

JAVA PERFORMANCE

PR SW2 S18

Dr. Prähofer

DI Leopoldseder

OUTLINE

1. What is performance ?

1. Benchmarking

2. What is Java performance ?

1. Interpreter vs JIT

3. Tools to measure performance

4. Memory Performance

1. GC Performance

5. Compiler Performance

1. Optimization Patterns

6. Java Performance Rules

3

DISCLAIMER

 There are multiple dedicated courses covering Java performance

and performance monitoring

 ST: Java Performance Monitoring and Benchmarking,

Lengauer (Summer Term)
 What to benchmark

 When to benchmark

 How to benchmark

 ST: Dynamic Compilation and Run-time Optimization

in Virtual machines, Leopoldseder/Wirth (Summer Term)
 Interpreters

 Compilers

 Dynamic Compilation

 Optimizations in Dynamic Compilers

4

OUTLINE

1. What is performance ?

1. Benchmarking

2. What is Java performance ?

1. Interpreter vs JIT

3. Tools to measure performance

4. Memory Performance

1. GC Performance

5. Compiler Performance

1. Optimization Patterns

6. Java Performance Rules

5

TYPES OF PERFORMANCE
 Runtime performance

 How fast does a program finish?

 What is the throughput of an application ?

 Memory Performance

 How large is the maximal memory footprint at runtime?

 What is the average memory footprint?

 Executable sizes?

 Cache Performance

 DCache Utilization

 ICache Utilization

 Network performance

 Nr of open Sockets

 Average Socket Open Time

 Database performance

 ….
6

TYPES OF PERFORMANCE
 Runtime performance

 How fast does a program finish?

 What is the throughput of an application ?

 Memory Performance

 How large is the maximal memory footprint at runtime?

 What is the average memory footprint?

 Executable sizes?

 Cache Performance

 DCache Utilization

 ICache Utilization

 Network performance

 Nr of open Sockets

 Average Socket Open Time

 Database performance

 ….

Everything that can be

measured / observed about

a program or state of the

system

7

WHAT IS PERFORMANCE USED FOR?

 Determine the performance of a system under test?

 Problem

 Performance is always relative (to a system)

 Therefore we need a reference we can compare to

 The reference can be
 A different version of the same software on the same machine

 A different machine

 A different operating system

 A different programming language

 A different algorithm

 ….

8

METRICS FOR PERFORMANCE

 Several metrics exist to measure various performance aspects of

a system under test

 Instructions Per Cycle

 Instructions Per Second

 Cycles Per Second

 Floating Point Operations per Second

 Data transmission rate

 Latency

 DB queries per second

 Live heap size

 Startup heap size

 Number of live objects

 Runtime (application level)

 Throughput (application level)

9

GENERAL RULE

 Every performance number is relative

 Based on a specific hardware configuration

 Programs cannot be executed in complete isolation

 OS can always interfere

Therefore define in which aspects of performance you are

interested and measure them….

In a reproducible experiment running the system under test in

isolation (as far as possible)

10

MYTHS

 There exists no oracle that makes statements like “my computer

is faster than yours valid”

 Performance is always relative and depends on the hardware,

software, external influences and the application that is used to

measure performance

11

WHAT AFFECTS PERFORMANCE
 Hardware

 CPU
 ISA

 Number of sockets, cores, threads, etc.

 Number of registers

 Instruction set extensions (e.g. AVX)

 ICache & Dcache (L1,L2,L3)

 Cache Type

 Random Access Memory

 Persistent Memory
 HDD

 SSD

 Software

 Operating System

 Program language

 Compiler & Linker

 Filesystem

 External Influences

 Temperature

 Air Pressure

 Power Supply

 Earth magnetism

 Radiation

12

THE ART OF BENCHMARKING

 Creating & running reproducible workloads to measure different

performance metrics of a system is called combined under the

umbrella term benchmarking

 A benchmark is an application that can be executed

(reproducibly) in an experiment to measure a defined metric of

interest

 For every metric of interest research ot industry has developed

benchmarks to measure performance

13

OUTLINE

1. What is performance ?

1. Benchmarking

2. What is Java performance ?

1. Interpreter vs JIT

3. Tools to measure performance

4. Memory Performance

1. GC Performance

5. Compiler Performance

1. Optimization Patterns

6. Java Performance Rules

14

JAVA PERFORMANCE PARADOXES

15

JAVA

 Traditionally Java is an interpreted language that uses just-in-time

compilation at runtime to compile portions of important code to

machine code

16

COMPONENTS OF A JVM (HOTSPOT)

