPLE

 Installation

 Then files cannot be read or written

System.setSecurityManager(new SecurityManager());

try (BufferedReader reader = new BufferedReader(new InputStreamReader(
new FileInputStream(filename)))) {

for (String line = reader.readLine(); line != null; line = reader.readLine()) {
System.out.println(line);

}
} catch (Throwable t) { System.out.println("Unable to read file: " + t); }

try (BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(
new FileOutputStream(filename, true)))) {

writer.append("Hello World!\n");
} catch (Throwable t) { System.out.println("Unable to write file: " + t); }

Unable to read file: java.security.AccessControlException: access denied
("java.io.FilePermission" "test.txt" "read")
Unable to write file: java.security.AccessControlException: access denied
("java.io.FilePermission" "test.txt" "write")

32

EXAMPLE

 Policy file

grant codeBase "file:C:/.../UE03_WS/Security_Permissions_1/bin/-" {
permission java.io.FilePermission "test.txt", "read";
permission java.io.FilePermission "test.txt", "write";

};

java -Djava.security.manager -Djava.security.policy=test.policy ...

Set security manager

33

JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Strasse 69

4040 Linz, Austria

www.jku.at

THANK YOU