 HotSpot the VM in the OpenJDK is the defacto state of the art

virtual machine for Java

17

OUTLINE

1. What is performance ?

1. Benchmarking

2. What is Java performance ?

1. Interpreter vs JIT

3. Tools to measure performance

4. Java Virtual Machine

1. JIT Compiler & VM

5. Compiler Performance

1. Optimization Patterns

6. Java Performance Rules

18

INTERPRETER AND COMPILER

Performance

Runtime

Interpreted C1 Compiled C2 Compiled

VM Startup

19

HOTSPOTS

 Not all code is compiled at runtime to machine code

 Only important parts are compiled, those are called hot spots

 Frequently executed methods

 Frequently executed loops

20

OPTIMIZATIONS

 The just-in-time compilers of the VM are very smart, they try to

optimize your code to make is as fast as possible by

 Evaluating constant expressions at compile time

 Inlining methods into callers

 Removing object allocations if they are not needed (or only an

objects fields are needed)

 Remove unnecessary locking

 Unrolling loops

 Remove expressions from loops if they are not dependent on

loop variables

 Remove never executed code

 ….

Do not try to be smarter than the VM, write clean code, the VM will

figure out a way to optimize it properly…

21

OUTLINE

1. What is performance ?

1. Benchmarking

2. What is Java performance ?

1. Interpreter vs JIT

3. Tools to measure performance

4. Memory Performance

1. GC Performance

5. Compiler Performance

1. Optimization Patterns

6. Java Performance Rules

22

TOOLS FOR PERFORMANCE
MEASUREMENT

 There exist a multitude of different tools to measure different

performance metrics

Workflow for performance monitoring

1. Define Metrics of interest

2. Define benchmark

3. Define benchmark workload (input, constant if possible)

4. Define measurement / monitoring tool

5. Measure performance (serval times, use statistics to make

sense)

23

PROFILING….

 Is the task of analyzing a system under test by means of defined

metrics

 We use a very simple characterization for different forms of

profiling

 Static Profiling: Offline analysis of the program
 Source code complexity

 Source level allocations

 Source level loops

 ….

 Dynamic Profiling: Online analysis during execution of the

program
 Instrumentation based profiling

 Sampling profiling

 Event based profiling

24

INSTRUMENTATION BASED
PROFILING

 Works by changing the application code itself to measure various

metrics of interest

 Number of method calls

 Number of loop iterations

 Number of different dynamic types at a callsite

 Invocation Counts

 Number of Allocations

 ….

 Typically Very High Overhead

 For Java instrumentation takes typically place at bytecode level

25

BYTECODE INSTRUMENTATION

https://www.barcelonajug.org/2015/04/java-agents.html

26

bar

bar

SAMPLING BASED PROFILING

 Periodically inspecting a programs execution stack

static void bar() {
Thread.sleep(20ms);

}

static void baz() {
Thread.sleep(5ms);

}

static void foo() {
for (int i = 0; i < 10000; i++) {
if (i % 2 == 0) {
bar();
} else {
baz();
baz();
}
}
}

f

o

o

baz

baz

Sampling frequency

10 ms

Sampled Times

• Foo: 6 Samples

• Bar: 6 Samples

• Baz: 0 Samples

27

EVENT BASED PROFILING

 Requires runtime support

 Runtime creates special events during execution that are send to

registered listeners at runtime

 At Method calls

 Object allocations

 Thread creation

 OS Calls

 ….

 Most prominent event based profiler

 JMVTI: Java virtual machine tool interface

28

OUTLINE

1. What is performance ?

1. Benchmarking

2. What is Java performance ?

1. Interpreter vs JIT

3. Tools to measure performance

4. Memory Performance

1. GC Performance

5. Compiler Performance

1. Optimization Patterns

6. Java Performance Rules

29

MEMORY PERFORMANCE

 Java uses automatic memory management to handle the

reclaiming of unused memory

 Memory is reclaimed by a garbage collector

 Generational hypothesis

 GC is a program that

 Finds all object references (mark live objects from GC roots)

 Finds those still in use (referenced)

 And collects the rest of them by reclaiming their space

 [Optionally] Compacts the heap to fight fragmentation

 Several GC implementations exist

 Serial

 Parallel

 CMS

 G1

 ZGC

30

GC IMPACT

 GC takes time and consumes CPU time

 Can compete with application

 GCs implementation typically uses multiple GC threads

 Collects objects concurrently

 Distinction between GC thread and application thread (called

mutator)

 Sometimes GC needs to stop mutators to perform (parts of) the

collection
 Can take time

 Can be a performance bottle neck

31

HEAP SIZE DURING APPLICATION

Sample run of dacapo:jython profiled with visual vm

Max Size Never

Reached

Reclaimed more

than 60% of the live

memory

1 Benchmark

Iteration

32

OUTLINE

1. What is performance ?

1. Benchmarking

2. What is Java performance ?

1. Interpreter vs JIT

3. Tools to measure performance

4. Memory Performance

1. GC Performance

5. Compiler Performance

1. Optimization Patterns

6. Java Performance Rules

33

COMPILER OPTIMIZATION

 Optimizing compilers are essential to generate fast machine code

 However, application performance is bounded by problem space,

application type, etc.

 If 99% of the time an application is waiting for network requests

optimizing 1% of the rest won’t do much

 What can be optimized by the compiler

 CPU Bound problems
 Optimize computations

 Optimize Loops

 …

 Memory Bound problems
 Remove allocation

 Removes object locking

 Reduce GC pressure

34

COMPILER OPTIMIZATIONS

 Dedicated course Advanced Compiler Construction,

Mössenböck

 Complex transformations on a program

 Constant Folding: int a = 1 * 2;  int a = 2;

 Dead code elimination

static final boolean DEBUG = false;

void foo(){

if(DEBUG) print(“…info….”);

doWork();

}



void foo(){doWork();}

35

COMPILER OPTIMIZATIONS

 Inlining

void foo(){

bar();

}

void bar(){

…do work…

}



void foo(){

…do work…

}

36

COMPILER OPTIMIZATIONS

 Loop Invariant Code Motion

void int foo(int[] arr,int x,int y){
int tmp = x*y;
for(int i=0;i<arr.length;i++){
arr[i] = arr[i]+tmp;

}
}

void int foo(int[] arr,int x,int y){
for(int i=0;i<arr.length;i++){
arr[i] = arr[i]+(x*y);

}
}



37

ESCAPE ANALYSIS

long uselessAllocation(){
return new Long(System.currentTimeMillis()).value;

}


long uselessAllocation(){
return System.currentTimeMillis();

}

38

OUTLINE

1. What is performance ?

1. Benchmarking

2. What is Java performance ?

1. Interpreter vs JIT

3. Tools to measure performance

4. Memory Performance

1. GC Performance

5. Compiler Performance

1. Optimization Patterns

6. Java Performance Rules

39

PERFORMANCE RULES

 The compiler is always smarter than you are

 Write clean code, the compiler will figure out how to optimize it

 Never optimize something without measuring it first, always

measure, find out what is slow and optimize then (“Premature

optimization is the root of all evil”)

 Most objects die young (makes them cheap to be used)

 Always measure, never assume

 Non functional requirements (like performance) cannot be ignored

until the end of a project, they are either important then we design

for them or not important (performance is always important)

40

ASSIGNMENT 6

Performance Optimization with JNI and profiling

SORTING AN ARRAY OF MUTLI
DIMENSIONAL ARRAYS

 Download the maven eclipse project from the course website

 Maven clean

 Maven install: Runs annotation processor and builds

depencies

 2 Tasks

 Implement the given method with JNI
 Measure and report which version is faster

 Implement an optimized version for the task you may use any

feature of the JVM you like but NO library function but you can
 Use threads

 Use JNI

 Tweak the compiler

 ….

42

JMH

 Tool to produce reproducible Java experiments by running tests in

isolation multiple times and performing statistical analysis on it

 Based on byte code generation for annotated methods

 http://openjdk.java.net/projects/code-tools/jmh/

 See http://tutorials.jenkov.com/java-performance/jmh.html for

more details

43

http://openjdk.java.net/projects/code-tools/jmh/
http://tutorials.jenkov.com/java-performance/jmh.html

JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Strasse 69

4040 Linz, Austria

www.jku.at

THANK YOU

